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Appendix F
Decomposition of Tensor Spaces for
O(V) and Sp(V)

Abstract In this appendix we complete the results of Chapter 10 concerning the
decomposition of tensor space under the action of the orthogonal group or the sym-
plectic group. Following ideas of Weyl [7], we decompose the full tensor space into
spaces of partially harmonic tensors. This is the full tensor generalization of the
decompositions of the algebras of symmetric tensors and skew-symmetric tensors
obtained in Chapter 5.

F.1 Partially harmonic tensors

Let V be a finite-dimensional complex vector space, and let G ⊂ GL(V ) be the
group preserving the nondegenerate symmetric or skew-symmetric bilinear form ω

on V . We consider the problem of decomposing the tensor space
⊗k V under the

joint action of G and the centralizer algebra

Bk(V,ω) = EndG(
⊗k V )

(following the notation of Section 10.1.1).
For r = 0,1, . . . , [k/2] let Bk,r(V,ω) be the subspace of Bk(V,ω) spanned by the

operators involving r or more contractions (these operators correspond to Brauer
diagrams with r or more bars). From the relations in Section 10.1.2 we see that
Bk,r(V,ω) is a 2-sided ideal in Bk(V,ω). Thus we have a chain of ideals

Bk(V,ω) = Bk,0(V,ω)⊃Bk,1(V,ω)⊃ ·· · ⊃Bk, [k/2](V,ω) .

We set T⊗k
r = Bk,r(V,ω)(

⊗k V ) (we will not indicate the dependence of these spaces
on the pair (V,ω), which will remain fixed throughout this section). Clearly, T⊗k

r ⊃
T⊗k

r+1, and we have a filtration

⊗kV = T⊗k
0 ⊃ T⊗k

1 ⊃ ·· · ⊃ T⊗k
[k/2] (F.1)
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2 F Decomposition of Tensor Spaces

by A[G]⊗Bk(V,ω) submodules. We define

HT⊗k
r = {u ∈ T⊗k

r : z ·u = 0 for all z ∈Bk,r+1(V,ω)} ,

and we call HT⊗k
r the space of partially harmonic tensors of valence r. When r = 0,

then T⊗k
0 =

⊗k V and
HT⊗k

0 = H(
⊗k V,ω)

is the space of ω-harmonic k-tensors. The spaces HT⊗k
r are obviously invariant

under G and Bk(V,ω). In fact, the quotient algebra Bk(V,ω)/Bk,r+1(V,ω) acts on
HT⊗k

r .

Theorem F.1.1. The space
⊗k V is the direct sum of the partially harmonic tensors

of valences 0,1, . . . , [k/2] :

⊗
kV =

[k/2]⊕
r=0

HT⊗k
r . (F.2)

We shall prove this theorem in the next section. Now we consider the structure of
HT⊗k

r as a G-module. First we need some notation. For r = 1,2, . . . , [k/2] we denote
by M(k,r) the set of all matchings of r pairs of numbers from the set {1,2, . . . ,k}.
An element γ ∈M(k,r) is a set

γ = {{m1,n1},{m2,n2}, . . . ,{mr,nr}}

of r unordered pairs of integers {mi,ni} such that

(1) 1≤ mi ≤ k and 1≤ ni ≤ k;
(2) the set [[γ]] = {m1,n1, . . . ,mr,nr} has 2r distinct elements.

For example, M(4,2) consists of the three matchings

{{1,2}, {3,4}}, {{1,3}, {2,4}}, {{1,4}, {2,3}} .

The action of Sk as permutations of {1, . . . ,k} induces an action of Sk on M(k,r)
for each r. This action is transitive, and the stabilizer of a point in M(k,r) is isomor-
phic to the subgroup Br of S2r, as in Section 10.1.1.

Let M(k,0) be the empty set, and write

M(k) =
[k/2]⋃
r=0

M(k,r) .

Let γ ∈M(k,r). There is a unique labeling for the pairs {mi,ni} in γ so that

m1 < · · ·< mr, mi < ni for i = 1, . . . ,r .

We write γ = (m,n) when this labeling is understood, where m = (m1, . . . ,mr) and
n = (n1, . . . ,nr). We use the notation
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[[γ]]c = {1,2, . . . ,k}\ [[γ]]

for the set of numbers not matched by γ .
The normalized r-bar Brauer diagrams with 2k dots from Section 10.1.1 are pa-

rameterized by the matchings γ ∈M(k,r), where a pair of integers {mi,ni} in γ

corresponds to a bar joining dots numbered 2mi + 1 and 2ni + 1 in the top row and
a bar joining dots numbered 2mi and 2ni in the bottom row of the diagram. For
γ = (m,n) ∈M(k,r) define

Pγ = (dimV )−r
τm1n1 · · ·τmrnr ∈Bk,

where the operators τi j are as in Section 10.1.2. Since the pairs of indices {mi,ni}
are all distinct, the operators τmini mutually commute for i = 1, . . . ,r; therefore,
the ordering in the product is irrelevant and the map γ 7→ Pγ is well defined (see
Lemma 10.1.2). For r = 0 we set P/0 = I (the identity operator on

⊗k V ). Since τ2
i j =

(dimV )τ ji by Lemma 10.1.5, we have P2
γ = Pγ . Hence Pγ is a projection operator.

For s ∈Sk we have
σk(s)Pγ σk(s)−1 = Ps·γ

from Lemma 10.1.5.
For γ ∈M(k) we define

T⊗k
γ = Pγ(

⊗k V ) .

Then T⊗k
γ is a G-invariant subspace of

⊗k V . In particular, T⊗k
/0 =

⊗k V . Define the
subspace of partially harmonic k-tensors of type γ:

HT⊗k
γ = {u ∈ T⊗k

γ : Ci ju = 0 for all i 6= j with i, j ∈ [[γ]]c} .

Here Ci j is the i j-contraction operator. In particular, HT⊗k
/0 = H(

⊗k V,ω). The
space HT⊗k

γ is invariant under G.
We have shown in Sections 10.2.3, 10.2.4, and 10.2.5 that for each G-admissible

partition λ of k− 2r and Young tableau A of shape λ , there is an associated irre-
ducible G-module

U(λ ) = s(A)H(
⊗k−2r V,ω) ,

where s(A) is the Young symmetrizer for A (here we fix some choice of tableau A
for each λ ). Let Gλ be the irreducible representation of Sk−2r corresponding to λ

by Schur duality.

Theorem F.1.2. For every matching γ ∈M(k,r), the G-module HT⊗k
γ is isomorphic

to H(
⊗k−2r V,ω). Furthermore,

HT⊗k
r = ∑

γ∈M(k,r)
HT⊗k

γ . (F.3)

Hence there is a decomposition
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HT⊗k
r
∼=
⊕

λ

m(r,λ )U(λ )

as a G-module, where λ ranges over all the G-admissible partitions of k− 2r and
the multiplicities m(r,λ ) satisfy

1≤ m(r,λ )≤ dim(Gλ )|M(k,r)| . (F.4)

This theorem, which we will prove in the next section, does not assert that the
sum (F.3) is direct, in general. However, when n is sufficiently large (relative to k),
we will prove that the sum is direct and hence the upper bound in (F.4) becomes
an equality. Together with Theorem F.1.1 this gives the complete decomposition of⊗k V as a G-module when the rank of G is sufficiently large relative to k (we call
this the stable range).

Theorem F.1.3. Let n = dimV . Let r ≥ 0 and assume 2k ≤ n+3r. Then

HT⊗k
r =

⊕
γ∈M(k,r)

HT⊗k
γ .

Hence if 2k ≤ n+3, then

⊗k V ∼=⊕[k/2]
r=0 m(r)H(

⊗k−2r V,ω)

as a G-module, where the multiplicities are m(0) = 1 and

m(r) = |M(k,r)|= k(k−1) · · ·(k−2r +1)/(2rr!) for r ≥ 1 .

We shall prove this theorem in Section F.3. It is the tensor generalization of the
harmonic decompositions in Chapter 5.

Examples

1. Suppose k = 2m is even and take r = m. Since H(
⊗0 V,ω) is the trivial G-

module and the spaces H(
⊗p V,ω) have no G-invariants for p > 0, we see from

Theorem F.1.2 that

HT
⊗(2m)
m =

(⊗2m V
)G

, dimHT
⊗(2m)
m ≤ |M(2m,m)|= (2m)!

2m(m!)2 .

Furthermore, when m ≤ n then Theorem F.1.3 applies and the inequality above for
the dimension of the space of G-invariant 2m-tensors becomes an equality.

2. In the range 2k > n + 3 the multiplicities of the harmonic k− 2r tensors
in the decomposition of

⊗k V can be strictly less than |M(k,r)|. For example,
let G = Sp(1,C) = SL(2,C) and let Vk be the (k + 1)-dimensional irreducible
G-module (see Section 2.3.2). Then H(

⊗k(C2,Ω) ∼= Vk, and from the Clebsch–
Gordan formula (see Exercises 7.1.4) we calculate that
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⊗4 C2 ∼= V4⊕3V2⊕V0 . (F.5)

This shows that the multiplicities given in Theorem F.1.3 are not always attained
outside the stable range, since |M(3,1)| = 3 whereas the actual multiplicity of
H(C2) = V1 in

⊗3 C2 is 2. If Theorem F.1.3 were valid in this case, the multiplici-
ties of V2 = H(

⊗2 C2) and of V0 = H(
⊗0 C2) in

⊗4 C2 would be |M(4,1)|= 6 and
|M(4,2)|= 3, respectively. But the actual multiplicities are 3 and 2. Thus the right
inequality in (F.4) is strict in these cases. (Here the G-admissible partitions have one
part, so λ corresponds to the trivial representation of the symmetric group).

F.2 Proof of partial harmonic decomposition

We turn to the proofs of Theorem F.1.1 and Theorem F.1.2. Fix a basis {e j : j =
1, . . . ,n} for V so that

ω(ei,e j) = δn+1,i+ j for i≤ j .

We identify V with Cn via this basis. Then the dual basis is ei = en+1−i for 1≤ i≤
[n/2] and ei = εen+1−i for [n/2] < i ≤ n. Let u 7→ u∗ be the conjugate-linear map
on Cn such that (cei)∗ = c∗ei for c ∈ C (where c∗ is the complex conjugate of c).
Clearly,

(u∗)∗ = εu , (F.6)

ω(u∗,v∗) = ω(u,v)∗ (F.7)

for u,v ∈ Cn. We extend ∗ to a conjugate-linear map on
⊗k Cn by

(u1⊗·· ·⊗uk)∗ = u∗1⊗·· ·⊗u∗k .

Then (F.7) is also valid for u,v ∈⊗k Cn. It is easy to verify that the operators Pγ

commute with ∗, so the spaces HT⊗k
γ are ∗-invariant.

Define 〈u|v〉 = ω(u,v∗). This is a Hermitian form on
⊗k Cn that we claim is

positive definite. Indeed, if u = ∑|I|=k cIeI , then

ω(u,u∗) = ∑
I

cI c∗I ω(eI ,eI) = ∑
I
|cI |2 .

It follows that if L ⊂ M ⊂⊗k Cn are any linear subspaces such that L∗ = L and
M∗ = M, then there is a decomposition M = L⊕N, where

N = {u ∈M : ω(u,v) = 0 for all v ∈ L} .

Indeed, ω(u,v) = εk〈u|v∗〉, so N is also the orthogonal complement of L in M rel-
ative to the Hermitian inner product 〈·|·〉 on M. For ∗-invariant subspaces we can
use the term orthogonal without confusion between the bilinear form ω and the
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associated Hermitian form. We write L ⊥ N to denote orthogonality relative to the
Hermitian form.

Given a matching γ = (m,n)∈M(k,r), we define the r-fold contraction operator
Cγ :

⊗k Cn //⊗k−2r Cn by

Cγ(v1⊗·· ·⊗ vk) =
{ r

∏
i=1

ω(vmi ,vni)
}

v j1 ⊗·· ·⊗ v jk−2r ,

where { j1, . . . , jk−2r} is the set [[γ]]c enumerated in increasing order. For example,
if γ = {{1,2}, {3,5}} ∈M(6,2), then

Cγ(v1⊗·· ·⊗ v6) = ω(v1,v2)ω(v3,v5)v4⊗ v6 .

When γ = {i, j}, then Cγ is the previously defined contraction operator Ci j. Define
the r-fold expansion operator Dγ :

⊗k−2r Cn //⊗k Cn by

Dγ(v1⊗·· ·⊗ vk−2r) = ∑
p1,...,pr

u(p1, . . . , pk) ,

where u(p1, . . . , pk) is the decomposable 2r-tensor with epi in position mi and epi

in position ni, for i = 1, . . . ,r, while the other positions in u(p1, . . . , pk) are filled in
order by v1, . . . ,vk−2r. For example, if γ = {{1,2}, {3,5}} ∈M(6,2) then

Dγ(v1⊗ v2) = ∑
p1, p2

ep1 ⊗ ep1 ⊗ ep2 ⊗ v1⊗ ep2 ⊗ v2 .

When γ = {i, j} then Dγ is the previously defined expansion operator Di j. When γ =
{{1,2}, . . . ,{2r−1,2r}} then Dγ u = θr⊗u for u∈⊗k−2r Cn (tensor multiplication
by the G-invariant tensor θr).

The contraction and expansion operators obviously intertwine the actions of G
on
⊗k Cn and

⊗k−2 Cn. They give a factorization

Pγ = n−rDγCγ . (F.8)

Let Eγ :
⊗k−2r Cn //⊗k Cn be the operator that inserts e1 in positions m1, . . ., mr

and inserts e1 in positions n1, . . ., nr. A simple calculation shows that

Dγ = nrPγ Eγ . (F.9)

Just as in the case r = 1, the product of the contraction and expansion operators in
the opposite order is a multiple of the identity operator:

Cγ Dγ = nrI . (F.10)

(This follows by the same calculation as (10.13).) In particular, from (F.8) and (F.10)
we have Cγ Pγ = Cγ . Hence
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Ker(Pγ) = Ker(Cγ) . (F.11)

Furthermore, from (F.8) and (F.9) we see that

T⊗k
γ = Range(Pγ) = Range(Dγ) . (F.12)

It is straightforward to verify that

〈Cγ u |v〉= 〈u |Dγ v〉 (F.13)

for u ∈⊗k Cn and v ∈⊗k−2r Cn. This implies that the projection operator Pγ is
self-adjoint, relative to the Hermitian inner product.

We can now prove Theorem F.1.1. From the relations in Section 10.1.2 we see
that Br

k is spanned by the operators Pγ σk(s) with γ ∈M(k,r) and s ∈Sk. Thus

T⊗k
r = ∑

γ∈M(k,r)
T⊗k

γ .

Likewise, we have

HT⊗k
r = {u ∈ T⊗k

r : Pγ u = 0 for all γ ∈M(k,r +1)} .

Thus a k-tensor is in HT⊗k
r if it is in the span of the r-fold expansion operators and

is annihilated by all (r + 1)-fold contraction operators. Note that HT⊗k
[k/2] = T⊗k

[k/2]

since M(k,r) is empty for r > [k/2]. Clearly, T⊗k
r and HT⊗k

r are ∗ invariant. We see
from (F.12) and (F.13) that 〈u|w〉= 0 for all w ∈ T⊗k

r+1 if and only if Cγ u = 0 for all
γ ∈M(k,r +1). This implies that there is an orthogonal decomposition

T⊗k
r = HT⊗k

r ⊕T⊗k
r+1 (F.14)

for r = 0,1, . . . , [k/2]−1. This together with the filtration (F.1) then give the decom-
position ⊗kCn = HT⊗k

0 ⊕HT⊗k
1 ⊕·· ·⊕HT⊗k

[k/2]

as claimed in Theorem F.1.1

We now turn to the proof of Theorem F.1.2. For r ≥ 0 set

T̃⊗k
r = ∑

γ∈M(k,r)
HT⊗k

γ .

Then T̃⊗k
r ⊂ T⊗k

r . We first prove that for r = 0,1, . . . , [k/2], one has

T⊗k
r = T̃⊗k

r +T⊗k
r+1 . (F.15)

Let γ ∈M(k,r). There is an orthogonal decomposition

T⊗k
γ = HT⊗k

γ ⊕N⊗k
γ . (F.16)
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We claim that
N⊗k

γ ⊂ T⊗k
r+1 . (F.17)

Indeed, for every i, j ∈ [[γ]]c with i 6= j, the self-adjoint operator Pi j leaves the space
T⊗k

γ invariant, since it commutes with Pγ . By definition HT⊗k
γ is the intersection of

the kernels of all such operators Pi j on T⊗k
γ . Hence the orthogonal space N⊗k

γ is the
span of the ranges of Pi j on T⊗k

γ , for all such pairs i, j. Since

Pi jT
⊗k
γ ⊂ T⊗k

r+1 ,

this proves (F.17). Summing (F.16) over γ ∈M(k,r) and using (F.17), we obtain
(F.15).

We now show that the sum (F.15) is direct by a combinatorial argument using the
relations in the algebra Bk.

Let γ ∈M(k,r) and µ ∈M(k,r +1) be matchings with r and r +1 pairs, respec-
tively. If µ ′ ∈M(k,s+1) for some s≤ r, we say that µ ′ is a submatching of µ and
write µ ′ ⊂ µ if every pair {p,q} ∈ µ ′ is also in µ . If µ ′ is a submatching of µ , we
say that µ is γ-linked with ends x,y if

µ
′ = {{x,m1},{n1,m2}, . . . ,{ns−1,ms},{ns,y}} , (F.18)

where the pairs {mi,ni} ∈ γ for i = 1, . . . ,s (here we do not assume that mi is enu-
merated in increasing order or that mi < ni). Thus there are s pairs from γ that “link”
the s+1 pairs in µ ′.

Example
Let k = 6 and r = 2. Consider the pairs γ and µ and the elements x,y ∈ [[µ]] shown
in Figure F.1.

γ = {{1, 3}, {2, 4}}

• • • • • •

• • • •

.........................................................

........
...........
...............................................................................................................................................................................................................................................

.........
.

.........
.............
............................................................................................................................................................................................................................................

........
.. µ = {{1, 2}, {3, 5}, {4, 6}}

1 2 3 4 5 6

x y
........
...
........
...
........
...
........
...
.

........

...

........

...

........

...

........

...

.

........

...

........

...

........

...

........

...

.

........

...

........

...

........

...

........

...

.

1

Fig. F.1 γ-linked submatching.

Then µ ′ = {{5,3},{1,2}} is a γ-linked submatching of µ with ends x = 5 and 2
(we have indicated the linking by the vertical dashed lines). In this example the
maximal γ-linked submatching of µ having 5 as an end is µ itself, and the other end
of this maximal submatching is y = 6. Note that starting with x ∈ [[γ]]c and taking
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the maximum γ-linked submatching of µ , we ended at y ∈ [[γ]]c. We will show in
the scholium below that this is a general phenomenon.

The notion of a γ-linked submatching is important because of the following iden-
tity in the algebra Bk:

Lemma F.2.1. Let γ ∈M(k,r) and µ ∈M(k,r + 1). Suppose µ ′ is a γ-linked sub-
matching of µ with ends x,y. If x,y ∈ [[γ]]c then there exists t ∈Sk so that

τµ ′τγ = σk(t)τxyτγ . (F.19)

Proof. Let µ ′ be given by (F.18). We argue by induction on s. If s = 0 then µ ′ =
{x,y} and (F.19) holds with t = 1. If s > 0 we have the identity

τynsτmsns = σk(yms)τmsns

by Lemma 10.1.5 (2), where (yms) is the transposition y↔ ms. Hence

τns−1ms τynsτmsns = σk(yms)τns−1yτmsns . (F.20)

The operator σk(yms) commutes with the remaining factors in τµ ′ , namely τnimi+1
(for 1≤ i≤ s−2) and τxm1 , and so it may be moved to the left. From (F.20) we thus
have

τµ ′τγ = σk(yms)τµ ′′τγ ,

where µ ′′ is obtained from µ ′ by omitting {ms,ns}. The lemma now follows by
induction on s. ut

Scholium F.2.2. For every γ ∈M(k,r) and µ ∈M(k,r + 1) there exists a γ-linked
submatching µ ′ ⊂ µ whose ends are in [[γ]]c.

We defer the combinatorial proof of this scholium to the end of the section. Let
us first see how it can be combined with Lemma F.2.1 to obtain the first part of
Theorem F.1.2.

Let γ ∈M(k,r) and u ∈HT⊗k
γ . We claim that τµ u = 0 for all µ ∈M(k,r + 1).

Indeed, by Scholium F.2.2 there exists an γ-linked submatching µ ′ ⊂ µ with ends
x,y∈ [[γ]]c. Since τµ = τµ ′′τµ ′ , where µ ′′⊂ µ is the complement to µ ′, it will suffice
to show that τµ ′u = 0. Since u = τγ z for some z ∈⊗k Cn, we have

τµ ′u = σk(t)τxyτγ z = σk(γ)τxyu

from (F.19), where x,y ∈ [[γ]]c. But τxyu = 0 since u is partially harmonic of type γ .
We have thus shown that

HT⊗k
γ ⊂HT⊗k

r

for every γ ∈M(k,r). Hence T̃⊗k
r ⊂HT⊗k

r , so by (F.14) and (F.15) we conclude that
HT⊗k

r = T̃⊗k
r and T⊗k

r = HT⊗k
r ⊕T⊗k

r+1. This completes the proof of the first part of
Theorem F.1.2. Now we turn to the structure of the individual spaces HT⊗k

γ .
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Lemma F.2.3. Let γ ∈M(k,r).

1. Dγ :
⊗k−2r Cn // T⊗k

γ is an isomorphism of G-modules.
2. Dγ

(
H(
⊗k−2r Cn)

)
= HT⊗k

γ .

Proof. We know that Dγ intertwines the G actions on
⊗k−2r Cn and

⊗k Cn. From
(F.12) and (F.10) we see that

T⊗k
γ = Dγ

(⊗k−2rCn
)

and n−rCγ : T⊗k
γ

//⊗k−2r Cn is the inverse to Dγ . This proves statement (1).

For statement (2), let i, j ∈ [[γ]]c. We claim that there exists i′, j′ with 1 ≤ i′ <
j′ ≤ k−2r and γ ′ ∈M(k,r) such that (i′, j′) ∈ [[γ ′]]c and

Ci jDγ u = Dγ ′Ci′ j′u (F.21)

for all u ∈⊗k−2r Cn. For example, if γ = {{1,2}, . . . ,{2r−1,2r}} and i > 2r, j >
2r, then

Ci jDγ u = Ci j(θr⊗u) = DγCi−2r, j−2ru

for u ∈⊗k−2r Cn, so we can take i′ = i−2r, j′ = j−2r, and γ ′ = γ in this case. In
general, if we define

s(i) = Card{p : mp < i}+Card{p : np < i} ,

then (F.21) holds with i′ = i− s(i), j′ = j − s( j), and a suitable γ ′ = (m′,n′).
Here m′p is either mp, mp − 1, or mp − 2 (depending on the relation between p
and i, j), and likewise for n′p. The map i 7→ i− s(i) is a monotone bijection from
[[γ]]c onto {1, . . . ,k−2r}. It now follows from (F.21) and the injectivity of Dγ ′ that
u ∈H(

⊗k−2r Cn) if and only if Dγ u ∈HT⊗k
γ . This proves statement (2). ut

Now that we have established Lemma F.2.3, it only remains to prove the last part
of Theorem F.1.2. Let λ be a G-admissible partition of k−2r and let A be a tableau
of shape λ . Consider the G-module

E =
⊕

γ∈M(k,r)

HT⊗k
γ .

From the results of Sections 10.2.3, 10.2.4, and 10.2.5 we know that U(λ ) occurs in
E with multiplicity dim(Gλ )|M(k,r)|. By (F.3) we have a surjective G-module map
E // HT⊗k

r given by addition. The multiplicity bound (F.4) is then a consequence
of the following general result:

Proposition F.2.4. Let A be an associative algebra, and let U and V be completely-
reducible A-modules. Suppose ξ ∈ Â.

1. If T : U // V is a surjective A-module map, then mU (ξ )≥ mV (ξ ).
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2. If T : U // V is an injective A-module map, then mU (ξ )≤ mV (ξ ).

Proof. (1): Let Eξ be an irreducible A-module of type ξ . Let S ∈ HomA(V,Eξ ).
Then ST ∈ HomA(U,Eξ ). Since T is surjective, the map S 7→ ST is an injection
from HomA(V,Eξ ) into HomA(U,Eξ ). Thus

mU (ξ ) = dimHomA(U,Eξ )≥ dimHomA(V,Eξ ) = mV (ξ ) .

(2): Let S ∈ HomA(Eξ ,U). Then T S ∈ HomA(Eξ ,V ). Since T is injective, the
map S 7→ T S is an injection from HomA(Eξ ,U) into HomA(Eξ ,V ). Thus mU (ξ )≤
mV (ξ ) in this case. ut

Proof of Scholium F.2.2 Let E = [[µ]]\ [[γ]]. Then Card(E)≥ 2. Take x ∈ E. The
collection of all γ-linked submatchings of µ with x as one end is totally ordered
under inclusion, so there is a maximum such submatching. Let y be the other end in
this maximum submatching and define ϕ(x) = y. Letting x vary, we obtain a map

ϕ : E // [[µ]] .

The map ϕ is injective. Indeed, since x /∈ [[γ]], the maximum γ-linked submatching
starting at x is also the maximal γ-linked submatching starting at ϕ(x), and x and
ϕ(x) are the ends of this submatching. Thus ϕ(x) uniquely determines x. We may
enumerate γ = {{m1,n1}, . . . ,{mr,nr}} so that

(1) If [[µ]]∩{mi,ni} 6= /0 then ni ∈ [[µ]].

Suppose the Scholium is false. Then for each x∈ E we have ϕ(x)∈ [[γ]]. We may
choose the enumeration of γ so that (1) holds and also

(2) For all x ∈ E one has ϕ(x) = ni for some i.

Since ϕ is injective, there is a unique y ∈ [[γ]] so that the pair {ϕ(x),y} ∈ γ . Set
ψ(x) = y. Then ψ : E // [[γ]] is also injective. By the maximality condition defin-
ing ϕ(x), we must have ψ(x) /∈ [[µ]], since otherwise the γ-linked submatching
starting at x and ending at ϕ(x) could be extended using the link {ψ(x),ϕ(x)} ∈ γ .

We write {m1, . . . ,mr}∩ [[µ]] = m∩ [[µ]] and {n1, . . . ,nr}∩ [[µ]] = n∩ [[µ]]. De-
fine a map f : E∪

(
m∩ [[µ]]

)
// n∩ [[µ]] by

f (x) =
{

ϕ(x) for x ∈ E

ni for x = mi ∈m∩ [[µ]].

Note that if mi ∈m∩ [[µ]] then ni ∈ [[µ]] by property (1) above. Furthermore, since
ψ(x) /∈ [[µ]] for x ∈ E, we cannot have ϕ(x) = ni for any mi ∈m∩ [[µ]], by property
(2) above. Since ϕ is injective, it follows that f is injective. Thus

Card(E)+Card(m∩ [[µ]])≤ Card(n∩ [[µ]]) .

This gives the inequalities
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Card([[µ]]) = Card(E)+Card(m∩ [[µ]])+Card(n∩ [[µ]])
≤ 2Card(n∩ [[µ]])≤ 2r .

But Card([[µ]]) = 2r +2, so we have reached a contradiction. ut

F.3 Decomposition in the stable range

We now turn to the proof of Theorem F.1.3. We continue with the notation of Section
F.2. Let λ ∈ Par(k−2r) for some r with 0≤ r≤ [k/2]. Recall from Theorem 9.3.12
that a basis for the space W̃ k−2r(λ ) of GL(n,C) highest-weight tensors consists of
the tensors s(A)eA , where A ∈ STab(λ ) and s(A) is the Young symmetrizer for A.

Lemma F.3.1. Assume that λ has d parts and 2d + r ≤ n. Then the set

{Dγ s(A)eA : γ ∈M(k,r), A ∈ STab(λ )}

is linearly independent.

Proof. In the present situation, where we are considering tensors of ranks k,k−
2,k− 4, . . . simultaneously, it will be convenient to have a more flexible definition
of Young symmetrizer. For any set L of positive integers with |L| = |λ | = k− 2r
we define an L-tableau of shape λ to be a Young tableau of shape λ with each
element of L occurring in exactly one box of λ . We call such a tableau standard if
the sequence of numbers in any row (or column) is monotonically increasing. We
denote by Tab(λ ,L) the set of all L-tableau of shape λ . We write STab(λ ,L) for the
set of all standard L-tableau. The row group, column group, and Young symmetrizer
associated with an L-tableau are defined in the obvious way as before.

Now take γ = (m,n)∈M(k,r) and L = [[γ]]c. For A∈ Tab(λ ) let Aγ ∈ Tab(λ ,L)
be the tableau obtained from A by replacing the integer j by the jth integer in L

(enumerated in increasing order), for j = 1,2, . . . ,k− 2r. It is clear that the map
A 7→ Aγ is a bijection between STab(λ ) and STab(λ ,L). Furthermore, since the
expansion operator Dγ only acts on the tensor positions in [[γ]] while the Young
symmetrizer s(Aγ) acts on the tensor positions in [[γ]]c, we have

Dγ s(A) = s(Aγ)Dγ . (F.22)

Let Dn ⊂GL(n,C) be the n-torus of diagonal matrices. Then the torus T =×kDn
acts on

⊗k Cn with one-dimensional weight spaces spanned by the decomposable
tensors ep1 ⊗ ·· · ⊗ epk . Since λ has d parts, the tensor eA only involves e1, . . . ,ed
(see the definition for eA from Section 9.3.1). Let γ = (m,n). Define the subspace
Kγ ⊂

⊗k Cn to be the span of the decomposable tensors ep1 ⊗·· ·⊗ epk , where ed+i
occurs in tensor position mi, ed+i occurs in tensor position ni, for i = 1,. . ., r, and
all the other tensor positions are filled with e1, . . ., ed (with repetitions and in any
order). Since we are assuming 2d + r ≤ n we have Kγ 6= {0}. Furthermore, since
ed+i = εen+1−i, we have
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ed+i 6= e j for all i = 1, . . . ,r and j = 1, . . . ,d . (F.23)

Clearly, Kγ is invariant under T . Let A ∈ Tab(λ ). Since the row and column groups
of Aγ only operate on the tensor positions in [[γ]]c, we have

(?) The space Kγ is invariant under s(Aγ) for all A ∈ Tab(λ ).

When we express the operator Dγ using the basis {ei} and ω-dual basis {ei}, we see
that Dγ eA is a sum of decomposable tensors, and from (F.23) exactly one of them is
in Kγ . Call this term uγ,A. Then s(Aγ)uγ,A ∈ Kγ by (?). Also s(Aγ)uγ,A 6= 0 by (F.23)
and the same argument that gives (?).

If γ = (m,n) and u ∈ Kγ is a decomposable tensor, then the vectors e1, . . ., ed do
not occur in positions m1, . . ., mr, n1, . . ., nr in u by (F.23). Since distinct matchings
γ determine distinct positions, it follows that the weights of T on Kγ uniquely deter-
mine γ . This implies that the spaces Kγ , for γ ∈M(k,r), are linearly independent.
Since T is reductive, there is a T -invariant subspace F ⊂⊗k Cn so that⊗k Cn = F⊕⊕γ∈M(k,r) Kγ . (F.24)

Now suppose there is a linear relation

∑
γ∈M(k,r)

∑
A∈STab(λ )

aγ,A Dγ s(A)eA = 0 ,

where aγ,A ∈ C. Then by (F.22) we can write this relation as

∑
γ∈M(k,r)

∑
A∈STab(λ )

aγ,A s(Aγ)Dγ eA = 0 .

We have s(Aγ)uγ,A ∈ Kγ , while all the other decomposable tensors in s(Aγ)Dγ eA are
in the subspace F . Hence by (F.24)

∑
A∈STab(λ )

aγ,A s(Aγ)uγ,A = 0 (F.25)

for each γ ∈M(k,r).
Assume now for the sake of contradiction that some coefficient aγ,A 6= 0. Let A′

be the smallest standard tableau (relative to the lexicographic order as in Section
9.3.3) for which this is true. Since normalized Young symmetrizers are idempotent
and s(A′γ)s(A) = 0 for all A > A′ by Lemma 9.3.13, we can apply s(A′γ) to the left
side of (F.25) to obtain

aγ,A′s(Aγ)uγ,A = 0 .

Hence aγ,A′ = 0, which is a contradiction. ut

We now prove Theorem F.1.3. Let 0 < r ≤ [k/2] and assume 2k ≤ n + 3r. By
Theorem F.1.2, it is enough to show that for each G-admissible partition λ of k−2r,
the set of irreducible G-modules
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{DγC[G]s(A)eA : γ ∈M(k,r), A ∈ STab(λ )} (F.26)

are linearly independent. When G = O(2l,C) and λ ∈ A0(k−2r,2l), these modules
are of the form (

DγU(g)s(A)eA
)
⊕
(
DγU(g)s(A)g0 · eA

)
,

where g0 ∈O(2l,C) is as in Section 10.2.5. In all other cases these modules are of
the form DγU(g)s(A)eA. Now s(A)eA is a b-extreme tensor of weight λ , whereas
s(A)g0 · eA is b-extreme of weight Ad∗(ξ )λ . Thus the linear independence of the
modules (F.26) is a consequence of Lemma F.3.1 and the following general result:

Scholium F.3.2. Suppose {u1, . . . ,uk} ⊂ V n+
(µ) is a linearly independent set of

highest-weight vectors. Let U1, . . ., Uk be, respectively, the cyclic g-modules gener-
ated by u1, . . . ,uk. Then U1, . . . ,Uk are linearly independent.

Proof. We use the notation in the proof of Theorem 4.2.12. We have k ≤ d(µ) by
(4.26). Hence there is a linear transformation T0 ∈ End(V n+

(µ)) so that

T0(ui) = vµ,i for i = 1, . . . ,k .

Set T = ϕ−1(T0) ∈ Endg(V ). Then T (Ui) = Vµ,i, so (4.25) implies that U1, . . . ,Uk
are linearly independent. ut

F.4 Exercises

1. Verify the formula for m(r) in Theorem F.1.1.
2. Use the Clebsch–Gordan formula (see Exercises 7.1.4) to prove (F.5).
3. Let G = O(C3,B). For k = 0,2,4, . . . and ε = ±, let Vk,ε be the (k + 1)-

dimensional irreducible representation of G with highest weight (k/2)ε1 in which
−I acts by ε . Write H⊗k = H(

⊗k C3,B).
(a) Show that H⊗3∼=V6,−⊕2V4,−⊕V0,− and H⊗k ∼=V2k,ε⊕(k−1)V2k−2,ε for k 6=
3 with ε = (−1)k. (HINT: Determine the G-admissible partitions; the associated
representations of the symmetric groups are either the trivial, the sign, or the
standard.)
(b) Theorem F.1.3 asserts that

⊗3 C3 ∼= H⊗3⊕ 3H1 as a G-module; give an al-
ternate proof of this using (a) and the Clebsch–Gordan formula (use the covering
homomorphism SL(2,C) // SO(3,C)).
(c) Use the same method as in (b) to show that

⊗4 C3 ∼= H⊗4⊕ 6H⊗2⊕ 3H0

as a G-module. Note that the stable multiplicity of H⊗2 in
⊗4 V would be

|M(4,1)|= 6 and the stable multiplicity of H0 in
⊗4 V would be |M(4,2)|= 3.

Thus Theorem F.1.3 holds in this case even though the inequality 2k ≤ n + 3 is
violated (here k = 4, n = 3).

4. (Same notation as in previous problem) By Theorems F.1.1 and F.1.2 one has⊗5 C3 ∼= H⊗5⊕HT⊗5
1 ⊕HT⊗5

2 . Note that the inequality 2k ≤ n + 3 is violated
(here k = 5 and n = 3), so Theorem F.1.3 is not applicable.
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(a) Use the method and results of the previous problem to show that HT⊗5
1
∼=

10V6,−⊕15V4,−⊕6V0,− and HT⊗5
2
∼= 15V2,− in this case.

(b) Show that the upper bound in (F.4) for the multiplicity of the representation
V4,− in HT⊗5

1 is 20, whereas from (a) the actual multiplicity is 15. (HINT: The
partition λ of 3 associated with V4,− is 3 = 2+1, and dimGλ = 2.)

5. Let γ and γ ′ ∈ Par2(k). Suppose there is a pair {i, j} ∈ γ so that {i, j} /∈ γ ′, or
vice versa. Prove that HT⊗k

γ is orthogonal to HT⊗k
γ ′ relative to the form ω .

F.5 Notes

The decomposition of tensor space into a sum of harmonic tensors of “valences”
k,k−2, . . . is given (in broad outline) in Weyl [7, Ch. V, §6 and §7]; see also Brown
[2]. Our presentation follows the presentation in Benkart, Britten, and Lemire [1]
with some changes in terminology, notation, and details of proof. See also Gavarini
and Papi [4], who obtain this decomposition using the representations of the Brauer
algebra.

When G is the symplectic group a combinatorial formula for the multiplicities
m(r,λ ) in Theorem F.1.2 was obtained by Sundaram [6]. The condition 2k≤ n+3 in
Theorem F.1.3 can possibly be weakened, in light of the results on semisimplicity of
the Brauer algebra in Brown [3] and the determination of the structure of the algebra
in Brown [2] (see the exercises in Section F.1). See Hanlon [5] for the “stable limit”
of the decomposition of the tensor algebra over g as a module under Ad(G), with G
a classical group.
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