Restricted Roots and Weyl Dimension Formula for Spherical Varieties

Roe Goodman (with Simon Gindikin)
CUNY Representation Theory Seminar

November 9, 2012

Spherical Pairs

$G \quad$ reductive algebraic group over \mathbb{C}
$H \subset G \quad$ reductive subgroup $(X=G / H$ affine variety)

Spherical Pairs

$G \quad$ reductive algebraic group over \mathbb{C}
$H \subset G \quad$ reductive subgroup $(X=G / H$ affine variety)
$B=T U \subset G \quad$ Borel subgroup (T max. torus, U unipotent)
$E_{\lambda} \quad$ irreducible G module with highest weight $\lambda \quad\left(\operatorname{dim} E_{\lambda}^{U}=1\right)$

Spherical Pairs

G reductive algebraic group over \mathbb{C}
$H \subset G \quad$ reductive subgroup $(X=G / H$ affine variety)
$B=T U \subset G \quad$ Borel subgroup (T max. torus, U unipotent) $E_{\lambda} \quad$ irreducible G module with highest weight $\lambda \quad\left(\operatorname{dim} E_{\lambda}^{U}=1\right)$ Definition: (G, H) is a spherical pair if (3 equivalent conditions):

- B has an open orbit on $X \quad(B g H$ open in G for some $g \in G)$

Spherical Pairs

G reductive algebraic group over \mathbb{C}
$H \subset G \quad$ reductive subgroup $(X=G / H$ affine variety)
$B=T U \subset G \quad$ Borel subgroup (T max. torus, U unipotent) $E_{\lambda} \quad$ irreducible G module with highest weight $\lambda \quad\left(\operatorname{dim} E_{\lambda}^{U}=1\right)$ Definition: (G, H) is a spherical pair if (3 equivalent conditions):

- B has an open orbit on $X \quad(B g H$ open in G for some $g \in G)$
- $\operatorname{dim} E_{\lambda}^{H} \leq 1$ for all highest weights λ

Spherical Pairs

$G \quad$ reductive algebraic group over \mathbb{C}
$H \subset G \quad$ reductive subgroup $(X=G / H$ affine variety)
$B=T U \subset G \quad$ Borel subgroup (T max. torus, U unipotent) $E_{\lambda} \quad$ irreducible G module with highest weight $\lambda \quad\left(\operatorname{dim} E_{\lambda}^{U}=1\right)$ Definition: (G, H) is a spherical pair if (3 equivalent conditions):

- B has an open orbit on $X \quad(B g H$ open in G for some $g \in G)$
- $\operatorname{dim} E_{\lambda}^{H} \leq 1$ for all highest weights λ
- $\mathbb{C}[X]=\bigoplus_{\lambda \in \Gamma(X)} E_{\lambda} \quad$ (multiplicity-free decomposition) where $\Gamma(X)=$ semigroup of H-spherical highest weights

Spherical Pairs

$G \quad$ reductive algebraic group over \mathbb{C}
$H \subset G \quad$ reductive subgroup $(X=G / H$ affine variety)
$B=T U \subset G \quad$ Borel subgroup (T max. torus, U unipotent)
$E_{\lambda} \quad$ irreducible G module with highest weight $\lambda \quad\left(\operatorname{dim} E_{\lambda}^{U}=1\right)$
Definition: (G, H) is a spherical pair if (3 equivalent conditions):

- B has an open orbit on $X \quad(B g H$ open in G for some $g \in G)$
- $\operatorname{dim} E_{\lambda}^{H} \leq 1$ for all highest weights λ
- $\mathbb{C}[X]=\bigoplus_{\lambda \in \Gamma(X)} E_{\lambda} \quad$ (multiplicity-free decomposition) where $\Gamma(X)=$ semigroup of H-spherical highest weights

Examples

- Involution θ of $G, H=G^{\theta}$ (symmetric subgroup), $X=$ symmetric space

Spherical Pairs

$G \quad$ reductive algebraic group over \mathbb{C}
$H \subset G \quad$ reductive subgroup $(X=G / H$ affine variety)
$B=T U \subset G \quad$ Borel subgroup (T max. torus, U unipotent)
$E_{\lambda} \quad$ irreducible G module with highest weight $\lambda \quad\left(\operatorname{dim} E_{\lambda}^{U}=1\right)$
Definition: (G, H) is a spherical pair if (3 equivalent conditions):

- B has an open orbit on $X \quad(B g H$ open in G for some $g \in G)$
- $\operatorname{dim} E_{\lambda}^{H} \leq 1$ for all highest weights λ
- $\mathbb{C}[X]=\bigoplus_{\lambda \in \Gamma(X)} E_{\lambda} \quad$ (multiplicity-free decomposition) where $\Gamma(X)=$ semigroup of H-spherical highest weights

Examples

- Involution θ of $G, H=G^{\theta}$ (symmetric subgroup), $X=$ symmetric space
- Krämer's list: G simple, H nonsymmetric subgroup $X=$ weakly symmetric space (Akhiezer-Vinberg)

Excellent Spherical Pairs

Assume G simple. Let $\Phi \subset \mathfrak{t}^{*}$ be the roots of T on \mathfrak{g} $\Phi^{+}=$positive roots (relative to B) $\Delta \subset \Phi^{+}$simple roots

Excellent Spherical Pairs

Assume G simple. Let $\Phi \subset \mathfrak{t}^{*}$ be the roots of T on \mathfrak{g} $\Phi^{+}=$positive roots (relative to B) $\Delta \subset \Phi^{+}$simple roots $\varpi_{1}, \ldots, \varpi_{\ell}$ fundamental highest weights (dual to simple coroots) The highest weights are $\lambda=n_{1} \varpi_{1}+\cdots+n_{\ell} \varpi_{\ell}, \quad n_{i} \in \mathbb{N}$ Define $\operatorname{Supp}(\lambda)=\left\{\varpi_{i}: n_{i} \neq 0\right\}$

Excellent Spherical Pairs

Assume G simple. Let $\Phi \subset \mathfrak{t}^{*}$ be the roots of T on \mathfrak{g} $\Phi^{+}=$positive roots (relative to B) $\Delta \subset \Phi^{+}$simple roots $\varpi_{1}, \ldots, \varpi_{\ell}$ fundamental highest weights (dual to simple coroots) The highest weights are $\lambda=n_{1} \varpi_{1}+\cdots+n_{\ell} \varpi_{\ell}, \quad n_{i} \in \mathbb{N}$ Define $\operatorname{Supp}(\lambda)=\left\{\varpi_{i}: n_{i} \neq 0\right\}$

Definition (G, H) is an excellent spherical pair if

- $\Gamma(X)$ is generated by highest weights $\mu_{1}, \ldots, \mu_{r} \quad(r=\operatorname{rank} X)$
- $\operatorname{Supp}\left(\mu_{i}\right) \cap \operatorname{Supp}\left(\mu_{j}\right)=\emptyset$ for $i \neq j$

Excellent Spherical Pairs

Assume G simple. Let $\Phi \subset \mathfrak{t}^{*}$ be the roots of T on \mathfrak{g} $\Phi^{+}=$positive roots (relative to B) $\Delta \subset \Phi^{+}$simple roots $\varpi_{1}, \ldots, \varpi_{\ell}$ fundamental highest weights (dual to simple coroots) The highest weights are $\lambda=n_{1} \varpi_{1}+\cdots+n_{\ell} \varpi_{\ell}, \quad n_{i} \in \mathbb{N}$ Define $\operatorname{Supp}(\lambda)=\left\{\varpi_{i}: n_{i} \neq 0\right\}$

Definition (G, H) is an excellent spherical pair if

- $\Gamma(X)$ is generated by highest weights $\mu_{1}, \ldots, \mu_{r} \quad(r=\operatorname{rank} X)$
- $\operatorname{Supp}\left(\mu_{i}\right) \cap \operatorname{Supp}\left(\mu_{j}\right)=\emptyset$ for $i \neq j$

Examples of Excellent Pairs

- $H=G^{\theta}$ (symmetric subgroup) - Cartan-Helgason theorem

Excellent Spherical Pairs

Assume G simple. Let $\Phi \subset \mathfrak{t}^{*}$ be the roots of T on \mathfrak{g} $\Phi^{+}=$positive roots (relative to B) $\Delta \subset \Phi^{+}$simple roots $\varpi_{1}, \ldots, \varpi_{\ell}$ fundamental highest weights (dual to simple coroots) The highest weights are $\lambda=n_{1} \varpi_{1}+\cdots+n_{\ell} \varpi_{\ell}, \quad n_{i} \in \mathbb{N}$ Define $\operatorname{Supp}(\lambda)=\left\{\varpi_{i}: n_{i} \neq 0\right\}$

Definition (G, H) is an excellent spherical pair if

- $\Gamma(X)$ is generated by highest weights $\mu_{1}, \ldots, \mu_{r} \quad(r=\operatorname{rank} X)$
- $\operatorname{Supp}\left(\mu_{i}\right) \cap \operatorname{Supp}\left(\mu_{j}\right)=\emptyset$ for $i \neq j$

Examples of Excellent Pairs

- $H=G^{\theta}$ (symmetric subgroup) - Cartan-Helgason theorem
- 10 of the 12 pairs on Krämer's list (case-by-case verification) Rank-one: $\left(\mathbf{S p i n}_{7}, \mathbf{G}_{2}\right),\left(\mathbf{G}_{2}, \mathbf{S L}_{3}\right)$

Excellent Spherical Pairs

Assume G simple. Let $\Phi \subset \mathfrak{t}^{*}$ be the roots of T on \mathfrak{g} $\Phi^{+}=$positive roots (relative to B) $\Delta \subset \Phi^{+}$simple roots $\varpi_{1}, \ldots, \varpi_{\ell}$ fundamental highest weights (dual to simple coroots) The highest weights are $\lambda=n_{1} \varpi_{1}+\cdots+n_{\ell} \varpi_{\ell}, \quad n_{i} \in \mathbb{N}$ Define $\operatorname{Supp}(\lambda)=\left\{\varpi_{i}: n_{i} \neq 0\right\}$
Definition (G, H) is an excellent spherical pair if

- $\Gamma(X)$ is generated by highest weights $\mu_{1}, \ldots, \mu_{r} \quad(r=\operatorname{rank} X)$
- $\operatorname{Supp}\left(\mu_{i}\right) \cap \operatorname{Supp}\left(\mu_{j}\right)=\emptyset$ for $i \neq j$

Examples of Excellent Pairs

- $H=G^{\theta}$ (symmetric subgroup) - Cartan-Helgason theorem
- 10 of the 12 pairs on Krämer's list (case-by-case verification) Rank-one: $\left(\mathbf{S p i n}_{7}, \mathbf{G}_{2}\right),\left(\mathbf{G}_{2}, \mathbf{S L}_{3}\right)$
Rank $r>1:\left(\mathbf{S L}_{p+q}, \mathbf{S L}_{p} \times \mathbf{S L}_{q}\right)(p \neq q),\left(\mathbf{S L}_{2 n+1}, \mathbf{S p}_{2 n}\right)$,
$\left(\mathbf{S p i n}_{4 p+2}, \mathbf{S L}_{2 p}\right),\left(\mathbf{S p i n}_{2 \ell+1}, \mathbf{G L}_{\ell}\right),\left(\mathbf{S p i n}_{9}, \mathbf{S p i n}_{7}\right)$,
$\left(\mathbf{S p i n}_{8}, \mathbf{G}_{2}\right),\left(\mathbf{S p}_{2 \ell}, \mathbb{C}^{\times} \times \mathbf{S p}_{2 \ell-2}\right),\left(\mathbf{E}_{6}, \mathbf{S p i n}_{10}\right)$

Parabolic Subgroup for Excellent Spherical Pair

Assume G simple, simply connected, (G, H) excellent spherical pair

Parabolic Subgroup for Excellent Spherical Pair

Assume G simple, simply connected, (G, H) excellent spherical pair $P \supset B$ - parabolic subgroup for (G, H) (2 equivalent conditions):

- (geometry) $P=$ stabilizer of open B orbit in X

Parabolic Subgroup for Excellent Spherical Pair

Assume G simple, simply connected, (G, H) excellent spherical pair $P \supset B$ - parabolic subgroup for (G, H) (2 equivalent conditions):

- (geometry) $P=$ stabilizer of open B orbit in X
- (harmonic analysis) $P=$ stabilizer of E_{λ}^{U} for all $\lambda \in \Gamma(X)$

Parabolic Subgroup for Excellent Spherical Pair

Assume G simple, simply connected, (G, H) excellent spherical pair $P \supset B$ - parabolic subgroup for (G, H) (2 equivalent conditions):

- (geometry) $P=$ stabilizer of open B orbit in X
- (harmonic analysis) $P=$ stabilizer of E_{λ}^{U} for all $\lambda \in \Gamma(X)$

Structure of P :

- Lie $(P)=\mathfrak{m}+\mathfrak{a}+\mathfrak{n}, \quad \mathfrak{a}=$ Cartan subspace for X
- Levi subalgebra $\mathfrak{m}+\mathfrak{a}$, nilradical $\mathfrak{n} \subset \operatorname{Lie}(U)$

Parabolic Subgroup for Excellent Spherical Pair

Assume G simple, simply connected, (G, H) excellent spherical pair $P \supset B$ - parabolic subgroup for (G, H) (2 equivalent conditions):

- (geometry) $P=$ stabilizer of open B orbit in X
- (harmonic analysis) $P=$ stabilizer of E_{λ}^{U} for all $\lambda \in \Gamma(X)$

Structure of P :

- Lie $(P)=\mathfrak{m}+\mathfrak{a}+\mathfrak{n}, \quad \mathfrak{a}=$ Cartan subspace for X
- Levi subalgebra $\mathfrak{m}+\mathfrak{a}$, nilradical $\mathfrak{n} \subset \operatorname{Lie}(U)$
- $\mathfrak{a} \subset \operatorname{Lie}(T), \quad \operatorname{dim} \mathfrak{a}=r, \quad[\mathfrak{a}, \mathfrak{m}]=0$
- $\mathfrak{m} \cdot E_{\lambda}^{U}=0$ for all $\lambda \in \Gamma(X)$

Let $\Psi=$ roots of \mathfrak{m} (generated by simple roots $\perp \Gamma(X)$)

Parabolic Subgroup for Excellent Spherical Pair

Assume G simple, simply connected, (G, H) excellent spherical pair $P \supset B$ - parabolic subgroup for (G, H) (2 equivalent conditions):

- (geometry) $P=$ stabilizer of open B orbit in X
- (harmonic analysis) $P=$ stabilizer of E_{λ}^{U} for all $\lambda \in \Gamma(X)$

Structure of P :

- Lie $(P)=\mathfrak{m}+\mathfrak{a}+\mathfrak{n}, \quad \mathfrak{a}=$ Cartan subspace for X
- Levi subalgebra $\mathfrak{m}+\mathfrak{a}$, nilradical $\mathfrak{n} \subset \operatorname{Lie}(U)$
- $\mathfrak{a} \subset \operatorname{Lie}(T), \quad \operatorname{dim} \mathfrak{a}=r, \quad[\mathfrak{a}, \mathfrak{m}]=0$
- $\mathfrak{m} \cdot E_{\lambda}^{U}=0$ for all $\lambda \in \Gamma(X)$

Let $\Psi=$ roots of \mathfrak{m} (generated by simple roots $\perp \Gamma(X)$)

Parabolic Subgroup for Excellent Spherical Pair

Assume G simple, simply connected, (G, H) excellent spherical pair $P \supset B$ - parabolic subgroup for (G, H) (2 equivalent conditions):

- (geometry) $P=$ stabilizer of open B orbit in X
- (harmonic analysis) $P=$ stabilizer of E_{λ}^{U} for all $\lambda \in \Gamma(X)$

Structure of P :

- Lie $(P)=\mathfrak{m}+\mathfrak{a}+\mathfrak{n}, \quad \mathfrak{a}=$ Cartan subspace for X
- Levi subalgebra $\mathfrak{m}+\mathfrak{a}$, nilradical $\mathfrak{n} \subset \operatorname{Lie}(U)$
- $\mathfrak{a} \subset \operatorname{Lie}(T), \quad \operatorname{dim} \mathfrak{a}=r, \quad[\mathfrak{a}, \mathfrak{m}]=0$
- $\mathfrak{m} \cdot E_{\lambda}^{U}=0$ for all $\lambda \in \Gamma(X)$

Let $\psi=$ roots of \mathfrak{m} (generated by simple roots $\perp \Gamma(X)$)
Definition: $\xi \in \mathfrak{a}^{*}$ is a restricted root if $\xi=\left.\alpha\right|_{\mathfrak{a}} \neq 0\left(\alpha \in \Phi^{+}\right)$

Parabolic Subgroup for Excellent Spherical Pair

Assume G simple, simply connected, (G, H) excellent spherical pair $P \supset B$ - parabolic subgroup for (G, H) (2 equivalent conditions):

- (geometry) $P=$ stabilizer of open B orbit in X
- (harmonic analysis) $P=$ stabilizer of E_{λ}^{U} for all $\lambda \in \Gamma(X)$

Structure of P :

- Lie $(P)=\mathfrak{m}+\mathfrak{a}+\mathfrak{n}, \quad \mathfrak{a}=$ Cartan subspace for X
- Levi subalgebra $\mathfrak{m}+\mathfrak{a}$, nilradical $\mathfrak{n} \subset \operatorname{Lie}(U)$
- $\mathfrak{a} \subset \operatorname{Lie}(T), \quad \operatorname{dim} \mathfrak{a}=r, \quad[\mathfrak{a}, \mathfrak{m}]=0$
- $\mathfrak{m} \cdot E_{\lambda}^{U}=0$ for all $\lambda \in \Gamma(X)$

Let $\psi=$ roots of \mathfrak{m} (generated by simple roots $\perp \Gamma(X)$)
Definition: $\xi \in \mathfrak{a}^{*}$ is a restricted root if $\xi=\left.\alpha\right|_{\mathfrak{a}} \neq 0\left(\alpha \in \Phi^{+}\right)$
root nest $\quad \Phi^{+}(\xi)=\left\{\alpha \in \Phi^{+} \backslash \Psi:\left.\alpha\right|_{\mathfrak{a}}=\xi\right\}$

Parabolic Subgroup for Excellent Spherical Pair

Assume G simple, simply connected, (G, H) excellent spherical pair $P \supset B$ - parabolic subgroup for (G, H) (2 equivalent conditions):

- (geometry) $P=$ stabilizer of open B orbit in X
- (harmonic analysis) $P=$ stabilizer of E_{λ}^{U} for all $\lambda \in \Gamma(X)$

Structure of P :

- Lie $(P)=\mathfrak{m}+\mathfrak{a}+\mathfrak{n}, \quad \mathfrak{a}=$ Cartan subspace for X
- Levi subalgebra $\mathfrak{m}+\mathfrak{a}$, nilradical $\mathfrak{n} \subset \operatorname{Lie}(U)$
- $\mathfrak{a} \subset \operatorname{Lie}(T), \quad \operatorname{dim} \mathfrak{a}=r, \quad[\mathfrak{a}, \mathfrak{m}]=0$
- $\mathfrak{m} \cdot E_{\lambda}^{U}=0$ for all $\lambda \in \Gamma(X)$

Let $\psi=$ roots of \mathfrak{m} (generated by simple roots $\perp \Gamma(X)$)
Definition: $\xi \in \mathfrak{a}^{*}$ is a restricted root if $\xi=\left.\alpha\right|_{\mathfrak{a}} \neq 0\left(\alpha \in \Phi^{+}\right)$
root nest $\quad \Phi^{+}(\xi)=\left\{\alpha \in \Phi^{+} \backslash \Psi:\left.\alpha\right|_{\mathfrak{a}}=\xi\right\}$
Let $\Sigma^{+}=$all positive restricted roots $\xi, \quad \mathfrak{n}_{\xi}=\bigoplus_{\alpha \in \Phi^{+}(\xi)} \mathfrak{g}_{\alpha}$ Then $\quad \mathfrak{n}=\bigoplus_{\xi \in \Sigma^{+}} \mathfrak{n}_{\xi} \quad \operatorname{dim} \mathfrak{n}_{\xi}=m_{\xi}=$ multiplicity of ξ

Harmonic Analysis on X

For $\lambda \in \Gamma(X)$:
$d(\lambda)=\operatorname{dim} E_{\lambda} \quad$ (Weyl dimension formula) $\lambda^{*}=$ highest weight of dual representation $\left(E_{\lambda}\right)^{*} \quad\left(\lambda^{*} \in \Gamma(X)\right)$ $\mathbf{e}_{\lambda}=U$-fixed vector in $E_{\lambda}, \quad \mathbf{e}_{\lambda}^{H}=H$-fixed vector in E_{λ}

Harmonic Analysis on X

For $\lambda \in \Gamma(X)$:
$d(\lambda)=\operatorname{dim} E_{\lambda} \quad$ (Weyl dimension formula)
$\lambda^{*}=$ highest weight of dual representation $\left(E_{\lambda}\right)^{*} \quad\left(\lambda^{*} \in \Gamma(X)\right)$
$\mathbf{e}_{\lambda}=U$-fixed vector in $E_{\lambda}, \quad \mathbf{e}_{\lambda}^{H}=H$-fixed vector in E_{λ}
Problems:
(1) Determine restricted roots Σ and root nests (when X nonsymmetric then Σ is not a root system)

Harmonic Analysis on X

For $\lambda \in \Gamma(X)$:
$d(\lambda)=\operatorname{dim} E_{\lambda} \quad$ (Weyl dimension formula)
$\lambda^{*}=$ highest weight of dual representation $\left(E_{\lambda}\right)^{*} \quad\left(\lambda^{*} \in \Gamma(X)\right)$
$\mathbf{e}_{\lambda}=U$-fixed vector in $E_{\lambda}, \quad \mathbf{e}_{\lambda}^{H}=H$-fixed vector in E_{λ}
Problems:
(1) Determine restricted roots Σ and root nests (when X nonsymmetric then Σ is not a root system)
(2) Express $d(\lambda)$ in terms of λ and restricted root data (gives explicit Plancherel formula for compact real form of X)

Harmonic Analysis on X

For $\lambda \in \Gamma(X)$:
$d(\lambda)=\operatorname{dim} E_{\lambda} \quad$ (Weyl dimension formula)
$\lambda^{*}=$ highest weight of dual representation $\left(E_{\lambda}\right)^{*} \quad\left(\lambda^{*} \in \Gamma(X)\right)$
$\mathbf{e}_{\lambda}=U$-fixed vector in $E_{\lambda}, \quad \mathbf{e}_{\lambda}^{H}=H$-fixed vector in E_{λ}
Problems:
(1) Determine restricted roots Σ and root nests (when X nonsymmetric then Σ is not a root system)
(2) Express $d(\lambda)$ in terms of λ and restricted root data (gives explicit Plancherel formula for compact real form of X)
(3) Calculate spherical function $\quad \varphi_{\lambda}(g H)=\left\langle\mathbf{e}_{\lambda}^{H}, g \cdot \mathbf{e}_{\lambda^{*}}^{H}\right\rangle$ (H-invariant function on X for spherical Fourier transform)

Harmonic Analysis on X

For $\lambda \in \Gamma(X)$:
$d(\lambda)=\operatorname{dim} E_{\lambda} \quad$ (Weyl dimension formula)
$\lambda^{*}=$ highest weight of dual representation $\left(E_{\lambda}\right)^{*} \quad\left(\lambda^{*} \in \Gamma(X)\right)$
$\mathbf{e}_{\lambda}=U$-fixed vector in $E_{\lambda}, \quad \mathbf{e}_{\lambda}^{H}=H$-fixed vector in E_{λ}
Problems:
(1) Determine restricted roots Σ and root nests (when X nonsymmetric then Σ is not a root system)
(2) Express $d(\lambda)$ in terms of λ and restricted root data (gives explicit Plancherel formula for compact real form of X)
(3) Calculate spherical function $\quad \varphi_{\lambda}(g H)=\left\langle\mathbf{e}_{\lambda}^{H}, g \cdot \mathbf{e}_{\lambda^{*}}^{H}\right\rangle$ (H-invariant function on X for spherical Fourier transform)
(4) Calculate horospherical function $f_{\lambda}(g H)=\left\langle\mathbf{e}_{\lambda}, g \cdot \mathbf{e}_{\lambda^{*}}^{H}\right\rangle$ ($M N$-invariant function on X for horospherical Cauchy-Radon transform)

Dimension Formula and Shifts

Solution to problems 1, 2:
Take product over each restricted root nest so Weyl's formula is
$d(\lambda)=\prod_{\xi \in \Sigma^{+}} d_{\xi}(\lambda) \quad$ where $d_{\xi}(\lambda)=\prod_{\alpha \in \Phi^{+}(\xi)} \frac{\left\langle\lambda+\rho_{\mathfrak{g}} \mid \alpha\right\rangle}{\left\langle\rho_{\mathfrak{g}} \mid \alpha\right\rangle}$
Here $\langle\cdot \mid \cdot\rangle=$ normalized Killing form with shift $2 \rho_{\mathfrak{g}}=\sum_{\alpha \in \Phi^{+}} \alpha$

Dimension Formula and Shifts

Solution to problems 1, 2 :
Take product over each restricted root nest so Weyl's formula is
$d(\lambda)=\prod_{\xi \in \Sigma^{+}} d_{\xi}(\lambda) \quad$ where $\quad d_{\xi}(\lambda)=\prod_{\alpha \in \Phi^{+}(\xi)} \frac{\left\langle\lambda+\rho_{\mathfrak{g}} \mid \alpha\right\rangle}{\left\langle\rho_{\mathfrak{g}} \mid \alpha\right\rangle}$
Here $\langle\cdot \mid \cdot\rangle=$ normalized Killing form with shift $2 \rho_{\mathfrak{g}}=\sum_{\alpha \in \Phi^{+}} \alpha$
New Problem: Express $d_{\xi}(\lambda)$ in terms of restricted root nest data

Dimension Formula and Shifts

Solution to problems 1, 2:
Take product over each restricted root nest so Weyl's formula is
$d(\lambda)=\prod_{\xi \in \Sigma^{+}} d_{\xi}(\lambda) \quad$ where $\quad d_{\xi}(\lambda)=\prod_{\alpha \in \Phi^{+}(\xi)} \frac{\left\langle\lambda+\rho_{\mathfrak{g}} \mid \alpha\right\rangle}{\left\langle\rho_{\mathfrak{g}} \mid \alpha\right\rangle}$
Here $\langle\cdot \mid \cdot\rangle=$ normalized Killing form with shift $2 \rho_{\mathfrak{g}}=\sum_{\alpha \in \Phi^{+}} \alpha$
New Problem: Express $d_{\xi}(\lambda)$ in terms of restricted root nest data Identify $\mathfrak{t}=\mathfrak{t}^{*}, \quad \mathfrak{a}=\mathfrak{a}^{*} \subset \mathfrak{t}, \quad \Psi^{+}=$positive roots of \mathfrak{m}^{\prime} shift vectors for \mathfrak{m} and \mathfrak{n} :

$$
2 \rho_{\mathfrak{m}}=\sum_{\alpha \in \Psi^{+}} \alpha, \quad 2 \delta=\sum_{\xi \in \Sigma^{+}} m_{\xi} \xi
$$

Dimension Formula and Shifts

Solution to problems 1, 2 :
Take product over each restricted root nest so Weyl's formula is
$d(\lambda)=\prod_{\xi \in \Sigma^{+}} d_{\xi}(\lambda) \quad$ where $d_{\xi}(\lambda)=\prod_{\alpha \in \Phi^{+}(\xi)} \frac{\left\langle\lambda+\rho_{\mathfrak{g}} \mid \alpha\right\rangle}{\left\langle\rho_{\mathfrak{g}} \mid \alpha\right\rangle}$
Here $\langle\cdot \mid \cdot\rangle=$ normalized Killing form with shift $2 \rho_{\mathfrak{g}}=\sum_{\alpha \in \Phi^{+}} \alpha$
New Problem: Express $d_{\xi}(\lambda)$ in terms of restricted root nest data Identify $\mathfrak{t}=\mathfrak{t}^{*}, \quad \mathfrak{a}=\mathfrak{a}^{*} \subset \mathfrak{t}, \quad \Psi^{+}=$positive roots of \mathfrak{m}^{\prime} shift vectors for \mathfrak{m} and $\mathfrak{n}: \quad 2 \rho_{\mathfrak{m}}=\sum_{\alpha \in \Psi^{+}} \alpha, \quad 2 \delta=\sum_{\xi \in \Sigma^{+}} m_{\xi} \xi$
(i) If $\alpha \in \Phi^{+}(\xi)$ then $\langle\lambda \mid \alpha\rangle=\langle\lambda \mid \xi\rangle,\langle\delta \mid \alpha\rangle=\langle\delta \mid \xi\rangle$

Dimension Formula and Shifts

Solution to problems 1, 2:
Take product over each restricted root nest so Weyl's formula is
$d(\lambda)=\prod_{\xi \in \Sigma^{+}} d_{\xi}(\lambda) \quad$ where $d_{\xi}(\lambda)=\prod_{\alpha \in \Phi^{+}(\xi)} \frac{\left\langle\lambda+\rho_{\mathfrak{g}} \mid \alpha\right\rangle}{\left\langle\rho_{\mathfrak{g}} \mid \alpha\right\rangle}$
Here $\langle\cdot \mid \cdot\rangle=$ normalized Killing form with shift $2 \rho_{\mathfrak{g}}=\sum_{\alpha \in \Phi^{+}} \alpha$
New Problem: Express $d_{\xi}(\lambda)$ in terms of restricted root nest data Identify $\mathfrak{t}=\mathfrak{t}^{*}, \quad \mathfrak{a}=\mathfrak{a}^{*} \subset \mathfrak{t}, \quad \Psi^{+}=$positive roots of \mathfrak{m}^{\prime} shift vectors for \mathfrak{m} and $\mathfrak{n}: \quad 2 \rho_{\mathfrak{m}}=\sum_{\alpha \in \Psi^{+}} \alpha, \quad 2 \delta=\sum_{\xi \in \Sigma^{+}} m_{\xi} \xi$
(i) If $\alpha \in \Phi^{+}(\xi)$ then $\langle\lambda \mid \alpha\rangle=\langle\lambda \mid \xi\rangle,\langle\delta \mid \alpha\rangle=\langle\delta \mid \xi\rangle \quad$ (easy)
(ii) $\rho_{\mathfrak{g}}=\rho_{\mathfrak{m}}+\delta \quad$ (use classification and diagram symmetries)

Dimension Formula and Shifts

Solution to problems 1, 2:
Take product over each restricted root nest so Weyl's formula is
$d(\lambda)=\prod_{\xi \in \Sigma^{+}} d_{\xi}(\lambda) \quad$ where $d_{\xi}(\lambda)=\prod_{\alpha \in \Phi^{+}(\xi)} \frac{\left\langle\lambda+\rho_{\mathfrak{g}} \mid \alpha\right\rangle}{\left\langle\rho_{\mathfrak{g}} \mid \alpha\right\rangle}$
Here $\langle\cdot \mid \cdot\rangle=$ normalized Killing form with shift $2 \rho_{\mathfrak{g}}=\sum_{\alpha \in \Phi^{+}} \alpha$
New Problem: Express $d_{\xi}(\lambda)$ in terms of restricted root nest data Identify $\mathfrak{t}=\mathfrak{t}^{*}, \quad \mathfrak{a}=\mathfrak{a}^{*} \subset \mathfrak{t}, \quad \Psi^{+}=$positive roots of \mathfrak{m}^{\prime} shift vectors for \mathfrak{m} and $\mathfrak{n}: \quad 2 \rho_{\mathfrak{m}}=\sum_{\alpha \in \Psi^{+}} \alpha, \quad 2 \delta=\sum_{\xi \in \Sigma^{+}} m_{\xi} \xi$
(i) If $\alpha \in \Phi^{+}(\xi)$ then $\langle\lambda \mid \alpha\rangle=\langle\lambda \mid \xi\rangle,\langle\delta \mid \alpha\rangle=\langle\delta \mid \xi\rangle \quad$ (easy)
(ii) $\rho_{\mathfrak{g}}=\rho_{\mathfrak{m}}+\delta \quad$ (use classification and diagram symmetries)

Result: $(i) \&(i i) \Longrightarrow d_{\xi}(\lambda)=\prod_{\alpha \in \Phi^{+}(\xi)} \frac{\langle\lambda+\delta \mid \xi\rangle+\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle}{\langle\delta \mid \xi\rangle+\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle}$

Weyl Dimension Functions

Combine (\star) and root nest information to obtain explicit dimension formula:
Take char. poly. for $\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & -1 / 2\end{array}\right]$ in $(2 t+1)$-dim. rep. of $\mathfrak{s l}_{2}$:
$\varphi(x ; t)=(x-t)(x-t+1) \cdots(x+t-1)(x+t) \quad\left(t \in \frac{1}{2} \mathbb{N}\right)$

Weyl Dimension Functions

Combine (\star) and root nest information to obtain explicit dimension formula:
Take char. poly. for $\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & -1 / 2\end{array}\right]$ in $(2 t+1)$-dim. rep. of $\mathfrak{s l}_{2}$:
$\varphi(x ; t)=(x-t)(x-t+1) \cdots(x+t-1)(x+t) \quad\left(t \in \frac{1}{2} \mathbb{N}\right)$
Normalize with shift: $\Phi(x, y ; t)=\varphi(x+y ; t) / \varphi(y ; t)$
For $t=0$ write $\Phi(x, y)=\Phi(x, y ; 0)=(x+y) / y$

Weyl Dimension Functions

Combine ($*$) and root nest information to obtain explicit dimension formula:
Take char. poly. for $\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & -1 / 2\end{array}\right]$ in $(2 t+1)$-dim. rep. of $\mathfrak{s l}_{2}$:
$\varphi(x ; t)=(x-t)(x-t+1) \cdots(x+t-1)(x+t) \quad\left(t \in \frac{1}{2} \mathbb{N}\right)$
Normalize with shift: $\Phi(x, y ; t)=\varphi(x+y ; t) / \varphi(y ; t)$
For $t=0$ write $\Phi(x, y)=\Phi(x, y ; 0)=(x+y) / y$
Let $\Sigma_{0}^{+}=$indivisible pos. restricted roots ($c \xi \notin \Sigma_{0}^{+}$for $0<c<1$)

Weyl Dimension Functions

Combine $(*)$ and root nest information to obtain explicit dimension formula:
Take char. poly. for $\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & -1 / 2\end{array}\right]$ in $(2 t+1)$-dim. rep. of $\mathfrak{s l}_{2}$:
$\varphi(x ; t)=(x-t)(x-t+1) \cdots(x+t-1)(x+t) \quad\left(t \in \frac{1}{2} \mathbb{N}\right)$
Normalize with shift: $\Phi(x, y ; t)=\varphi(x+y ; t) / \varphi(y ; t)$
For $t=0$ write $\Phi(x, y)=\Phi(x, y ; 0)=(x+y) / y$
Let $\Sigma_{0}^{+}=$indivisible pos. restricted roots $\left(c \xi \notin \Sigma_{0}^{+}\right.$for $\left.0<c<1\right)$ For $\xi \in \Sigma_{0}^{+}$we use $\Phi(x, y, t)$ to define Weyl dimension function

$$
W\left(x, y ; m_{\xi}, m_{2 \xi}, m_{3 \xi}\right)
$$

(restricted root multiplicities as parameters)

Weyl Dimension Functions

Combine $(*)$ and root nest information to obtain explicit dimension formula:
Take char. poly. for $\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & -1 / 2\end{array}\right]$ in $(2 t+1)$-dim. rep. of $\mathfrak{s l}_{2}$:
$\varphi(x ; t)=(x-t)(x-t+1) \cdots(x+t-1)(x+t) \quad\left(t \in \frac{1}{2} \mathbb{N}\right)$
Normalize with shift: $\Phi(x, y ; t)=\varphi(x+y ; t) / \varphi(y ; t)$

$$
\text { For } t=0 \text { write } \Phi(x, y)=\Phi(x, y ; 0)=(x+y) / y
$$

Let $\Sigma_{0}^{+}=$indivisible pos. restricted roots $\left(c \xi \notin \Sigma_{0}^{+}\right.$for $\left.0<c<1\right)$ For $\xi \in \Sigma_{0}^{+}$we use $\Phi(x, y, t)$ to define Weyl dimension function

$$
W\left(x, y ; m_{\xi}, m_{2 \xi}, m_{3 \xi}\right)
$$

(restricted root multiplicities as parameters)
Special Cases:

$$
\begin{aligned}
& W\left(x, y ; m_{\xi}\right)=W\left(x, y ; m_{\xi}, 0,0\right) \\
& W\left(x, y ; m_{\xi}, m_{2 \xi}\right)=W\left(x, y ; m_{\xi}, m_{2 \xi}, 0\right)
\end{aligned}
$$

Formulas for Weyl Dimension Functions

Let $m=m_{\xi}$ (ξ indivisible positive restricted root)

- Define $W(x, y, m)$ when $m_{2 \xi}=0$ using $\Phi(x, y ; t)$

Formulas for Weyl Dimension Functions

Let $m=m_{\xi}$ (ξ indivisible positive restricted root)

- Define $W(x, y, m)$ when $m_{2 \xi}=0$ using $\Phi(x, y ; t)$
- When $m_{2 \xi} \neq 0$ and X symmetric space, then $m \geq 2$ is even and $m_{2 \xi}=1,3$, or $7\left(X=F_{4} / \mathbf{S p i n}_{9}\right)$. Use $\Phi(x, y ; t)$ to define $W(x, y ; m, 1), W(x, y ; m, 3), W(x, y ; 8,7)$

Formulas for Weyl Dimension Functions

Let $m=m_{\xi}$ (ξ indivisible positive restricted root)

- Define $W(x, y, m)$ when $m_{2 \xi}=0$ using $\Phi(x, y ; t)$
- When $m_{2 \xi} \neq 0$ and X symmetric space, then $m \geq 2$ is even and $m_{2 \xi}=1,3$, or $7\left(X=F_{4} / \mathbf{S p i n}_{9}\right)$. Use $\Phi(x, y ; t)$ to define $W(x, y ; m, 1), W(x, y ; m, 3), W(x, y ; 8,7)$
- When X is non-symmetric, rank one and $m_{2 \xi} \neq 0$ have $\left(m_{\xi}, m_{2 \xi}, m_{3 \xi}\right)=(3,3,0)$ or $(2,1,2)$. Use $\Phi(x, y ; t)$ to define $W(x, y ; 3,3)$ and $W(x, y ; 2,1,2)$

Symmetric Spaces and Rank One Spaces

Theorem
(1) Assume that X is a symmetric space. Then

$$
d(\lambda)=\prod_{\xi \in \Sigma_{0}^{+}} W\left(\langle\lambda \mid \xi\rangle,\langle\delta \mid \xi\rangle ; m_{\xi}, m_{2 \xi}\right)
$$

Symmetric Spaces and Rank One Spaces

Theorem
(1) Assume that X is a symmetric space. Then

$$
d(\lambda)=\prod_{\xi \in \Sigma_{0}^{+}} W\left(\langle\lambda \mid \xi\rangle,\langle\delta \mid \xi\rangle ; m_{\xi}, m_{2 \xi}\right)
$$

(2) Assume rank $X=1$ ($\Sigma_{0}^{+}=\{\xi\}$), not symmetric (2 examples). Then

$$
d(\lambda)=W\left(\langle\lambda \mid \xi\rangle,\langle\delta \mid \xi\rangle ; m_{\xi}, m_{2 \xi}, m_{3 \xi}\right)
$$

Symmetric Spaces and Rank One Spaces

Theorem
(1) Assume that X is a symmetric space. Then

$$
d(\lambda)=\prod_{\xi \in \Sigma_{0}^{+}} W\left(\langle\lambda \mid \xi\rangle,\langle\delta \mid \xi\rangle ; m_{\xi}, m_{2 \xi}\right)
$$

(2) Assume rank $X=1$ ($\Sigma_{0}^{+}=\{\xi\}$), not symmetric (2 examples). Then

$$
d(\lambda)=W\left(\langle\lambda \mid \xi\rangle,\langle\delta \mid \xi\rangle ; m_{\xi}, m_{2 \xi}, m_{3 \xi}\right)
$$

Remarks

- Dimension determined by root multiplicities and $\langle\lambda \mid \xi\rangle,\langle\delta \mid \xi\rangle$

Symmetric Spaces and Rank One Spaces

Theorem
(1) Assume that X is a symmetric space. Then

$$
d(\lambda)=\prod_{\xi \in \Sigma_{0}^{+}} W\left(\langle\lambda \mid \xi\rangle,\langle\delta \mid \xi\rangle ; m_{\xi}, m_{2 \xi}\right)
$$

(2) Assume rank $X=1$ ($\Sigma_{0}^{+}=\{\xi\}$), not symmetric (2 examples).

Then

$$
d(\lambda)=W\left(\langle\lambda \mid \xi\rangle,\langle\delta \mid \xi\rangle ; m_{\xi}, m_{2 \xi}, m_{3 \xi}\right)
$$

Remarks

- Dimension determined by root multiplicities and $\langle\lambda \mid \xi\rangle,\langle\delta \mid \xi\rangle$
- Formulas use specific normalized Killing form

Symmetric Spaces and Rank One Spaces

Theorem

(1) Assume that X is a symmetric space. Then

$$
d(\lambda)=\prod_{\xi \in \Sigma_{0}^{+}} W\left(\langle\lambda \mid \xi\rangle,\langle\delta \mid \xi\rangle ; m_{\xi}, m_{2 \xi}\right)
$$

(2) Assume rank $X=1$ ($\Sigma_{0}^{+}=\{\xi\}$), not symmetric (2 examples).

Then

$$
d(\lambda)=W\left(\langle\lambda \mid \xi\rangle,\langle\delta \mid \xi\rangle ; m_{\xi}, m_{2 \xi}, m_{3 \xi}\right)
$$

Remarks

- Dimension determined by root multiplicities and $\langle\lambda \mid \xi\rangle,\langle\delta \mid \xi\rangle$
- Formulas use specific normalized Killing form
- If $m_{\xi}=1$ for all $\xi \in \Sigma_{0}^{+}$, then $m_{2 \xi}=0$ and get Weyl formula

Higher-rank Non-symmetric Spaces

X nonsymmetric, rank >1 (8 cases) In dimension formula have

- singular Weyl dimension functions (don't occur in rank one): $W_{\text {sing }}(x, y ; m), \quad W_{\text {sing }}(x, y ; m, 1)$ (with m even)

Higher-rank Non-symmetric Spaces

X nonsymmetric, rank >1 (8 cases) In dimension formula have

- singular Weyl dimension functions (don't occur in rank one): $W_{\text {sing }}(x, y ; m), \quad W_{\text {sing }}(x, y ; m, 1)$ (with m even)
- two types of positive restricted roots: regular and singular

$$
\Sigma_{0}^{+}=\Sigma_{\mathrm{reg}}^{+} \cup \Sigma_{\mathrm{sing}}^{+}
$$

Higher-rank Non-symmetric Spaces

X nonsymmetric, rank >1 (8 cases) In dimension formula have

- singular Weyl dimension functions (don't occur in rank one):

$$
W_{\operatorname{sing}}(x, y ; m), \quad W_{\text {sing }}(x, y ; m, 1)(\text { with } m \text { even })
$$

- two types of positive restricted roots: regular and singular

Theorem

$$
\Sigma_{0}^{+}=\Sigma_{\text {reg }}^{+} \cup \Sigma_{\text {sing }}^{+}
$$

Assume G is simple, simply connected, and (G, H) is an excellent spherical pair with H connected, not symmetric. Then

$$
\begin{aligned}
d(\lambda)= & \prod_{\xi \in \Sigma_{\text {reg }}^{+}} W\left(\langle\lambda \mid \xi\rangle,\langle\delta \mid \xi\rangle ; m_{\xi}, m_{2 \xi}, m_{3 \xi}\right) \\
& \times \prod_{\xi \in \Sigma_{\text {sing }}^{+}} W_{\text {sing }}\left(\langle\lambda \mid \xi\rangle,\langle\delta \mid \xi\rangle ; m_{\xi}, m_{2 \xi}\right) .
\end{aligned}
$$

Higher-rank Non-symmetric Spaces

X nonsymmetric, rank >1 (8 cases) In dimension formula have

- singular Weyl dimension functions (don't occur in rank one):

$$
W_{\operatorname{sing}}(x, y ; m), \quad W_{\text {sing }}(x, y ; m, 1)(\text { with } m \text { even })
$$

- two types of positive restricted roots: regular and singular

Theorem

$$
\Sigma_{0}^{+}=\Sigma_{\text {reg }}^{+} \cup \Sigma_{\text {sing }}^{+}
$$

Assume G is simple, simply connected, and (G, H) is an excellent spherical pair with H connected, not symmetric. Then

$$
\begin{aligned}
d(\lambda)= & \prod_{\xi \in \Sigma_{\text {reg }}^{+}} W\left(\langle\lambda \mid \xi\rangle,\langle\delta \mid \xi\rangle ; m_{\xi}, m_{2 \xi}, m_{3 \xi}\right) \\
& \times \prod_{\xi \in \Sigma_{\text {sing }}^{+}} W_{\text {sing }}\left(\langle\lambda \mid \xi\rangle,\langle\delta \mid \xi\rangle ; m_{\xi}, m_{2 \xi}\right) .
\end{aligned}
$$

Remark: Regular and singular roots can have same multiplicities

Calculating Dimension Factors

Proof of Theorems: Calculate shifts $\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle$ in dimension factors

$$
d_{\xi}(\lambda)=\prod_{\alpha \in \Phi^{+}(\xi)} \frac{\langle\lambda \mid \xi\rangle+\langle\delta \mid \xi\rangle+\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle}{\langle\delta \mid \xi\rangle+\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle}
$$

Calculating Dimension Factors

Proof of Theorems: Calculate shifts $\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle$ in dimension factors

$$
d_{\xi}(\lambda)=\prod_{\alpha \in \Phi^{+}(\xi)} \frac{\langle\lambda \mid \xi\rangle+\langle\delta \mid \xi\rangle+\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle}{\langle\delta \mid \xi\rangle+\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle}
$$

Difficulties:

- No rank-one reduction (even in symmetric case)
- Want $d_{\xi}(\lambda)$ in terms of $\langle\lambda \mid \xi\rangle,\langle\delta \mid \xi\rangle$, and root multiplicities

Calculating Dimension Factors

Proof of Theorems: Calculate shifts $\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle$ in dimension factors

$$
d_{\xi}(\lambda)=\prod_{\alpha \in \Phi^{+}(\xi)} \frac{\langle\lambda \mid \xi\rangle+\langle\delta \mid \xi\rangle+\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle}{\langle\delta \mid \xi\rangle+\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle}
$$

Difficulties:

- No rank-one reduction (even in symmetric case)
- Want $d_{\xi}(\lambda)$ in terms of $\langle\lambda \mid \xi\rangle,\langle\delta \mid \xi\rangle$, and root multiplicities Method: Use principal TDS $\mathfrak{s} \subset \mathfrak{m}^{\prime}$ with diagonal element $h_{\mathfrak{m}}^{0}$

Calculating Dimension Factors

Proof of Theorems: Calculate shifts $\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle$ in dimension factors

$$
d_{\xi}(\lambda)=\prod_{\alpha \in \Phi^{+}(\xi)} \frac{\langle\lambda \mid \xi\rangle+\langle\delta \mid \xi\rangle+\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle}{\langle\delta \mid \xi\rangle+\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle}
$$

Difficulties:

- No rank-one reduction (even in symmetric case)
- Want $d_{\xi}(\lambda)$ in terms of $\langle\lambda \mid \xi\rangle,\langle\delta \mid \xi\rangle$, and root multiplicities Method: Use principal TDS $\mathfrak{s} \subset \mathfrak{m}^{\prime}$ with diagonal element $h_{\mathfrak{m}}^{0}$
- \mathfrak{n}_{ξ} is an \mathfrak{s} module

Calculating Dimension Factors

Proof of Theorems: Calculate shifts $\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle$ in dimension factors

$$
d_{\xi}(\lambda)=\prod_{\alpha \in \Phi^{+}(\xi)} \frac{\langle\lambda \mid \xi\rangle+\langle\delta \mid \xi\rangle+\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle}{\langle\delta \mid \xi\rangle+\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle}
$$

Difficulties:

- No rank-one reduction (even in symmetric case)
- Want $d_{\xi}(\lambda)$ in terms of $\langle\lambda \mid \xi\rangle,\langle\delta \mid \xi\rangle$, and root multiplicities Method: Use principal TDS $\mathfrak{s} \subset \mathfrak{m}^{\prime}$ with diagonal element $h_{\mathfrak{m}}^{0}$
- \mathfrak{n}_{ξ} is an \mathfrak{s} module
- Lowest weight spaces in \mathfrak{n}_{ξ} for $\operatorname{ad}\left(h_{\mathfrak{m}}^{0}\right) \stackrel{\text { def }}{\longleftrightarrow}$ basic roots in root nest for ξ

Calculating Dimension Factors

Proof of Theorems: Calculate shifts $\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle$ in dimension factors

$$
d_{\xi}(\lambda)=\prod_{\alpha \in \Phi^{+}(\xi)} \frac{\langle\lambda \mid \xi\rangle+\langle\delta \mid \xi\rangle+\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle}{\langle\delta \mid \xi\rangle+\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle}
$$

Difficulties:

- No rank-one reduction (even in symmetric case)
- Want $d_{\xi}(\lambda)$ in terms of $\langle\lambda \mid \xi\rangle,\langle\delta \mid \xi\rangle$, and root multiplicities Method: Use principal TDS $\mathfrak{s} \subset \mathfrak{m}^{\prime}$ with diagonal element $h_{\mathfrak{m}}^{0}$
- \mathfrak{n}_{ξ} is an \mathfrak{s} module
- Lowest weight spaces in \mathfrak{n}_{ξ} for $\operatorname{ad}\left(h_{\mathfrak{m}}^{0}\right) \stackrel{\text { def }}{\longleftrightarrow}$ basic roots in root nest for ξ
- If \mathfrak{m} is simply-laced, then $h_{\mathfrak{m}}^{0}=2 \rho_{\mathfrak{m}}$ and shifts $\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle \longleftrightarrow$ eigenvalues of $\frac{1}{2} \operatorname{ad}\left(h_{\mathfrak{m}}^{0}\right)$ on \mathfrak{n}_{ξ} (determined by basic roots)

Calculating Dimension Factors

Proof of Theorems: Calculate shifts $\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle$ in dimension factors

$$
d_{\xi}(\lambda)=\prod_{\alpha \in \Phi^{+}(\xi)} \frac{\langle\lambda \mid \xi\rangle+\langle\delta \mid \xi\rangle+\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle}{\langle\delta \mid \xi\rangle+\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle}
$$

Difficulties:

- No rank-one reduction (even in symmetric case)
- Want $d_{\xi}(\lambda)$ in terms of $\langle\lambda \mid \xi\rangle,\langle\delta \mid \xi\rangle$, and root multiplicities Method: Use principal TDS $\mathfrak{s} \subset \mathfrak{m}^{\prime}$ with diagonal element $h_{\mathfrak{m}}^{0}$
- \mathfrak{n}_{ξ} is an \mathfrak{s} module
- Lowest weight spaces in \mathfrak{n}_{ξ} for $\operatorname{ad}\left(h_{\mathfrak{m}}^{0}\right) \stackrel{\text { def }}{\longleftrightarrow}$ basic roots in root nest for ξ
- If \mathfrak{m} is simply-laced, then $h_{\mathfrak{m}}^{0}=2 \rho_{\mathfrak{m}}$ and shifts $\left\langle\rho_{\mathfrak{m}} \mid \alpha\right\rangle \longleftrightarrow$ eigenvalues of $\frac{1}{2} \operatorname{ad}\left(h_{\mathfrak{m}}^{0}\right)$ on \mathfrak{n}_{ξ} (determined by basic roots)
- If \mathfrak{m} not simply-laced, then $h_{\mathfrak{m}}^{0}=2 \rho_{\mathfrak{m}} \vee\left(\mathfrak{m}^{\vee}=\right.$ dual algebra $)$, so have additional shift $\left\langle\rho_{\mathfrak{m}}-\rho_{\mathfrak{m}} \vee \mid \alpha\right\rangle$

Example: $\mathrm{Spin}_{8} / G_{2}$

rank $=3,\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}=$ highest weights for the 8 -dim. reps. $\mathfrak{m}=\mathfrak{s l}_{2}, \quad\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}=$ orthonormal basis for \mathfrak{a}

Example: $\mathrm{Spin}_{8} / G_{2}$

rank $=3,\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}=$ highest weights for the 8 -dim. reps. $\mathfrak{m}=\mathfrak{s l}_{2}, \quad\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}=$ orthonormal basis for \mathfrak{a}
Root Data:

r / s	restricted root ξ	mult.	$\langle\delta \mid \xi\rangle$	\# basic roots β	$\left\langle h_{\mathfrak{m}}^{0} \mid \beta\right\rangle$
(s)	$\overline{\alpha_{1}}=\xi_{1}-\xi_{2}$ $\overline{\alpha_{3}}=\xi_{2}-\xi_{3}$ $\overline{\alpha_{4}}=\xi_{2}+\xi_{3}$	2	$3 / 2$	1	-1
(r)	$\xi_{1}-\xi_{3}$ $\xi_{1}+\xi_{3}$ $2 \xi_{2}$	1	3	1	0
$(\mathrm{~s})$	$\xi_{1}+\xi_{2}$	2	$9 / 2$	1	-1

Example: $\mathrm{Spin}_{8} / G_{2}$

rank $=3,\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}=$ highest weights for the 8 -dim. reps. $\mathfrak{m}=\mathfrak{s l}_{2}, \quad\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}=$ orthonormal basis for \mathfrak{a}
Root Data:

r/s	restricted root ξ	mult.	$\langle\delta \mid \xi\rangle$	\# basic roots β	$\left\langle h_{\mathfrak{m}}^{0} \mid \beta\right\rangle$
(s)	$\begin{aligned} & \overline{\alpha_{1}}=\xi_{1}-\xi_{2} \\ & \overline{\alpha_{3}}=\xi_{2}-\xi_{3} \\ & \overline{\alpha_{4}}=\xi_{2}+\xi_{3} \end{aligned}$	2	3/2	1	-1
(r)	$\begin{aligned} & \xi_{1}-\xi_{3} \\ & \xi_{1}+\xi_{3} \\ & 2 \xi_{2} \end{aligned}$	1	3	1	0
(s)	$\xi_{1}+\xi_{2}$	2	9/2	1	-1

Marked Satake Diagram:
($\alpha_{2}=$ root of \mathfrak{m})

labels $\left\langle h_{\mathfrak{m}}^{0} \mid \alpha_{i}\right\rangle$ on simple roots | \circ |
| :---: |$\alpha_{0 \alpha_{4}} d(\lambda)$ formula

Final Remarks

Final Remarks

(G, H) excellent $\Longrightarrow \mathbb{C}[G]^{M N}=\mathbb{C}\left[X_{0}\right]$ $X_{0}=$ affine contraction of $X=G / H\left(\operatorname{dim} X_{0}=\operatorname{dim} X\right)$ $X_{0} \supset G / M N$ quasi-affine, complement in X_{0} has codim ≥ 2

Final Remarks

(G, H) excellent $\Longrightarrow \mathbb{C}[G]^{M N}=\mathbb{C}\left[X_{0}\right]$ $X_{0}=$ affine contraction of $X=G / H\left(\operatorname{dim} X_{0}=\operatorname{dim} X\right)$ $X_{0} \supset G / M N$ quasi-affine, complement in X_{0} has codim ≥ 2 $\mathbb{C}[X] \cong \mathbb{C}\left[X_{0}\right]$ as G-modules (not as algebras)

Final Remarks

(G, H) excellent $\Longrightarrow \mathbb{C}[G]^{M N}=\mathbb{C}\left[X_{0}\right]$ $X_{0}=$ affine contraction of $X=G / H\left(\operatorname{dim} X_{0}=\operatorname{dim} X\right)$
$X_{0} \supset G / M N$ quasi-affine, complement in X_{0} has codim ≥ 2
$\mathbb{C}[X] \cong \mathbb{C}\left[X_{0}\right]$ as G-modules (not as algebras)
For further investigation:

- Properties of spherical and horospherical functions on X

Final Remarks

(G, H) excellent $\Longrightarrow \mathbb{C}[G]^{M N}=\mathbb{C}\left[X_{0}\right]$
$X_{0}=$ affine contraction of $X=G / H\left(\operatorname{dim} X_{0}=\operatorname{dim} X\right)$
$X_{0} \supset G / M N$ quasi-affine, complement in X_{0} has codim ≥ 2
$\mathbb{C}[X] \cong \mathbb{C}\left[X_{0}\right]$ as G-modules (not as algebras)
For further investigation:

- Properties of spherical and horospherical functions on X
- Horospherical Cauchy-Radon transform $\mathbb{C}[X] \rightarrow \mathbb{C}\left[X_{0}\right]$ For inversion formula $d(\lambda)$ becomes differential operator $W(D)$ (right \mathfrak{a} action on fibers of $G / M N \longrightarrow G / P$)

Final Remarks

(G, H) excellent $\Longrightarrow \mathbb{C}[G]^{M N}=\mathbb{C}\left[X_{0}\right]$
$X_{0}=$ affine contraction of $X=G / H\left(\operatorname{dim} X_{0}=\operatorname{dim} X\right)$
$X_{0} \supset G / M N$ quasi-affine, complement in X_{0} has codim ≥ 2
$\mathbb{C}[X] \cong \mathbb{C}\left[X_{0}\right]$ as G-modules (not as algebras)
For further investigation:

- Properties of spherical and horospherical functions on X
- Horospherical Cauchy-Radon transform $\mathbb{C}[X] \rightarrow \mathbb{C}\left[X_{0}\right]$ For inversion formula $d(\lambda)$ becomes differential operator $W(D)$ (right \mathfrak{a} action on fibers of $G / M N \longrightarrow G / P$)
References:
- Gindikin-Goodman: Journal of Lie Theory 23 (2013) 257-311 (abridged version in arXiv:1209.3002)
- Avdeev: Excellent Affine Spherical Homogeneous Spaces of Semisimple Algebraic Groups, Trans. Moscow Math. Soc. 2010, 209-240

Appendix: Formulas for Weyl Dimension Functions

- $W(x, y ; m)= \begin{cases}\Phi(x, y) & \text { if } m=1 \\ \Phi(x, y)^{2} & \text { if } m=2 \\ \Phi(x, y ; 1) & \text { if } m=3 \\ \Phi(x, y) \Phi\left(x, y ; \frac{1}{2} m-1\right) & \text { if } m \geq 4\end{cases}$

Appendix: Formulas for Weyl Dimension Functions

- $W(x, y ; m, 1)=\Phi(x, y)\left\{\Phi\left(x, y ; \frac{1}{4} m-\frac{1}{2}\right)\right\}^{2}$

$$
W(x, y ; m, 3)=\frac{\Phi\left(x, y ; \frac{1}{4} m-\frac{1}{2}\right) \Phi\left(x, y ; \frac{1}{4} m+\frac{1}{2}\right)}{\Phi\left(x, y ; \frac{1}{2}\right)} \Phi(2 x, 2 y ; 1)
$$

$$
W(x, y ; 8,7)=\Phi(x, y) \Phi\left(2 x, 2 y ; \frac{3}{2}\right) \Phi\left(2 x, 2 y ; \frac{9}{2}\right)
$$

Appendix: Formulas for Weyl Dimension Functions

- $\begin{cases}W(x, y ; 3,3) & =\Phi(x, y ; 1) \Phi(2 x, 2 y ; 1) \\ W(x, y ; 2,1,2) & =\Phi\left(x, y ; \frac{1}{2}\right) \Phi(2 x, 2 y) \Phi\left(3 x, 3 y ; \frac{1}{2}\right)\end{cases}$

Appendix: Formulas for Weyl Dimension Functions

- $\begin{cases}W_{\text {sing }}(x, y ; m) & =\Phi\left(x, y ; \frac{1}{2} m-\frac{1}{2}\right) \\ W_{\text {sing }}(x, y ; m, 1) & =\Phi\left(x, y ; \frac{1}{2} m\right) \\ (m \text { even })\end{cases}$

$\mathrm{Spin}_{8} / G_{2}$ Dimension Formula

If $\lambda=k_{1} \mu_{1}+k_{2} \mu_{2}+k_{3} \mu_{3}$ then
$d(\lambda)=c_{1} \prod_{i=1}^{3}\binom{k_{i}+2}{2} \prod_{1 \leq i<j \leq 3}\left(k_{i}+k_{j}+3\right) \prod_{j=1}^{2}\left(k_{1}+k_{2}+k_{3}+j+3\right)$
where $c_{1}=1 /\left(3^{3} \cdot 4 \cdot 5\right)$. Note symmetry in k_{1}, k_{2}, k_{3} (triality)

