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Abstract. We study in this paper the restricted roots for a class of spheri-
cal homogeneous spaces of semisimple groups which includes simply connected
symmetric spaces. For these spaces we give a detailed description (case by case)
of the set of roots of the group associated with each restricted root of the space
(the nest of the restricted root). As an application, we obtain a refinement of
the Weyl dimension formula in the case of spherical representations, expressing
the dimension as a product over the set of indivisible positive restricted roots.
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1. Introduction

In this paper we consider restricted roots for a class of affine spherical homogeneous
spaces X = G/H , where G is a semisimple group, H is a reductive subgroup,
and a Borel subgroup of G has an open orbit on X . All groups are complex
linear algebraic groups and all topological notions refer to the Zariski topology.
Following [Av2], we assume that X is “excellent” (see Section 3 for the definition;
this class of spherical homogeneous spaces was introduced in [VG]). All simply-
connected symmetric spaces and all rank-one spaces have this property. When
G is simple and H is not the fixed points of an involution of G , we obtain from
Krämer’s tables [Kr] a relatively short list of excellent affine spherical homogeneous
spaces. These spaces exhibit several new phenomena. For example, by contrast
with the case of a symmetric space, the restricted roots are not a root system
in the usual sense. We want to understand how these restricted roots behave
in some problems associated with such spaces. We concentrate in this paper on
constructing a restricted version of Weyl’s dimension formula, and we obtain a
refined version of the Plancherel formula.

We recall that Weyl’s dimension formula is the product over a system
of positive roots of the group G . It is natural to expect that for spherical
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representations on X the dimension can be expressed as a product over a system of
positive restricted roots of X . However, as far as we know, an explicit dimension
formula of this type has not appeared in print for a general symmetric space. The
c-function of Harish-Chandra for a non-compact Riemannian symmetric space has
such a product formula, and as a result the Plancherel density for such a space
also has a product formula. For a symmetric space Vretare [Vr] and Helgason
[He2, Ch. III §9.4] showed that Weyl’s dimension formula can be obtained as a
regularization of c-functions. As a consequence we know that for a symmetric
space a version of Weyl’s formula for the dimension of a spherical representation
as a product over restricted roots exists, but the computation of specific factors
corresponding to individual restricted roots is a substantial work.

There is another approach to this problem which we follow in this paper.
To each restricted root of X we associate a set of roots of G that we call the
“nest” of the restricted root. Then in Weyl’s formula we combine the factors from
the same nest. We know that in the case of a symmetric space it is convenient
to consider together all scalar multiples of a restricted root, say α and 2α , each
with a multiplicity. We can associate with this system an “atomic” symmetric
space of rank one (which has these roots and multiplicities). In this paper we
show that the spherical dimension function (in the symmetric case) is a product of
some explicit combinatorial functions, corresponding to the “atomic” symmetric
spaces of rank one. These functions for rank one are explicit but not simple.
This is similar to the situation for the rank-one factors in the Plancherel formula
for a non-compact Riemannian symmetric space, which are quite complicated in
contrast to the factors occurring in the c-function [Gi3].

We obtain similar product formulas for non-symmetric excellent affine
spherical homogeneous spaces. The focus here is again on the detailed study
of the nests of restricted roots (and, as a result, of atomic spaces of rank one).
This takes up the major part of the paper. We believe the result can be useful in
other problems, such as the horospherical Cauchy transform [Gi1], [Gi2] (cf. [Go]),
and that our dimension formula gives a hint as to how a product formula for the
c-function for an excellent homogeneous spherical space might look.

There are several new interesting facts that emerge from our investigations.
Some of the atomic spaces of rank one are symmetric spaces of rank one, but there
are two nonsymmetric spherical rank-one spaces (one of them having restricted
roots α , 2α , 3α). Furthermore, there are some “virtual” rank-one spaces: they
are not realized as spherical spaces of rank one, but participate as “atomic” spaces
in certain excellent affine spherical homogeneous spaces of higher rank.

Here is a brief description of the organization of the paper. The main
results concerning dimension formulas are stated in Section 2. Some general results
concerning excellent affine spherical spaces and associated parabolic subgroups are
established in Sections 3 and 4. With these structural properties of excellent affine
spherical pairs established, we turn to the detailed consideration of restricted roots
and the dimension formula in Section 5. We introduce a principal sl2 subalgebra
that plays a key role in determining the shifts in the dimension factors. In the
following sections we then work out all the rank-one cases in detail, followed by
the higher-rank non-symmetric excellent affine spherical homogeneous spaces, and
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conclude with the higher-rank symmetric spaces.

Some Notational Conventions.

1. Z+ is the set of nonnegative integers and C× is the multiplicative group
of the field C of complex numbers.

2. Denote the n×n matrix x with diagonal entries xi ∈ C and other entries
zero by diag[x1, . . . , xn] . Let εi be the ith coordinate function on the diagonal
matrices, so that εi(x) = xi . If x = diag[x1, . . . , xn] and y = diag[y1, . . . , yn] then
〈x | y〉 = tr(xy) = x1y1 + · · ·+ xnyn .

3. For x = [x1, . . . , xn] with xi ∈ C let x̌ = [xn, . . . , x1] .

4. If V is a complex vector space with dual space V ∗ = Hom(V,C), then
〈· , ·〉 denotes the tautological duality pairing of V ∗ with V .

5. Lie algebras of algebraic groups are denoted by the corresponding Ger-
man lower case letters. For an algebraic group L let C[L] be the algebra of regular
functions on L . Let X(L) = Hom(L,C×) be the character group of L (written
additively); the value of λ ∈ X(L) on y ∈ L will be denoted by yλ . If V is an L
module, then V L denotes the subspace of L-fixed vectors.

6. Let G be a semisimple simply-connected algebraic group over C . Fix a
choice of Borel subgroup B ⊂ G and a choice of maximal torus T ⊂ B . Let U be
the unipotent radical of B . Then B = TU and (tu)λ = tλ for t ∈ T , u ∈ U , and
λ ∈ X(B), so we may identify X(B) with X(T ).

7. The set of dominant weights of B is denoted by X+(B). Let $1, . . . , $`

be the fundamental dominant weights, where ` = rank(G). Let λ = k1$1 +
· · · + k`$` with ki ∈ Z+ be a dominant weight. The support of λ is the set
Suppλ = {$i : ki > 0} .

8. For each λ ∈ X+(B) there is an irreducible finite-dimensional rational
G-module Eλ with highest weight λ . The action of g ∈ G on x ∈ Eλ is denoted
by g · x . Write λ∗ for the highest weight of the dual representation (Eλ)

∗ . Fix a
highest weight vector eλ ∈ Eλ ; thus b · eλ = bλ eλ for b ∈ B .

2. Restricted Weyl Dimension Formula

To state our theorems concerning dimension formulas, we introduce the following
functions. For t = m/2 with m a nonnegative integer let ϕ(x ; t) be the monic
polynomial of degree 2t + 1 in x whose zeros are at t , t − 1, . . . , −t + 1, −t .
Thus ϕ(x ; 0) = x and

ϕ(x ; t) = (x− t)(x− t+ 1) · · · (x+ t− 1)(x+ t) (1)

when t > 0. This polynomial arises naturally as the characteristic polynomial

for the matrix

[
1
2

0
0 −1

2

]
∈ sl(2,C) in the irreducible representation of dimension

2t + 1. We extend ϕ(x ; t) to be a meromorphic function of x and t by setting
ϕ(x ; t) = Γ(x+ t+ 1)/Γ(x− t). Define

Φ(x, y ; t) =
ϕ(x+ y ; t)

ϕ(y ; t)
. (2)
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This is a meromorphic function of x , y , t that is normalized to satisfy Φ(0, y ; t) =
1. We write Φ(x, y) = Φ(x, y ; 0) = (x+ y)/y .

The regular Weyl dimension functions are defined as follows; here m (the
multiplicity parameter) is a positive integer subject to the additional conditions
indicated.

W (x, y ; m) =


Φ(x, y) if m = 1 ,

Φ(x, y)2 if m = 2 ,

Φ(x, y ; 1) if m = 3 ,

Φ(x, y) Φ
(
x, y ; 1

2
m− 1

)
if m ≥ 4 ,

(3)

when there is a single multiplicity parameter, and

W (x, y ; m, 1) = Φ(x, y)
{

Φ
(
x, y ; 1

4
m− 1

2

)}2
if m ≥ 2 is even ,

W (x, y ; m, 3) =
Φ
(
x, y ; 1

4
m− 1

2

)
Φ
(
x, y ; 1

4
m+ 1

2

)
Φ
(
x, y ; 1

2

) Φ(2x, 2y ; 1)

if m ≥ 2 is even ,

W (x, y ; 8, 7) = Φ(x, y) Φ
(
2x, 2y ; 3

2

)
Φ
(
2x, 2y ; 9

2

)
,

(4)

{
W (x, y ; 3, 3) = Φ(x, y ; 1) Φ(2x, 2y ; 1) ,

W (x, y ; 2, 1, 2) = Φ
(
x, y ; 1

2

)
Φ(2x, 2y) Φ

(
3x, 3y ; 1

2

)
,

(5)

when there are two or three multiplicity parameters. These functions of x , y
occur in the dimension formulas for rank-one affine spherical spaces, with the first
parameter the multiplicity of the indivisible restricted root ξ . The second and
third parameters are the multiplicity of 2ξ and 3ξ (when these multiplicities
are nonzero). The original Weyl dimension formula is expressed in terms of
the function W (x, y ; 1) = Φ(x, y), whereas the functions in (5) occur for non-
symmetric spherical spaces of rank one.

The singular Weyl dimension functions are defined as follows.{
Wsing(x, y ; m) = Φ

(
x, y ; 1

2
m− 1

2

)
,

Wsing(x, y ; m, 1) = Φ
(
x, y ; 1

2
m
)

if m is even .
(6)

These functions only occur in the dimension formulas for some excellent non-
symmetric spherical homogeneous spaces of rank greater than one.

When a multiplicity parameter is zero, we omit it from the notation; thus
we write

W (x, y ; m, 0) = W (x, y ; m) ,

W (x, y ; m,n, 0) = W (x, y ; m,n) (n = 1, 3, 7) ,

Wsing(x, y ; m, 0) = Wsing(x, y ; m) .

With the indicated restrictions on m all these dimension functions are polynomials
in x and rational functions of y . They are normalized to take the value 1 when
x = 0.
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Assume that G/K is an irreducible simply-connected symmetric space.
Fix a Cartan subspace a ⊂ p , where g = k + p is the Cartan decomposition
corresponding to the involution. Then a ⊂ t where t is the Lie algebra of a
maximal torus of g , and the roots of t on g can be restricted to a . Fix a set of
positive restricted roots Σ+ ⊂ a∗ and let Σ+

0 be the indivisible positive roots. For
ξ ∈ Σ+

0 let mξ and m2ξ be the associated root multiplicities, and let

δ =
1

2

∑
ξ∈Σ+

0

(mξ + 2m2ξ)ξ .

Let 〈λ | ξ〉 be the bilinear form on a∗ obtained by duality from the restriction to
a of a positive multiple of the Killing form of g (the appropriate normalization of
the form is described in Section 5).

Theorem 2.1. The finite-dimensional irreducible K -spherical representation
of G with highest weight λ has dimension

d(λ) =
∏
ξ∈Σ+

0

W (〈λ | ξ〉, 〈δ | ξ〉 ; mξ ,m2ξ ) . (7)

For rank-one symmetric spaces we prove Theorem 2.1 in Section 6 using
classification and the results from Section 5. Helgason’s formula for d(λ) in
terms of a regularization of ratios of c-functions [He2, Ch. III §9.4] suggests
that the result should then hold in higher rank. However, in the rank-one case the
multiplicity mξ determines the value of 〈δ | ξ〉 ; this is not true in rank greater than
one, and it seems necessary to do a case-by-case argument for higher rank to obtain
the explicit factors corresponding to each positive restricted root. We carry this
out in Section 8 using techniques similar to those for rank-one symmetric spaces.
By Weyl group symmetry of the restricted root system, however, we only need
to consider the simple restricted roots in most cases. The necessary information
about the restricted roots is summarized in a marked Satake diagram (the Satake
diagram as in [He1, Ch. X, Table VI] with additional labels on certain vertices)
and a table of root data in each case.

Remark 2.2. If ξ ∈ Σ+
0 then by Cartan’s classification of symmetric spaces

the only possible values for m2ξ are 0, 1, 3, and 7, and m3ξ = 0. Furthermore,
when m2ξ 6= 0 then mξ is even. Thus all the dimension functions in formula (7)
are defined in (3) and (4).

For an irreducible simply-connected excellent spherical space that is not
symmetric there is an analogue of the subspace a that was introduced in [Br],
and there is a corresponding set Σ of restricted roots (although this set is not a
root system). As a consequence of our dimension formulas we can separate the
indivisible positive roots Σ+

0 into regular and singular roots:

Σ+
0 = Σ+

reg ∪ Σ+
sing .

By definition, an indivisible positive restricted root is called regular if its dimension
function occurs in a rank-one affine spherical space; these functions are given in
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(3), (4), and (5). Otherwise, the root is called singular. The dimension functions
for singular roots are given in (6). With this terminology established, we can state
our second main result.

Theorem 2.3. Assume that G is simple and simply-connected, H is reductive
and connected, and G/H is an excellent spherical space that is not symmetric.
The finite-dimensional irreducible H -spherical representation of G with highest
weight λ has dimension

d(λ) =
∏
ξ∈Σ+

reg

W
(
〈λ | ξ〉, 〈δ | ξ〉 ; mξ ,m2ξ ,m3ξ

)
×
∏

ξ∈Σ+
sing

Wsing

(
〈λ | ξ〉, 〈δ | ξ〉 ; mξ ,m2ξ

)
.

(8)

(If rankG/H = 1 then Σ+
sing is empty.)

We prove Theorem 2.3 in Section 7 using methods similar to those for sym-
metric spaces. Determination of the root nests and dimension factors requires
more calculation in this case because there is no Weyl group action on the re-
stricted roots. The necessary information about the restricted roots in each case
is summarized in a marked Satake diagram (as in the symmetric case) and a table
of root data.

Remark 2.4. For a singular root ξ the multiplicity of 2ξ turns out to be either
zero or one, and the multiplicity of 3ξ is zero. Thus the dimension functions in
(8) are all defined in (3), (4), (5), and (6), with the convention that

W
(
〈λ | ξ〉, 〈δ | ξ〉 ; mξ ,m2ξ , 0

)
= W

(
〈λ | ξ〉, 〈δ | ξ〉 ; mξ ,m2ξ

)
.

Remark 2.5. For non-symmetric excellent affine spherical homogeneous spaces
of rank greater than one, the calculations in Sections 7 show that regular and
singular restricted roots can have the same multiplicities. Hence the dimension
functions for these spaces are not completely determined just by the restricted
roots and their multiplicities, unlike the case of rank one spaces or higher rank
symmetric spaces.

3. Spherical Pairs

Let G be a simply-connected semi-simple complex algebraic group and H an
algebraic subgroup of G . The pair (G,H) (and by extension the homogeneous
space G/H and the subgroup H ⊂ G) is called spherical if B has an open orbit
on the variety G/H . The existence of such an orbit implies that dimEH

λ ≤ 1 for
all λ ∈ X+(B). If G/H is quasi-affine (such a subgroup H is called observable),
then the converse is true [VK, Theorem 1]. Since all Borel subgroups of G are
conjugate, the notion of spherical pair does not depend on the choice of B .

Assume that (G,H) is a spherical pair. If λ ∈ X+(B) and EH
λ∗ 6= 0, then λ

will be called an H -spherical highest weight and Eλ an H -spherical representation
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(thus C[G/H] contains Eλ as a submodule in this case). Following [Av1] we let
Γ(G/H) denote the set of H -spherical highest weights for G . Then Γ(G/H) is a
subsemigroup of X+(B). If H is reductive, then for λ ∈ X+(B) we have EH

λ 6= 0
if and only if EH

λ∗ 6= 0. Hence Γ(G/H) is invariant under the map λ 7→ λ∗ in this
case.

The following class of spherical pairs was introduced in [VG] (cf. [Av2]).

Definition 3.1. The spherical pair (G,H) is excellent if G/H is quasi-affine
and Γ(G/H) is generated by µ1, . . . , µr with Suppµi ∩ Suppµj = ∅ for i 6= j .

When (G,H) is an excellent spherical pair, then the support condition
implies that {µ1, . . . , µr} is linearly independent and Γ(G/H) is a free semigroup.
For example, from [He2, Ch. II, Prop. 4.23] one knows that (G,H) is excellent
when G is simply-connected and H is any symmetric subgroup of G (the fixed-
point group of an involutive automorphism of G). Here G/H is affine because H
is reductive.

4. Parabolic Subgroups for Excellent Affine Spherical Pairs

For the rest of the paper we assume that (G,H) is an excellent spherical pair with
G simply connected and simple, H connected and reductive (the list of such pairs
with H not a symmetric subgroup of G is given in Sections 6 and 7). Fix a Borel
subgroup B in G . Let µ1, . . . , µr satisfy the conditions of Definition 3.1. The
integer r is the spherical rank of the pair (G,H).

For a vector space V let P(V ) be the associated projective space, and
denote the canonical map from V \ {0} to P(V ) by x 7→ [x] = C× · x . Define

P = {g ∈ G : [g · eµi ] = [eµi ] for i = 1, . . . , r} .

Then P is a parabolic subgroup of G since it contains B .

We can describe the structure of P as follows (see, e.g., [Hu, §30.2] and
[VP]). Let Φ be the roots of T on g and let Φ+ be the positive roots determined
by the Borel subgroup B . Let ∆ be the simple roots in Φ+ . For α ∈ Φ+ let hα ∈ t
be the coroot to α . There is a unique regular homomorphism ψα : SL(2,C)→ G
whose differential dψα : sl(2,C)→ g satisfies

dψα

[
1 0
0 −1

]
= hα , dψα

[
0 1
0 0

]
∈ gα , dψα

[
0 0
1 0

]
∈ g−α .

Write G(α) for the image of ψα ; this is a closed subgroup of G .

Define

∆0 = {α ∈ ∆ : 〈µi , hα〉 = 0 for i = 1, . . . , r } .

Thus ∆0 consists of the simple roots α such that hα acts by zero on eλ for all
λ ∈ Γ(G/H). By the representation theory of SL2 , one knows that α ∈ ∆0 if and
only if G(α) fixes eλ for all λ ∈ Γ(G/H).



264 Gindikin and Goodman

Viewing the elements of ∆0 as characters of T , we define

C =
( ⋂
α∈∆0

Ker(α)
)◦
,

where K◦ denotes the identity component of an algebraic group K . Then C is
a subtorus of T , and elements of C commute with G(α) for all α ∈ ∆0 . The Lie
algebra of C is

c = {x ∈ t : 〈α , x〉 = 0 for all α ∈ ∆0 } .

Define

L = {g ∈ G : gc = cg for all c ∈ C } . (9)

Then L contains the subgroups G(α) for all α ∈ ∆0 . Since C is a torus, one
knows that L is a connected reductive group containing T , and that P = LN
(Levi decomposition), where N is the unipotent radical of P . Furthermore, C is
the identity component of the center of L . The Lie algebras of L and N are

l = c +
∑
α∈∆0

Chα +
∑
β∈Ψ

gβ , (10)

n =
∑

α∈Φ+\Ψ

gα , (11)

where Ψ =
(

Span ∆0

)
∩ Φ is the root system with simple roots ∆0 .

Define M to be the subgroup of L that fixes all the highest weight vectors
eµi for i = 1, . . . , r . Then M is reductive (but not necessarily connected). Let
M ′ be the commutator subgroup of M and let C0 = M ∩C . The Lie algebras are

c0 = {Y ∈ c : 〈µi , Y 〉 = 0 for i = 1, . . . , r} , (12)

m′ =
∑
α∈∆0

Chα +
∑
β∈Ψ

gβ , (13)

m = c0 + m′ . (14)

Following [Br], we let a be the orthogonal complement to c0 in c relative to
the Killing form on t . Since the Killing form is positive definite on the real span
tR of the coroots, and since c and c0 are complexifications of real subspaces of tR ,
we have c = a ⊕ c0 . Thus l = a ⊕ m as a Lie algebra and l′ = m′ . Furthermore,
p = m⊕ a⊕ n as a vector space and

g = n− ⊕m⊕ a⊕ n with n− =
∑

β∈Φ+\Ψ

g−β . (15)

From (15) it follows that

l = {X ∈ g : [X, a] = 0} . (16)
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Lemma 4.1. Let d = |
⋃r
i=1 Suppµi|. Then dim c = d and dim c0 = d − r .

Hence dim a = r . In particular, if | Suppµi| = 1 for all i, then a = c.

Proof. For α ∈ ∆ write $α for the corresponding fundamental weight. Then
$α ∈ Suppµi if and only if 〈µi , hα〉 6= 0. Thus if we use the Killing form to
identify t with t∗ , then µi is orthogonal to ∆0 since hα and α are proportional.
By the support condition in Definition 3.1, for each α ∈ ∆ there exists at most one
index i such that $α ∈ Suppµi . Hence |∆0| = `− d (where ` = dim t is the rank
of g). This shows that dim c = d since ∆0 is linearly independent. Furthermore,
we see that the set ∆0 ∪ {µ1, . . . , µr} is linearly independent.

Let h ∈ t . Then h ∈ c0 if and only if 〈α , h〉 = 0 for all α ∈ ∆0 and
〈µi , h〉 = 0 for i = 1, . . . , r . Hence by the linear independence of ∆0∪{µ1, . . . , µr}
we conclude that dim c0 = `− (`− d+ r) = d− r .

5. Restricted Roots and Dimension Factors

The spherical subgroup H defines a partition of the root system of g as Φ =
Ψ ∪ (Φ \Ψ), where we recall that Ψ is the root system of m (these are the roots
whose restriction to a is zero) and ∆0 = Ψ ∩ ∆ is a set of simple roots for Ψ.
Define the set of restricted roots Σ to be the restrictions of the roots in Φ \ Ψ to
a .1 For λ ∈ t∗ we write λ for the restriction of λ to a .

Let Σ+ be the set of restrictions to a of the roots in Φ+ \ Ψ. For ξ ∈ Σ+

define
Φ+(ξ) = {α ∈ Φ+ \Ψ : α = ξ} . (17)

We call Φ+(ξ) the nest of roots for ξ . We define

nξ =
∑

α∈Φ+(ξ)

gα

(the ξ eigenspace of a in n). The multiplicity of ξ is

mξ = dim nξ =
∣∣Φ+(ξ)

∣∣ .
If α ∈ Φ+(ξ), β ∈ Ψ, and α + β ∈ Φ, then α + β ∈ Φ+(ξ). Hence the subspace
nξ is invariant under the adjoint action of m , and there is a decomposition

n =
⊕
ξ∈Σ+

nξ

as a module relative to the adjoint action of l = m⊕ a .

Let 〈 · | · 〉 be a positive multiple of the Killing form on t , which we use
to identify t with t∗ and to identify a∗ with a subspace of t∗ . Then Ψ ⊥ a∗ and
a∗ = Span Γ(G/H). We normalize this form to make 〈α | α 〉 = 2 for α ∈ ∆0

when these roots all have the same length. When m′ has roots of two lengths,
then it follows by the classification of simple Lie algebras that these roots occur in
only one simple ideal, say q , of m′ . Thus we can normalize the form so that when

1When H is not a symmetric subgroup of G , the set Σ is usually not a root system in a∗R .
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q is of type B (resp. type C ) then the long roots (resp. short roots) in ∆0 have
squared length two. Given α ∈ Φ, we write

α∨ =
2

〈α | α 〉
α

for the coroot to α . Define

ρg =
1

2

∑
α∈Φ+

α , ρm =
1

2

∑
β∈Ψ+

β , δ =
1

2

∑
ξ∈Σ+

mξ ξ .

Then δ ⊥ ρm . Since ρm is the sum of the fundamental highest weights of m , we
have

〈 ρm | α∨ 〉 = 1 for all α ∈ ∆0 . (18)

Lemma 5.1. There is an orthogonal decomposition

ρg = δ + ρm . (19)

Proof. From the definitions it is clear that the restriction of ρg − ρm to a
coincides with δ . Since δ ∈ a∗ it suffices to prove that

ρg − ρm ∈ a∗ . (20)

To establish (20), we note from (18) that 〈 ρg − ρm | α∨ 〉 = 0 for all α ∈ ∆0 ,
since 〈 ρg | α∨ 〉 = 1 for all α ∈ ∆. Hence ρg − ρm ∈ c∗ . So we must show that
ρg − ρm ⊥ c0 . Since ρm ⊥ c0 , it only remains to show that ρg ⊥ c0 .

From Lemma 4.1 and classification we find that c0 6= 0 only for the non-
symmetric pair (SLp+q , SLp×SLq) and for the symmetric spaces of types A III,
A IV, D I (` = r + 1), D III (` = 2r + 1), E II, and E III. These are exactly the
cases in which | Suppµi| = 2 for some i . In all these cases there is a non-trivial
symmetry of the Dynkin diagram that comes from an automorphism σ of g that
preserves t , the Killing form, the set of positive roots, the set ∆0 , and the set
{µ1, . . . , µr} . Hence σ fixes ρg . We calculate in each case that σ acts by −1 on
c0 (see Section 6, Case 1; Section 7, Case 1; Section 8, Cases 2, 5, 6, 7, 8). Hence
〈ρg | X〉 = −〈ρg | X〉 for X ∈ c0 . This proves that ρg ⊥ c0 .

Let λ ∈ Γ(G/H). For ξ ∈ Σ+ define

dξ(λ) =
∏

α∈Φ+(ξ)

〈λ+ ρg | α 〉
〈 ρg | α 〉

.

Let d(λ) be the dimension of the irreducible G-module Eλ . Then the Weyl
dimension formula gives

d(λ) =
∏
ξ∈Σ+

dξ(λ) . (21)

For α ∈ Φ+(ξ) we have 〈λ | α 〉 = 〈λ | ξ 〉 . Hence by (19) we can write

dξ(λ) =
∏

α∈Φ+(ξ)

〈λ+ δ | ξ 〉+ 〈 ρm | α 〉
〈 δ | ξ 〉+ 〈 ρm | α 〉

. (22)
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We now determine the shifts 〈 ρm | α 〉 in formula (22) using the represen-
tations of sl2 . Let h0

m be the element of Span{hα : α ∈ ∆0} such that

〈h0
m | α 〉 = 2 for all α ∈ ∆0 .

Then h0
m is a regular element in m′ , and there exist elements e0

m and f 0
m in m′ such

that {e0
m , f

0
m , h

0
m} is a principal sl2 triple in m′ (see [Ko] and [Bo2, Ch. VIII,

§11]). Denote the span of these elements by s and let S ⊂ M be the connected
subgroup with Lie algebra s .

Suppose g ∈ G and Ad(g)a = a . If ξ is a restricted root, then g · ξ is also
a restricted root, where g · ξ ∈ a∗ is defined by 〈g · ξ | x〉 = 〈ξ | Ad(g)−1x〉 for
x ∈ a .

Lemma 5.2. If g ∈ G and Ad(g) preserves a, then the restricted root spaces
nξ and ng·ξ are isomorphic as s-modules.

Proof. Since l is the zero weight space of Ad(a) in g by (16), we have
Ad(g)l = l . Hence Ad(g)m′ = m′ since m′ = l′ . Now Ad(g)s is a principal
sl2 subalgebra of m′ , so there exists m ∈ M ′ such that Ad(mg)s = s ([Bo2,
Ch. VIII, §11, Prop. 9]). Since m · ξ = ξ we may replace g by mg and assume
that Ad(g)s = s . But all automorphisms of sl2 come from its adjoint group, so
there exists s ∈ S such that Ad(s)|s = Ad(g)|s . Then Ad(s−1g)|s is the identity,
s · ξ = ξ , and Ad(s−1g) : nξ → ng·ξ gives an isomorphism of s modules.

Let ξ ∈ Σ+ be a restricted positive root. Define

kξ = max{k : k is an eigenvalue of adh0
m on nξ } .

By the representation theory of sl2 we know that kξ is a non-negative integer and

kξ = −min{〈h0
m | α 〉 : α ∈ Φ+(ξ)} . (23)

Definition 5.3. A root α ∈ Φ+(ξ) is a basic root if α gives the minimum value
in (23).

Let Φ(x, y ; t) be the function defined in (2); recall that we write Φ(x, y) =
Φ(x, y ; 0).

Proposition 5.4. The eigenvalues of adh0
m on nξ are integers between −kξ

and kξ . They include −kξ,−kξ+2, . . . , kξ−2, kξ . In particular, dim nξ ≥ kξ + 1.

Let b = 1
2
kξ , let λ ∈ Γ(G/H), and assume all roots in ∆0 have the same

length. Then the following hold.

1. The shifts 〈 ρm | α 〉 in (22) are the eigenvalues (with multiplicities) of
1
2

adh0
m on nξ . In particular, the shifts include −b,−b+ 1, . . . , b− 1, b.

2. Suppose b = 0 . Then dξ(λ) = [Φ(〈λ | ξ 〉 , 〈 δ | ξ 〉)]mξ .
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3. Suppose b > 0 , mξ = (2b+ 1)p for some integer p ≥ 1, and Φ+(ξ) has p
basic roots. Then dξ(λ) = [Φ(〈λ | ξ 〉 , 〈 δ | ξ 〉 ; b)]p .

4. Suppose b > 0 and mξ = 2b+ 2. Then

dξ(λ) = Φ(〈λ | ξ 〉 , 〈 δ | ξ 〉) Φ(〈λ | ξ 〉 , 〈 δ | ξ 〉 ; b) .

Proof. The statement about eigenvalues follows from the invariance of nξ under
{e0

m , f
0
m , h

0
m} and the representation theory of sl2 .

Now assume that all roots in ∆0 have the same length. Then ρm = 1
2
h0
m , so

assertion (1) in the proposition follows from the eigenvalue property just proved. If
b = 0, then all eigenvalues of adh0

m on nξ are zero, and hence the shifts are all zero,
proving assertion (2). When there are p basic roots in Φ+(ξ) and mξ = p(kξ + 1),
then each basic root vector is a lowest weight vector. Thus nξ is the sum of
p copies of the irreducible representation of {e0

m , f
0
m , h

0
m} of dimension kξ + 1,

and hence the shifts are precisely −b , −b + 1, . . . , b − 1, b with multiplicity p ,
proving (3). Finally, when mξ = kξ+2, then nξ must be the sum of the irreducible
representation of {e0

m , f
0
m , h

0
m} of dimension kξ + 1 and the trivial representation.

Hence the shifts are −b , −b+ 1, . . . , b− 1, b together with zero, proving (4).

Let WG be the Weyl group of G .

Lemma 5.5. Suppose ξ = α and η = β are restricted roots and that α and
β are the unique basic roots in the nests Φ+(ξ) and Φ+(η). Assume that there
exists w ∈ WG such that wα = β and w∆0 = ∆0 . Then wΦ+(ξ) = Φ+(η) and
〈 ρm | wµ 〉 = 〈 ρm | µ 〉 for all µ ∈ Φ+(ξ).

Proof. Since α is the unique basic root, Φ+(ξ) consists of all elements of Φ+

of the form α+
∑

γ∈∆0
mγ γ , where mγ ≥ 0. A similar statement holds for Φ+(η).

Since w permutes the elements of ∆0 and maps roots to roots, it is clear that
wΦ+(ξ) = Φ+(η) and wρm = ρm . Thus 〈 ρm | wµ 〉 = 〈wρm | wµ 〉 = 〈 ρm | µ 〉 for
all µ ∈ Φ+(ξ).

When ∆0 has two root lengths, then the shifts 〈 ρm | α 〉 in the dimension
formula cannot be determined just using h0

m . Define

$0
m = ρm −

1

2
h0
m .

Then $0
m ∈ Span ∆0 and the shifts are

〈 ρm | α 〉 =
1

2
〈h0

m | α 〉+ 〈$0
m | α 〉 . (24)

From (18) we have

〈$0
m | α 〉 =

1

2
〈α | α 〉 − 1 .

If α = α∨ for all α ∈ ∆0 , then $0
m = 0 and h0

m = 2ρm .
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When there are two root lengths and m contains a simple ideal whose
Dynkin diagram is of type C , then from (24) and our normalization of the Killing
form we calculate that

〈$0
m | α 〉 =

{
0 for all short roots α ∈ ∆0 ,

1 for the long root α ∈ ∆0 .
(25)

In this case 2$0
m is the fundamental dominant weight of m′ associated with the

long simple root. Likewise, when m has a simple ideal whose Dynkin diagram is
of type B , then we calculate that

〈$0
m | α 〉 =

{
0 for all long roots α ∈ ∆0 ,

−1/2 for the short root α ∈ ∆0 .
(26)

In this case −$0
m is the fundamental dominant weight of m′ associated with the

short simple root (the highest weight of the spin representation of m′ ).

Remark 5.6. The two situations just described suffice, since the Dynkin di-
agrams of type F4 and G2 do not occur as subdiagrams of connected Dynkin
diagrams.

Proposition 5.7. If ξ ∈ Σ+ and dim nξ = 1, then dξ(λ) = Φ(〈λ | ξ 〉 , 〈 δ | ξ 〉)
for all λ ∈ Γ(G/H).

Proof. Let Φ+(ξ) = {α} . Since nξ is a trivial m′ module, we have 〈hβ | α 〉 = 0
for all β ∈ ∆0 . Hence 〈h0

m | α 〉 = 0 and 〈$0
m | α 〉 = 0. Thus by (24) the ρm shift

in the dimension formula is zero.

We create the marked Satake diagram for the pair (G,H) as follows.

(i) In the Dynkin diagram for ∆ indicate the vertices corresponding to elements
of ∆0 by • and indicate the vertices corresponding to the other simple roots
by ◦ . Join vertices corresponding to roots with the same restriction to a by
a double-pointed arrow.

(ii) When all roots in ∆0 have the same length and α ∈ ∆ \∆0 is adjacent to
an element of ∆0 , put the number 〈h0

m | α 〉 at the vertex for α .

(iii) When the roots in ∆0 have two lengths and α ∈ ∆ \ ∆0 is adjacent to an
element of ∆0 , put the pair of numbers (〈h0

m | α 〉 , 〈$m | α 〉) at the vertex
for α .

Here adjacent refers to the corresponding vertices and edges in the Dynkin diagram
for the root system of g .

Remark 5.8. Let α ∈ ∆ \∆0 . Since h0
m is a linear combination with positive

coefficients of the simple coroots of m , we have 〈h0
m | α 〉 < 0 if α is adjacent to

∆0 . Furthermore, 〈h0
m | α 〉 = 〈$0

m | α 〉 = 0 if α is not adjacent to ∆0 . Thus the
marked Satake diagram and formulas (25) and (26) determine the values 〈h0

m | α 〉
and 〈$0

m | α 〉 for all α ∈ ∆.



270 Gindikin and Goodman

6. Rank-One Affine Spherical Spaces

From É. Cartan’s classification (see [He1, Ch. X Table VI]) the irreducible affine
spherical pairs (G,H) of rank one with G semisimple and H connected and
symmetric (the fixed points of an involution of G) are as follows (in types B II
and D II the spherical representations are single-valued on the orthogonal groups,
so the spin groups are not needed).

A IV: G = SL`+1(C) with ` ≥ 1 and H = GL`(C) embedded by h 7→ h⊕deth−1 .

B II: G = SO2`+1(C) with ` ≥ 2 and H = SO2`(C) embedded by h 7→ h⊕ 1.

D II: G = SO2`(C) with ` ≥ 2 and H = SO2`−1(C) embedded by h 7→ h⊕ 1.

C II: G = Sp2`(C) with ` ≥ 3 and H = Sp2(C)× Sp2`−2(C) embedded in block-
diagonal form.

F II: G = F4(C) and H = Spin9(C) embedded as described in [Ba, §4.2].

Type B II with ` = 1 is isomorphic to Type A IV with ` = 1, and Type C II
with ` = 2 is isomorphic to Type B II with ` = 2, and so these are omitted from
this list.

From Krämer’s classification [Kr] there are two irreducible affine spherical
pairs (G,H) of rank one with G simple and H not a symmetric subgroup of G .
The groups involved form a descending chain

Spin7(C) ⊃ G2(C) ⊃ SL3(C)

and are of dimensions 21, 14, 8 and ranks 3, 2, 2 respectively. The embeddings
of the groups are described in [Ad, Ch. 5] and [Wo1, §8.10]. The compact forms
of the corresponding homogeneous spaces G/H are constant positive curvature
spheres of dimensions 7 and 6 (cf. [Wo2, §12.7]).

Case 1. The pair (SL`+1, GL`). Here G has rank ` . We take the diagonal
matrices in g as a Cartan subalgebra and use simple roots αi = εi − εi+1 for
i = 1, . . . , ` . The fundamental H -spherical weight is µ1 = $1 + $` (see [GW,
Ch. 12.3.3]). Assume for the moment that ` ≥ 2. If ` = 2 then ∆0 is empty, while
if ` ≥ 3 then ∆0 = {α2, . . . , α`−1} ; in both cases dim c = 2. Since | Suppµ1| = 2,
we have dim c0 = 1 and dim a = 1 by Lemma 4.1. Thus m ∼= c0 ⊕ sl`−1 .

To determine c0 , we identify t with t∗ using the form 〈· | ·〉 and write x ∈ t
as c1α1 + · · · + c`α` . Then 〈µ1 | x〉 = 0 gives the relation c` = −c1 . It is easy to
check that the vector

y =(`− 1)α1 + (`− 3)α2 + (`− 5)α4 + · · ·
+ (5− `)α`−2 + (3− `)α`−1 + (1− `)α`

=(`− 1)ε1 − 2
(
ε2 + · · ·+ ε`

)
+ (`− 1)ε`+1

(27)

is orthogonal to ∆0 , and hence gives a basis for c0 . Note that y is transformed
to −y under the diagram automorphism interchanging αi with α`+1−i for i =
1, . . . , ` , verifying the claim in the proof of Lemma 5.1.
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Since c = c0 ⊕ a and dim c = 2, we see from (27) that

a = {x = diag[ t , 0 , . . . , 0︸ ︷︷ ︸
`−1

, −t ] : t ∈ C} . (28)

Let ξ1 ∈ a∗ take the value t on the element x in (28). Then ξ1 = α1 = α` =
1
2
(ε1 − ε`+1).

The multiplicities of the restricted positive roots are as follows when ` ≥ 2
(details below).

restricted root multiplicity
ξ1 2`− 2
2ξ1 1

α1

..

..

...
.......
..
.
...
.......
.
..
..

−` + 2 ..........................................................................................

α2

•.............................. . . . .........................

α`−1

•..........................................................................................

α`

..

..

...
.......
..
.
...
.......
.
..
..

−` + 2

..
..
..
..
..
...
..
..
.

................
..
..
..
..
..
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..
..
.

................
....
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....
.....
.....
.....
.....
......
......
......
.......
.......
........
.........
...........
...............
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....
.....
.....
....
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.......
.......

........
..........

...........
...............

...................................

Figure 1: Marked Satake diagram for SL`+1 /GL` with ` ≥ 2

From the table we see that δ = `ξ1 . Since all the roots in ∆0 have the same
length, h0

m = 2ρm = (`− 2)α2 + · · ·+ (j − 1)(`− j)αj + · · ·+ (`− 2)α`−1 . Hence

〈h0
m | αi 〉 =

{
2− ` if i = 1 or ` ,

2 if i = 2, . . . , `− 1 .
(29)

We now determine the nests of restricted roots, the basic roots, and the
dimension factors dξ(λ) for ξ ∈ Σ+ and λ ∈ Γ(G/H).

(i) Let ξ = ξ1 . Then Φ+(ξ) = {β1 , . . . , β`−1} ∪ {γ1 , , . . . γ`−1}, where

βj = ε1 − εj+1 = α1 + · · ·+ αj ,

γj = ε`−j+1 − ε`+1 = α`−j+1 + · · ·+ α` .

Thus mξ = 2(`− 1) and the basic roots are β1 and γ1 . From (29) we have
kξ = −〈h0

m , β1 〉 = −〈h0
m , γ1 〉 = ` − 2. Since mξ = 2(kξ + 1), Proposition

5.4 (3) gives

dξ(λ) =
[
Φ(〈λ+ δ | ξ 〉 , 〈 δ | ξ 〉 ; 1

2
(`− 2))

]2
.

(ii) Let ξ = 2ξ1 . Then Φ+(ξ) = {α1 + · · · + α`} . Hence by Proposition 5.7 we
have dξ(λ) = Φ(〈λ | ξ 〉 , 〈 δ | ξ 〉) .

From cases (i), (ii) and (21) we obtain the dimension formula

d(λ) = Φ(〈λ | ξ1 〉 , 〈 δ | ξ1 〉)
[
Φ
(
〈λ | ξ1 〉, 〈 δ | ξ1 〉 ; 1

2
(`− 2)

)]2
= W

(
〈λ | ξ1 〉 , 〈 δ | ξ1 〉 ; mξ1 ,m2ξ1

)
.

(30)
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Here 〈 ξ1 | ξ1 〉 = 1
2
, so that 〈 δ | ξ1 〉 = 1

2
` and 〈µ1 | ξ1 〉 = 1. Note that when

` = 2 this formula becomes

d(λ) =
[
Φ
(
〈λ+ δ | ξ1 〉 , 〈 δ | ξ1 〉 ; 0

)]3
.

Thus d(µ1) = 23 as expected, since µ1 is the highest weight of the adjoint
representation of G when ` = 2.

The dimension formula when ` = 1 (so G = SL2(C) and H is a maximal
torus in G) is different. In this case the fundamental H -spherical highest weight
is µ1 = 2$1 , the multiplicities are mξ1 = 1, m2ξ1 = 0, and

d
(
λ) = Φ(〈λ | ξ1 〉 , 〈 δ | ξ1 〉

)
= W

(
〈λ | ξ1 〉 , 〈 δ | ξ1 〉 ; mξ1

)
. (31)

In this case 〈 ξ1 | ξ1 〉 = 2, so that 〈 δ | ξ1 〉 = 1 and d(kµ1) = 2k + 1 as expected.

Case 2. The pair (SO2`+1, SO2`). Take G in the matrix form of [GW, §2.1.2]
and the diagonal matrices in g as a Cartan subalgebra.

Consider first the case ` ≥ 3. We choose simple roots αi = εi − εi+1 for
i = 1, . . . , `−1, and α` = ε` . The fundamental H -spherical weight is µ1 = $1 = ε1

(see [GW, Ch. 12.3.3]). Thus ∆0 = {α2, . . . , α`} and hence dim c = 1. Since
| Suppµ1| = 1, we have a = c by Lemma 4.1. Thus m ∼= so2`−1 and

a = {x = diag[ t , 0 , . . . , 0︸ ︷︷ ︸
2`−1

, −t ] : t ∈ C} . (32)

Let ξ1 ∈ a∗ take the value t on the element x in (32). Then ξ1 = α1 = ε1 .

The multiplicities of the restricted positive roots for ` ≥ 2 are as follows
(details below).

restricted root multiplicity
ξ1 2`− 1

α1

..

..

...
.......
..
.
...
.......
.
..
..

(−2` + 2 , 1/2)
...................................................................................................................

α2

•...................................................................................................................

α3

•................................... . . . ...................................

α`−1

•
.............................................................................................................................

.............................................................................................................................

α`

•

.......................

..
...
...
..
...
...
..
...
..

Figure 2: Marked Satake diagram for SO2`+1 /SO2` with ` ≥ 3

From the table we obtain δ =
(
` − 1

2

)
ξ1 . Using the basis {ε1, . . . , ε`} for t and

the identification of t∗ with t , we can write

2ρm = (2`− 3)ε2 + (2`− 5)ε3 + · · ·+ 3ε`−1 + ε` ,

h0
m = (2`− 2)ε2 + (2`− 4)ε3 + · · ·+ 4ε`−1 + 2ε` .

Hence $0
m = ρm − 1

2
h0
m = −1

2

(
ε2 + · · ·+ ε`

)
. From these formulas we see that

〈h0
m | αi 〉 =

{
−2`+ 2 if i = 1 ,

2 if i = 2, . . . , ` ,
(33)
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and

〈$0
m | αi 〉 =


1/2 if i = 1 ,

0 if i = 2, . . . , `− 1 ,

−1/2 if i = ` .

(34)

(The last two cases in (34) were already given in (26).)

The nest of positive restricted roots is

Φ+(ξ1) = {ε1 − εj : 2 ≤ j ≤ `} ∪ {ε1 + εj : 2 ≤ j ≤ `} ∪ {ε1}
= {βj : 2 ≤ j ≤ `} ∪ {γj : 2 ≤ j ≤ `} ∪ {α1 + · · ·+ α`} ,

where βj = α1 + · · ·+αj−1 and γj = βj + 2αj + · · ·+ 2α` . Thus |Φ+(ξ1)| = 2`− 1
as indicated in the table.

From (33) we see that kξ1 = 2` − 2 and the only basic root in the nest is
β2 = α1 . Hence the eigenvalues of adh0

m on nξ1 are

−2`+ 2, . . . ,−2, 0, 2, . . . , 2`− 2 ,

each with multiplicity one, with the negative eigenvalues coming from {βj} and
the positive eigenvalues from {γj} . From (34) we have 〈$0

m | βj 〉 = 1/2,
〈$0

m | γj 〉 = −1/2, and 〈$0
m | α1 + · · · + α` 〉 = 0. Hence the ρm shifts in

the dimension formula are

−`+ 3
2
, . . . ,−1

2
, 0, 1

2
, . . . , `− 3

2
. (35)

Note that the positive and negative shifts have unit spacing, but the space around
0 has size 1/2 because of the additional shift from $0

m , which decreases the positive
eigenvalues and increases the negative eigenvalues. Let λ ∈ Γ(G/H) be an H -
spherical highest weight. It follows from (35) and (21) that

d(λ) = Φ(〈λ | ξ1 〉, 〈 δ | ξ1 〉) Φ
(
〈λ | ξ1 〉, 〈 δ | ξ1 〉 ; `− 3

2

)
= W

(
〈λ | ξ1 〉, 〈 δ | ξ1 〉 ; mξ1

)
.

(36)

Here 〈 ξ1 | ξ1 〉 = 〈µ1 | ξ1〉 = 1, so that 〈 δ | ξ1 〉 = `− 1
2
.

Remark 6.1. If λ = kµ1 , then (36) gives d(λ) = 2`+ 1 when k = 1 and

d(λ) =
(k + 2`− 2)!

k!(2`− 1)!
(2k + 2`− 1) =

(
2`+ k

k

)
−
(

2`+ k − 2

k − 2

)
(37)

when k ≥ 2. This is the well-known formula for the dimension of the space of
spherical harmonics of degree k in 2`+ 1 variables.

The case ` = 2 (G = SO5(C) and H = SO4(C)) is different. The
fundamental H -spherical weight is still $1 , but ∆0 = {α2} only has one root
length, m ∼= sl2 , and h0

m = 2α2 . The root nest for ξ1 = α1 is

Φ+(ξ1) = {α1 , α1 + α2 , α1 + 2α2 }
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with basic root α1 , and kξ1 = −〈2α2 | α1〉 = 2. Hence Proposition 5.4 (3) gives

d(λ) = Φ
(
〈λ | ξ1 〉 , 〈 δ | ξ1 〉 ; 1

)
= W

(
〈λ | ξ1 〉, 〈 δ | ξ1 〉 ; mξ1

)
. (38)

Case 3. The pair (SO2`, SO2`−1). Assume that ` ≥ 2 and take G in
the matrix form of [GW, §2.1.2], with the diagonal matrices in g as a Cartan
subalgebra. Use the simple roots αi = εi − εi+1 for i = 1, . . . , ` − 1 and α` =
ε`−1 + ε` .

Consider first the case ` ≥ 3. The fundamental H -spherical weight is µ1 =
$1 = ε1 (see [GW, Ch. 12.3.3]). Thus ∆0 = {α2, . . . , α`} and hence dim c = 1.
Since | Suppµ1| = 1, we have a = c by Lemma 4.1; thus m = m′ ∼= so2`−2 . For
this choice of Cartan subalgebra

a = {x = diag[ t , 0 , . . . , 0︸ ︷︷ ︸
2`−2

, −t ] : t ∈ C} . (39)

Let ξ1 ∈ a∗ take the value t on the element x in (39). Then ξ1 = α1 = ε1 and
〈ξ1 | ξ1〉 = 1.

The multiplicities of the restricted positive roots are as follows (details
below).
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Figure 3: Marked Satake diagram for SO2` /SO2`−1 with ` ≥ 3

From the table we obtain δ = (`− 1)ξ1 . Using the basis {ε1, . . . , ε`} for t and the
identification of t∗ with t , we can write

h0
m = 2(`− 2)ε2 + 2(`− 3)ε3 + · · ·+ 2ε`−1 .

Hence

〈h0
m | αi 〉 =

{
−2`+ 4 if i = 1 ,

2 if i = 2, . . . , ` ,
(40)

The nest of positive restricted roots is

Φ+(ξ1) = {ε1 − εj : 2 ≤ j ≤ `} ∪ {ε1 + εj : 2 ≤ j ≤ `}
= {βj : 2 ≤ j ≤ `} ∪ {γj : 2 ≤ j ≤ `− 1} ∪ {α1 + · · ·+ α`−2 + α`} ,

where βj = α1 + · · · + αj−1 and γj = βj + 2αj + · · · + 2α`−2 + α`−1 + α` (the
roots with coefficient 2 are omitted when j = ` − 1). Thus |Φ+(ξ1)| = 2` − 2 as
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indicated in the table. From (40) we see that the only basic root in the nest is
β2 = α1 and that kξ1 = 2`− 4.

Let λ ∈ Γ(G/H) be an H -spherical highest weight. Since all the roots in
∆0 have the same length and |Φ+(ξ)| = kξ1 + 2, it follows from Proposition 5.4
(4) that

d(λ) = Φ(〈λ | ξ1 〉, 〈 δ | ξ1 〉) Φ(〈λ | ξ1 〉, 〈 δ | ξ1 〉 ; `− 2
)

= W
(
〈λ | ξ1 〉, 〈 δ | ξ1 〉 ; mξ1

)
.

(41)

Here 〈 δ | ξ1 〉 = (`− 1)〈 ξ1 | ξ1 〉 = `− 1.

Consider the case ` = 2. Now h ∼= sl2 and g ∼= sl2 ⊕ sl2 is not simple. In
this case the fundamental H -spherical highest weight is µ1 = $1 +$2 and ∆0 is
empty. Hence c = t = a + c0 , where c0 = { diag[ 0 , t , −t , 0 ] : t ∈ C} and

a = {x = diag[ t , 0 , 0 , −t ] : t ∈ C} . (42)

Let ξ1 ∈ a∗ take the value t on the element x in (42). Then ξ1 = α1 = α2 = ε1 is
the positive restricted root with multiplicity two. Since m = c0 , we have ρm = 0
and ρg = δ = ξ1 . Hence by the Weyl character formula

d(λ) =
[
Φ
(
〈λ | ξ1 〉 , 〈 δ | ξ1 〉

)]2
= W

(
〈λ | ξ1 〉, 〈 δ | ξ1 〉 ; mξ1

)
.

Case 4. The pair (Sp2`, Sp2×Sp2`−2). Assume that ` ≥ 3 and take G in
the matrix form of [GW, §2.1.2], with the Cartan subalgebra t of g the matrices
x = diag[ y,−y̌] , where y = [ ε1(y), . . . , ε`(y) ] and y̌ = [ ε`(y), . . . , ε1(y) ]. The
roots of t on g are ±εi ± εj for 1 ≤ i < j ≤ ` and ±2εi for 1 ≤ i ≤ ` . Take the
simple roots as αi = εi − εi+1 for i = 1, . . . , `− 1 and α` = 2ε` .

The semigroup Γ(G/H) is free of rank 1 with generator

µ1 = $2 = ε1 + ε2 (43)

(cf. [GW, §12.3.3]). Thus ∆0 = ∆ \ {α2} . Since | Suppµ1| = 1 we know from
Lemma 4.1 that a = c , c0 = 0, and hence m ∼= sp2(C)⊕ sp2`−4(C). Thus

a = {x = diag[ y,−y̌ ] with y = [t, t, 0, . . . , 0] and t ∈ C } . (44)

Let ξ1 ∈ a∗ take the value t on the element x in (44). Then ξ1 = α2 = 1
2
(ε1 + ε2).

The restricted positive roots and their multiplicities are as follows (details given
below).

restricted root multiplicity
ξ1 4(`− 2)
2ξ1 3

From the table we obtain δ = (` − 1)ξ1 . Here ∆0 has two root lengths, with
α∨i = αi for i < ` and α∨` = ε` . Furthermore

ρm = 1
2

[
ε1 − ε2

]
+ (`− 2)ε3 + · · ·+ 2ε`−1 + ε` ,

h0
m =

[
ε1 − ε2

]
+
[
(2`− 5)ε3 + · · ·+ 3ε`−1 + ε`

]
= h0

m1
+ h0

m2
,
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α1

•...................................................................................................................

α2

(−2` + 4 , −1/2)

..

..

...
.......
..
.
...
.......
.
..
..
...................................................................................................................

α3

•................................... . . . ...................................

α`−1

•
.............................................................................................................................

.............................................................................................................................

α`

•...
...
..
...
...
..
...
...
.

.......................

Figure 4: Marked Satake diagram for Sp2` /(Sp2×Sp2`−2) with ` ≥ 3

corresponding to the decomposition m = m1 ⊕ m2 with m1 = sp2(C) and m2 =
sp2`−4(C). We have

〈h0
m1
| αi 〉 =


2 if i = 1

−1 if i = 2

0 if i > 2

and 〈h0
m2
| αi 〉 =


0 if i = 1

−2`+ 5 if i = 2

2 if 3 ≤ i ≤ ` .

(45)

Thus $0
m = ρm − 1

2
h0
m = 1

2

[
ε3 + · · ·+ ε`

]
and hence

〈$0
m | αi 〉 =


0 for i = 1 and 3 ≤ i ≤ `− 1 ,

−1/2 if i = 2 ,

1 if i = ` ,

(46)

as in (25). The nests of positive roots are as follows.

(i) Let ξ = ξ1 . Then

Φ+(ξ) = {ε2 ± εj : 3 ≤ j ≤ `} ∪ {ε1 ± εj : 3 ≤ j ≤ `}
= {βj : 3 ≤ j ≤ `} ∪ {α1 + βj : 3 ≤ j ≤ `}
∪ {γj : 3 ≤ j ≤ `} ∪ {α1 + γj : 3 ≤ j ≤ `} ,

where βj = α2 + · · · + αj−1 and γj = βj + 2αj + · · · + 2α`−1 + α` (here we
take γ` = β` + α` ). The basic root is β = α2 and dim nξ = 4(`− 2).

From (45) we see that 〈h0
m1
| β 〉 = −1 and 〈h0

m2
| β 〉 = −2` + 5. Hence

nξ1
∼= C2 ⊗ C2(`−2) as a representation of m1 ⊕ m2 (the tensor product of

the defining representations). Thus the eigenvalues of ad h0
m1

on nξ1 are
±1 with multiplicity 2(` − 2), whereas the eigenvalues of ad h0

m2
on nξ1

are −2` + 5 , . . . , 2` − 5 with multiplicity 2. It follows that 1
2

ad h0
m =

1
2

(
adh0

m1
+ adh0

m2

)
has eigenvalues

−`+ 2 , −`+ 3 , . . . , −1 , 0 , 1 , . . . , `− 3︸ ︷︷ ︸
multiplicity 2

, `− 2

on nξ1 , with the highest and lowest eigenvalues of multiplicity one. The
eigenvalues ≤ 0 come from the roots βj and α1 + βj , while the eigenvalues
≥ 0 come from the roots γj and α1 + γj . By (46) $0

m takes the value
−1/2 on the first set of roots and the value 1/2 on the second set. Since
ρm = 1

2
h0
m +$0

m , it follows that the values of 〈 ρm | α 〉 for α ∈ Φ+(ξ1) are

−`+ 3
2
, −`+ 5

2
, . . . , −3

2︸ ︷︷ ︸
multiplicity 2

, −1
2
, 1

2
, 3

2
, . . . , `− 5

2︸ ︷︷ ︸
multiplicity 2

, `− 3
2
.

Notice that the double eigenvalue 0 for 1
2

adh0
m is shifted to ±1

2
.
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(ii) Let ξ = 2ξ1 . Then

Φ+(ξ) = {2ε2 , ε1 + ε2 , 2ε1} = {β , β + α1 , β + 2α1} ,

where β = 2ε2 = 2α2 + · · · + 2α`−1 + α` is the basic root. By (45) we
have 〈h0

m1
| β 〉 = −2 and 〈h0

m2
| β 〉 = 0. Thus n2ξ1 is the 3-dimensional

irreducible representation of m1 , with m2 acting by zero. From (46) we
have 〈$0

m | α 〉 = 0 for all α ∈ Φ+(2ξ1). Hence the values of 〈 ρm | α 〉 are
−1 , 0 , 1.

From the calculation of the shifts 〈 ρm | α 〉 in cases (i) and (ii) and using (21), we
obtain the dimension formula

d(λ) =
Φ
(
〈λ | ξ1 〉, 〈 δ | ξ1 〉 ; `− 5

2

)
Φ
(
〈λ | ξ1 〉, 〈 δ | ξ1 〉 ; `− 3

2

)
Φ
(
〈λ | ξ1 〉, 〈 δ | ξ1 〉 ; 1

2

)
× Φ(〈λ | 2ξ1 〉, 〈 δ | 2ξ1 〉 ; 1)

= W
(
〈λ | ξ1 〉, 〈 δ | ξ1 〉 ; mξ1 ,m2ξ1

)
.

(47)

Here 〈 δ | ξ1 〉 = (2`− 1)〈 ξ1 | ξ1 〉 = `− 1
2
.

Remark 6.2. Let λ = kµ1 = 2kξ1 . Then 〈λ+δ | ξ1〉 = k+`− 1
2
. Taking k = 1

in (47) gives d(µ1) = (2` + 1)(` − 1) =
(

2`
2

)
−
(

2`
0

)
. In this case µ1 is the highest

weight of the traceless (harmonic) subspace in
∧2 C2` (see [GW, Cor. 5.5.17]).

Case 5. The pair (F4, Spin9). For the Cartan subalgebra t ∼= C4 in g we
follow [Bo1, Planche VIII] and use simple roots α1 = ε2 − ε3 , α2 = ε3 − ε4 ,
α3 = ε4 , and α4 = (1/2)(ε1 − ε2 − ε3 − ε4). The fundamental H -spherical
weight is µ1 = $4 = ε1 (see [Kr]). Thus ∆0 = {α1, α2, α3} and hence dim c = 1.
Since | Suppµ1| = 1, we have a = c by Lemma 4.1. Thus m ∼= so7(C). When t
is identified with C4 using the basis dual to {ε1, ε2, ε3, ε4} then a consists of all
elements

{x = [ t , 0 , 0 , 0 ] : t ∈ C} . (48)

Let ξ1 ∈ a∗ take the value t on the element x in (48). Then ξ1 = α4 = 1
2
ε1 .

The multiplicities of the restricted positive roots are as follows (details given
below).

restricted root multiplicity
ξ1 8
2ξ1 7

α1

•...................................................................................................................

α2

•
.............................................................................................................................

.............................................................................................................................

.......................

..
...
...
..
...
...
..
...
..

α3

•........................................................................................................................

α4

..

..

...
.......
..
.
...
.......
.
..
..

(−6 , 3/4)

Figure 5: Marked Satake diagram for F4/Spin9
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From the table we calculate that δ = 11ξ1 . Using the basis { ε1 , ε2 , ε3 , ε4 } for t
and the identification of t∗ with t , we can write

2ρm = 5ε2 + 3ε3 + ε4 , h0
m = 6ε2 + 4ε3 + 2ε4 .

Hence $0
m = ρm − 1

2
h0
m = −1

2

(
ε2 + ε3 + ε4

)
. From these formulas we see that

〈h0
m | αi 〉 =

{
2 if i = 1, 2, 3 ,

−6 if i = 4 ,
(49)

and

〈$0
m | αi 〉 =


0 if i = 1, 2 ,

−1/2 if i = 3 ,

3/4 if i = 4 .

(50)

Note that the first two cases in (50) also follow from (26).

We now find the nests of positive restricted roots, the basic roots, and the
dimension factors dξ(λ) for ξ ∈ Σ+ and λ ∈ Γ(G/H).

(i) Let ξ = ξ1 = α4 . Then from [Bo1, Planche VIII]

Φ+(ξ) = { β4 , β3 , β2 , β1 } ∪ { γ1 , γ2 , γ3 , γ4 } ,

where βj = αj + · · ·+ α4 , γ1 = β2 + α3 , γ2 = β1 + α3 , γ3 = β1 + α3 + α2 ,
and γ4 = β1 + 2α3 + α2 . The basic root in the nest is β4 and dim nξ = 8.
From (49) the eigenvalues of 1

2
adh0

m on nξ are

−3 , −2 , −1 , 0 , 0 , 1 , 2 , 3

corresponding to the roots β4 , . . . , β1 , γ1 , . . . , γ4 enumerated in increas-
ing length (relative to the simple roots). Thus nξ decomposes as the
one-dimensional plus the seven-dimensional representation of {e0

m , f
0
m , h

0
m} .

From (50) we have

〈$0
m | βj 〉 =

{
1/4 if i = 1, 2, 3 ,

3/4 if i = 4 ,

〈$0
m | γj 〉 =

{
−1/4 if i = 1, 2, 3 ,

−3/4 if i = 4 .

Since ρm = 1
2
h0
m +$0

m , it follows that the shifts in the formula for dξ(λ) are

−9
4
, −7

4
, −3

4
, −1

4
, 1

4
, 3

4
, 7

4
, 9

4
. (51)

Thus the shifts are symmetric about 0 but are not in arithmetic progression.
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(ii) Let ξ = 2ξ1 = β , where β = α2 + 2α3 + 2α4 . Then [Bo1, Planche VIII] gives

Φ+(ξ) = { β , β + α1 , β + α1 + α2 , β + α1 + α2 + α3 }
∪ { β + α1 + α2 + 2α3 , β + α1 + 2α2 + 2α3 , β + 2α1 + 2α2 + 2α3 } .

Thus β is the basic root in the nest and dim nξ = 7. From (49) the
eigenvalues of 1

2
adh0

m on nξ are

−3 , −2 , −1 , 0 , 1 , 2 , 3

corresponding to the roots α ∈ Φ+(ξ) enumerated by increasing length
(relative to the simple roots). From (50) we calculate that the corresponding

sequence of values of 〈$0
m | α 〉 is

1
2
, 1

2
, 1

2
, 0 , −1

2
, −1

2
, −1

2
.

Since ρm = 1
2
h0
m +$0

m , it follows that the shifts in the formula for dξ(λ) are

−5
2
, −3

2
, −1

2
, 0 , 1

2
, 3

2
, 5

2
. (52)

Thus the shifts are symmetric about 0 but are not in arithmetic progression,
and are the same as for SO9 /SO8 in Case 2.

From (51), (52), and (21) we obtain the complete dimension formula

d(λ) = c 〈λ+ δ | 2ξ1〉
∏

j=1,3,7,9

{
〈λ+ δ | ξ1〉2 −

(j
4

)2}
×
∏

j=1,3,5

{
〈λ+ δ | 2ξ1〉2 −

(j
2

)2}
,

(53)

where c is the normalizing constant to make d(0) = 1. Regrouping the terms, we
can write this formula in terms of the normalized Weyl dimension function as

d(λ) = Φ(〈λ | ξ1〉, 〈δ | ξ1〉) Φ
(
〈λ | 2ξ1〉, 〈δ | 2ξ1〉 ; 3

2

)
Φ
(
〈λ | 2ξ1〉, 〈δ | 2ξ1〉 ; 9

2

)
= W

(
〈λ | ξ1 〉, 〈 δ | ξ1 〉 ; mξ1 ,m2ξ1

)
.

(54)

Remark 6.3. If λ = kµ1 with k a nonnegative integer, then 〈λ + δ | 2ξ1〉 =
k + 11

2
since λ + δ = (k + 11

2
)2ξ1 and 〈 2ξ1 | 2ξ1 〉 = 1. Taking k = 1 in (54) we

obtain d(µ1) = 26 (the representation of the compact form of F4 on the traceless
3× 3 hermitian matrices over the octonians; see [Ba, §4.2]).

Case 6. The pair (Spin7, G2). We take the matrix realization of g as
in [GW, §2.1.2], with Cartan subalgebra t consisting of diagonal matrices x =
diag[ y, 0,−y̌ ] with y ∈ C3 . The simple roots are α1 = ε1− ε2 , α2 = ε2− ε3 , and
α3 = ε3 .

From [Kr] we know that (G,H) is a spherical pair and Γ(G/H) has gen-
erator µ1 = $3 = 1

2
(ε1 + ε2 + ε3) (the spin representation on C8 ). Hence
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∆0 = {α1, α2} . If x = diag[ y, 0,−y̌ ] and 〈α1,x〉 = 〈α2,x〉 = 0, then y = [a, a, a] .
Thus dim c = 1. By Lemma 4.1 we have a = c and m ∼= sl3(C). We take the
restricted root ξ1 = α3 = 1

3
(ε1 + ε2 + ε3) as a basis for a∗ .

The nests of restricted roots are

Φ+(ξ1) = {α3 , α2 + α3 , α1 + α2 + α3}

with basic root β1 = α3 , and

Φ+(2ξ1) = {α2 + 2α3 , α1 + α2 + 2α3 , α1 + 2α2 + 2α3}

with basic root β2 = α2 + 2α3 . Hence the multiplicities of the restricted positive
roots are as follows.

restricted root multiplicity
ξ1 3
2ξ1 3

α1

•..........................................................................................

α2

•
..........................................................................................

....................................................................................................

α3

−2

..

..

...
.......
..
.
...
.......
.
..
..

.......................

..
...
...
..
...
...
..
...
..

Figure 6: Marked Satake diagram for Spin7 /G2

From the table we obtain δ = 9
2
ξ1 . Since {α1 , α2} are the simple roots for m , we

have h0
m = 2ρm = 2α1 + 2α2 . Hence

〈h0
m | αi 〉 =

{
−2 if i = 3 ,

2 if i = 1, 2 .
(55)

We now obtain the dimension formula. From (55) we have 〈h0
m | β1 〉 =

〈h0
m | β2 〉 = −2. Hence kξ = 2 and mξ = 3 for ξ = ξ1 and ξ = 2ξ1 . Thus

Proposition 5.4 (3) and formula (21) give

d(λ) = Φ(〈λ | ξ1 〉 , 〈 δ | ξ1 〉 ; 1) Φ(〈λ | 2ξ1 〉 , 〈 δ | 2ξ1 〉 ; 1)

= W
(
〈λ | ξ1 〉 , 〈 δ | ξ1 〉 ; mξ1 ,m2ξ1

)
.

(56)

Remark 6.4. Let λ = kµ1 , where k is a nonnegative integer. Then
〈λ+ δ | ξ1 〉 = 1

2
(k + 1). Using this in (56), we obtain

d(λ) =
k + 3

3

5∏
j=1

k + j

j
.

For k = 1 the formula gives d(µ1) = 8 (the spin representation). For k = 2 the
formula gives d(2µ1) = 35.

Remark 6.5. The representation of Spin7(C) on
∧3 C7 has highest weight

2µ1 . A fundamental property of G2(C) is that it has a unique one-dimensional
subspace of fixed vectors in

∧3 C7 (see [Ba, §4.1] and [Ag]).
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Case 7. The pair (G2, SL3). We take G2 root system as a subset of the integer
vectors in R3 with coordinates summing to zero, with simple roots α1 = ε1 − ε2

and α2 = −2ε1 + ε2 + ε3 (see [Bo1, Planche IX]). The remaining positive roots are
α1 + α2 , 2α1 + α2 , 3α1 + α2 , 3α1 + 2α2 .

From [Kr] we know that (G,H) is a spherical pair and Γ(G/H) has gen-
erator µ1 = $1 = 2α1 + α2 . Hence ∆0 = {α2} (see [Bo1, Planche X]). It follows
from Lemma 4.1 that a = c = {α2}⊥ and m ∼= sl2(C). For the normalized inner
product we define

〈 εi | εj 〉 =

{
1/3 if i = j ,

0 if i 6= j .

Then 〈α2 | α2 〉 = 2 as required in Section 5, and the root 2α1 + α2 = −ε2 + ε3 is
a basis for a .

Let ξ1 = α1 . The nests of restricted roots are

Φ+(ξ1) = {α1 , α1 + α2} , basic root β1 = α1 ,

Φ+(2ξ1) = {2α1 + α2} ,
Φ+(3ξ1) = {3α1 + α2 , 3α1 + 2α2} , basic root β3 = 3α1 + 2α2 .

Hence the multiplicities of the restricted positive roots are as follows.

restricted root multiplicity
ξ1 2
2ξ1 1
3ξ1 2

α1

−1

..

..

...
.......
..
.
...
.......
.
..
..
..........................................................................................

....................................................................................................

....................................................................................................

α2

•...
...
..
...
...
..
...
...
.

.......................

Figure 7: Marked Satake diagram for G2/SL3

From the table we obtain δ = 5ξ1 . We have h0
m = α2 , so that

〈h0
m | αj 〉 =

{
−1 if j = 1 ,

2 if j = 2 .
(57)

We now obtain the dimension formula. Let λ ∈ Γ(G/H). For the basic
roots β1 and β3 we calculate from (57) that 〈h0

m | βj 〉 = −1. Let ξ be ξ1 or 3ξ1 .
Since dim nξ = 2, Proposition 5.4 (3) gives

dξ = Φ
(
〈λ | ξ 〉 , 〈 δ | ξ 〉 ; 1

2

)
.

When ξ = 2ξ1 , then dim nξ = 1. Hence by Proposition 5.4 (2) and (21) it follows
that

d(λ) = Φ
(
〈λ | ξ1 〉 , 〈 δ | ξ1 〉 ; 1

2

)
Φ(〈λ | 2ξ1 〉 , 〈 δ | 2ξ1 〉)

× Φ
(
〈λ | 3ξ1 〉 , 〈 δ | 3ξ1 〉 ; 1

2

)
= W

(
〈λ | ξ1 〉 , 〈 δ | ξ1 〉 ; mξ1 , m2ξ1 , m3ξ1

)
.

(58)



282 Gindikin and Goodman

Remark 6.6. Let λ = kµ1 ∈ Γ(G/H), where k is a nonnegative integer.
The normalized inner products are 〈 ξ1 | ξ1 〉 = 1/6, 〈 δ | ξ1 〉 = 5/6, and
〈µ1 | ξ1 〉 = 1/3 (since µ1 = 2ξ1 ). Using these values, we can write (58) in terms
of k as

d(λ) =
2k + 5

5

4∏
j=1

k + j

j
.

In particular, when k = 1 we get d(µ1) = 7 as expected.

7. Higher Rank Non-Symmetric Excellent Affine Spherical Spaces

Here is the list due to Krämer [Kr] of excellent irreducible spherical pairs (G,H)
of rank greater than one with G simple and simply-connected, H reductive, con-
nected, and not a symmetric subgroup of G (cf. [Wo2, §12.7] for geometric descrip-
tions). These pairs are determined by their Lie algebras (g, h). The enumeration
below follows [Av2, Table 1], which also includes all symmetric subgroups and also
includes the pairs that are not excellent.

4: G = SLp+q(C) and H = SLp(C) × SLq(C) with 1 ≤ p < q . Here H is
embedded in G by (x, y) 7→ (x−1)t ⊕ y for x ∈ SLp(C) and y ∈ SLq(C).

6: G = SL2n+1(C) and H ∼= Sp2n(C) with n ≥ 1. Here H is embedded in G
by x 7→ x⊕ 1 for x ∈ Sp2n(C).

9: G = Spin4p+2(C) and H ∼= SL2p+1(C) with p ≥ 1. Here H is embedded in
G by lifting the embedding x 7→ x⊕(x−1)t of SL2p+1(C) into SO4p+2(C, ω),
where ω the symmetric bilinear form on C4p+2 with matrix 1 on the antidi-
agonal and zero elsewhere.

10: G = Spin2n+1(C, ω) and H a covering of GLn(C), with ω the symmetric
bilinear form on C2n+1 with matrix 1 on the antidiagonal and zero else-
where. Here H is the connected inverse image under the spin covering of the
embedding x 7→ x⊕ 1⊕ (x−1)t of GLn(C) into SO2n+1(C).

13: G = Spin9(C) and H = Spin7(C). Here H embedded in G by lifting to G
the homomorphism x 7→ π3(x)⊕ 1 of H into SO9(C), where π3 is the spin
representation of H of degree 8.

15: G = Spin8(C) and H = G2(C). Here H embedded in G by x 7→ π1(x)⊕1,
where π1 is the representation of H of degree 7.

19: G = Sp2`(C) and H = C× × Sp2`−2(C) with ` ≥ 2. Here H is embedded
by (z, h) 7→ diag[ z , h , z−1 ] for z ∈ C× and h ∈ Sp2`−2(C).

26: G = E6(C) and H = Spin10(C). Here H is embedded into the degree 27
irreducible representation of G by the map x 7→ 1⊕π1(x)⊕π5(x), where π1

is the vector representation of degree 10 and π5 is a half-spin representation
of degree 16.
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We now proceed to calculate the restricted root systems and the restricted
Weyl dimension functions for these pairs. When G is a classical group we take its
matrix form such that the diagonal matrices in G give a maximal torus T . The
usual inner product 〈 · | · 〉 making the coordinate functions {εi} an orthonormal
set satisfies the normalization conditions of Section 5 for these root systems. The
choice of positive roots is indicated in each case.

Case 1. The pair (SLp+q, SLp×SLq). Assume 1 ≤ p < q . Let T be diagonal
matrices in G and U the upper-triangular unipotent matrices. Then B = TU is a
Borel subgroup. The simple roots are αi = εi− εi+1 and the fundamental weights
are

$i = ε1 + · · ·+ εi −
i

n

n∑
j=1

εj

with n = p+ q and i = 1, . . . , ` , where ` = n− 1.

From [Kr] we know that (G,H) is a spherical pair and Γ(G/H) has r = p+1
generators

µ1 = $1 +$` , µ2 = $2 +$`−1 , . . . , µp−1 = $p−1 +$q+1 ,

µp = $p , µp+1 = $q .

Hence the support condition in Definition 3.1 is satisfied and

∆0 = {αp+1 , αp+2 , . . . , αq−1} .

Since | Suppµi| = 2 for i = 1, . . . , p − 1, we know by Lemma 4.1 that dim c =
2(p − 1) + 2 = 2p and dim c0 = 2p − (p + 1) = p − 1. Thus if p = 1 then
c0 = 0. Assume now p ≥ 2 and identify t with t∗ using the form 〈· | ·〉 . If
x = c1α1 + · · · + c`α` , then the equations 〈µi | x〉 = 0 for i = 1, . . . , r give the
relations

c`+1−i = −ci for i = 1, . . . p− 1 and cp = c1 = 0 .

Hence the linearly independent set

{α1 − α` , α2 − α`−1 , · · · , αp−1 − αq+1 } , (59)

which is orthogonal to ∆0 , is a basis for c0 . In particular, we see from (59) that
ρg ⊥ c0 since each basis vector goes to its negative under the Dynkin diagram
automorphism sending αi to α`+1−i , verifying the claim in the proof of Lemma
5.1.

Consider the orthogonal set of vectors in t

x1 = diag[ 1 , 0 , . . . , 0 , −1 ] ,

...

xp = diag[ 0 , . . . , 0 , 1︸ ︷︷ ︸
p

, 0 , . . . , 0︸ ︷︷ ︸
q−p

, −1 , 0 , . . . , 0︸ ︷︷ ︸
p

] ,

xp+1 = diag[ s , . . . , s︸ ︷︷ ︸
p

, −t , . . . ,−t︸ ︷︷ ︸
q−p

, s , . . . , s︸ ︷︷ ︸
p

] ,
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where s = (q−p)/(q+p) and t = 1−s . Here s is chosen to make 〈αp | xp+1 〉 = 1.
These vectors are orthogonal to ∆0 and c0 . Since dim a = dim c− dim c0 = p+ 1,
it follows that {x1, . . . ,xp+1} is a basis for a . Let {ξ1, . . . , ξp+1} be the dual basis
for a∗ :

ξi =
1

2
(εi − εn+1−i) for 1 ≤ i ≤ p ,

ξp+1 =
1

2p
(ε1 + · · ·+ εp)−

1

q − p
(εp+1 + · · ·+ εq) +

1

2p
(εq+1 + · · ·+ εn) .

(60)

The restricted root data are as follows (details given below–the entries in the
fourth and sixth columns are calculated using (61) and (63)). In the left column
(r) means regular and (s) singular.

r/s restricted root ξ mult. 〈δ | ξ〉 # basic
roots β

〈h0
m | β〉

(r) ξi − ξj (1≤i<j≤p) 2 j − i 2 0

(r) ξi + ξj (1≤i<j≤p) 2 p+ q + 1− i− j 2 0

(s) ξi ± ξp+1 (1≤i≤p) q − p 1
2
(p+ q + 1− 2i) 1 −(q − p− 1)

(r) 2ξi (1≤i≤p) 1 p+ q + 1− 2i 1 0
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Figure 8: Marked Satake diagram for SLp+q /SLp×SLq

From the table we calculate that

δ =

p∑
i=1

(
n− 2i+ 1

)
ξi . (61)

Note that 〈 δ | ξp+1 〉 = 0.

From the Satake diagram we see that m′ ∼= slq−p(C) with simple roots ∆0 .
Hence

h0
m =

q−p∑
i=1

(q − p− 2i+ 1)εp+i . (62)

Thus we have

〈h0
m , αi〉 =


−q + p+ 1 when i = p or i = q ,

0 when i < p or i > q ,

2 when p+ 1 ≤ i ≤ q − 1 ,

(63)

which gives the markings on the Satake diagram.

The nests of positive roots, basic roots, and the dimension factors dξ(λ) for
ξ ∈ Σ+ and λ ∈ Γ(G/H) are as follows (cases (i) and (ii) are empty when p = 1).
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(i) For 1 ≤ i < j ≤ p let ξ = ξi − ξj . From (60) we see that αi = αn−i+1 =
ξi − ξi+1 for i = 1, . . . , p− 1. Hence

Φ+(ξ) = { εi − εj , εn+1−j − εn+1−i }
= {αi + · · ·+ αj−1 , αn+1−j + · · ·+ αn−i }

with both roots basic.

(ii) For 1 ≤ i < j ≤ p let ξ = ξi + ξj . From (60) we have

Φ+(ξ) = { εi − εn+1−j , εj − εn+1−i }
= {αi + · · ·+ αn−j , αj + · · ·+ αn−i }

with both roots basic.

From (63) the eigenvalues of h0
m on nξ are

〈h0
m | αi + · · ·+ αn−j〉 = 〈h0

m | αp〉+ 〈h0
m | αp+1 + · · ·+ αq−1〉+ 〈h0

m | αq〉
= −(q − p− 1) + 2(q − p− 1)− (q − p− 1) = 0 .

Likewise 〈h0
m | αj + · · ·+ αn−i〉 = 0.

(iii) For 1 ≤ i ≤ p let ξ = ξi−ξp+1 . From (60) we see that αq = ξp−ξp+1 . Hence

Φ+(ξ) = { εp+j − εn+1−i : 1 ≤ j ≤ q − p }
= {αp+j + · · ·+ αn−i : 1 ≤ j ≤ q − p} .

From (63) the lowest eigenvalue of h0
m on nξ is −q + p + 1, and the basic

root is β = αq + αq+1 + · · ·+ αn−i .

(iv) For 1 ≤ i ≤ p let ξ = ξi+ξp+1 . From (60) we see that αp = ξp+ξp+1 . Hence

Φ+(ξ) = { εi − εp+j : 1 ≤ j ≤ q − p }
= {αi + · · ·+ αp+j−1 : 1 ≤ j ≤ q − p} .

From (63) we see that the lowest eigenvalue of h0
m on nξ is −q + p+ 1, and

the basic root is β = αi + αi+1 + · · ·+ αp .

(v) For 1 ≤ i ≤ p let ξ = 2ξi . Then by (60) we have

Φ+(ξ) = {εi − εn+1−i} = {αi + · · ·+ αn−i} .

In cases (i), (ii) we have dξ(λ) = [Φ(〈λ | ξ 〉 , 〈 δ | ξ 〉)]2 by Proposition 5.4 (2). In
cases (iii) and (iv), since mξ = q − p , we conclude by Proposition 5.4 (3) that

dξ(λ) = Φ
(
〈λ | ξ 〉 , 〈 δ | ξ 〉 ; 1

2
(q − p− 1)

)
.

In case (v) we have dξ(λ) = Φ(〈λ | ξ〉 , 〈δ | ξ〉) by Proposition 5.4 (2).



286 Gindikin and Goodman

From cases (i)–(v) and (21) we obtain the full dimension formula. Let

Ξ0 = {ξi ± ξj : 1 ≤ i < j ≤ p} , Ξ1 = {ξi ± ξp+1 : 1 ≤ i ≤ p} ,
Ξ2 = {2ξi : 1 ≤ i ≤ p} .

Then Σ+
reg = Ξ0 ∪ Ξ2 and Σ+

sing = Ξ1 . The dimension formula is

d(λ) =
∏
ξ∈Ξ+

0

{Φ(〈λ | ξ〉 , 〈δ | ξ〉)}2
∏
ξ∈Ξ+

1

Φ
(
〈λ | ξ 〉 , 〈 δ | ξ 〉 ; 1

2
(q − p− 1)

)
×
∏
ξ∈Ξ+

2

Φ(〈λ | ξ〉 , 〈δ | ξ〉)

=
∏
ξ∈Σ+

reg

W
(
〈λ | ξ〉 , 〈δ | ξ〉 ; mξ

) ∏
ξ∈Σ+

sing

Wsing

(
〈λ | ξ〉 , 〈δ | ξ〉 ; mξ

)
.

(64)

Case 2. The pair (SL2n+1, Sp2n). From [Kr] we know that (G,H) is a spherical
pair and Γ(G/H) = X+(B). Thus every irreducible representation of G has a one-
dimensional space of H -fixed vectors, ∆0 = ∅ , a = c = t , and the restricted roots
are the same as the roots. Thus every restricted root is regular and has multiplicity
one. The dimension function is given by Weyl’s formula (21).

Case 3. The pair (Spin4p+2, SL2p+1). Let g = so(C2`, ω), where ` = 2p+ 1 is
odd and ω is the symmetric bilinear form on C2` with matrix 1 on the antidiagonal
and 0 elsewhere. Define the involution θ as in [GW, §12.3, Type DIII]. Then
gθ ∼= gl`(C); we take h to be the subalgebra corresponding to sl`(C) under
this isomorphism. Take t the diagonal matrices in g . Then x ∈ t is given by
x = diag[ y, −y̌ ] , where y = [ ε1(y) , . . . , ε`(y) ]. The roots of t on g are ±εi±εj
for 1 ≤ i < j ≤ ` . For making calculations in this case it is convenient to use the
ordered basis for t∗

ε1 > −ε2 > ε3 > · · · > −ε2p > ε2p+1 ,

as in [GW, §12.3.2, Type DIII]. Let Φ+ be the positive roots relative to this order
(obtained from the usual system of positive roots by εi 7→ −(−1)iεi ). The simple
roots in Φ+ are then

α1 = ε1 + ε2 , α2 = −ε2 − ε3 , . . . , α2p−1 = ε2p−1 + ε2p ,

α2p = −ε2p − ε2p+1 , α2p+1 = −ε2p + ε2p+1 .
(65)

Let G = Spin2`(C) and H the connected subgroup of G with Lie algebra
h . From [Kr] we know that (G,H) is a spherical pair and Γ(G/H) is free of rank
p+ 1 with generators

µ1 = $2 , µ2 = $4 , . . . , µp = $2p , µp+1 = $2p+1

(µp and µp+1 are the highest weights for the half-spin representations of G). Hence
the support condition in Definition 3.1 is satisfied and ∆0 = {α1 , α3 , . . . , α2p−1} .
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Since | Suppµi| = 1 for i = 1, . . . , p + 1, Lemma 4.1 gives a = c . For the
choice (65) of simple roots we see that a consists of all x = diag[ y,−y̌ ] ∈ t with

y = [ a1 ,−a1 , . . . , ap ,−ap , ap+1 ] . (66)

Thus an orthogonal basis for a∗ is given by

ξi = 1
2
(ε2i−1 − ε2i) for 1 ≤ i ≤ p , ξp+1 = ε2p+1 . (67)

Note that εi = α2i for 1 ≤ i ≤ p and εp+1 = −α2p = α2p+1 .

The restricted root data are as follows (details given below–the entries in
the fourth and sixth columns are calculated using (68) and (69)).

r/s restricted root ξ mult. 〈δ | ξ〉 # basic
roots β

〈h0
m | β〉

(r) ξi − ξj (1≤i<j≤p) 4 1
2
(j − i) 1 −2

(r) ξi + ξj (1≤i<j≤p) 4 4p+ 3− 2(i+ j) 1 −2

(s) ξi ± ξp+1 (1≤i≤p) 2 1
2
(4p+ 3− 4i) 1 −1

(r) 2ξi (1≤i≤p) 1 4p+ 3− 4i 1 0
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Figure 9: Marked Satake diagram for Spin4p+2 /SL2p+1 with p ≥ 1

From the table we calculate that the element δ in this case is

δ =

p∑
i=1

(
4(p− i) + 3

)
ξi . (68)

Note that 〈 δ | ξp+1 〉 = 0.

Since c0 = 0, we see from the Satake diagram that m ∼= sl2(C)×· · ·×sl2(C)
(p factors) and h0

m = α1 + α3 + · · · + α2p−1 when we identify t with t∗ using the
form 〈· | ·〉 . Thus

〈h0
m , αi 〉 =


2 if i = 2k − 1 for 1 ≤ k ≤ p ,

−2 if i = 2k for 1 ≤ k ≤ p ,

−1 if i = 2p or i = 2p+ 1 ,

(69)

which gives the markings in the Satake diagram.

The nests of positive roots, the basic roots, and the dimension factors dξ(λ)
for ξ ∈ Σ+ and λ ∈ Γ(G/H) are as follows.
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(i) For 1 ≤ i < j ≤ p let ξ = ξi − ξj . Then

Φ+(ξ) = {ε2i−1 − ε2j−1 , ε2i−1 + ε2j ,−ε2i − ε2j−1 ,−ε2i + ε2j}
= {β , α2i−1 + β , β + α2j−1 , α2i−1 + β + α2j−1} ,

where β = α2i + α2i+1 + · · · + α2j−2 . From (69) we see that β is the basic
root in Φ+(ξ).

(ii) For 1 ≤ i < j ≤ p let ξ = ξi + ξj . Then

Φ+(ξ) = {ε2i−1 + ε2j−1 , ε2i−1 − ε2j ,−ε2i + ε2j−1 ,−ε2i − ε2j}
= {β , α2i−1 + β , β + α2j−1 , α2i−1 + β + α2j−1} ,

where β = α2i + · · ·+ α2j−1 + 2α2j + · · ·+ 2α2p−1 + α2p + α2p+1 is the basic
root.

(iii) For 1 ≤ i ≤ p let ξ = ξi − ξp+1 . Then

Φ+(ξ) = {ε2i−1 − ε2p+1 ,−ε2i − ε2p+1} = {β , α2i−1 + β} ,

where β = α2i + · · ·+ α2p is the basic root.

(iv) For 1 ≤ i ≤ p let ξ = ξi + ξp+1 . Then

Φ+(ξ) = {ε2i−1 + ε2p+1 , −ε2i + ε2p+1} = {β , β + α2p−1} ,

where β = α2i + · · ·+ α2p−1 + α2p+1 is the basic root.

(v) For 1 ≤ i ≤ p let ξ = 2ξi . Then

Φ+(ξ) = {ε2i−1 − ε2i} = {β} ,

where β = α2i−1 + 2α2i + · · ·+ 2α2p−1 + α2p + α2p+1.

In cases (i) and (ii) since kξ = 2 and mξ = kξ + 2, Proposition 5.4 (4) gives

dξ(λ) = Φ(〈λ | ξ 〉 , 〈 δ | ξ 〉) Φ(〈λ | ξ 〉 , 〈 δ | ξ 〉 ; 1) .

In cases (iii) and (iv) since kξ = 1 and mξ = kξ + 1, Proposition 5.4 (3) gives

dξ(λ) = Φ
(
〈λ | ξ 〉 , ϕ(〈 δ | ξ 〉 ; 1

2
) .

In case (v) since kξ = 0, Proposition 5.4 (2) gives

dξ(λ) = Φ(〈λ | ξ 〉 , 〈 δ | ξ 〉) .

From cases (i)–(v) and (21) we obtain the full dimension formula. Let

Ξ+
0 = {ξi ± ξj : 1 ≤ i < j ≤ p} , Ξ+

1 = {ξi ± ξp+1 : 1 ≤ i ≤ p} ,
Ξ+

2 = {2ξi : 1 ≤ i ≤ p} .
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Then Σ+
reg = Ξ+

0 ∪ Ξ+
2 and Σ+

sing = Ξ+
1 . The dimension formula is

d(λ) =
∏
ξ∈Ξ+

0

Φ(〈λ | ξ 〉, 〈 δ | ξ 〉) Φ(〈λ | ξ 〉, 〈 δ | ξ 〉 ; 1)

×
∏
ξ∈Ξ+

1

Φ
(
〈λ | ξ 〉, 〈 δ | ξ 〉 ; 1

2

)∏
ξ∈Ξ+

2

Φ(〈λ | ξ 〉, 〈 δ | ξ 〉)

=
∏
ξ∈Σ+

reg

W
(
〈λ | ξ〉, 〈δ | ξ〉, ; mξ

) ∏
ξ∈Σ+

sing

Wsing

(
〈λ | ξ〉, 〈δ | ξ〉, ; mξ

)
.

(70)

Case 4. The pair (Spin2`+1, GL`). By [Kr] the fundamental H -spherical
highest weights are $1 , $2 , . . . , $n−1 , 2$n . Thus Γ(G/H) consists of all
dominant weights with the coefficient of $n even. Hence ∆0 = ∅ , a = t ,
m = 0, and N = U . The restricted roots coincide with the roots, and all root
multiplicities are 1. Thus every restricted root is regular and has multiplicity one.
The dimension function is given by Weyl’s product formula (21).

Case 5. The pair (Spin9, Spin7). With the matrix form of g and t
chosen as in [GW, §3.1], the Cartan subalgebra consists of diagonal matrices
x = diag[ y , 0 ,−y̌ ] with y ∈ C4 . The simple roots are α1 = ε1−ε2 , α2 = ε2−ε3 ,
α3 = ε3 − ε4 , and α4 = ε4 . From [Kr] one knows that (G,H) is a spherical pair
with fundamental H -spherical highest weights µ1 = $1 and µ2 = $4 . Hence the
support condition in Definition 3.1 is satisfied and ∆0 = {α2, α3} . We can write

µ1 = ε1 , µ2 = 1
2

(
ε1 + ε2 + ε3 + ε4

)
. (71)

Since | Suppµi| = 1 for i = 1, 2, Lemma 4.1 gives a = c and m ∼= sl3(C).
Using α2 = ε2 − ε3 and α3 = ε3 − ε4 we thus obtain

a = Kerα1 ∩Kerα2 = {diag[ y, 0,−y̌ ] : y = [ a, b, b, b ]} . (72)

We take
ξ1 = ε1 and ξ2 = 1

3
(ε2 + ε3 + ε4) (73)

as an orthogonal basis for a∗ .

The restricted root data are as follows (details given below; the fourth and
sixth columns are calculated from (74) and (75)).

r/s restricted root ξ mult. 〈δ | ξ〉 # basic roots β 〈h0
m | β〉

(r) ξ1 1 7/2 1 0
(r) ξ2 3 3/2 1 −2
(r) ξ1 − ξ2 3 2 1 −2
(r) ξ1 + ξ2 3 5 1 −2
(r) 2ξ2 3 3 1 −2

From the table we calculate that

δ =
1

2

(
7ξ1 + 9ξ2

)
. (74)
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Figure 10: Marked Satake diagram for Spin9 /Spin7

Since m ∼= sl3 and the positive roots of m are α2 , α3 , α2 + α3 , we have
h0
m = 2ρm = 2α2 + 2α3 . Hence

〈h0
m | αi 〉 =

{
−2 if i = 1, 4 ,

2 if i = 2, 3 ,
(75)

which gives the markings in the Satake diagram.

The nests of positive roots, the basic roots, and the dimension factors dξ(λ)
for ξ ∈ Σ+ and λ ∈ Γ(G/H) are as follows.

(i) Let ξ = ξ1 . Then Φ+(ξ) = {α1 + α2 + α3 + α4} .

(ii) Let ξ = ξ1 − ξ2 . Then

Φ+(ξ) = {ε1 − εi : 2 ≤ i ≤ 4} = {β, β + α3, β + α3 + α4} ,

where β = α1 + α2 is the basic root.

(iii) Let ξ = ξ2 . Then

Φ+(ξ) = {εi : 2 ≤ i ≤ 4} = {β, β + α3, β + α3 + α2} ,

where β = α4 is the basic root.

(iv) Let ξ = 2ξ2 . Then

Φ+(ξ) = {εi + εj : 2 ≤ i < j ≤ 4} = {β, β + α2, β + α2 + α3} ,

where β = α3 + 2α4 is the basic root.

(v) Let ξ = ξ1 + ξ2 . Then

Φ+(ξ) = {ε1 + εj : 2 ≤ j ≤ 4} = {β, β + α3, β + α2 + α3} ,

where β = α1 + α2 + α3 + 2α4 is the basic root.

In case (i) Proposition 5.4 (2) gives dξ(λ) = Φ(〈λ | ξ 〉 , 〈 δ | ξ 〉). In cases (ii)-(iv)
we have kξ = 2 and dim nξ = kξ + 1. Hence Proposition 5.4 (3) gives

dξ(λ) = Φ(〈λ | ξ 〉 , 〈 δ | ξ 〉 ; 1)
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in all these cases. Thus from (21) the dimension formula is

d(λ) = Φ(〈λ | ξ1 〉〈 δ | ξ1 〉) Φ(〈λ | ξ2 〉, 〈 δ | ξ2 〉 ; 1)

× Φ(〈λ | 2ξ2 〉, 〈 δ | 2ξ2 〉 ; 1)
∏

ξ=ξ1±ξ2

Φ(〈λ | ξ 〉, 〈 δ | ξ 〉 ; 1)

=
∏
ξ∈Σ+

0

W
(
〈λ | ξ 〉, 〈 δ | ξ 〉 ; mξ ,m2ξ

)
.

(76)

Here Σ+
0 = Σ+

reg = { ξ1 , ξ2 , ξ1 ± ξ2 } and there are no singular roots. However
some of the factors in the dimension formula occur for rank-one symmetric spaces,
while some of the factors occur for the rank-one non-symmetric space Spin7 /G2 .

Remark 7.1. If λ = k1µ1 + k2µ2 , then formula (76) can be written as

d(λ) = c (2k1 + k2 + 7)(k2 + 3)

(
k2 + 5

5

) 3∏
j=1

(k1 + k2 + j + 3) , (77)

where the normalizing constant c = 2/7!. For example, when λ = µ1 formula (77)
gives d($1) = 9 (the vector representation on C9 ). When λ = µ2 , the formula
gives d($4) = 16 (the spin representation).

Case 6. The pair (Spin8, G2). We take the matrix realization of g with
Cartan subalgebra t consisting of diagonal matrices x = diag[ y,−y̌ ] with y ∈ C4 .
The simple roots are α1 = ε1−ε2 , α2 = ε2−ε3 , α3 = ε3−ε4 , and α4 = ε3+ε4 .

From [Kr] we know that (G,H) is a spherical pair and Γ(G/H) has gener-
ators

µ1 = $1 = ε1 ,

µ2 = $3 = 1
2
(ε1 + ε2 + ε3 − ε4) ,

µ3 = $4 = 1
2
(ε1 + ε2 + ε3 + ε4) .

(78)

Hence the support condition in Definition 3.1 is satisfied and ∆0 = {α2} . Since
| Suppµi| = 1 for i = 1, 2, 3, Lemma 4.1 gives dim c = 3 and a = c .

If x = diag[ y,−y̌ ] ∈ t and 〈α2,x〉 = 0, then y = [ a, b, b, c ] . We take

ξ1 = ε1 , ξ2 = 1
2
(ε2 + ε3) , and ξ3 = ε4 (79)

as an orthogonal basis for a∗ . The restricted root data are as follows (details given
below–the entries in the fourth and sixth columns are calculated using (80) and
(81)).

r/s restricted root ξ mult. 〈δ | ξ〉 # basic roots β 〈h0
m | β〉

(s) ξ1 − ξ2 , ξ2 − ξ3 , ξ2 + ξ3 2 3/2 1 −1
(r) ξ1 − ξ3 , ξ1 + ξ3 , 2ξ2 1 3 1 0
(s) ξ1 + ξ2 2 9/2 2 −1
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Figure 11: Marked Satake diagram for Spin8 /G2

From the table we obtain
δ = 3ξ1 + 3ξ2 . (80)

Note that 〈 δ | ξ3 〉 = 0.

From the Satake diagram we see that m ∼= sl(2,C) and h0
m = α2 . Thus

〈h0
m | αi 〉 =

{
−1 if i = 1, 3, 4 ,

2 if i = 2 ,
(81)

which gives the markings in the diagram. The nests of positive roots, basic roots,
and the dimension factors dξ(λ) for ξ ∈ Σ+ and λ ∈ Γ(G/H) are as follows.

(i) Let ξ be ξ1− ξ2 , ξ2− ξ3 , or ξ2 + ξ3 . Then Φ+(ξ) = {β , β + α2} , where the
basic root β is α1 , α3 , or α4 , respectively.

(ii) Let ξ = ξ1 + ξ2 . Then Φ+(ξ) = {β , β + α2} , where the basic root β =
α1 + α2 + α3 + α4 .

(iii) Let ξ = ξ1 − ξ3 , ξ1 + ξ3 , or 2ξ2 . Then Φ+(ξ) = {αi + αj + α2} with (i, j)
equal to (1, 3), (2, 4), or (1, 4), respectively.

In cases (i) and (ii) we have kξ = 1 and mξ = kξ + 1, so Proposition 5.4 (3) gives

dξ(λ) = Φ
(
〈λ | ξ 〉 , 〈 δ | ξ 〉 ; 1

2

)
in these cases. In case (iii) Proposition 5.4 (2) gives dξ(λ) = Φ(〈λ | ξ 〉 , 〈 δ | ξ 〉).

Let Σ+
reg = {ξ1 ± ξ3 , 2ξ2 } and Σ+

sing = {ξ1 ± ξ2 , ξ2 ± ξ3} . From (21) we
obtain

d(λ) =
∏
ξ∈Σ+

reg

Φ(〈λ | ξ 〉, 〈 δ | ξ 〉)
∏

ξ∈Σ+
sing

Φ
(
〈λ | ξ 〉, 〈 δ | ξ 〉 ; 1

2

)
=
∏
ξ∈Σ+

reg

W (〈λ | ξ 〉 , 〈 δ | ξ 〉 ; mξ )
∏

ξ∈Σ+
sing

Wsing(〈λ | ξ 〉 , 〈δ | ξ 〉 ; mξ ) .
(82)

In this formula the regular factors occur for rank-one symmetric spaces.

Remark 7.2. If λ = k1µ1 + k2µ2 + k3µ3 , then formula (82) can be written as

d(λ) = c1

3∏
i=1

(
ki + 2

2

) ∏
1≤i<j≤3

(ki + kj + 3)
2∏
j=1

(k1 + k2 + k3 + j + 3) , (83)
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where c1 = 1/(33 · 4 · 5). This version clearly exhibits the symmetry in k1 ,
k2 , k3 that comes from the triality outer automorphisms of G associated with
the symmetries of the Dynkin diagram. Taking λ = µi (i = 1, 2, 3) in (83)
gives d(λ) = 8 (the vector and the two half-spin representations), whereas taking
λ = µ2 + µ3 gives d(λ) = 56 =

(
8
3

)
(the representation of SO8(C) on

∧3 C8 ).

Case 7. The pair (Sp2`, C× × Sp2`−2). We take G in the matrix form of
[GW, §2.1.2], with Cartan subalgebra t the diagonal matrices x = diag[ y,−y̌] ,
where y = [ ε1(y), . . . , ε`(y) ] and y̌ = [ ε`(y), . . . , ε1(y) ]. The roots of t on g are
±εi ± εj for 1 ≤ i < j ≤ ` and ±2εi for 1 ≤ i ≤ ` . Take the simple roots as
αi = εi − εi+1 for i = 1, . . . , `− 1 and α` = 2ε` .

From [Kr] we know that (G,H) is a spherical pair and Γ(G/H) is free of
rank 2 with generators

µ1 = 2$1 = 2ε1 , µ2 = $2 = ε1 + ε2 . (84)

Hence the support condition in Definition 3.1 is satisfied. If ` = 2, then ∆0 is
empty, c = t , and λ = k1$1 + k2$2 is a spherical highest weight if and only k1 is
even.2 Thus we may assume that ` ≥ 3 in the following. Then ∆0 = {α3, . . . , α`}
and

c = {x = diag[ y,−y̌ ] with y = [ξ1, ξ2, 0, . . . , 0] } . (85)

Since | Suppµi| = 1 for i = 1, 2, we know from Lemma 4.1 that a = c and
m = sp2`−4(C). The restricted root data are as follows (details given below–the
entries in the fourth and sixth columns are calculated using (86) and (87)).

r/s restricted root ξ mult. 〈δ | ξ〉 # basic roots β 〈h0
m | β〉

(r) ξ1 − ξ2 1 1 1 0
(r) ξ1 + ξ2 1 2`− 1 1 0
(s) ξi (i = 1, 2) 2`− 4 `+ 1− i 1 −2`+ 5
(s) 2ξi (i = 1, 2) 1 2(`+ 1− i) 1 0

α1

..

..

...
.......
..
.
...
.......
.
..
..
...................................................................................................................

α2

(−2` + 5 , −1/2)
..
..
...
.......
..
.
...
.......
.
..
..
...................................................................................................................

α3

•................................... . . . ...................................

α`−1

•
.............................................................................................................................

.............................................................................................................................

α`

•...
...
..
...
...
..
...
...
.

.......................

Figure 12: Marked Satake diagram for Sp2` /(C× × Sp2`−2)

From the table we obtain

δ = `ξ1 + (`− 1)ξ2 . (86)

In this case ∆0 is of type C`−2 and has two root lengths when ` ≥ 4.
We have α∨` = ε` . With the choice of positive roots for g above, we have
ρm = (`− 2)ε3 + (`− 3)ε4 + · · ·+ ε` and h0

m = (2`− 5)ε3 + (2`− 7)ε4 + · · ·+ ε` .
Thus

$0
m = ρm −

1

2
h0
m =

1

2

(
ε3 + . . .+ ε`

)
2This is the same as Case 5 since Spin5

∼= Sp4 and C× × Sp2
∼= GL2 .
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From these formulas we see that

〈h0
m | αi 〉 =

{
0 if i = 1 ,

−2`+ 5 if i = 2 ,
(87)

and

〈$0
m | αi 〉 =


0 for i = 1 and 3 ≤ i ≤ `− 1 ,

−1/2 if i = 2 ,

1 if i = ` ,

(88)

as in (25). This furnishes the markings in the Satake diagram.

The nests of positive roots and the dimension factors dξ(λ) for ξ ∈ Σ+ and
λ ∈ Γ(G/H) are as follows.

(i) Let ξ = ξ1 − ξ2 . Then Φ+(ξ) = {α1} .

(ii) Let ξ = ξ1 + ξ2 . Then Φ+(ξ) = {β} , where β = α1 + 2α2 + · · ·+ 2αn−1 +α` .

(iii) Let ξ = ξi with i = 1, 2. Then

Φ+(ξ) = {εi ± εj : 3 ≤ j ≤ `} = {βj , γj : 3 ≤ j ≤ `} .

Here βj = β+α3+· · ·+αj−1 and γj = βj+2αj+· · ·+2αn−1+α` , with the basic
root β = α1 + α2 when i = 1 and β = α2 when i = 2. (In these formulas
β3 = β and γ` = β` +α` .) From (87) we see that 〈h0

m , β 〉 = −2`+ 5. Since
dim nξ = 2`−4, it follows from Proposition 5.7 that the eigenvalues of adh0

m

on nξ are precisely

−2`+ 5 , . . . , −1 , 1 , . . . , 2`− 5

with multiplicity one. The negative eigenvalues come from the roots βj =
εi − εj , while the positive eigenvalues come from the roots γj = εi + εj .
Since ρm = (1/2)h0

m + $0
m and 〈$0

m , βj 〉 = −1/2 , 〈$0
m , γj 〉 = 1/2 for

3 ≤ j ≤ ` , it follows that the shifts 〈 ρm | α 〉 in dξ(λ) are

−`+ 2 , . . . , −2 , −1 , 1 , 2 . . . , `− 2

(an arithmetic progression of step one with a gap at zero3). Hence

dξ(λ) =
Φ(〈λ | ξ 〉 , 〈 δ | ξ 〉 ; `− 2)

Φ(〈λ | ξ 〉 , 〈 δ | ξ 〉)
,

where the factor in the denominator creates the gap at zero.

(iv) Let ξ = 2ξi with i=1, 2. Then Φ+(ξ)={β} , where β = 2αi+ · · ·+2α`−1+α` .

3A direct calculation of these shifts from the formula for ρm does not explain the gap at zero.
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In cases (i), (ii), and (iv) Proposition 5.7 gives dξ(λ) = Φ(〈λ | ξ〉 , 〈δ | ξ〉).
Combining this with the formula from case (iii) and using (21), we can obtain the
full dimension formula. Let Σ+

reg = {ξ1 + ξ2 , ξ1 − ξ2} and Σ+
sing = {ξ1 , ξ2} .

Then

d(λ) =
∏
ξ∈Σ+

reg

Φ(〈λ | ξ 〉, 〈 δ | ξ 〉)
∏

ξ∈Σ+
sing

Φ(〈λ | ξ 〉, 〈 δ | ξ 〉 ; `− 2)

=
∏
ξ∈Σ+

reg

W
(
〈λ | ξ 〉 , 〈 δ | ξ 〉 ; mξ

)
×
∏

ξ∈Σ+
sing

Wsing

(
〈λ | ξ 〉 , 〈δ | ξ 〉 ; mξ ,m2ξ

)
.

(89)

In this formula the regular dimension factors occur for rank-one symmetric spaces.
Note that the denominator for ξi in case (iii) is cancelled by the dimension factor
for 2ξi from case (iv).

Remark 7.3. If λ = k1µ1 + k2µ2 , then formula (89) can be written as

d(λ) = c (2k1 + 1)(2k1 + 2k2 + 2`− 1)

(
k2 + 2`− 3

2`− 3

)(
2k1 + k2 + 2`− 2

2`− 3

)
, (90)

where c = 1/[(2` − 1)(2` − 2)] is the normalizing constant to make d(0) = 1.
Taking λ = µ1 gives d(µ1) = 2`(2` + 1)/2. Here µ1 is the highest weight of the
irreducible G-module S2(C2`) (see [GW, §10.2.3, Example 2]). Taking λ = µ2

gives d(µ2) = (2`+ 1)(`− 1) =
(

2`
2

)
−
(

2`
0

)
. In this case µ2 is the highest weight of

the traceless (harmonic) subspace in
∧2 C2` (see [GW, Cor. 5.5.17]).

Case 8. The pair (E6, Spin10). We take the root system and the simple roots
α1 , . . . , α6 for g as in [Bo1, Planche V]. We identify the Cartan subalgebra t
with the vectors x ∈ C8 such that 〈ε6 | x〉 = 〈ε7 | x〉 = −〈ε8 | x〉 .

From [Kr] we know that (G,H) is a spherical pair and Γ(G/H) has gener-
ators

µ1 = $1 =
2

3

(
ε8 − ε7 − ε6

)
,

µ2 = $2 =
1

2

(
ε1 + ε2 + ε3 + ε4 + ε5 − ε6 − ε7 + ε8

)
,

µ3 = $6 =
1

3

(
ε8 − ε7 − ε6

)
+ ε5

(91)

corresponding to the endpoints of the Dynkin diagram. Hence the support con-
dition in Definition 3.1 is satisfied and ∆0 = {α3, α4, α5} , where α3 = ε2 − ε1 ,
α4 = ε3 − ε2 , α5 = ε4 − ε3 . Since | Suppµi| = 1 for i = 1, 2, Lemma 4.1 gives
a = c .

Let x ∈ t . Then 〈αi | x〉 = 0 for i = 3, 4, 5 if and only if

x = γ1(ε1 + ε2 + ε3 + ε4) + γ2ε5 + γ3(−ε6 − ε7 + ε8) , (92)
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with γi ∈ C . Thus a consists of all x in (92).

Let ξ1 = α1|a , ξ2 = α2|a , ξ3 = α6|a . By [Bo1, Planche V] these roots
are given by α1 = 1

2

(
ε1 − ε2 − ε3 − ε4 − ε5 − ε6 − ε7 + ε8

)
, α2 = ε1 + ε2 , and

α6 = ε5 − ε4 . Hence from (92) we calculate that

ξ1 = −1

4

(
ε1 + ε2 + ε3 + ε4

)
− 1

2

(
ε5 + ε6 + ε7 − ε8

)
,

ξ2 = ε5 , ξ3 =
1

3

(
ε6 + ε7 − ε8

)
.

(93)

The restricted root data are as follows (details given below–the entries in the fourth
and sixth columns are calculated using (94) and (95)).

r/s restricted root ξ mult. 〈δ | ξ〉 # basic roots β 〈h0
m | β〉

(s) ξ1 , ξ3 4 5/2 1 −3
(s) ξ1 + ξ2 , ξ2 + ξ3 4 11/2 1 −3
(r) ξ2 6 3 1 −4
(r) ξ1 + ξ2 + ξ3 6 8 1 −4
(r) ξ1 + ξ3 1 5 1 0
(r) ξ1 + 2ξ2 + ξ3 1 11 1 0

α1

−3

..

..

...
.......
..
.
...
.......
.
..
..
.................................................................

α3

•.................................................................

α4

•.................................................................

α5

•.................................................................

α6

−3

..

..

...
.......
..
.
...
.......
.
..
..

α2−4 ..
..
...
.......
..
.
...
.......
.
..
..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

Figure 13: Marked Satake diagram for E6/Spin10

From the table we obtain
δ = 8ξ1 + 11ξ2 + 8ξ3 . (94)

Since m ∼= sl(4,C) with simple roots {α3 , α4 , α5} , we have h0
m = 3α3 +4α4 +3α5 .

Hence

〈h0
m | αi 〉 =


−3 if i = 1, 6 ,

−4 if i = 2 ,

2 if i = 3, 4, 5 ,

(95)

which gives the markings in the Satake diagram.

The nests of positive roots and the dimension factors dξ(λ) for ξ ∈ Σ+

and λ ∈ Γ(G/H) are as follows. We describe the positive roots in terms of their
coefficients relative to the simple roots, as in [Bo1, Planche V].

(i) For the restricted root ξ1 the nest is

Φ+(ξ1) =
{10000

0

11000

0

11100

0

11110

0

}
and the basic root is β = α1 . For the restricted root ξ3 the nest is

Φ+(ξ3) =
{00001

0

00011

0

00111

0

01111

0

}
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and the basic root is β = α6 . For the restricted root ξ1 + ξ2 the nest is

Φ+(ξ1 + ξ2) =
{11100

1

11110

1

11210

1

12210

1

}
and the basic root is β = α1 + α2 + α3 + α4 . For the restricted root ξ2 + ξ3

the nest is

Φ+(ξ2 + ξ3) =
{00111

1

01111

1

01211

1

01221

1

}
and the basic root is β = α2 +α4 +α5 +α6 . When ξ is any of these restricted
roots and β is the corresponding basic root, then from (95) we calculate that
〈h0

m | β 〉 = −3. Since mξ = kξ + 1 in all these cases, Proposition 5.4 (3)
gives

dξ(λ) = Φ
(
〈λ | ξ 〉 , 〈 δ | ξ 〉 ; 3

2

)
.

(ii) For the restricted root ξ2 the nest is

Φ+(ξ2) =
{00000

1

00100

1

01100

1

00110

1

01110

1

01210

1

}
and the basic root is β = α2 . For the restricted root ξ1 + ξ2 + ξ3 the nest is

Φ+(ξ1+ξ2+ξ3) =
{11111

1

11211

1

12211

1

11221

1

12221

1

12321

1

}
and the basic root is β = α1 + α2 + α3 + α4 + α5 + α6 . When ξ is either
of these restricted roots and β is the corresponding basic root, then from
(95) we calculate that 〈h0

m | β 〉 = −4. Since mξ = kξ + 2 in both cases,
Proposition 5.4 (4) gives

dξ(λ) = Φ(〈λ | ξ 〉 , 〈 δ | ξ 〉) Φ(〈λ | ξ 〉 , 〈 δ | ξ 〉 ; 2) .

(iii) For ξ = ξ1 + ξ3 the nest is Φ+(ξ) =
{11111

0

}
, while for ξ = ξ1 + 2ξ2 + ξ3

the nest is Φ+(ξ) =
{12321

2

}
. Hence dξ(λ) = Φ(〈λ | ξ 〉 , 〈 δ | ξ 〉) by

Proposition 5.4 (2).

Let

Ξ+
0 = {ξ2 , ξ1+ξ2+ξ3}, Ξ+

1 = {ξ1 , ξ3 , ξ1+ξ2 , ξ2+ξ3}, Ξ+
2 = {ξ1+ξ3 , ξ1+2ξ2+ξ3}.

Then from cases (i)–(iii) we see that Σ+
reg = Ξ+

0 ∪ Ξ+
2 and Σ+

sing = Ξ+
1 .

Furthermore, the dimension formula is

d(λ) =
∏
ξ∈Ξ+

0

Φ(〈λ | ξ 〉 , 〈 δ | ξ 〉) Φ(〈λ | ξ 〉 , 〈 δ | ξ 〉 ; 2)

×
∏
ξ∈Ξ+

1

Φ
(
〈λ | ξ 〉 , 〈 δ | ξ 〉 ; 3

2

)∏
ξ∈Ξ+

2

Φ(〈λ | ξ 〉 , 〈 δ | ξ 〉)

=
∏
ξ∈Σ+

reg

W
(
〈λ | ξ〉 , 〈δ | ξ〉 ; mξ

) ∏
ξ∈Σ+

sing

Wsing

(
〈λ | ξ〉 , 〈δ | ξ〉 ; mξ

)
.

(96)
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Remark 7.4. If λ = k1µ1 + k2µ2 + k3µ3 , then using (91), (93), and the values
of 〈 δ | ξ 〉 given in the table, we can write formula (96) as

d(λ) = c (k2 + 3)(k1 + k3 + 5)(k1 + k2 + k3 + 8)(k1 + 2k2 + k3 + 11)

×
4∏
j=1

(k1 + j)(k3 + j)(k1 + k2 + j + 3)(k2 + k3 + j + 3)

×
5∏
j=1

(k2 + j)(k1 + k2 + k3 + j + 5) ,

(97)

where c is the normalizing constant to make d(0) = 1. Thus the dimension formula
is symmetric in k1 and k3 (this is evident a priori from the outer automorphism
of G associated with the Dynkin diagram symmetry). Taking λ = µ1 or µ3 , we
calculate that d(λ) = 27 (the two mutually contragredient representations of G
on the exceptional simple Jordan algebra). Taking λ = µ2 (the highest root of g),
we calculate that d(λ) = 78 (the adjoint representation of G).

8. Higher Rank Symmetric Spaces

We now turn to the proof of Theorem 2.1 for an irreducible symmetric pair (G,K)
of rank r ≥ 2 that is the complexification of a compact symmetric space of type I
(in the terminology of [He1, Ch. VIII, §5]). We use the same case-by-case method
as for the higher rank nonsymmetric spherical pairs. However, there is a significant
simplification: due to the Weyl group symmetry of the restricted root system it
suffices to consider the root nests and dimension factors for a set of simple roots.

Lemma 8.1. Assume that the Dynkin diagram of m is simply laced. If the
dimension factors satisfy

dξ(λ)d2ξ(λ) = W
(
〈λ | ξ〉, 〈δ | ξ〉 ; mξ,m2ξ

)
when λ ∈ Γ(G/K) (98)

for each simple indivisible restricted root ξ , then (98) holds for all ξ ∈ Σ+
0 . Here

d2ξ(λ) = 1 if 2ξ is not a restricted root.

Proof. Let ξ ∈ Σ+
0 and let s be the principal three-dimensional simple algebra

in m from Section 5. Let aR be the real span of the restricted roots. Since (G,K)
is a symmetric pair and Ker(ξ) ∩ aR is a wall of some Weyl chamber in aR , there
exists g ∈ K such that Ad(g) leaves aR invariant, g ·Σ = Σ, and Ker(g · ξ)∩aR is
a wall of the Weyl chamber in aR defined by the simple roots in Σ+ (cf. [He1, Ch.
VII, Theorem 2.12]). Hence g · ξ is a simple restricted root. Thus by Lemma 5.2
we conclude that nξ is isomorphic to ng·ξ as an s module. Since the diagram of m
is simply laced, we have h0

m = 2ρm , and hence the shifts 〈ρm | α〉 in the dimension
factors dξ(λ) (respectively d2ξ(λ)) are determined by the eigenvalues of ad(h0

m) on
nξ (respectively n2ξ ).

Recall that for a restricted root ξ we let kξ be the largest eigenvalue of
ad(h0

m) on nξ .
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Proposition 8.2. Assume that the Dynkin diagram of m is simply laced and
that every simple indivisible restricted root ξ satisfies one of the following.

1. mξ = 1 .

2. mξ = 2 , m2ξ = 0 , kξ = 0 , and there are two basic roots in Φ+(ξ) .

3. mξ = 3 , m2ξ = 0 , and kξ = 2 .

4. mξ = kξ + 2 ≥ 4 and m2ξ = 0 .

5. mξ = 2(kξ + 1) , m2ξ = 1 , and there are two basic roots in Φ+(ξ) .

Then all restricted root nests are regular and the dimension formula (7) is valid
for all λ ∈ Γ(G/K).

Proof. This follows from Proposition 5.4, formulas (3) and (4),and Lemma 8.1.

The symmetric spaces of rank r ≥ 2 that satisfy condition (1) of Proposition
8.2 for all simple restricted roots are those of types A I, D I (r = `), E I, E V,
E VIII, F I, and G (to check this it suffices to look at the Satake diagrams).

We proceed to carry out a case-by-case analysis of the remaining irreducible
symmetric spaces, obtain their marked Satake diagrams and root nest data, and
verify that formula (98) holds for all simple restricted roots with multiplicity
greater than one (for multiplicity one, this is automatic). It turns out that all but
two of the cases with rank r ≥ 2 are covered by Proposition 8.2. The remaining
two cases (with m not simply laced) are type B I and type C II (` ≥ 2r+ 1). For
the simple restricted roots in these cases we use the method of Section 6, Cases
3 and 4, to prove (98), followed by a Weyl group argument using Lemma 5.5 to
extend this result to all the positive restricted roots (details given in Cases 3 and
4 below).

Remark 8.3. Following [He1, Ch. X, Table VI] the simple restricted roots
are labeled using the enumeration of the simple roots. Thus λi = αi when the
restriction of αi to a is nonzero.

Case 1. Type A II. Let G = SL2r+2(C) and K = Sp2r+2(C) with r ≥ 2.
Then G has rank ` = 2r + 1 and the fundamental K -spherical highest weights
are µi = $2i for i = 1, . . . , r . Hence m ∼= sl2 ⊕ · · · ⊕ sl2 (r + 1 copies) and
h0
m = α1 + α3 + · · · + α2r−1 + α2r+1 . Thus 〈h0

m | α2i〉 = −2 for 1 ≤ i ≤ r . The
simple restricted root data are as follows.

restricted root multiplicity # basic roots

λ2i (1 ≤ i ≤ r) 4 1

The root nests are

Φ+
(
λ2i

)
= {α2i , α2i−1 + α2i , α2i + α2i+1 , α2i−1 + α2i + α2i+1 }
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•

Figure 14: Marked Satake diagram for SL2r+2 /Sp2r+2

for i = 1, . . . , r , and α2i is the only basic root in the nest. Since kλ + 2 = mλ for
all restricted simple positive roots, condition (4) in Proposition 8.2 is satisfied.

Case 2. Type A III. Let G = SL`+1(C) and K = S(GLr(C) ×GL`+1−r(C))
with ` ≥ 2r − 1 ≥ 3. The fundamental K -spherical highest weights are µi =
$i +$`−i+1 for i = 1, . . . , r . The simple restricted root data are as follows.

rest. root mult. # basic
roots

λi (1≤i≤r−1) 2 2

λr 2(`− 2r + 1) 2

2λr 1 1

rest. root mult. # basic
roots

λi (1≤i≤r−1) 2 2

λr 1 1
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Figure 15: Marked Satake diagrams for SL`+1 /S(GLr×GL`+1−r)

When ` = 2r − 1 then ∆0 = ∅ and m′ = 0. Since | Suppµi| = 2 for
i = 1, . . . , r − 1 and | Suppµr| = 1, we know by Lemma 4.1 that dim c =
2(r − 1) + 1 = 2r − 1 and dim c0 = (2r − 1) − r = r − 1. Identify t with
t∗ using the form 〈· | ·〉 . If x = c1α1 + · · · + c`α` is in t , then the equations
〈µi | x〉 = 0 for i = 1, . . . , r become

c`+1−i = −ci for i = 1, . . . , r − 1 and cr = 0 .

Hence the linearly independent set

{α1 − α` , α2 − α`−1 , · · · , αr−1 − αr+1 } (99)

is a basis for c0 . In particular, we see from (99) that each basis vector goes to
its negative under the Dynkin diagram automorphism sending αi to α`+1−i for
i = 1, . . . , ` , verifying the claim in the proof of Lemma 5.1. The root nests are
Φ+
(
λi
)

= {αi , α`+1−i } for 1 ≤ i ≤ r − 1 and Φ+
(
λr
)

= {αr } . Thus condition
(2) of Proposition 8.2 is satisfied by λi for 1 ≤ i ≤ r − 1 and condition (1) is
satisfied by λr .
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Now assume ` > 2r− 1. Then ∆0 = {αr+1 , . . . , α`−r } and | Suppµi| = 2
for i = 1, . . . , r . Hence by Lemma 4.1 dim c = 2r and dim c0 = 2r − r = r . The
set (99) is in c0 , as is the vector

y =(`− r + 1)αr + (`− r − 1)αr+1 + (`− r − 3)αr+2 + · · ·
+ (r + 3− `)α`−r−1 + (r + 1− `)α`−r + (r − 1− `)α`−r+1 .

Hence (99) together with y give a basis for c0 . In particular, we see that each
basis vector for c0 goes to its negative under the Dynkin diagram automorphism,
verifying the claim in the proof of Lemma 5.1. We have m′ ∼= sl`−2r+1 and
h0
m = (` − 2r)αr+1 + · · · + (` − 2r)α`−r . Thus 〈h0

m | αi〉 = −` + 2r for i = r
and i = ` − r + 1. Furthermore, the root nests are Φ+

(
λi
)

= {αi , α`+1−i } for
1 ≤ i ≤ r − 1, and

Φ+
(
λr
)

= {αr + · · ·+ αr+i : 0 ≤ i ≤ `− 2r }
∪ {α`−r+1 + · · ·+ α`−r+1−i : 0 ≤ i ≤ `− 2r } ,

Φ+
(
2λr
)

= {αr + · · ·+ α`−r+1 } .

The nest Φ+
(
λi
)

has two basic roots αi and α`+1−i for 1 ≤ i ≤ r . Thus condition
(2) of Proposition 8.2 is satisfied by λi for 1 ≤ i ≤ r − 1 and condition (5) is
satisfied by λr .

Case 3. Type B I. Let G = SO2`+1(C) and K = SOr(C) × SO2`+1−r(C) with
2 ≤ r < ` . The fundamental K -spherical highest weights are µi = 2$i for
i = 1, . . . , r − 1 and µr = $r . The simple restricted root data are as follows.

restricted root multiplicity # basic roots

λi (1 ≤ i ≤ r − 1) 1 1

λr 2(`− r) + 1 1

α1

.

..

..
........

..

.

..

.........
..
.
.
............................... . . . ..............................

αr

.

..

..
........

..

.

..

.........
..
.
.
.

(−2` + 2r , 1/2)

..........................................................................................

αr+1

•............................................. . . . .............................................

α`−1

•
..........................................................................................

..........................................................................................

..
.
..
..
..
..
..
.
.

....
.....
......

α`

•

Figure 16: Marked Satake diagram for SO2`+1 /SOr×SO2`+1−r

From the Satake diagram and the fact that | Suppµi| = 1 for i = 1, . . . , r , we
know that c0 = 0 and m ∼= so2(`−r)+1 , so we have h0

m = (2`− 2r)α2r+1 + · · ·+ 2α`
and

〈$0
m | αi 〉 =


1/2 if i = r ,

0 if i = r + 1, . . . , `− 1 ,

−1/2 if i = ` ,

(100)

as in Section 6, Case 2. The markings on the diagram follow from this. The only
nest with more than one root is

Φ+(λr) = {βj : r + 1 ≤ j ≤ `} ∪ {γj : r + 1 ≤ j ≤ `} ∪ {αr + · · ·+ α`} ,

where βj = αr+· · ·+αj−1 and γj = βj+2αj+· · ·+2α` . Thus |Φ+(λr)| = 2(`−r)+1
and there is one basic root αr as indicated in the table.
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The eigenvalues of adh0
m on nλr are

−2`+ 2r, . . . ,−2, 0, 2, . . . , 2`− 2r ,

each with multiplicity one, with the negative eigenvalues coming from {βj} and
the positive eigenvalues from {γj} , as in Section 6, Case 2. From (100) we have

〈$0
m | βj 〉 = 1/2, 〈$0

m | γj 〉 = −1/2, 〈$0
m | αr + · · ·+ α` 〉 = 0.

Hence the ρm shifts in the dimension factor for λr are

−`+ r + 1
2
, . . . ,−1

2
, 0, 1

2
, . . . , `− r − 1

2
. (101)

Since `−r− 1
2

= 1
2
mλr−1, we conclude that dλr(λ) = W

(
〈λ | λr 〉, 〈 δ | λr 〉 ; mλr

)
.

The restricted root system is of type Br with λr the short simple root.
Each long restricted root ξ is conjugate under the action of the Weyl group of
G/K to α1 . Thus ξ has multiplicity one so by Proposition 5.7 we conclude that
(98) holds for ξ .

The positive short restricted roots are ξi = λi + · · ·+ λr for 1 ≤ i ≤ r with
basic roots αi + · · · + αr . If the positive roots of G are defined relative to the
standard ordered basis ε1 < ε2 < · · · < ε` for t∗ , then αi+· · ·+αr = εi−εr+1 . The
Weyl group of G consists of all signed permutations of {1, . . . , `} . Let w be the
permutation i↔ r . Then w sends αi + · · ·+ αr → αr and fixes the roots in ∆0 ,
so we can apply Lemma 5.5 to conclude that (98) holds for ξi . Thus all restricted
root nests are regular and the dimension formula (7) is valid for all λ ∈ Γ(G/K).

Case 4. Type C II. Let G = Sp2`(C) and K = Sp2r(C) × Sp2`−2r(C) with
` ≥ 2r + 1 and r ≥ 2. The K -spherical highest weights are µi = $2i for
i = 1, . . . , r . The simple restricted root data are as follows.

restricted root multiplicity # basic roots

λ2i (1 ≤ i ≤ r − 1) 4 1

λ2r 4(`− 2r) 1

2λ2r 3 1

•
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...............................................................................................

α2
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..
..
...........................................................................................•
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....................................................... . . . .......................................................

α2r

.

.
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..
........

.

..

..

........
..
..
.

(−2` + 4r, −1/2)

..........................................................................................

α2r+1

•....................................................... . . . .......................................................•
..........................................................................................

..........................................................................................
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..

..
..
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.

.....
......
....

α`

•

Figure 17: Marked Satake diagram for Sp2` /Sp2r×Sp2(`−r) (` ≥ 2r + 1)

From the Satake diagram and the fact that | Suppµi| = 1 for i = 1, . . . , r , we
know that c0 = 0 and m ∼= sl2 ⊕ · · · ⊕ sl2︸ ︷︷ ︸

r copies

⊕sp2(`−2r) and

h0
m = α1 + α3 + · · ·+ α2r−1 + (2`− 4r − 1)α2r+1 + · · · . (102)

As in Section 6, Case 4, we calculate that

〈$0
m | αi 〉 =


0 if 1 ≤ i ≤ 2r − 1 or 2r + 1 ≤ i ≤ `− 1 ,

−1/2 if i = 2r ,

1 if i = ` .

(103)
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The markings on the diagram follow from (102) and (103).

For the restricted root λ2i with 1 ≤ i ≤ r − 1 the root nest is

Φ+
(
λ2i

)
= {α2i , α2i−1 + α2i , α2i + α2i+1 , α2i−1 + α2i + α2i+1 } (104)

with basic root α2i . Thus condition (4) of Proposition 8.2 is satisfied.

For the indivisible restricted root ξ = λ2r we have

Φ+(ξ) = {βj : 2r + 1 ≤ j ≤ `} ∪ {α2r−1 + βj : 2r + 1 ≤ j ≤ `}
∪ {γj : 2r + 1 ≤ j ≤ `} ∪ {α2r−1 + γj : 2r + 1 ≤ j ≤ `} ,

where βj = α2r + · · · + αj−1 and γj = βj + 2αj + · · · + 2α`−1 + α` (here we take
γ` = β` +α` ). The basic root is β = α2r and there are 4(`− 2r) roots in the nest.
Furthermore,

Φ+(2ξ) = {β′ , β′ + α2r−1 , β
′ + 2α2r−1} ,

where β′ = 2α2r+· · ·+2α`−1 +α` is the basic root. Using these root nests, formula
(102), and the same argument as in Section 6, Case 4, we find that the values of
〈 ρm | α 〉 for α ∈ Φ+(ξ) are

−`+ 2r − 1
2
, −`+ 2r + 1

2
, . . . , −3

2︸ ︷︷ ︸
multiplicity 2

, −1
2
, 1

2
, 3

2
, . . . , `− 2r − 1

2︸ ︷︷ ︸
multiplicity 2

, `− 2r + 1
2
.

Likewise, the values of 〈 ρm | α 〉 for α ∈ Φ+(2ξ) are −1, 0, 1. Hence for
λ ∈ Γ(G/K) we have

dξ(λ)d2ξ(λ) = W
(
〈λ | ξ 〉, 〈 δ | ξ 〉 ; mξ,m2ξ

)
. (105)

Thus all the simple indivisible restricted roots for G/K satisfy (98).

Since each root nest for the simple restricted roots has only one basic root,
we can use the same strategy as for type B I to prove that (98) holds for all positive
indivisible restricted roots. Thus it suffices to find elements of the Weyl group of
G that satisfy the conditions of Lemma 5.5. It will then follow that all restricted
root nests are regular and the dimension formula (7) is valid for all λ ∈ Γ(G/K).
We carry out this argument case-by-case.

Let the positive roots of G be defined relative to an ordered basis ε1 <
ε2 < · · · < ε` for t∗ . The Weyl group of G consists of all signed permutations
of {1, . . . , `} . The restricted root system is of type BCr , with λ2r the short
indivisible simple root.

1. Let ξij = λ2i + · · · + λ2j for 1 ≤ i < j ≤ r − 1 (long positive indivisible
root). The basic root for ξij is

α2i + α2i+1 + · · ·+ α2j = ε2i − ε2j+1 .

Let w be the signed permutation

2i+ 1→ 2j+ 1, 2i+ 2→ 2j+ 2, 2j+ 1→ 2i+ 2, 2j+ 2→ 2i+ 1

that fixes all other indices (where p→ q means εp → −εq ). Then

w : α2i → ε2i − ε2j+1 , w : α2i+1 ↔ α2j+1 ,

and w fixes the other roots in ∆0 .
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2. Let ηij = λ2i + · · · + λ2j−2 + 2λ2j + · · · + 2λ2r for 1 ≤ i < j ≤ r (long
positive indivisible root). The basic root for ηij is

α2i + · · ·+ α2j−1 + 2α2j + · · ·+ 2α2`−1 + α` = ε2i + ε2j .

Let w be the signed permutation

1↔ 2i− 1, 2↔ 2i, 3→ 2j, 4→ 2j − 1, 2j − 1→ 3, 2j → 4

that fixes all other indices. Then

w : α2i → ε2i + ε2j , w : α1 ↔ α2i−1 , w : α3 ↔ α2j−1 ,

and w fixes the other roots in ∆0 .

3. Let ξi = λ2i + · · ·+ λ2r for 1 ≤ i ≤ r (short positive indivisible root). The
basic root for ξi is

α2i + α2i+1 + · · ·+ α2r = ε2i − ε2r+1 .

Let w be the permutation 2i − 1 ↔ 2r − 1, 2i ↔ 2r that fixes all other
indices. Then

w : α2r → ε2i − ε2r+1 , w : α2i−1 ↔ α2r−1 ,

and w fixes the other roots in ∆0 .

4. Let 2ξi = 2λ2i + · · ·+ 2λ2r for 1 ≤ i ≤ r . The basic root for 2ξi is

2α2i + 2α2i+1 + · · ·+ 2α`−1 + α` = 2ε2i .

Let w be the permutation 2i − 1 ↔ 2r − 1, 2i ↔ 2r that fixes all other
indices. Then

w : 2ε2i ↔ 2ε2r , w : α2i−1 ↔ α2r−1 ,

and w fixes the other roots in ∆0 .

Now let G = Sp4r(C) and K = Sp2r(C) × Sp2r(C). The K -spherical
highest weights are µi = $2i for i = 1, . . . , r . The simple restricted root data are
as follows.

restricted root multiplicity # basic roots

λ2i (1 ≤ i ≤ r − 1) 4 1

λ2r 3 1
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Figure 18: Marked Satake diagram for Sp4r /Sp2r×Sp2r
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From the Satake diagram and the fact that | Suppµi| = 1 for i = 1, . . . , r , we
know that c0 = 0 and m ∼= sl2 ⊕ · · · ⊕ sl2︸ ︷︷ ︸

r copies

and h0
m = α1 + α3 + · · ·+ α2r−1 . This

gives the markings on the diagram. The root nests are given by (104) with basic
root α2i for 1 ≤ i ≤ r − 1, and Φ+

(
λ2r

)
= {α2r , α2r−1 + α2r , 2α2r−1 + α2r }

with basic root α2r . Thus condition (4) of Proposition 8.2 is satisfied by λ2i for
1 ≤ i ≤ r − 1 and condition (3) is satisfied by λ2r .

Case 5. Type D I. Let G = SO2`(C) and K = SOr(C) × SO2`−r(C) with
2 ≤ r < ` . The fundamental K -spherical highest weights are µi = 2$i for
i = 1, . . . , r − 1, together with

µr =

{
$r if r ≤ `− 2 ,

$`−1 +$` if r = `− 1 .

The simple restricted root data are as follows.

restricted root mult.
# basic
roots

λi (1≤i≤r−1) 1 1

λr 2 2

restricted root mult.
# basic
roots

λi (1≤i≤r−1) 1 1

λr 2(`− r) 1

(r = ` − 1)
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Figure 19: Marked Satake diagrams for SO2` /SOr×SO2`−r

Let r = `−1. Then ∆0 = ∅ and dim c0 = (r+1)−r = 1 by Lemma 4.1 since
| Suppµr| = 2. Identify t with t∗ using the form 〈· | ·〉 . If x = c1α1 + · · · + c`α`
is in t , then the equations 〈µi | x〉 = 0 for i = 1, . . . , r become

ci = 0 for i = 1, . . . , r − 2 and c`−1 = −c` .

Hence y = α`−1 − α` is a basis for c0 . In particular, y 7→ −y under the Dynkin
diagram automorphism that fixes αi for i = 1, . . . , `−2 and interchanges α`−1 with
α` , verifying the claim in the proof of Lemma 5.1. Condition (1) of Proposition
8.2 is satisfied by λi for 1 ≤ i ≤ r − 1 and condition (2) is satisfied by λr .

Now assume r ≤ `−2. Then dim c0 = 0 by Lemma 4.1 since | Suppµi| = 1
for i = 1, . . . , r . When r < `− 2, then from the Satake diagram we conclude that
m ∼= so2(`−r) and hence h0

m = 2(`−r−1)αr+1 + · · · . Thus 〈h0
m | αr〉 = −2`+2r+1

as indicated in Figure 19. As in Section 6, Case 3, we have

Φ+(λr) = {βj : r+ 1 ≤ j ≤ `}∪{γj : r+ 1 ≤ j ≤ `− 1}∪{αr + · · ·+α`−2 +α`} ,

where βj = αr + · · ·+αj−1 and γj = βj + 2αj + · · ·+ 2α`−2 +α`−1 +α` (the roots
with coefficient 2 are omitted when j = `− 1). Thus |Φ+(ξ1)| = 2`− 2r and the
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only basic root in the nest is αr . Thus condition (1) of Proposition 8.2 is satisfied
by λi for 1 ≤ i ≤ r − 1 and condition (4) is satisfied by λr .

Finally, let r = ` − 2. Then m ∼= sl2 ⊕ sl2 and h0
m = α`−1 + α` . Hence

〈h0
m | αr〉 = −2 as indicated in Figure 19 and

Φ+(λr) = {β , β + α`−1 , β + α` , β + α`−1 + α`}

where β = αr is the basic root. Thus condition (1) of Proposition 8.2 is satisfied
by λi for 1 ≤ i ≤ r − 1 and condition (4) is satisfied by λr .

Case 6. Type D III. Let G = SO2`(C) and K = GL`(C) with ` ≥ 4. The
fundamental K -spherical highest weights are µi = $2i for i = 1, . . . , r−1 together
with

µr =

{
2$` when ` = 2r ,

$`−1 +$` when ` = 2r + 1 .

The simple restricted root data are as follows.

restricted root mult.
# basic
roots

λ2i (1≤i≤r−1) 4 1

λ2r 1 1

restricted root mult.
# basic
roots

λ2i (1≤i≤r−1) 4 1

λ2r 4 2

2λ2r 1 1
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Figure 20: Marked Satake diagrams for SO2` /GL`

Assume ` = 2r . Then dim c0 = 0 by Lemma 4.1 since | Suppµi| = 1 for
i = 1, . . . , r . Hence from the Satake diagram m ∼= sl2 ⊕ · · · ⊕ sl2 (r copies) and
h0
m = α1 + α3 + · · ·+ α`−1 . Thus 〈h0

m | α2i〉 = −2 for i = 1, . . . , `− 1 as indicated
in Figure 20. The root nests are Φ+

(
λ`
)

= {α`} together with

Φ+
(
λ2i

)
= {α2i , α2i−1 + α2i , α2i + α2i+1 , α2i−1 + α2i + α2i+1 } (106)

for i = 1, . . . , r − 1 with basic root α2i . Thus condition (4) of Proposition 8.2 is
satisfied by λ2i for 1 ≤ i ≤ r − 1 and condition (1) is satisfied by λ2r .

Now assume ` = 2r+ 1. Then dim c0 = (r+ 1)− r = 1 by Lemma 4.1 since
| Suppµr| = 2. Identify t with t∗ using the form 〈· | ·〉 . If x = c1α1 + · · · + c`α`
is in t , then the equations 〈µi | x〉 = 0 for i = 1, . . . , r become

c2i = 0 for i = 1, . . . , r − 1 and c`−1 = −c` .

If x satisfies these equations and x ⊥ ∆0 , then c2i−1 = 0 for i = 1, . . . , r − 1.
Hence y = α`−1 − α` is a basis for c0 . In particular, y 7→ −y under the Dynkin
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diagram automorphism that fixes αi for i = 1, . . . , ` − 2 and interchanges α`−1

with α` , verifying the claim in the proof of Lemma 5.1. From the Satake diagram
we obtain m′ ∼= sl2 ⊕ · · · ⊕ sl2 (r− 1 copies) and h0

m = α1 + α3 + · · ·α`−2 . Hence
〈h0

m | α2i〉 = −2 for i = 1, . . . , ` − 3, while 〈h0
m | αi〉 = −1 for i = ` − 1 and

i = ` , as indicated in Figure 20. The root nest Φ+
(
λ2i

)
is given by (106) for

i = 1, . . . , r − 1, while{
Φ+
(
λ2r

)
= {α`−1 , α` , α` + α`−2 , α`−1 + α`−2 } (basic roots α`−1 , α`) ,

Φ+
(
2λ2r

)
= {α`−2 + α`−1 + α` } .

Thus condition (4) of Proposition 8.2 is satisfied by λ2i for 1 ≤ i ≤ r − 1 and
condition (5) is satisfied by λ` .

Case 7. Type E II. Let G be the complex exceptional group of type E6 and
K = SL6×SL2 . The fundamental K -spherical highest weights are µ1 = $1 +$6 ,
µ2 = $3 +$5 , µ3 = 2$4 , and µ4 = 2$2 . The simple restricted root data are as
follows.

restricted root multiplicity # basic roots

λ2 , λ4 1 1

λ1 , λ3 2 2
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Figure 21: Satake diagram for E6/SL6×SL2

The root data follows from the Satake diagram. Thus condition (1) of Proposition
8.2 is satisfied by λ2 and λ4 , while condition (2) is satisfied by λ1 and λ3 .

We have ∆0 = ∅ and dim c0 = 6− 4 = 2 by Lemma 4.1 since | Suppµi| = 2
for i = 1, 2. Identify t with t∗ using the form 〈· | ·〉 . If x = c1α1 + · · · + c6α6 is
in t , then the equations 〈µi | x〉 = 0 for i = 1, . . . , 4 become

ci = 0 for i = 2, 4 and c1 = −c6, c3 = −c5 .

If x satisfies these equations then x 7→ −x under the Dynkin diagram automor-
phism that fixes αi for i = 2, 4 and interchanges α1 with α6 and α3 with α5 ,
verifying the claim in the proof of Lemma 5.1.

Case 8. Type E III. Let G be the complex exceptional group of type E6 and
K the connected subgroup with Lie algebra so10(C) ⊕ so2(C). The fundamental
K -spherical highest weights are $1 +$6 and $2 . The simple restricted root data
are as follows.

restricted root multiplicity # basic roots

λ2 6 1

λ1 8 2

2λ1 1 1
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Figure 22: Marked Satake diagram for E6/SO10×SO2

From the Satake diagram we see that m′ ∼= sl4 and thus h0
m = 3α2 + 4α4 + 3α5 .

This gives the markings in the Satake diagram. Using the notation of Section 7,
Case 8, we obtain a Cartan subspace a for G/K by the equation ξ1 = ξ3 ; the root
nests for the simple restricted roots are

Φ+(λ1) = Φ+(ξ1) ∪ Φ+(ξ3) , Φ+(λ2) = Φ+(ξ2) , Φ+(2λ1) = Φ+(ξ1 + ξ3) .

Since h0
m is the same for G/K and G/H (where H = SO10(C)), the determination

of the number of basic roots follows from the calculations in Section 7, Case 8.
Thus condition (5) of Proposition 8.2 is satisfied by λ1 and condition (4) is satisfied
by λ2 .

We have ∆0 = {α3, α4, α5} and dim c0 = 3 − 2 = 1 by Lemma 4.1 since
| Suppµ1| = 2. Identify t with t∗ using the form 〈· | ·〉 . If x = c1α1 + · · · + c6α6

is in t , then the equations 〈µi | x〉 = 0 for i = 1, 2 become

c2 = 0 and c1 = −c6 .

The element x = 4α1+2α3−2α5−4α6 satisfies these equations and x ⊥ ∆0 . Hence
x gives a basis for c0 . We have x 7→ −x under the Dynkin diagram automorphism
that fixes αi for i = 2, 4 and interchanges α1 with α6 and α3 with α5 , verifying
the claim in the proof of Lemma 5.1.

Case 9. Type E IV. Let G be the complex exceptional group of type E6 and K
the complex exceptional group of type F4 . The fundamental K -spherical highest
weights are µ1 = $1 and µ2 = $6 . The simple restricted root data are as follows.

restricted root multiplicity # basic roots

λ1 , λ6 8 1
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Figure 23: Marked Satake diagram for E6/F4

We have c0 = 0 by Lemma 4.1 since | Suppµi| = 1 for i = 1, 2. Hence from
the Satake diagram we obtain m = so8 and h0

m = 6α3 + 10α4 + 6α2 + 6α5 , which
gives the indicated markings. Since mξ = kξ + 2 for both simple restricted roots
ξ , condition (4) of Proposition 8.2 is satisfied.
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Case 10. Type E VI. Let G be the complex exceptional group of type E7

and let K be the connected subgroup with Lie algebra so12(C) ⊕ sl2(C). The
fundamental K -spherical highest weights are µ1 = 2$1 , µ2 = 2$3 , µ3 = $4 , and
µ4 = $6 . The simple restricted root data are as follows.

restricted root multiplicity # basic roots

λ1 , λ3 1 1

λ4 , λ6 4 1
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Figure 24: Marked Satake diagram for E7/SO
′

12×SL2

We have c0 = 0 by Lemma 4.1 since | Suppµi| = 1 for i = 1, . . . , 4. Hence
from the Satake diagram we obtain m ∼= sl2 ⊕ sl2 ⊕ sl2 and h0

m = α2 + α5 + α7 ,
which gives the indicated markings. Condition (4) of Proposition 8.2 is satisfied
by λ4 and λ6 , while condition (1) is satisfied by λ1 and λ3 .

Case 11. Type E VII. Let G be the complex exceptional group of type E7

and K = E6 × SO2 . The fundamental K -spherical highest weights are µ1 = $1 ,
µ2 = $6 , and µ3 = 2$7 . The simple restricted root data are as follows.

restricted root multiplicity # basic roots

λ1 , λ6 8 1

λ7 1 1
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Figure 25: Marked Satake diagram for E7/E6 × SO2

We have c0 = 0 by Lemma 4.1 since | Suppµi| = 1 for i = 1, 2, 3. Hence
from the Satake diagram we obtain m = so8 and h0

m = 6α3 + 10α4 + 6α2 + 6α5 ,
which gives the indicated markings. Condition (4) of Proposition 8.2 is satisfied
by λ1 and λ6 , while condition (1) is satisfied by λ7 .

Case 12. Type E IX. Let G be the complex exceptional group of type E8

and K = E7 × SL2 . The fundamental K -spherical highest weights are µ1 = $1 ,
µ2 = $6 , µ3 = 2$7 , and µ4 = 2$8 . The simple restricted root data are as follows.

restricted root multiplicity # basic roots

λ1 , λ6 8 1

λ7 , λ8 1 1
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Figure 26: Marked Satake diagram for E8/E7 × SL2

We have c0 = 0 by Lemma 4.1 since | Suppµi| = 1 for i = 1, . . . , 4. Hence
from the Satake diagram m = so8 and h0

m = 6α3 + 10α4 + 6α2 + 6α5 , which gives
the indicated markings. Condition (4) of Proposition 8.2 is satisfied by λ1 and λ6 ,
while condition (1) is satisfied by λ7 and λ8 .
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[Bo1] Bourbaki, N., �Éléments de mathématique, Fascicule XXXIV, Groupes et
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[Br] Brion, M., Vers une généralisation des espaces symétriques, J. Algebra 134
(1990), 115–143.

[Gi1] Gindikin, S., Horospherical Cauchy-Radon transform on compact symmetric
spaces, Mosc. Math. J. 6 (2006), 299–305.

[Gi2] —, Harmonic analysis on symmetric Stein manifolds from the point of view
of complex analysis, Jap. J. Math. 1 (2006), 87–105.

[Gi3] —, Horospherical transform on Riemannian symmetric manifolds of non-
compact type, Funkts. Anal. Prilozhen. 42 (2008), 50–59; English transl.:
Funct. Analy. Appl. 42 (2008), 290–297.



Gindikin and Goodman 311

[Go] Goodman, R., Harmonic Analysis on Compact Symmetric Spaces: the
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