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Abstract

The most classical example of noncommutative harmonic analysis is the theory of
spherical harmonics:

(a) Under the action of the special orthogonal group G in n variables, the space of
square-integrable functions on the (n − 1)-sphere decomposes as an orthogonal direct
sum of mutually inequivalent irreducible subspaces.

(b) The algebra of polynomials in n variables decomposes as the tensor product of the
G-invariant polynomials and the harmonic polynomials (separation of variables).

(c) The restrictions of the harmonic polynomials to the sphere gives all the irreducible
G-invariant spaces in (a).

In this paper we describe how (a) and (b) carry over to harmonic analysis on a compact
Riemannian symmetric space and its tangent space. Our approach is through complex
algebraic groups; we embed the compact symmetric space in a complexification which is
an affine algebraic subset of the complexified isometry group of the space. We describe
this embedding in explicit matrix form for the symmetric spaces of classical type, which
are given by three elementary linear algebra constructions. Property (a) generalizes to
the context of multiplicity-free spaces, and we obtain Helgason’s theorem characterizing
the highest weights of the irreducible spherical representations. The harmonic analysis
of polynomial functions on the tangent space to a symmetric space was carried out by
Kostant and Rallis as a generalization of (b) and (c). We describe a new proof of their
basic theorem and illustrate it in all the cases where the isotropy group is a classical
group.

1 Introduction

In the introduction to [Car], É. Cartan says that his paper was inspired by the paper of F.
Peter and H. Weyl on harmonic analysis on compact groups [Pe-We], but he points out that
for a compact Lie group Weyl’s use of integral equations ‘gives a transcendental solution to
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a problem of an algebraic nature’ (namely, the completeness of the set of finite-dimensional
irreducible representations of the group). Cartan’s goal is ‘to give an algebraic solution to
a problem of a transcendental nature, more general than that treated by Weyl’ (namely,
finding an explicit decomposition of the space of all L2 functions on a homogeneous space
into an orthogonal direct sum of group-invariant irreducible subspaces).

In this paper we have a similar goal. Recall that the space of functions on the circle
with finite Fourier series can be identified with the algebra of finite Laurent polynomials
C[z, z−1] (where z = eiθ). In a similar way, the ‘finite’ functions on a homogeneous space
for a compact connected Lie group (that is, the functions whose translates span a finite-
dimensional subspace) can be viewed as polynomial (‘regular’) functions on the complexified
group (a complex reductive algebraic group). By Weyl’s ‘unitarian trick’ the irreducible
subspaces of functions under the action of the compact group correspond to irreducible
subspaces of regular functions on the complex reductive group. The advantage of this
correspondence is that we can then apply algebraic group techniques to show that for
a symmetric space the irreducible representations occur with multiplicity one. We also
determine the highest weights of these representations using a mixture of algebraic and
transcendental methods (this result was first obtained in complete generality by Helgason
[Hel2]).

In the last sections of the paper we describe the corresponding results for the decompo-
sition of the tangent-space (‘isotropy’) representation of a symmetric space. Here the group
action on the underlying space is now linear, but the multiplicities of the irreducible spaces
of polynomials are not one. Just as in the case of spherical harmonics there is a tensor
product decomposition into invariant polynomials (the analogue of ‘radial’ functions) and
functions on a homogeneous space for the isotropy group (the analogue of spherical harmon-
ics). However, the homogeneous space for the isotropy group is generally not symmetric
and not multiplicity-free, unlike the classical case of the sphere.

There is an interesting ‘transcendental’ problem that we do not discuss here. Just as
in the case of functions on the circle, the functions on a compact symmetric space that
are real-analytic but not ‘finite’ extend holomorphically to a complex neighborhood of the
space. The geometric and analytic propreties of these neighborhoods have been studied by
Beers-Dragt [Be-Dr], Frota-Mattos [Fr-Ma] and Lassalle [Las]. The explict matrix models
for the complexifications of the classical symmetric spaces given in this paper were not used
in the cited papers, however. It would be interesting to reexamine this question in the
context of these matrix domains.

2 Representations on Aff(X)

2.1 Isotypic Decomposition

Let G be a connected complex reductive algebraic group, and let X be an affine algebraic
set on which G acts regularly. We write Aff(X) for the algebra of regular functions on X
(the algebra often denoted by C[X ]) and we denote by ρX the associated representation of
G on Aff(X), given by

ρX(g)f(x) = f(g−1x), for f ∈ Aff(X).
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For example, when X is a finite-dimensional vector space and G acts linearly, then Aff(X) =
P(X), the polynomial functions on X , and G preserves the spaces of homogeneous polyno-
mials.

Fix a Borel subgroup B = HN of G, with H a maximal torus in G and N the unipotent
radical of B. Taking G ⊂ GL(n,C), we can always conjugate G so that H consists of
the diagonal matrices in G and N consists of the upper-triangular unipotent matrices in
G. Write P (G) ⊂ h∗ for the weight lattice of G and P++(G) for the dominant weights,
relative to the system of positive roots determined by N (since the Borel subgroups in G
are all conjugate, the notations P (G) and P++(G) are unambiguous once B is fixed). For
λ ∈ P (G) we denote by h 7→ hλ the corresponding character of H . We extend this to a
character of B by setting (hn)λ = hλ for h ∈ H and n ∈ N .

An irreducible regular representation (π, V ) of G is then determined (up to equivalence)
by its highest weight. The subspace V N of N -fixed vectors in V is one-dimensional, and
H acts on it by a character h 7→ hλ where λ ∈ P++(G). For each such λ we fix a model
(πλ, V λ) for the irreducible representation with highest weight λ. Let Aff(X)N be the space
of N -fixed regular functions on X . For every character b 7→ bλ of B, let Aff(X)N(λ) be the
N -fixed regular functions f of weight λ:

ρX(b)f = bλf for b ∈ B.(1)

We can then describe the G-isotypic decomposition of Aff(X) as follows.

Theorem 2.1 For λ ∈ P++(G), the isotypic subspace of type πλ in Aff(X) is the span of
ρX(G)Aff(X)N(λ). This subspace is isomorphic to V λ ⊗ Aff(X)N(λ) as a G-module, with
action πλ(g)⊗ 1. Thus

Aff(X) ∼=
⊕

λ∈P++(G)

V λ ⊗ Aff(X)N(λ)

This theorem shows that the G-multiplicities in Aff(X) are the dimensions of the spaces
Aff(X)N(λ). We have Aff(X)N(λ) · Aff(X)N(µ) ⊂ Aff(X)N(λ+ µ) under pointwise multi-
plication. Hence the set

S(X) = {λ ∈ P++(G) : Aff(X)N(λ) 6= 0} (the spectrum of X)

is an additive semigroup. The theorem above shows that this semigroup completely deter-
mines the G-isotypic decomposition of Aff(X).

2.2 Function Models for Irreducible Representations

Let N̄ be the unipotent group opposite to N ; if we take a matrix form of G so that G =
Gt, H is diagonalized and N is upper-triangular, then N̄ = N t. We shall obtain all the
irreducible representations of G as representations induced from characters of the Borel
subgroup B̄ = HN̄ .

We begin with the representation of G on the function space

R(N̄\G) = {f ∈ Aff(G) : f(n̄g) = f(g) for n̄ ∈ N̄}.
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The G-action is by right translation. We decompose this space into irreducible subspaces
as follows. For λ ∈ P++(G) let

φλ : V λ
∗ ⊗ V λ → Aff(G), φλ(v∗ ⊗ v)(g) = 〈v∗, πλ(g)v〉

Choose an N -fixed vector vλ ∈ V λ and a N̄ -fixed vector v∗λ ∈ V λ∗ , normalized so that

〈v∗λ, vλ〉 = 1.

This can be done, since v∗λ has weight −λ and so is orthogonal to all weight spaces in V λ

except Cvλ.

Theorem 2.2 The space R(N̄\G) contains every irreducible regular representation of G
exactly once:

R(N̄\G) =
⊕

λ∈P++(G)

φλ(v∗λ ⊗ V λ).(2)

From the decomposition of R(N̄\G) we obtain the following function models for the
irreducible representations of G.

Theorem 2.3 (Borel-Weil) Let λ ∈ P++(G). Let Rλ ⊂ Aff(G) be the subspace of func-
tions such that

f(n̄hg) = hλf(g), for n̄ ∈ N̄, h ∈ H, g ∈ G.(3)

Then Rλ = φλ(v∗λ ⊗ V λ). Hence Rλ is spanned by the right translates of the function

fλ(g) = 〈v∗λ, πλ(g)vλ〉,
and the restriction of the right regular representation R of G to Rλ is an irreducible rep-
resentation with highest weight λ. The function fλ is uniquely determined by the property
f(n̄hn) = hλ for n̄ ∈ N̄ , h ∈ H, n ∈ N .

We call the function fλ(g) in Theorem 2.3 the generating function for the representation
with highest weight λ. It can be calculated from the fundamental representations of G as
follows.

Corollary 2.4 Let λ1, . . . , λr be generators for the additive semigroup P++(G). Set fi(g) =
fλi(g). Let λ ∈ P++(G) and write λ = m1λ1 + · · ·+mrλr with mi ∈ N. Then

fλ(g) = f1(g)m1 · · ·fr(g)mr for g ∈ G.(4)

Example

Suppose G = GL(n,C). Take B as the group of upper-triangular matrices. We may identify
P (G) with Zn, where λ = [λ1, . . . , λn] gives the character

hλ = xλ1 · · ·xλn, h = diag[x1, . . . , xn].

Then P++(G) consists of the monotone decreasing n-tuples and is generated by

λi = [1, . . . , 1︸ ︷︷ ︸
i

, 0, . . . , 0] for i = 1, . . . , n and λn+1 = −λn.

We can take V λi =
∧iCn. The generating function is

fλi(g) = ith principal minor of g.

for i = 1, . . . , n. Here fλn+1(g) = (det g)−1, which is a regular function on GL(n,C).
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2.3 Multiplicity-free Spaces

We say that X is multiplicity-free as a G-space if all the irreducible representations of G
that occur in Aff(X) have multiplicity one. We now obtain a geometric condition for an
affine G-space X to be multiplicity free.

For a subgroup K ⊂ G and x ∈ X we write Kx = {k ∈ K : k · x = x} for the isotropy
group at x. Let k = Lie(K). Then the Lie algebra of Kx is kx = {Y ∈ k : dρ(Y )x = 0}.

Theorem 2.5 (Vinberg-Kimelfeld) Let X be an irreducible affine G-space. Suppose
there is a point x0 ∈ X such that B · x0 is open in X . Equivalently, suppose

dim(b/bx0) = dimX.

Then X is multiplicity-free. In this case, if the representation πλ with highest weight λ
occurs in Aff(X), then hλ = 1 for all h ∈ Hx0.

Proof. It suffices by Theorem 2.1 to show that

dim Aff(X)N(λ) ≤ 1 for all λ ∈ P++(G).

Suppose B · x0 is open in X (and hence dense in X , by the irreduciblity of X). Then
f ∈ Aff(X)N(λ) is determined by f(x0), since on the dense set B · x0 it satisfies f(b · x0) =
b−λf(x0). 2

Let K ⊂ G be a reductive algebraic subgroup. Then G/K has the structure of an affine
algebraic set. The pair (G,K) will be called spherical if

dim(V λ)K ≤ 1.

for every λ ∈ P++(G). By Frobenius reciprocity this is equivalent to the space G/K being
multiplicity-free.

From the conjugacy of Borel subgroups in G and Theorem 2.5 we have the following
criterion for spherical pairs.

Corollary 2.6 Suppose there exists a connected solvable subgroup S of G so that s + k = g.
Then (G,K) is spherical.

When (G,K) is a spherical pair an irreducible representation V λ of G will be called
K-spherical if (dimV λ)K = 1. These are precisely the representations that occur in the
decomposition of Aff(G/K) into G-irreducible subspaces. Thus the semigroup S(G/K)
consists of the highest weights of K-spherical representations of G.

3 Representations on Symmetric Spaces

3.1 Algebraic Models for Symmetric Spaces

Let G be a connected reductive algebraic group, and let θ be an involutive automorphism
of G. The differential of θ at 1, which we continue to denote as θ, is then an automorphism
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of g which satisfies θ2 = I. Let K = Gθ. The space G/K can be embedded into G as an
affine algebraic subset as follows.

Define
g ? y = gyθ(g)−1, for g, y ∈ G.

We have (g ? (h ? y)) = (gh) ? y for g, h, y ∈ G, so this gives an action of G on itself which
we will call the θ-twisted conjugation action. Let

Q = {y ∈ G : θ(y) = y−1}.

Then Q is an algebraic subset of G. Since θ(g ? y) = θ(g)y−1g−1 = (g ? y)−1, we have
G ? Q = Q.

Theorem 3.1 (Richardson) The θ-twisted action of G is transitive on each irreducible
component of Q. Hence Q is a finite union of closed θ-twisted G-orbits.

The proof consists of showing that the tangent space to a twisted G-orbit coincides with
the tangent space to Q.

Corollary 3.2 Let P = G?1 = {gθ(g)−1 : g ∈ G} be the orbit of the identity element under
the θ-twisted conjugation action. Then P is a closed irreducible subset of G isomorphic to
G/K as a G-space (relative to the θ-twisted conjugation action of G).

3.2 Classical Symmetric Spaces

Let G ⊂ GL(n,C) be a connected classical group with Lie(G) a simple Lie algebra. The
involutions θ and associated symmetric spaces G/K for G can be described in terms of
three kinds of geometric structures on Cn:

(1) nondegenerate bilinear forms (symmetric or skew symmetric);

(2) polarizations Cn = V+ ⊕ V− with V± totally isotropic subspaces relative to a bilinear
form (zero form or nondegenerate symmetric or skew-symmetric form);

(3) orthogonal decompositions Cn = V+ ⊕ V− relative to a nondegenerate bilinear form
(symmetric or skew-symmetric).

In case (1) G is SL(n,C) and K is the subgroup preserving the bilinear form (in the Cartan
classification, these are called types AI and AII). For case (2) G is SL(n,C) (if the form is
identically zero) or the group preserving the bilinear form on Cn (if the form is nondegen-
erate) and K is the subgroup preserving the given decomposition of Cn (Cartan types AIII,
BDI and CII, respectively). For case (3) G is the group preserving the bilinear form and
K is the subgroup preserving the given decomposition of Cn (Cartan types DIII and CI).
Thus there are seven types of symmetric spaces for the classical groups that arise this way.

The proof that these seven types give all the possible involutive automorphisms of the
classical groups (up to inner automorphisms) can be obtained from following characteriza-
tion of automorphisms of the classical groups.
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Proposition 3.3 Let σ be a regular automorphism of the classical group G.
(1) If G = SL(n,C) then there exists s ∈ G so that σ is either σ(g) = sgs−1 or σ(g) =

s(gt)−1s−1.
(2) If G is Sp(n,C) then there exists s ∈ G so that σ(g) = sgs−1.
(3) If G is SO(n,C) with n 6= 2, 4, then there exists s ∈ O(n,C) so that σ(g) = sgs−1.

Proof. Let π be the defining representation of G on Cm (where m = n in cases (1) and (3),
and m = 2n in case (2)). The representation

πσ(g) = π(σ(g))

also acts irreducibly on Cm. The Weyl dimension formula implies that the defining repre-
sentation (and its dual, in the case G = SL(n,C)) is the unique representation of dimension
m. The proposition follows easily from this fact. 2

We can now describe all the involutions of the classical groups.

Theorem 3.4 Let θ be an involution of the classical group G. Assume Lie(G) is simple.
Then θ is given as follows, up to conjugation by an element of G.

(1) If G = SL(n,C), then there are three possibilities:

(a) θ(x) = T (xt)−1T t for x ∈ G, where T ∈ G satisfies T t = T . The prop-
erty T t = T determines θ uniquely up to conjugation in G. The corresponding
bilinear form B(u, v) = utTv, for u, v ∈ Cn, is symmetric and nondegenerate.

(b) θ(x) = T (xt)−1T t for x ∈ G, where T ∈ G satisfies T t = −T . The property
T t = −T determines θ uniquely up to conjugation in G. The corresponding
bilinear form B(u, v) = utTv, for u, v ∈ Cn, is skew-symmetric and nondegen-
erate.

(c) θ(x) = JxJ−1 for x ∈ G, where J ∈ GL(n,C) and J2 = In. Let

V± = {v ∈ Cn : Jv = ±v}.

Then V = V+ ⊕ V− and θ is determined (up to conjugation in G) by dimV+.

(2) If G is SO(V, ω) or Sp(V, ω), then there are two possibilities:

(a) θ(x) = JxJ−1 for x ∈ G, where J preserves the form ω and J2 = I. Let

V± = {v ∈ V : Jv = ±v}.

Then V = V+ ⊕ V−, the restriction of ω to V± is nondegenerate, and θ is
determined (up to conjugation in G) by dim V+.

(b) θ(x) = JxJ−1 for x ∈ G, where J preserves the form ω and J2 = −I. Let

V±i = {v ∈ V : Jv = ±iv}.

Then V = Vi ⊕ V−i, the restriction of ω to V±i is zero and Vi is dual to V−i via
the form ω. The automorphism θ is uniquely determined (up to conjugation in
G).
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We proceed to describe the symmetric spaces for the classical groups in more detail.
Given the group G and involution θ, we set

P = {gθ(g)−1 : g ∈ G}, Q = {y ∈ G : θ(y) = y−1}.

We write sp = [δp+1−i−j ] for the p× p matrix with 1 on the anti-diagonal and 0 elsewhere.
Let τ(g) = (ḡt)−1. In all cases we will take the matrix form of G and the involution θ so
that the following holds.

(1) τ(G) = G and Gτ is a compact real form of G.

(2) The diagonal subgroup H in G is a maximal torus and θ(H) = H .

(3) τθ = θτ

It follows from (3) that σ = θτ is also a conjugation on G.

3.2.1 Involutions Associated with Bilinear Forms

Symmetric Bilinear Form–Type AI:
Let G = SL(n,C) and define the involution θ(g) = (gt)−1. Then θ(g) = g if and only if

g preserves the symmetric bilinear form B(u, v) = utv on Cn. Thus K = Gθ = SO(Cn, B).
The θ-twisted action is

g ? y = gygt,

and Q = {y ∈ G : yt = y}. A matrix y ∈ Q defines a symmetric bilinear form By(u, v) =
utyv on Cn. The θ-twisted G-orbit of y corresponds to all the bilinear forms G-equivalent to
By. Since By is non-singular, there exists g ∈ GL(n,C) so that g ? y = In. Since det y = 1,
we have det g = ±1; multiplying g by diag[−1, 1, . . . , 1] if necessary, we may take det g = 1.
Thus Q is a single G-orbit in this case, and hence Q = P . By Corollary 3.2 we conclude
that

SL(n,C)/SO(Cn, B) ∼= {y ∈Mn(C) : y = yt, det y = 1}

as a G-variety, under the map gK 7→ ggt. In this case the conjugation σ = θτ is given by
σ(g) = ḡ.

Skew-symmetric Bilinear Form–Type AII:
Let G = SL(2n,C). Take

µ =

[
0 1
−1 0

]
and let Tn be the 2n× 2n skew-symmetric block-diagonal matrix

Tn = diag[ µ, . . . , µ︸ ︷︷ ︸
n blocks

].

Then T 2
n = −I2n and T−1

n = T tn. Define the involution θ by

θ(g) = Tn(gt)−1T tn.
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Since τ(Tn) = Tn, we have θτ = τθ. For g ∈ G, θ(g) = g if and only if gtTng = Tn. This
means that g preserves the non-degenerate skew-symmetric bilinear form ω(u, v) = utTnv
on C2n. Thus K = Gθ = Sp(C2n, ω).

In this case the θ-twisted action of G is

g ? y = gyTng
tT tn.

and Q = {y ∈ G : (yTn)t = −yTn}. A matrix y ∈ Q defines a non-singular skew-symmetric
bilinear form

ωy(u, v) = utyTnv, u, v ∈ C2n,

and the θ-twistedG-orbit of y corresponds to all the bilinear forms equivalent to ωy. Arguing
as in Type AI, we see that Q is a single G-orbit and hence Q = P . By Corollary 3.2 we
conclude that

SL(2n,C)/Sp(ω) ∼= {y ∈Mn(C) : yTn = −(yTn)t, det y = 1}

under the map gK 7→ gTng
tT tn. In this case the conjugation σ = θτ is given by

σ(g) = TnḡT
t
n.

3.2.2 Involutions Associated with Polarizations

Zero Bilinear Form–Type AIII:
Let G = SL(p+ q,C). For integers p ≤ q with p+ q = n define

Jp,q =

 0 0 sp
0 Iq−p 0
sp 0 0

 .
Then J2

p,q = In, so we can define an involution θ of G by

θ(g) = Jp,qgJp,q.

Since τ(Jp,q) = Jp,q, we have θτ = τθ. The linear transformations P± = 1
2(In ∓ Jp,q) are

the projections onto the ±1 eigenspaces V± of Jp,q, and

Cn = V+ ⊕ V−.(5)

We have dim V+ = tr(P+) = 1
2(n− (q−p)) = p. The subgroup K = Gθ consists of all g ∈ G

that commute with Jp,q. This means that g leaves invariant the decomposition (5), so we
have

K ∼= S(GL(p,C)×GL(q,C)),

the group of all block diagonal matrices g = diag[g1, g2] with g1 ∈ GL(p,C), g2 ∈ GL(q,C)
and det g1 det g2 = 1.

In this case Q = {y ∈ G : (yJp,q)2 = In} and the θ-twisted action is

g ? y = gyJp,qg
−1Jp,q.
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For y ∈ Q the matrix z = yJp,q is a non-singular idempotent. Thus it defines a decomposi-
tion

Cn = V+(y)⊕ V−(y),

where z acts by ±1 on V±(y). The θ-twisted G-orbit of y corresponds to the G-conjugacy
class of z, under the map g ?y 7→ (g ?y)Jp,q. Hence G?y is determined by dimV+(y), which
can be any integer between 0 and n. In particular, the θ-twisted G-orbit of I is

P = {y ∈ GL(p+ q,C) : (yJp,q)2 = In, tr(yJp,q) = q − p}.

By Corollary 3.2 we conclude that

SL(p+ q,C)/S(GL(p,C)×GL(q,C)) ∼= P

under the map gK 7→ gJp,qg
−1Jp,q. The conjugation σ = θτ is given by

σ(g) = Jp,q(ḡt)−1Jp,q.

Skew-symmetric Bilinear Form–Type CI:
Let G = Sp(C2n,Ω), where Ω is the skew-symmetric form Ω(u, v) = utJnv with

Jn =

[
0 sn
−sn 0

]
.

We have Jtn = J−1
n and J2

n = −I2n. Thus Jn ∈ G and the map

θ(g) = −JngJn

is an involution on G. Since τ(Jn) = Jn, we see that θ commutes with τ . We can decompose

C2n = V+ ⊕ V−,

where Jn acts by ±i on V±. The form Ω vanishes on the subspaces V±. Indeed, the
projections onto V± are P± = 1

2(1 ∓ iJn), and we have P t+ = P− since Jtn = −Jn. Thus
P t+JnP+ = JnP−P+ = 0 and so Ω(P+u, P+v) = 0 (the same holds for P−). Thus Ω gives a
nonsingular pairing between V− and V+. In particular, dimV± = n.

The subgroup K = Gθ consists of all g ∈ G that commute with Jn. Thus g leaves
invariant V±. Since g preserves Ω, the action of g on V− is dual to its action on V+. Thus

K ∼= GL(V+) ∼= GL(n,C).

The θ-twisted action is
g ? y = gyJng

−1J−1
n

and Q = {y ∈ G : (yJn)2 = −I2n}. Let y ∈ Q and set z = yJn. Then z2 = −I2n, so we
can decompose

C2n = V+(y)⊕ V−(y),(6)

where z acts by ±i on V±(y). We claim that Ω = 0 on V±(y). Indeed, the projections
onto V±(y) are P± = 1

2(1 ∓ iz), and from the relation ytJn = Jny
−1 we calculate that
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ztJn = −Jnz, so this follows just as in the case y = In. The subspaces V±(y) are thus
maximal isotropic for the form Ω, and Ω gives a non-singular pairing between V+(y) and
V−(y). Since y is determined by the decomposition (6), it follows that Q is a single θ-twisted
G-orbit. Thus

P = {y ∈ Sp(n,C) : (yJn)2 = −I2n}.

By Corollary 3.2 we conclude that

Sp(C2n,Ω)/GL(n,C) ∼= P

under the map gK 7→ gJng
−1Jtn. The conjugation σ = θτ is given by

σ(g) = −Jn(ḡt)−1Jn.

Symmetric Bilinear Form–Type DIII:
Let G = SO(Cn, B) with n = 2l even, where B(u, v) = utsnv. We define Γ ∈ GL(n,C)

as follows. Let

γ =

[
0 1
1 0

]
.

For l = 2r even, define the block-diagonal matrix

Γn = i diag[ γ, . . . , γ︸ ︷︷ ︸
r

, −γ, . . . ,−γ︸ ︷︷ ︸
r

].

For l = 2r+ 1 odd, set

Γn = i diag[ γ, . . . , γ︸ ︷︷ ︸
r

, 1,−1, −γ, . . . ,−γ︸ ︷︷ ︸
r

].

Then Γnsn = −snΓn, Γtn = Γn and Γ2
n = −In. Thus Γn ∈ O(C, B) and the map

θ(g) = −ΓngΓn

is an involution on G. Since τ(Γn) = −Γn, we see that θ commutes with τ .
We can decompose

Cn = V+ ⊕ V−
where V± are the ±i eigenspaces of Γn. Since Γnsn = −snΓn, the form B vanishes on the
subspaces V±, by the same calculation as in Type CI. As in that case, we have

K ∼= GL(V+) ∼= GL(l,C).

For this case Q = {y ∈ G : (yΓn)2 = −In} and the θ-twisted action is

g ? y = gyΓng−1Γn.

For y ∈ Q the matrix z = yΓn satisfies z2 = −In, so we can decompose

Cn = V+(y)⊕ V−(y),

11



where z acts by ±i on V±(y). We have

ztsn = Γnytsn = Γnsny−1 = −snΓny−1 = −snz.

This implies that the subspaces V± are totally isotropic for the form B (by the same calcu-
lation as in Type CI). It follows that Q is a single θ-twisted G-orbit. Thus

P = {y ∈ SO(Cn, B) : (yΓn)2 = −In}.

By Corollary 3.2 we conclude that

SO(Cn, B)/GL(l,C) ∼= P

under the map gK 7→ gΓng−1Γn. The conjugation σ = θτ is given by

σ(g) = −Γn(ḡt)−1Γn.

3.2.3 Involutions Associated with Orthogonal Decompositions

Symmetric Bilinear Form–Type BDI:
Let G = SO(Cn, B), where B is the symmetric bilinear form B(u, v) = utsnv on Cn. For

integers p ≤ q with p + q = n define Jp,q as in type AIII. We have Jtp,q = J−1
p,q = Jp,q and

Jp,qsn = snJp,q. Since g ∈ G if and only if sngtsn = g, we see that Jp,q ∈ O(C, B) Thus the
map

θ(g) = Jp,qgJp,q

is an involution on G. Clearly θ commutes with τ . The projections P± onto the ±1
eigenspaces V± of Jp,q commute with sn. Hence V+ ⊥ V− (relative to the form B), since
P t+snP− = snP+P− = 0. We have dimV+ = tr(P+) = 1

2(n− (q − p)) = p and dimV− = q.
The subgroup K = Gθ consists of all g ∈ G that commute with Jp,q. This means that g
leaves invariant the decomposition (5). The restrictions B± of B to V± are non-degenerate,
since V− ⊥ V+, so we have

K ∼= S(O(V+, B+)×O(V−, B−)) ∼= S(O(p,C)×O(q,C)),

the group of all block diagonal matrices g = diag[g1, g2] with g1 ∈ O(p,C), g2 ∈ O(q,C),
and det g1 det g2 = 1.

We have Q = {y ∈ G : (yJp,q)2 = In} and the θ-twisted action is

g ? y = gyJp,qg
−1Jp,q.

The G-orbits in Q for this action correspond to the G-similarity classes of idempotent
matrices yJp,q, with y ∈ Q.

For y ∈ Q the matrix z = yJp,q satisfies z2 = In, so it gives a decomposition

Cn = V+(y)⊕ V−(y),(7)

where z acts by ±1 on V±(y). Since ytsn = sny
−1, Jp,qy−1 = yJp,q and Jp,qsn = snJp,q, we

have
ztsn = Jp,qy

tsn = Jp,qsny
−1 = snJp,qy

−1 = snz.

12



Hence the same argument that we used when y = In shows that the subspaces V±(y) are
mutually orthogonal (relative to the form B). This implies that the restrictions of B to
V± are non-singular. Since y is determined by the decomposition (7), it follows that the
θ-twisted G-orbit of y is determined by the integer

dim V+(y) =
1
2

(n− tr(yJp,q)).

In particular, P = {y ∈ SO(Cn, B) : (yJp,q)2 = In, tr(yJp,q) = q − p}. Corollary 3.2 now
implies

SO(Cn, B)/S(O(p,C)×O(q,C)) ∼= P

under the map gK 7→ gJp,qg
−1Jp,q. The conjugation σ = θτ is given by

σ(g) = Jp,q(ḡt)−1Jp,q.

Skew-symmetric Bilinear Form–Type CII:
Let G = Sp(C2n,Ω), where Ω is the skew-symmetric bilinear form Ω(u, v) = utJnv as in

Type CI. For 0 < p ≤ q with p+ q = n, let Jp,q ∈ GL(n,C) be as in Type AIII and define

Kp,q =

[
Jp,q 0
0 Jp,q

]
.

Since Jtp,q = J−1
p,q = Jp,q and snJp,qsn = Jp,q, we have Kp,q ∈ G and K2

p,q = I2n. Thus the
map

θ(g) = Kp,qgKp,q

is an involution on G. Clearly θ commutes with τ . As in Type BDI, the ±1 eigenspaces of
Kp,q give a decomposition

C2n = V+ ⊕ V−(8)

which is orthogonal relative to the form Ω. The subgroup K = Gθ consists of all g ∈ G that
commute with Kp,q. Since the restrictions of Ω to V± are non-degenerate and dimV+ =
tr(P+) = 1

2(2n− tr(Kp,q)) = 2p , we have

K ∼= Sp(p,C)× Sp(q,C),

in complete analogy with Type BDI.
Here Q = {y ∈ G : (yKp,q)2 = I2n} and the θ-twisted action is

g ? y = gyKp,qg
−1Kp,q.

Let y ∈ Q and set z = yKp,q. Since ytJn = Jny
−1 and Kp,qJn = JnKp,q, we have ztJn =

Jnz. Thus the ±1 eigenspaces of z are mutually orthogonal (relative to Ω) and give a
decomposition

C2n = V+(y)⊕ V−(y).(9)

The same proof as in Type BDI shows that the θ-twisted G-orbit of y is determined by the
integer tr(yKp,q). In particular,

P = {y ∈ Sp(C2n,Ω) : (yKp,q)2 = I2n, tr(yKp,q) = 2(q− p)}.
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By Corollary 3.2 we conclude that

Sp(C2n,Ω)/(Sp(p,C)× Sp(q,C)) ∼= P

under the map gK 7→ gJng
−1J−1

n . The conjugation σ = θτ is given by

σ(g) = Kp,q(ḡt)−1Kp,q.

3.3 Iwasawa Decompositions

Let G be a connected classical group and let θ be an involutive regular automorphism of
G. Let

K = {g ∈ G : θ(g) = g}.

Let τ be a conjugation in G such that the corresponding real form is compact. From the
examples of the previous section we know that we may assume τθ = θτ . We write σ = τθ;
then σ is another conjugation of G. Let G0 = Gσ and K0 = Gτ ∩K = Gσ ∩K. Then G0

is a (noncompact) real form of G and K0 is a compact real form of K.
We shall prove that (G,K) is a spherical pair by finding a Borel subgroup B with KB

dense in G. In fact, we shall construct a solvable subgroup AN+ of G, a semidirect product
of a torus A with a unipotent group N+, such that K∩ (AN+) is finite and KAN+ is dense
in G. This gives the so-called (complexified) Iwasawa decomposition of G.

Take G ⊂ GL(n,C) and θ as in Section 3.2. Let g be the Lie algebra of G. We will write
θ for dθ. As usual, we will consider k =Lie(K) to be a Lie subalgebra of g. Then

k = {X ∈ g : θX = X}.

Set p = {X ∈ g : θX = −X}. Then g = k⊕ p as a K-module under Ad|K .
Let h = Lie(H) and let

g = h +
∑
α∈Φ

gα

be the rootspace decomposition of g relative to H . We can then describe the action of θ on
g as follows. Since H is θ-stable, it is clear that

θ(gα) = gαθ

where we write αθ = α ◦ θ.
Recall from Section 3.1 thatG/K is embedded as the identity component of the algebraic

set
Q = {g ∈ G : θ(g) = g−1}.

Since H is commutative, the set H ∩ Q is a commutative subgroup of G consisting of
semisimple elements. Hence the identity component A = (H ∩Q)◦ is an (algebraic) torus.
By definition,

θ(a) = a−1 for all a ∈ A.

An algebraic torus with this property is called θ-anisotropic. For the conjugation σ = θτ
and a ∈ A we have

σ(a) = τθ(a) = τ(a−1) = ā.
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If χ is a regular character of A then

χ(σ(a)) = χ(a) (complex conjugate).

We describe this property by saying that A is σ-split.
Set T = H ∩K. Then T ◦ is a torus and there is a finite group C such that T = T ◦×C.

Lemma 3.5 One has H = AT ◦ and A ∩ T = {a ∈ A : a2 = 1} ∼= (Z/2Z)m, where
m = rank(A). Thus C ∼= (Z/2Z)r for some r with 0 ≤ r ≤ m.

Set
Φ0 = {α ∈ Φ : 〈α,X〉 = 0 for all X ∈ a}.

We shall verify case-by-case later in this Section that the following condition holds for the
involutions of the classical groups:

(∗) For all α ∈ Φ0, θ acts as the identity on gα.

For now, we assume this fact and prove the following consequence of (∗) (a Lie subalgebra
of g is called a toral subalgebra if it is commutative and consists of semisimple elements).

Lemma 3.6 Assume (∗) is satisfied. Let l be the centralizer of a in g and let m be the
centralizer of a in k. Then l = a ⊕ m. Hence if Y ∈ p and [Y, a] = 0 then Y ∈ a. In
particular, a is a maximal toral subalgebra of p.

Proof. Since θ(l) = l, we have l = m⊕ (l ∩ p). Let X ∈ l ∩ p and write

X = X0 +X1 +
∑
α∈Φ

Xα ,

with X0 ∈ t and X1 ∈ a. Since [X, a] = 0 and [a, t] = 0, we have

0 = [Y,X ] =
∑
α∈Φ

α(Y )Xα for all Y ∈ a.

Hence Xα = 0 for all α ∈ Φ \ Φ0. Thus using condition (∗) we can write

−X = θ(X) = X0 −X1 +
∑
α∈Φ0

Xα.

It follows that X0 = Xα = 0 and hence X = X1 ∈ a. This implies that a is a maximal
abelian subalgebra of p. Since A is a torus, the elements of a are semisimple, so a is a
maximal toral subalgebra of p. 2

Define M = CentK(A) (the centralizer of A in K). It is clear from (∗) that m = Lie(M)
has the rootspace decomposition

m = t +
∑
α∈Φ0

gα,

where Φ0 is the set of roots vanishing on a, as above. Let L = CentG(A). Then L is
connected [Bor, Cor. 11.12] and Lie(L) = l.

15



Lemma 3.7 One has L = AM◦ and M = TM◦. Hence M is connected if and only if T is
connected.

Proof. Let x ∈ L. Then the semisimple and unipotent components xs, xu ∈ L since they
commute with A. We can write

xu = expY,

where Y is a nilpotent element of l. Since l = a ⊕ m, [a,m] = 0 and the elements of a are
semisimple, it follows that Y ∈ m. Hence xu ∈M◦.

One knows from [Bor, Cor. 11.12] that there is a torus S ⊂ L such that

A ∪ {xs} ⊂ S.

Let s = Lie(S) ⊃ a. If Z ∈ s and X ∈ a then

0 = θ([Z,X ]) = [θ(Z),−X ].

Hence Z − θ(Z) ∈ p and commutes with a. Thus Z − θ(Z) ∈ a by Lemma 3.6. Hence
θ(Z) ∈ s, so we have θ(s) = s. Thus

s = (s ∩ k)⊕ a

Since S = exp(s), this shows that
S = A · S0,

where S0 = S ∩K = exp(s ∩ k) ⊂M◦. Thus we can factor xs = ab with a ∈ A and b ∈ S0.
This proves that x = abxu and hence L = AM◦. This implies that M = (A∩T )M◦ = TM .
2

We are assuming that G ⊂ GL(n,C) and A is a subgroup of the diagonal matrices.
Hence we can find a subset {i1, . . . , im} ⊂ {1, . . . , n} such that the characters

a 7→ χj(a) = xij for a = diag[x1, . . . , xn]

freely generate X (A). We fix such a set of characters and we give X (A) the corresponding
lexicographic order. Let the unipotent subgroups N± of G be defined relative to this order
(so the weights of Ad(A) on N+ are positive, and the weights on N− are negative). Then
we have

θ(N+) = N−.(10)

Indeed for χ ∈ X (A) and a ∈ A,

χθ(a) = χ(θ(a)) = χ(a)−1,

since A is θ-anisotropic. Thus θ gives an order-reversing automorphism of X (A). This
implies (10).

A total ordering of X (H) will be called compatible with the chosen order on X (A) if
µ|A > ν|A implies that µ > ν in X (H). We construct a compatible order on X (H) as
follows. Let Σ = {ν1, . . . , νr} ⊂ X (A) be the weights of A on Cn, enumerated so that

ν1 > ν2 > · · · > νr
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relative to the order that we have fixed on X (A). Enumerate the standard basis for Cn as
{ej1 , . . . , ejn} so that eji has weight ν1 for 1 ≤ i ≤ m1, weight ν2 for m1 + 1 ≤ i ≤ m2,
and so forth. Each vector eji transforms according to a weight µji of H . We give X (H)
the lexicographic order in which µj1 > µj2 > . . .. This order is clearly compatible with the
order on X (A).

Let Φ+ be the roots for H that are positive relative to the order just defined. Let B be
the Borel subgroup of G defined by the positive system Φ+. Write n± = Lie(N±) and set
Φ+

1 = Φ+ \ Φ0. Then
n

+ =
∑
α∈Φ+

1

gα, n
− =

∑
α∈Φ+

1

g−α.

Thus AN+ ⊂ B.

Lemma 3.8 One has the vector-space direct sum decompositions

g = n
− ⊕m⊕ a⊕ n

+ = k⊕ a⊕ n
+.

Hence N−MAN+ and KAN+ are open Zariski-dense subsets of G and K∩(AN+) is finite.

Proof. Since Φ is the disjoint union Φ0∪Φ+
1 ∪(−Φ+

1 ), we can use the rootspace decomposition
of g to write X ∈ g as

X =
∑
β∈Φ+

1

X−β + {H0 +
∑
α∈Φ0

Xα}+H1 +
∑
β∈Φ+

1

Xβ,

where H0 ∈ t, H1 ∈ a and Xα ∈ gα. This gives the first decomposition of g. For the second
decomposition, we write

X−β = X−β + θ(X−β)− θ(X−β)

for β ∈ Φ+
1 and note that X−β + θ(X−β) ∈ k and θ(X−β) ∈ n+ by (10).

Consider the mapsN−×M×A×N+ → G and K×A×N+ → G given by multiplication
in G of the elements from each factor. From the decompositions of g we see that differentials
of these maps are surjective at 1. Since G is connected, it follows that the images are Zariski-
dense. 2

Theorem 3.9 K is a spherical subgroup of G. If λ is the B-highest weight of an irreducible
K-spherical representation of G, then

tλ = 1 for all t ∈ T.(11)

Proof. The Borel subgroup B contains AN+, so KB is dense in G by Lemma 3.8. This
proves that K is spherical. Since T = K ∩ B, condition (11) is satisfied by the highest
weight of a K-spherical representation by Theorem 2.5. 2

We call λ ∈ P++(G) θ-admissible if it satisfies (11).

We now work out explicit Iwasawa decompositions for the seven types of classical sym-
metric spaces G/K associated with an involution θ, following the notation of Section 3.2.
For each type we verify condition (∗) above, describe the maximal θ-anisotropic torus
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A = (H ∩ Q)◦ and the subgroup T = H ∩ K. We give a total order on X (A) and a
compatible order on X (H). We describe the weight decomposition

Cn = V1 ⊕ · · · ⊕ Vr,(12)

where G ⊂ GL(n,C) and A acts on Vi by the character µi. The enumeration is chosen
so that µ1 > · · · > µr . The group M consists of the elements of K that preserve the
decomposition (12) and N+ consists of the elements g ∈ G so that I − g is strictly upper
block-triangular relative to the decomposition (12). We give the system of positive roots
Φ+ for the compatible order on X (H), and we find the explicit form of the θ-admissibility
condition (11) for the Φ+-dominant weights. The information is summarized in the Satake
diagram, which is obtained from the Dynkin diagram of g by the following procedure.

(S1) If a simple root vanishes on a, then the corresponding node in the Dynkin diagram is
marked by •.

(S2) If two simple roots have the same nonzero restriction to a, then the corresponding
nodes are marked by ◦ and are joined by a curved arrow.

(S3) The labels on the nodes ◦ (where mi always denotes a nonnegative integer) are the
coefficients of the corresponding fundamental weights in the θ-admissible Φ+-dominant
weights. Nodes joined by a curved arrow have the same coefficient and nodes marked
by • have coefficient zero.

Notation: Dp is the group of invertible diagonal p × p matrices, sp = [δp+1−i−j ] is the
p× p matrix with 1 on the anti-diagonal and 0 elsewhere. For a = diag[a1, . . . , ap] ∈ Dp let

εi(a) = ai, ǎ = spasp = diag[ap, . . . , a1].

Bilinear Forms–Type AI

Here G = SL(n,C), θ is the involution θ(g) = (gt)−1, and K ∼= SO(n,C). The maximal
torus H is θ-anisotropic. Hence A = H and T ∼= (Z/2Z)n−1 consists of all matrices

t = diag[δ1, . . . , δn], δi = ±1, det(t) = 1.

There are no roots that vanish on a, so condition (∗) is vacuously satisfied. Hence A is a
maximal θ-anisotropic torus and M = T . Take the characters ε1 > ε2 > · · · > εn−1 as an
ordered basis for X (A). The eigenspace decomposition (12) in this case is

Cn = Ce1 ⊕ · · · ⊕ Cen

and the associated system of positive roots is

Φ+ = {εi − εj : 1 ≤ i < j ≤ n}.

Let λ =
∑
λiεi with λi ∈ N be a weight of H . Suppose λ1 ≥ · · · ≥ λn−1 ≥ 0 is Φ+-

dominant. Then tλ = 1 for all t ∈ T if and only if λi is even for all i. Thus λ is θ-admissible
if and only if

λ = 2m1$1 + · · ·+ 2ml$l, mi ∈ N,
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where $1, . . . , $l (with l = n − 1) are the fundamental weights. The Satake diagram is
shown in Figure 12.1.

Figure 12.1: Satake Diagram of Type AI

2m1
..........................................................................................................................

2m2
...................................................................................................... . . . ......................................................................

2ml−1
..........................................................................................................................

2ml
................................

Bilinear Forms–Type AII

In this case G = SL(2n,C), θ(g) = Tn(gt)−1T−1
n , where Tn = diag[µ, . . . , µ] (n copies of

µ =

[
0 1
−1 0

]
). We have K ∼= Sp(n,C). The maximal torus H = D2n ∩ G in G is

θ-invariant, with
θ(h) = diag[x−1

2 , x−1
1 , . . . , x−1

2n , x
−1
2n−1]

for h = diag[x1, . . . , x2n]. Thus A consists of all matrices

a = diag[x1, x1, . . . , xn, xn], x1x2 · · ·xn = 1,

and has rank n−1. We take generators χ1, . . . , χn−1 for X (A) as χi(a) = ε2i−1(a) and give
X (A) the corresponding lexicographic order. The group T consists of all matrices

t = diag[x1, x
−1
1 , . . . , xn, x

−1
n ], xi ∈ C×

and is a torus of rank n. The roots vanishing on a are

Φ0 = {±(ε1 − ε2), . . . ,±(ε2n−1 − ε2n)}

and a calculation shows that θ acts by 1 on gα for α ∈ Φ0. Thus condition (∗) is satisfied
and hence A is a maximal θ-anisotropic torus.

The decomposition (12) in this case is

C2n = V1 ⊕ · · · ⊕ Vn, Vi = Ce2i−1 + Ce2i.

Note that Vi is non-isotropic for the skew form defined by Tn. One calculates that M
consists of the block diagonal matrices

m = diag[g1, . . . , gn], gi ∈ Sp(Vi).(13)

Thus M ∼= ×nSp(1,C).
The ordered basis ε1, ε2, . . . , ε2n−1 for X (H) is compatible with the order we have given

to X (A). Let Φ+ be the corresponding system of positive roots. Let λ =
∑2n−1
i=1 λiεi with

λi ∈ N and λ1 ≥ · · · ≥ λ2n−1 ≥ 0 be a Φ+-dominant weight. Then tλ = 1 for all t ∈ T if
and only if λ2i−1 = λ2i for i = 1, . . . , n− 1 and λ2n−1 = 0. Thus λ is θ-admissible if and
only if

λ = m2$2 + · · ·+ml−1$l−1, mi ∈ N.

The Satake diagram is shown in Figure 12.2; note that l = n− 1 is odd.
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Figure 12.2: Satake Diagram of Type AII

•...............................................................................................
m2

..........................................................................................................................•...................................................................... . . . ......................................................................

ml−1

..........................................................................................................................•

Polarizations–Type AIII

We have G = SL(n,C) and θ(g) = Jp,qgJp,q with 0 < p ≤ q and p+ q = n. Here

Jp,q =

 0 0 sp
0 Iq−p 0
sp 0 0

 .
We have K ∼= S(GL(p,C)×GL(q,C)). The maximal torus H = Dn ∩G is θ-invariant. For
h ∈ H write h = diag[a, b, c], with a, c ∈ Dp and b ∈ Dq−p. Then

θ(h) = diag[č, b, ǎ].

Thus A ∼= Dp consists of all

h = diag[a, Iq−p, ǎ−1], a ∈ Dp.

We take generators χ1, . . . , χp for X (A) as χi(h) = εi(a), and we give X (A) the correspond-
ing lexicographic order. We have h ∈ T provided

h = diag[a, bq−p, ǎ], a ∈ Dp, b ∈ Dq−p, det(h) = 1.

Thus T ∼= Dq−1 is connected. The roots vanishing on a are

Φ0 = {±(εi − εj) : p+ 1 ≤ i < j ≤ q},

and it is obvious that θ acts by 1 on gα for α ∈ Φ0. Thus condition (∗) is satisfied and
hence A is a maximal θ-anisotropic torus.

The decomposition (12) in this case is

C2n = V1 ⊕ · · · ⊕ Vp ⊕ V0 ⊕ V−p ⊕ · · · ⊕ V−1

where Vi = Cei, V0 = Cep+1 + · · ·+ Ceq and V−i = Cen+1−i for i = 1, . . . , p. Here A acts
on V±i by the character χ±1

i and acts on V0 by 1. Hence M consists of the block diagonal
matrices

x =

 a 0 0
0 b 0
0 0 ǎ

 , a ∈ Dp, b ∈ GL(q− p,C), det x = 1.

The ordered basis ε1, ε2, . . . , εn−1 for X (H) is compatible with the order we have given
to X (A). Let Φ+ be the corresponding system of positive roots. Let λ =

∑
λiεi, with

λi ∈ N and λ1 ≥ · · · ≥ λn, be a Φ+-dominant weight. Then tλ = 1 for all t ∈ T if and
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only if λ1 = −λn, λ2 = −λn−1, . . . , λp = −λq+1, and λj = 0 for p + 1 ≤ j ≤ q. Thus λ is
θ-admissible if and only if

λ = [λ1, . . . , λp, 0, . . . , 0︸ ︷︷ ︸
q−p

,−λp, . . . ,−λ1]

where λ1 ≥ · · ·λp ≥ 0 are arbitrary integers. Thus λ is θ-admissible if and only if

λ = m1($1 +$l) +m2($2 +$l−1) · · ·+mp($p +$q), mi ∈ N.

The Satake diagram is shown in Figure 12.3.

Figure 12.3: Satake Diagrams of Type AIII
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Polarizations–Type CI

Let G = Sp(C2n,Ω) where Ω is the bilinear form with matrix J =

[
0 In
−In 0

]
. We take

the involution θ(g) = −JgJ. Here K ∼= GL(n,C) and the maximal torus H = D2n ∩G is
θ-anisotropic. Hence A = H and M = T ∼= (Z/2Z)n consists of all matrices

t = diag[δ1, . . . , δn, δ1, . . . , δn], δi = ±1.

Since Φ0 = ∅, condition (∗) is vacuously satisfied and hence A is a maximal θ-anisotropic
torus. We define an order on X (A) using the characters

χi(h) = εi(a), h = diag[a, a−1]

for i = 1, . . . , n. Let Φ+ be the corresponding system of positive roots. Let λ =
∑n
i=1 λεi

with λ1 ≥ · · · ≥ λn ≥ 0 be a dominant weight. Then tλ = 1 for all t ∈ T if and only if λi is
even for all i. Thus λ is θ-admissible if and only if

λ = 2m1$1 + · · ·+ 2ml$l, mi ∈ N,

where $1, . . . , $l (with l = n − 1) are the fundamental weights. The Satake diagram is
shown in Figure 12.1.

Figure 12.4: Satake Diagram of Type CI

2m1
..........................................................................................................................

2m2
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2ml−1
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...............

2ml
................................
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Polarizations–Type DIII

Take G = SO(Cn, B), with n = 2l even and B the form with matrix sn. We take the
involution θ(g) = −ΓngΓn with Γn defined as in Section 3.2. As in Type CII, we have
K ∼= GL(l,C). The maximal torus H = Dn ∩G is θ-stable. Write elements of H as

h = diag[a, ǎ−1], with a = [a1, . . . , al].

Then θ(h) = diag[b, b̌−1], where

b =

{
diag[a2, a1, . . . , a2p, a2p−1] (when l = 2p)
diag[a2, a1, . . . , a2p, a2p−1, a2p+1] (when l = 2p+ 1)

We have A ∼= Dp consisting of all h = diag[a, ǎ−1] with

a =

{
diag[x1, x

−1
1 , . . . , xp, x

−1
p ] (when l = 2p)

diag[x1, x
−1
1 , . . . , xp, x

−1
p , 1] (when l = 2p+ 1)

We take generators χ1, . . . , χp for X (A) as χi(a) = ε2i−1(a), where p = [l/2], and we
put the corresponding lexicographic order on X (A). The group T consists of all matrices
h = diag[a, ǎ−1] with

a =

{
diag[x1, x

−1
1 , . . . , xp, x

−1
p ] (when l = 2p)

diag[x1, x
−1
1 , . . . , xp, x

−1
p , 1] (when l = 2p+ 1)

Thus T = T ◦ is a torus of rank p (when l is even) or rank p+ 1 (when l is odd). The roots
vanishing on a are

±(ε1 + ε2),±(ε3 + ε4), . . . ,±(ε2p−1 + ε2p) .

We leave it as an exercise to check that θ acts by 1 on gα for α ∈ Φ0. Thus condition (∗) is
satisfied and hence A is a maximal θ-anisotropic torus.

The χi eigenspace for A on Cn is

Vi = Ce2i−1 + Cen−2i+1, i = 1, . . . , p

and the χ−1
i eigenspace is

V−i = Ce2i + Cen−2i+2, i = 1, . . . , p.

When l = 2p+ 1 there is also the space V0 = Cel +Cel+1 where A acts by 1. The subspaces
V±1, . . . , V±p are B-isotropic, while B is non-degenerate on V0 (when l = 2p+1). The space
V−i is dual to Vi relative to B. We have

Cn = V1 ⊕ · · · ⊕ Vp ⊕ V0 ⊕ V−1 ⊕ · · · ⊕ V−p

(where we set V0 = 0 when l = 2p is even). From this decomposition we calculate that

M ∼=
{

GL(V1)× · · · ×GL(Vp) when l = 2p
GL(V1)× · · · ×GL(Vp)× SO(V0) when l = 2p+ 1

(14)

22



(note that SO(V0) ∼= GL(1,C) since dimV0 = 2).
The ordered basis

ε1 > −ε2 > ε3 > −ε4 > · · · > ε2p−1 > −ε2p (when l = 2p),
ε1 > −ε2 > ε3 > −ε4 > · · · > ε2p−1 > −ε2p > ε2p+1 (when l = 2p+ 1)

for X (H) is compatible with the order on X (A). Let Φ+ be corresponding system of positive
roots. Let Φ+ be the corresponding system of positive roots. We see that Φ+ is obtained
from the standard choice of positive roots by the action of the Weyl group element that
tranforms the ordered basis ε1 > ε2 > · · · > εl−1 > ±εl into the ordered basis above (the
choice of ± depending on whether l is even or odd). It follows that when l is even, the
simple roots in Φ+ are

α1 = ε1 + ε2, α2 = −ε2 − ε3, . . . , αl−2 = −εl−2 − εl−1,

αl−1 = εl−1 + εl, αl = εl−1 − εl.

If p is odd, then the simple roots in Φ+ are

α1 = ε1 + ε2, α2 = −ε2 − ε3, . . . , αl−2 = εl−2 + εl−1,

αl−1 = −εl−1 − εl, αl = −εl−1 + εl.

The simple roots vanishing on a in this case are α1, α3, . . . , α2p−1. The roots αl−1 and αl
have the same restriction to a.

A weight λ =
∑l
i=1 λiεi is Φ+-dominant if and only if

λ1 ≥ −λ2 ≥ λ3 ≥ −λ4 ≥ · · · ≥ |λl|.

Let λ be a Φ+-dominant weight. Then tλ = 1 for all t ∈ T if and only if

λ1 = −λ2, λ3 = −λ4, · · · , λ2p−1 = −λ2p

in the case l = 2p. When l = 2p+ 1 there is the additional condition λ2p+1 = 0. Writing λ
in terms of the fundamental weights, we find that it is θ-admissible if and only if

λ =

{
m2$2 + · · ·+ml−2$l−2 + 2ml$l (l even)
m2$2 + · · ·+ml−3$l−3 +ml−1($l−1 +$l) (l odd)

The Satake diagram is shown in Figure 12.5.

Figure 12.5: Satake Diagrams of Type DIII
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Orthogonal Decompositions–Type BDI

Now G = SO(Cn, B), the involution θ(g) = Jp,qgJp,q with 1 ≤ p ≤ q and p + q = n as in
Type AIII, and K ∼= S(O(p,C)×O(q,C)). This is the only case in which K is not connected;
we have

K◦ ∼= SO(p,C)× SO(q,C).

The maximal torus H = Dn ∩ G is θ-stable. We can write h ∈ H as diag[a, b, ǎ−1], with
a ∈ Dp arbitrary and b of the form

b =

{
diag[c, č−1] when n = 2l
diag[c, 1, č−1] when n = 2l + 1

(15)

with c ∈ Dl−p. We calculate that

θ(h) = diag[a−1, b, ǎ].

Thus A ∼= Dp consists of all diagonal matrices

h = diag[a, Iq−p, ǎ−1], a ∈ Dp.

We take generators χ1, . . . , χp for X (A) as χi(h) = εi(a) and we giveX (A) the corresponding
lexicographic order. The group T consists of all diagonal matrices h = diag[a, b, ǎ−1] where
b is given by (15) and a2 = Ip. Thus T ∼= (Z/2Z)p × Dl−p. The subgroup T0 = H ∩K◦
consists of all such diagonal matrices that satisfy the additional condition a1 · · ·ap = 1.

The roots vanishing on a are

{±εi ± εj : p+ 1 ≤ i < j ≤ l} (when n = 2l)

{±εi ± εj : p+ 1 ≤ i < j ≤ l} ∪ {εi : p+ 1 ≤ i ≤ l} (when n = 2l+ 1)

It is clear that θ acts by 1 on gα for α ∈ Φ0, since the matrices in gα are of block-diagonal
form diag[0, x, 0], with x ∈ Mq−p(C). Thus condition (∗) is satisfied and hence A is a
maximal θ-anisotropic torus of rank p.

The χi eigenspace for A on Cn is

Vi = Cei, i = 1, . . . , p.

and the χ−1
i eigenspace is

V−i = Cen+1−i, i = 1, . . . , p.

The space V0 = Cep+1 ⊕ · · · ⊕ Ceq is the 1-eigenspace for A. The subspaces V±1, . . . , V±p
are B-isotropic, while B is non-degenerate on V0. The space V−i is dual to Vi relative to B.
We have

Cn = V1 ⊕ · · · ⊕ Vp ⊕ V0 ⊕ V−1 ⊕ · · · ⊕ V−p.(16)

From this decomposition we see that M consists of all matrices in block-diagonal form

m = diag[a, b, a] with a = [±1, . . . ,±1] and b ∈ SO(V0).(17)
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The ordered basis ε1, ε2, . . . , εl for X (H) is compatible with the order on X (A). Let Φ+

be the corresponding system of positive roots. Let λ =
∑l
i=1 λiεi with λi ∈ N and suppose

λ is Φ+-dominant. Then tλ = 1 for all t ∈ T if and only if λj = 0 for p+ 1 ≤ j ≤ l and λi
is even for i = 1, . . . , p. Thus λ is θ-admissible if and only if

λ = [λ1, . . . , λp, 0, . . . , 0︸ ︷︷ ︸
l−p

]

where λ1 ≥ · · ·λp ≥ 0 are arbitrary even integers. If we only require that tλ = 1 for all
t ∈ H ∩K◦, then the parity condition becomes

λi − λj ∈ 2Z for all 1 ≤ i < j ≤ p.

We shall say that λ is K◦-admissible when this is satisfied. When we write λ in terms of
the fundamental dominant weights the admissibility conditions become the following. First
assume n = 2l+ 1 is odd (Type BI). Then λ is θ-admissible if and only if

λ =

{
2m1$1 + 2m2$2 + · · ·+ 2mp$p (p < l)
2m1$1 + 2m2$2 + · · ·+ 2ml−1$l−1 + 4ml$l (p = l)

where mi ∈ N. For λ to be K◦-admissible, however, the coefficient of $p only has to be an
integer (not necessarily even) when p < l, and the coefficient of $l only has to be even (not
necessarily a multiple of 4) when p = l. The Satake diagram is shown in Figure 12.6, where
the coefficients shown in parentheses apply to K◦-admissible weights.

Figure 12.6: Satake Diagrams of Type BI

(p < l)

2m1
.................................................... . . . ....................

2mp−1
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(mp)
2mp
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....... ............... •

(p = l)

2m1
.................................................................................................

2m2
.................................................... . . . ....................

2ml−1
................................
................................................................................................................................

....... ...............

(2ml)
4ml

................................

Now assume n = 2l is even (Type DI). λ is θ-admissible if and only if

λ =


2m1$1 + 2m2$2 + · · ·+ 2mp$p (p < l − 1)
2m1$1 + 2m2$2 + · · ·+ 2ml−2$l−2 + 2ml−1($l−1 +$l) (p = l − 1)
2m1$1 + 2m2$2 + · · ·+ 2ml−2$l−2 + 2ml−1$l−1 + 2ml$l (p = l)

where mi ∈ N. For λ to be K◦-admissible, however, the coefficient of $p only has to be an
integer (not necessarily even) when p < l− 1, while the coefficients of $l−1 and $l have to
be equal integers (not necessarily even) when p = l − 1. When p = l then K◦-admissibility
is the same as θ-admissibility. The Satake diagram is shown in Figure 12.7, where the
coefficients shown in parentheses apply to K◦-admissible weights.
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Figure 12.7: Satake Diagrams of Type DI
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Orthogonal Decompositions–Type CII

In this case G = Sp(C2l,Ω) where Ω is the bilinear form with matrix J =

[
0 sl
−sl 0

]
. We

take the involution θ(g) = Kp,qgKp,q, for 1 ≤ p ≤ q and p + q = l, with Kp,q as in Section
3.2. We have K ∼= Sp(p,C) × Sp(q,C). The maximal torus H = Dl ∩ G is θ-stable. We
write h ∈ H as

h = diag[x, x̌−1], where x = diag[a, b, c] with a, c ∈ Dp, b ∈ Dq−p.(18)

Then θ(h) = diag[y, y̌−1] with y = diag[č, b, ǎ]. Thus A ∼= Dp consists of all

h = diag[x, x] with x = diag[a, Iq−p, ǎ−1], a ∈ Dp.

We take generators χ1, . . . , χp for X (A) as χi(h) = εi(a) and we giveX (A) the corresponding
lexicographic order. The group T consists of all

h = diag[x, x̌−1] with x = diag[a, b, ǎ], a ∈ Dp, b ∈ Dq−p.

Thus T ∼= Dq is connected.
The roots vanishing on a are

±εi ± εj, p < i ≤ j ≤ q

±(ε1 + εl), ±(ε2 + εl−1), . . . , ±(εp + εq+1).

A calculation similar to that done above in Type AIII shows that θ = 1 on the corresponding
root spaces. Thus condition (∗) is satisfied and hence A is maximal θ-anisotropic.

The χi eigenspace for A on C2l is

Vi = Cei + Cel+i, i = 1, . . . , p

and the χ−1
i eigenspace is

V−i = Cel+1−i + Ce2l+1−i, i = 1, . . . , p.
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The 1-eigenspace of A is

V0 = Cep+1 + · · ·+ Ceq + Cel+p+1 + · · ·+ Cel+q .

The subspaces V±1, . . . , V±r are Ω-isotropic, while Ω is non-degenerate on V0. The space
V−i is dual to Vi relative to Ω. We have

C2l = V1 ⊕ · · · ⊕ Vp ⊕ V0 ⊕ V−1 ⊕ · · · ⊕ V−p.
The elements of M leave invariant the spaces V±i and V0, while the transformation Kp,q

acts by I on V0 and interchanges Vi and V−i. From this decomposition one calculates that

M ∼= (×pSp(1,C))× Sp(q − p,C).(19)

The weights of H on Vi are εi and −εl+1−i for i = 1, . . . , p and the weights of H on V0

are ±εi for i = p+ 1, . . . , q. Hence the ordered basis

ε1 > −εl > ε2 > −εl−1 > · · · > εp > −εq+1 > εp+1 > εp+2 > · · · > εq

for X (H) is compatible with the order we have given to X (A). Let Φ+ be the corresponding
system of positive roots. Since Φ+ is obtained from the usual set of positive roots by the
action of the Weyl group element that tranforms the ordered basis ε1 > ε2 > · · · > εl into
the ordered basis above, it follows that the simple roots in Φ+ are

α1 = ε1 + εl, α2 = −εl − ε2, . . . , α2p−1 = εp + εq+1, α2p = −εq+1 − εp+1,

α2p+1 = εp+1 − εp+2, . . . , αl−1 = εq−1 − εq, αl = 2εq.

The simple roots vanishing on a are thus α1, α3, . . . , α2p−1.
Thus λ =

∑l
i=1 λiεi is Φ+-dominant if and only if

λ1 ≥ −λl ≥ λ2 · · · ≥ λp ≥ −λq+1 ≥ λp+1 ≥ · · ·λq ≥ 0

We see that tλ = 1 for all t ∈ T if and only if

λ1 = −λl, λ2 = −λl−1, · · · λp = −λq+1

and λj = 0 for j = p+ 1, . . . , q. Thus λ is θ-admissible if and only if

λ = [λ1, . . . , λp, 0, . . . , 0︸ ︷︷ ︸
q−p

,−λp, . . . ,−λ1]

where λ1 ≥ · · ·λp ≥ 0 are arbitrary integers. When we write λ in terms of the fundamental
weights, then it is θ-admissible if and only if

λ =

{
m2$2 +m4$4 + · · ·+m2p$2p (2p < l)
m2$2 +m4$4 + · · ·+ml−2$l−2 +ml$l (2p = l)

where mi ∈ N. The Satake diagram is shown in Figure 12.8.

Figure 12.8: Satake Diagrams of Type CII
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3.4 Spherical Representations

We now determine the irreducible representations having a K-fixed vector. We follow the
notation of the previous section: θ is an involution of the connected semisimple classical
group G, H is a θ-stable Cartan subalgebra, K = Gθ or K = (Gθ)◦ (in type BDI). We fix
A, a maximal θ-anisotropic torus in H , and denote M = CentK(A), B a θ-admissible Borel
subgroup of G, N+ ⊂ B.

Theorem 3.10 (Helgason) Let (πλ, V λ) be an irreducible regular representation of G with
highest weight λ (relative to B). The following are equivalent:

(1) V λ contains a nonzero K-fixed vector.
(2) V λ contains a nonzero MN+-fixed vector.
(3) tλ = 1 for all t ∈ T = H ∩K.

Proof. We have already shown that (1) =⇒ (3) in Theorem 3.9. We observe that (2) is
equivalent to

(2)′ π(M)vλ = vλ, where vλ is a nonzero B-extreme vector in V λ.

This is clear, since MN+ contains the unipotent radical of B, so V MN+ ⊂ Cvλ. Since
T ⊂M , clearly (2)′ =⇒ (3).

Suppose (3) holds. We shall prove that (2)′ holds. We have M = F ·M◦ by Lemma 3.7
with F ⊂ T . Since T fixes vλ, we only need to show that

dπλ(gα)vλ = 0 for all α ∈ Φ0(20)

Suppose α ∈ Φ+
0 . Then (20) is true since λ+ α is not a weight of V λ. Now by (3) we have

λ(t) = 0. But for α ∈ Φ0, the coroot hα ∈ t. Hence the reflection sα fixes λ, since

sα(λ) = λ− 〈λ, hα〉α = λ.

Thus sα(λ− α) = λ− sα(α) = λ+ α. If λ−α were a weight of V λ, then λ+α would be a
weight also by Weyl group symmetry, a contradiction. Hence dπλ(g−α)vλ = 0 also.

Thus it only remains to prove that (3) =⇒ (1). For this we will need the following
lemma. We take the conjugations τ and σ on G as in Section 3.2 and write G0 = Gσ,
K0 = Kσ = Kτ and A0 = Aσ for the corresponding real forms. The group K0 is compact,
while G0 and A0 are noncompact.

Lemma 3.11 Let λ ∈ X (H). Suppose tλ = 1 for all t ∈ T . Then aλ > 0 for all a ∈ A0.

Proof. We take G in the matrix form as in Section 3.2. For a ∈ A we have σ(a) = ā. Thus
A0 = Aσ consists of real matrices. In Section 3.3 we gave an isomorphism φ : A ∼= Dp with
A0 corresponding to the real matrices in Dp. Let φ(a) = diag[x1, . . . , xp] for a ∈ A. Then

aλ = xm1
1 · · ·xmpp with mi ∈ Z.

By Lemma 3.7 we have T ∩A = F = {a ∈ A : a2 = 1}. Under the isomorphism φ,

F ∼= {[ε1, . . . , εp] : εi = ±1}.
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Thus aλ = 1 for all a ∈ F if and only if mi ∈ 2Z for i = 1, . . . , p. Obviously this implies
that aλ > 0 when xi ∈ R for i = 1, . . . , p. 2

Completion of proof of Theorem 3.10:
We assume (3) (and hence (2)′). Define

v0 =
∫
K0

πλ(k)vλ dk.

Then v0 is invariant under K0. Since K0 is a compact real form of K, we also have v0

invariant under K, by analytic continuation. To complete the proof, we only need to show
that v0 6= 0 when condition (3) is satisfied.

Let v∗λ be the lowest weight vector for the dual representation (V λ)∗, normalized so that
〈v∗λ, vλ〉 = 1. Let fλ(g) = 〈v∗λ, πλ(g)vλ〉 be the generating function for πλ, as in Section 2.2.
Then

〈v∗λ, v0〉 =
∫
K0

fλ(k) dk.(21)

We shall show that
fλ(g) ≥ 0 for g ∈ G0.(22)

Since fλ(1) = 1, this will imply that the integral (21) is positive, and hence v0 6= 0.
For m ∈M , a ∈ A, and n± ∈ N± we have

fλ(n−man+) = 〈πλ∗(n−)−1v∗λ, π
λ(a)πλ(mn+)vλ〉

= 〈v∗λ, πλ(a)vλ〉 = aλ,

since N− fixes v∗λ and MN+ fixes vλ (by (2)′). Hence if a ∈ A0 then fλ(n−man+) > 0 by
Lemma 3.11. Since N−0 A0M0N

+
0 is dense in G0 (by the Gauss decomposition), this proves

(22). 2

Corollary 3.12 As a G-module, Aff(G/K) ∼=
⊕
λ V

λ, where λ runs over all θ-admissible
dominant weights of H.

Proof. This follows by Theorem 3.9 and Theorem 3.10. 2

From Corollary 3.12 and the Satake diagrams in Section 3.3, we conclude that the
semigroups of highest weights for spherical representations have the following generators
(where l is the rank of g and p = dim a is the rank of G/K):

Type AI: {2$1, 2$2, . . . , 2$l} (p = l)

Type AII: {$2, $4, . . . , $l} (p = l/2)

Type AIII: {$1 +$l, $2 +$l−1, . . . , $p +$l+1−p} (2p ≤ l + 1)

Type CI: {2$1, 2$2, . . . , 2$l} (p = l)

Type DIII: {$2, $4, . . . , $l−2, 2$l} (l even, p = l/2)

{$2, $4, . . . , $l−3, $l−1 +$l} (l odd, p = (l− 1)/2)
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Type BI: {2$1, 2$2, . . . , 2$p} (p < l)

{2$1, 2$2, . . . , 2$l−1, 4$l} (p = l)

Type DI: {2$1, 2$2, . . . , 2$p} (p < l− 1)

{2$1, 2$2, . . . , 2$l−2, $l−1 +$l} (p = l− 1)

{2$1, 2$2, . . . , 2$l−2, 2$l−1, 2$l} (p = l)

Type CII: {$2, $4, . . . , $2p} (2p ≤ l)

If we take K = (Gθ)◦ in Type BDI (the only case in which Gθ is not connected), then the
semigroup of highest weights of K-spherical representations has the following generators:

Type BI: {2$1, . . . , 2$p−1, $p} (p < l)

{2$1, 2$2, . . . , 2$l−1, 2$l} (p = l)

Type DI: {2$1, . . . , 2$p−1, $p} (p < l − 1)

{2$1, 2$2, . . . , 2$l−2, $l−1 +$l} (p = l− 1)

{2$1, 2$2, . . . , 2$l−2, 2$l−1, 2$l} (p = l)

4 Tangent-Space Representations

4.1 A Theorem of Kostant and Rallis

We now turn to the tangent space analysis. Let G be a connected, reductive, linear algebraic
group. Let θ be an involutive regular automorphism of G. Let g be the Lie algebra of G.
We will write θ for dθ. Let

K = {g ∈ G : θ(g) = g}.
One can show that K is reductive (when G is a classical group we verified this by classifi-
cation in Section 3.2).

As usual, we will consider k =Lie(K) to be a Lie subalgebra of g. Then

k = {X ∈ g : θX = X}.

Set V = {X ∈ g : θX = −X} (this subspace was denoted by p earlier). Then g = k ⊕ V
as a K-module under Ad|K . Set σ(k) = Ad(k)|V for k ∈ K. Then (σ, V ) is a regular
representation of K. Note that we may identify V with the tangent space to G/K at the
coset K, with the action of K on V being the natural isotropy representation on the tangent
space at a fixed point.

Let P(V ) denote the polynomial functions on V and let Pj(V ) denote the space of
homogeneous polynomials on V of degree j. As usual, we have a representation µ of K on
P(V ) given by

µ(k)f(v) = f(σ(k)−1v) for f ∈ P(V ), k ∈ K and v ∈ V.

Let P(V )K = {f ∈ P(V ) : µ(k)f = f for all k ∈ K}. Then P(V )K is graded by degree.
Set

P+(V )K = {f ∈ P(V )K : f(0) = 0}.
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Let U = {g ∈ G : τ(g) = g}. Let K0 = U ∩K. Then K0 is a compact form of K. Let
u = Lie(U), thought of as a real subalgebra of g. Then

u = (u ∩ k)⊕ (u ∩ V ).

Clearly u ∩ k = Lie(K0), which we denote by k0. Set V0 = i(V ∩ u). Let K◦0 be the identity
component of K0. Let a0 ⊂ V0 be a subspace that is maximal with respect to the condition
that [a0, a0] = 0 and set

M = {k ∈ K : Ad(k)|a0 = I}.
Then clearly τ(M) = M , where τ is the conjugation of G whose fixed-point set is a compact
real form of G (we may assume τ commutes with θ). Thus M has a compact real form so
M is reductive.

To state the Kostant-Rallis Theorem we need one more ingredient. We note that the
subspace Pj(V )∩ (P(V )P+(V )K) is K-invariant. Thus there is a K-invariant subspace Hj
in Pj(V ) such that

Pj(V ) = Hj ⊕
{
Pj(V ) ∩ (P(V )P+(V )K)

}
.

Set H =
⊕
j≥0Hj .

Theorem 4.1 (Kostant-Rallis) The map H⊗P(V )K −→ P(V ) given by h⊗ f 7→ hf is
a linear bijection. Furthermore H is equivalent with Aff(K/M) = IndKM (1) as a K-module.
In particular, if (ρ, F ) is an irreducible regular representation of K then HomK(F,P(V ))
is a free P(V )K module on dimFM generators.

The Kostant-Rallis Theorem generalizes a celebrated theorem of Kostant concerning the
adjoint representation.

Theorem 4.2 (Kostant) Let G be a connected, reductive, linear algebraic group. Let T
be a maximal torus in G. Let g be the Lie algebra of G and let µ(g)f(X) = f(Ad(g)−1X)
for g ∈ G, f ∈ P(g), X ∈ g. Let

P(g)G = {f ∈ P(g) : µ(g)f = f for all g ∈ G}.

Let H be a graded µ(G)-invariant subspace of P(g) such that

P(g) = H⊕
{
P(g)P+(g)G

}
.

Then the map H⊗P(g)G −→ P(g) given by h⊗ f 7→ hf is a linear bijection and (µ,H) is
equivalent with IndGT (1) as a representation of G. In particular, if (ρ, F ) is an irreducible
regular representation of G then the space HomG(F,P(g)) of covariants of type ρ is a free
P(g)G module on dimFT generators, where FT is the zero weight space in F .

To deduce this result from Theorem 4.1, take G1 = G×G in place of G in Theorem 4.1
and let θ(g, h) = (h, g) for (g, h) ∈ G1. Then K = Gθ1

∼= G (embedded diagonally). Let g be
the Lie algebra of G. Then (σ, V ) is equivalent with (Ad, g) as a representation of G. The
complexification of a0 is corresponds to the Lie algebra of a maximal torus of G. Hence M
is a maximal torus in G.

31



4.2 Classical Examples

There are 16 pairs (K, (σ, V )) covered by the Kostant-Rallis Theorem, with g simple and K
a product of classical groups (7 pairs with g classical and 9 with g exceptional); see [Hel1, Ch.
X, §6, Table V]. For the cases in which G is also a classical group, K and θ were determined
in Sections 3.2 and M in Section 3.3. For that purpose the matrix forms of G and θ were
chosen so that the diagonal subgroup H in G was a maximal torus and A = H ∩Q was a
maximal θ-anisotropic torus (where θ(g) = g−1 for g ∈ Q). In the following examples we
have chosen the matrix form of G and the involution θ to facilitate the description of V as
a K-module. The algebraically independent generating set for P(V )K is obtained from the
Chevalley Restriction Theorem and the classification of the invariants for finite reflection
groups. Note that when M is a finite group the restricted root system coincides with the
root system of h on g.

In the following examples, sn and x̌ have the same meaning as in Section 3.3.

1. (Type AI) Let G = SL(n,C) and θ(g) = (gt)−1. Then K = SO(n,C) and V is the
space of symmetric n×n matrices of trace 0. The action ofK on V is σ(k)X = kXk−1. Here
we take a to be the diagonal matrices in g. We have W (a) = WG = Sn. The polynomials
ui(X) = tr(X i+1), for i = 1, . . . , n − 1, restrict on a to generators for P(a)W (a). Hence
P(V )K is the polynomial algebra with generators u1, . . . , un−1.

2. (Type AII) Let G = SL(2n,C) and θ(g) = −J(gt)−1J where J =

[
0 In
−In 0

]
.

Then K = Sp(C2n,Ω), where Ω is the bilinear form with matrix J. The space V consists
of all matrices (n× n blocks)

X =

[
A B
C At

]
with tr(A) = 0, Bt = −B, Ct = −C.(23)

We take a ⊂ V as the matrices

X =

[
Z 0
0 Z

]
, Z = diag[z1, . . . , zn], tr(Z) = 0.

The restricted root system in this case is of type An−1. The polynomial ui(X) = tr(X i+1)
restricts on a to 2tr(Zi+1). Hence u1, . . . , ul−1 generate P(V )K , since their restrictions
generate P(a)W (a).

3. (Type AIII) Let G = SL(n,C). Take q ≥ p > 0 with p+ q = n and define θ = θq,p,

where θq,p = Iq,pgIq,p and Iq,p =

[
Iq 0
0 −Ip

]
. Then K = S(GL(q,C)×GL(p,C)) imbedded

diagonally and V consists of all matrices in block form

v =

[
0 X
Y 0

]
, X ∈Mq,p(C), Y ∈Mp,q(C).(24)

As a K-module V ∼= F ⊕ F ∗, where F = Mq,p(C) with action

ρ(g1, g2)X = g1Xg
−1
2 for g1 ∈ GL(q,C), g2 ∈ GL(p,C), det(g1) det(g2) = 1
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(we can identify F ∗ with Mp,q(C) with action ρ∗(g1, g2)Y = g2Y g
−1
1 ). The restriction of ρ

to SL(q,C) × SL(p,C) is irreducible and equivalent to the outer tensor product Cq⊗̂Cp of
the defining representations.

In this matrix realization we take a ⊂ V as the matrices v in (24) with

X =

[
Zsp
0q−p

]
, Y =

[
spZ 0q−p

]
, where Z = diag[z1, . . . , zp].(25)

The polynomials ui(v) = tr((XY )i) with v as in (24) are K-invariant. Since

(Zsp)(spZ) = Z2

for Z as above, we see that the restriction of ui to a is the W (a)-invariant polynomial
Z 7→ tr(Z2i). These polynomials, for i = 1, . . . , p, generate P(a)W (a). Hence P(V )K is the
polynomial algebra generated by u1, . . . , up.

4. (Type CI) Let G = Sp(C2n,Ω), where Ω is the bilinear form with matrix J as in
Example 2, and take θ(g) = JgJ−1. Then K ∼= GL(n,C) consists of the matrices

k =

[
g 0
0 (gt)−1

]
, with g ∈ GL(n,C),

while V consists of the matrices (n× n blocks)

v =

[
0 X
Y 0

]
with X t = X, Y t = Y.(26)

Let F be the space of n×n symmetric matrices, and let ρ be the representation of GL(n,C)
on F given by ρ(g)X = gXgt. Then (σ, V ) ∼= (ρ ⊕ ρ∗, F ⊕ F ∗). Here we can identify F ∗

with F as a vector space, with g ∈ GL(n,C) acting by X 7→ (gt)−1Xg−1.
In this realization we take a ⊂ V as the matrices[

0 X
X 0

]
with X = diag[x1, . . . , xn].(27)

This is a toral subalgebra of g that is conjugate in G to the Lie algebra of the maximal
anisotropic torus used in Section 3.3. The polynomials ui(v) = tr((XY )i), with v as in
(26), are K-invariant. The restriction of ui to a is the polynomial X 7→ tr(X2i). Since the
restricted root system is of type Cn, these polynomials, for i = 1, . . . , n, generate P(a)W (a).
It follows that u1, . . . , un are algebraically independent generators of P(V )K .

5. (Type DIII) Let G = SO(C2n, B), where B is the bilinear form with matrix[
0 In
In 0

]
, and take θ(g) = JgJ−1 (J as in Example 2). Then K is the same as in

Example 4 (Type CI), while V consists of the matrices (n× n blocks)

v =

[
0 X
Y 0

]
with X t = −X, Y t = −Y.(28)
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Let F be the space of n × n skew-symmetric matrices, and let ρ be the representation of
GL(n,C) on F given by ρ(g)X = gXgt. Then (σ, V ) ∼= (ρ ⊕ ρ∗, F ⊕ F ∗). Here we can
identify F ∗ with F as a vector space, with g ∈ GL(n,C) acting by X 7→ (gt)−1Xg−1.

In this realization we take a ⊂ V as the matrices

v =

[
0 Xsn

snX 0

]
, X =

{
diag[Z,−Ž] when n = 2p
diag[Z, 0,−Ž] when n = 2p+ 1.

(29)

Here Z = diag[z1, . . . , zp]. This is a toral subalgebra of g that is conjugate in G to the
Lie algebra of the maximal anisotropic torus used in Section 3.3. The polynomials ui(v) =
tr((XY )i), with v as in (28), are K-invariant. The restriction of ui to a is the polynomial
Z 7→ tr(Z2i) (note that Xsn = −snX for X as in (29)). Since the restricted root system is
of type Cp or BCp, these polynomials, for i = 1, . . . , p, generate P(a)W (a). It follows that
u1, . . . , up are algebraically independent generators for P(V )K .

6. (Type BDI) Let G = SO(n,C) (gtg = In for g ∈ G). Take p + q = n, q ≥ p ≥ 1,
θ = θq,p as in Example 3. Then K = S(O(q,C) × O(p,C)), imbedded diagonally into G,
while V consists of the matrices

v =

[
0 X
−X t 0

]
with X ∈Mq,p(C).(30)

Here (σ, V ) is the representation of K on Mq,p(C) given by

σ(g1, g2)X = g1Xg
−1
2 .

Restricted to the subgroup SO(q,C) × SO(p,C) ⊂ K it is the irreducible representation
Cq⊗̂Cp (outer tensor product of the defining representations) when p 6= 2 and q 6= 2. For
p = 2 and q > 2 it is the sum of two irreducible representations (recall that SO(2,C) ∼=
GL(1,C)).

In this realization we take a ⊂ V as the matrices v in (30) with

X =

[
Zsp

0

]
, Z = diag[z1, . . . , zp].

This is a toral subalgebra of g that is conjugate in G to the Lie algebra of the maximal
anisotropic torus used in Section 3.3. The polynomials ui(v) = tr((XX t)i), with v as in (30),
are K-invariant. The restriction of ui to a is the polynomial Z 7→ tr(Z2i). Suppose p < q.
Then the restricted root system is of type Bp, so it follows that u1, . . . , up are algebraically
independent generators for P(V )K . Now suppose p = q. Then the restricted root system
is of type Dp. In this case the Pfaffian polynomial Pfaff(v) is K-invariant and restricts to
the W (a)-invariant polynomial Z 7→ z1 · · ·zp on a. It follows that {u1, . . . , up−1,Pfaff} is a
set of algebraically independent generators for P(V )K when p = q.

7. (Type CII) Let G = Sp(C2n, ωn) where ωn is the bilinear form with matrix

Tn = diag[µ, . . . , µ] (n copies of µ =

[
0 1
−1 0

]
). Take q ≥ p > 0 with p + q = n and

34



let θg = I2q,2pgI2q,2p, as in Example 3. Then K = Sp(C2q, ωq) × Sp(C2p, ωp) embedded
diagonally and V consists of all matrices

v =

[
0 X

TpX
tTq 0

]
, X ∈M2q,2p(C).(31)

Here (k1, k2) ∈ K acts on v ∈ V by X 7→ k1Xk
−1
2 for k1 ∈ K1 = Sp(C2q, ωq), k2 ∈

K2 = Sp(C2p, ωp) and X ∈ M2q,2p(C). Hence the representation (σ, V ) is irreducible and
equivalent to the outer tensor product C2q⊗̂C2p of the defining representations of K1 and
K2.

We take a to consist of all matrices (31) with

X =

[
Z
0q−p

]
, Z = diag[z1, z1, . . . , zp, zp] ∈M2p(C).(32)

This is a toral subalgebra of g that is conjugate in G to the Lie algebra of the maximal
anisotropic torus used in Section 3.3. The polynomials ui(v) = tr((XX t)i), with v as in
(31), are K-invariant. The restriction of ui to a is the polynomial Z 7→ tr(Z2i). Since the
restricted root system is of type BCp (when p < q) or Cp (when p = q), it follows that
u1, . . . , up are algebraically independent generators for P(V )K .

8. (Type G) Let K = (SL(2)×SL(2))/{(I, I), (−I,−I)} and (σ, V ) the representation
on V = C2⊗̂S3(C2) (outer tensor product). Here M is isomorphic with ×2(Z/2Z). One has

P(V )K = C[u1, u2] with deg u1 = 2 and deg u2 = 6.

This example comes from the exceptional group G2.

9. (Type FI) Let K = (SL(2,C)× Sp(3,C))/{(I, I), (−I, I)} and (σ, V ) the represen-
tation on C2⊗̂F (outer tensor product) with F the irreducible representation of Sp(3,C)
having highest weight ε1 + ε2 + ε3. M is isomorphic with ×4(Z/2Z). One has

P(V )K = C[u1, u2, u2, u4] with deg u1 = 2, deg u2 = 6, deg u3 = 8, and deg u4 = 12.

This example comes from the exceptional group F4.

10. (Type FII) Let K = Spin(9,C) and (σ, V ) the spin representation, M ∼=
Spin(7,C). The restricted root system is of typeA1 and hence P(V )K = C[u] with deg u = 2.
This example also comes from F4.

11. (Type EI) Let K = Sp(4,C) and take the representation (σ, V ) of Sp(4,C) on∧4 C8/
∧2 C8. Here we embed

ω ∧∧2 C8 ⊂ ∧4 C8

with ω a nonzero element of (
∧2 C8)K (this is the irreducible representation with highest

weight ε1 + ε2 + ε3 + ε4). M is isomorphic with ×6(Z/2Z). P(V )K is the polynomial
algebra in 6 generators whose degrees are 2, 5, 6, 8, 9 and 12. This example comes from
the exceptional group E6.

12. (Type EII) Let K = (SL(2)×SL(6,C))/{(I, I), (−I,−I)} and take (σ, V ) to be the
representation C2⊗̂

∧3 C6 (outer tensor product). M is locally isomorphic with GL(1,C)×
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GL(1,C) and the restricted root system is of type F4. Hence P(V )K is a polynomial
algebra in four generators with degrees as in Example 9. This example also comes from the
exceptional group E6.

13. (Type EIII) Take K = (GL(1,C) × Spin(10,C))/{(I, I), (−I,−I)} (here the
second −I is the kernel of the covering Spin(10,C) → SO(10,C). Let (σ, V ) be the sum
(ρ+, F

+)⊕ (ρ−, F−) of the two half spin representations of Spin(10,C) with ρ+(z, I) = zI
and ρ−(z, I) = z−1I for z ∈ GL(1,C). M is isomorphic with GL(4,C). The restricted root
system is of type BC2. Hence P(V )K is the polynomial algebra in two generators, one of
degree 2 and the other of degree 4. This example also comes from E6.

14. (Type EV) Let K = SL(8,C) and take (σ, V ) to be the representation of K
on
∧4 C8. If we replace K by σ(K) then M is isomorphic with ×7(Z/2Z). P(V )K is the

polynomial algebra in seven generators whose degrees are 2, 6, 8, 10, 12, 14 and 18. This
example comes from the exceptional group E7.

15. (Type EVI) Let K = (SL(2,C)× Spin(12,C))/{(I, I), (−I,−I)} (the second −I
as in Example 13). (σ, V ) is given by C2⊗̂S (exterior tensor product) with S a half spin
representation. M is locally isomorphic with ×3SL(2,C). The restricted root system is of
type F4. Hence P(V )K is a polynomial algebra in four generators whose degrees are as in
Example 9. This example also comes from the exceptional group E7.

16. (Type EVIII) Let K = Spin(16,C) and take (σ, V ) to be a half spin repre-
sentation. If we replace K by σ(K) then M is isomorphic with ×8(Z/2Z). P(V )K is the
polynomial algebra in eight generators whose degrees are 2, 8, 12, 14, 18, 20, 24 and 30.
This example comes from the exceptional group E8.

4.3 Comments on the Proof and Further Examples

Let K be a connected reductive linear algebraic group and let (σ, V ) be a regular represen-
tation of K. We will now isolate the actual properties of the representations that we use to
prove the Kostant-Rallis Theorem. We assume that there is a subspace a in V such that

(1) The restriction f 7→ f |a defines an isomorphism of P(V )K onto a subalgebra R of P(a).

(2) The subalgebra R of P(a) is generated by algebraically independent homogeneous el-
ements u1, . . . , ul with l = dim a. Furthermore, there exists a graded subspace A of
P(a) such that the map A⊗R → P(a) given by a⊗ r 7→ ar is a linear bijection.

(3) There exists h ∈ a such that |σ(K)h∩ a| ≥ dimA.

(4) Let h be as in (3) and set

X h = {v ∈ V : f(v) = f(h) for all f ∈ P(V )K}.

If v ∈ X h then dimKv = dimV − dim a.

Set M = {k ∈ K : σ(k)h = h}. Our proof of Theorem 4.1 actually proves the following
result.
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Theorem 4.3 Assume that (σ, V ) satisfies (1)-(4). Let (σ, F ) be an irreducible regular rep-
resentation of K. Then as a P(V )K-module, the space HomK(F,P(V )) is free on dimFM

generators.

Here are some examples that are not isotropy representations for symmetric spaces but
that nevertheless satisfy conditions (1)-(4).

1. Let K = SL(2,C) and let (σ, V ) be the representation of K on S3(C2) (i.e. the
irreducible four-dimensional representation). One can show that P(V )K = C[f ] with f
irreducible and homogeneous of degree 4. Let e1, e2 be the usual basis of C2 and let h =

e3
1 + e3

2. If u =

[
0 i
i 0

]
then σ(u)h = ih. Set a = Ch. Thus σ(K)h∩ a⊃ {h,−h, ih,−ih}.

One has f(h) 6= 0 and

M =

{[
ξ 0
0 ξ−1

]
: ξ3 = 1

}
.

We look upon P(a) as C[t]. Assuming that f(h) = 1, we then have res(P(V )K) = C[t4].
Take

A = C1⊕ Ct⊕ Ct2 ⊕ Ct3.

Thus all conditions but (4) have been verified. Condition (4) follows since f is irreducible so
X h is irreducible. We can thus apply Theorem 4.3 and conclude that if F k is the irreducible
(k+1)-dimensional regular representation of K then HomK(F k,P(V )) is a free C[f ]-module
on dk generators. Here

d6k+2j = 2k + 1 for j = 0, 1, 2 and k = 0, 1, 2, . . . ,
d6k+3+2j = 2k + 2 for j = 0, 1, 2 and k = 0, 1, . . . .

2. Let K = Sp(3,C) and let V ⊂
∧3 C6 be the irreducible K-submodule with highest

weight ε1 + ε2 + ε3. Then P(V )K = C[f ] with f an irreducible homogeneous polynomial
of degree 4. Let h = e1 ∧ e2 ∧ e3 + e4 ∧ e5 ∧ e6. Then f(h) 6= 0 so we may normalize f by
f(h) = 1. Let a = Ch. Set

u =

[
0 iI3

iI3 0

]
.

Then σ(u)h = −ih. Thus the conditions are satisfied as in Example 1. In this case M is
the group of all matrices

k =

[
b 0
0 (bt)−1

]
, b ∈ SL(3,C).

3. Let K = SL(6,C) and let V =
∧3 C6. As in Examples 1 and 2, one has P(V )K = C[f ]

with f homogeneous of degree 4. We take h and u as in Example 2. Then the conditions
(1)-(4) are satisfied and M is the group of all[

b1 0
0 b2

]
, b1, b2 ∈ SL(3,C).
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5 Notes

Section 2.2. Theorem 2.3 is an algebraic version of the Borel-Weil Theorem; for the analytic
version in terms of holomorphic vector bundles, see [Wal, Ch. 6, §6.3]. The functions in
Rλ are uniquely determined by their restrictions to the unipotent group N . The finite-
dimensional space Vλ ⊂ Aff(N ) of restrictions of functions in Rλ is characterized as the
solution space of a system of differential equations (called an indicator system) in [Žel, Ch.
XVI]. These equations, which express the nilpotence of the generators for n on Vλ, are also
the basic tool in the algebraic construction of the finite-dimensional g-modules [Hum, §21.2].

Section 2.3. The open B-orbit condition in Theorem 2.5 is also a necessary condition for
X to be multiplicity-free. This follows easily from the result of [Ros] that if B does not
have an open orbit on X then there exists a non-constant B-invariant rational function on
X (see [Vi-Ki]). The spherical pairs (G,K) with G connected and K reductive have been
classified in [Krä]. The term spherical subgroup is also applied to any algebraic subgroup L
(not necessarily reductive) such that L has an open orbit on G/B. This condition can be
shown equivalent to IndGK(χ) being multiplicity-free for all regular characters χ of L [Vi-Ki,
Theorem 1]. For example, any subgroup containing the nilradical of a Borel subgroup is
spherical in this sense. (Such subgroups are called horospherical.) See [Bri] for a survey of
results in this more general context.

Irreducible linear multiplicity-free actions were classified in [Kac]. The classification of
reducible multiplicity-free linear actions was done (independently) in [Be-Ra] and [Lea]. For
examples see [Ho-Um] and [How]).

Section 3.1. The results in this section are from [Ric1]. See also [Ric2].

Section 3.2. The symmetric spaces are labelled according to Cartan’s classification (see
[Hel1]).

Section 3.3. The Iwasawa decomposition for a general complex reductive group is obtained
in [Vus]. See also [De-Pr].

Section 3.4. The problem of decomposing Aff(G/K) into irreducible subspaces was first
treated by Cartan in [Car]. Theorem 3.10 was proved by Helgason [Hel2, Ch. V, §4.1]. For
a proof using algebraic geometry see [Vus].

Section 4.1. Theorem 4.1 has many important applications to the representation theory of
real reductive groups (see [Kos2]). Theorem 4.2 on the adjoint representation appears in
[Kos1].

Section 4.2. The examples are labeled according to Cartan’s classification of symmetric
spaces [Hel1, Ch. X, §6 Table V]. For all the cases, in particular when G is exceptional, the
Lie algebra m of M and the restricted root system can be read off from the Satake diagram
; see [Ara] and [Hel1, Ch. X, Exercises Table VI]. The isotropy representations of K on V
are obtained in all cases in [Wol, §8.11].

Section 4.3. Theorem 4.3 is related to a theorem of G. W. Schwarz [Sch]. The classification
of representations with free modules of covariants is treated in [Pop, Ch. 5].
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[Ho-Um] Roger Howe and Tôru Umeda, The Capelli identity, the double commutant theo-
rem, and multiplicity-free actions, Math. Ann. 290 (1991), 565-619.

[Hum] James E. Humphreys, Introduction to Lie Algebras and Representation Theory,
Springer-Verlag, New York, 1980.

[Kac] V. G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), 190-213.

[Kos1] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85
(1963), 327-404.

39



[Kos2] B. Kostant, On the existence and irreducibility of certain series of representations,
in Lie Groups and their Representations (I.M. Gelfand, ed.), pp. 231-329, Halsted,
New York, 1975.

[Ko-Ra] B. Kostant and S. Rallis, Orbits and Lie group representations associated to sym-
metric spaces, Amer. J. Math. 93 (1971), 753-809.
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