Chapter 3

Algebras and Representations

3.2 Simple Associative Algebras

3.2.1 Wedderburn’s Theorem

An associative algebra A is called simple if the only two-sided ideals in A are 0 and A.
We now show that a finite-dimensional simple algebra is completely determined by its
dimension.

Theorem 3.2.1 (Wedderburn) The algebra End(V') is simple for every finite dimen-
stonal complex vector space V. Conversely, if A is any finite dimensional simple alge-

bra over C with unit, then there is a finite dimensional complex vector space V such that
A =2 End(V).

Proof. If u, v are nonzero vectors in V', then there exists T' € End(V') so that Tv = u (take
f € V*with f(v) =1 and define Tz = f(x)u for z € V). Thus End(V)v = V. Now suppose
0 # B C End(V) is a two-sided ideal and 0 # v € V. Then Bv = B End(V)v = BV, since
B is a right ideal. But BV # 0 since B # 0, and BV is invariant under End(V') since B is
a left ideal. Hence

Bv=V forall0 £veV.

This proves that V is an irreducible B-module. Burnside’s Theorem implies that B =
End(V). Hence End(V) is a simple algebra.

Now suppose A is a finite-dimensional simple algebra over C with unit. Define the left
regular representation

A: A — End(A)

by A(z)y = xy. Choose a left ideal V' C A of minimal positive dimension, and define p(x) =
Ax)|y for x € A. Then (p, V) is an irreducible representation of A. Hence p(A) = End(V)
by Burnside’s theorem. Furthermore Ker(p) is zero, since it is a two-sided ideal. Thus
A = p(A) as an algebra. ¢
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3.2.2 Representations of End(V)

Let V be a finite-dimensional complex vector space. The representation of End(V') on V
is irreducible (see the proof of Theorem 3.2.1). We shall prove that, up to equivalence,
this is the wunique irreducible representation of End(V'). This will be a consequence of
Wedderburn’s Theorem once we prove that every automorphism of End (V) is inner.

Scholium 3.2.2 Let ¢ € Aut(End(V)). Then there exists g € GL(V') such that ¢(x) =
grg~t for all x € End(V).

Proof. Choose a basis e, ...,e, for V and let E;; € End(V) be the transformation that
maps e; to e; and annihilates ey, for k # i. Set P; = ¢(£;;). Since ¢ is an automorphism of
End(V), we have

n
PP =P #0, PP =6,P, > Pi=Iy.
i=1
For i =1,...n choose 0 # f; € P;V. Then the set {f1,..., fn} is linearly independent. To
prove this, we first note that P;f; = d;;f;. If >, ¢;fi = 0 then

0= Pj (Z szz> = ijj'

7

Thus ¢; = 0 for all j. Since dimV' = n, it follows that {f1,..., f,} is a basis for V. Hence
there exists € GL(V') such that ze; = f; for i = 1,...,n. Define ¢ € Aut(End(V)) by

o(y) =2 o(y)a.

Then ¢(E;j;) = Ej;, so replacing ¢ by ¢ we may assume that ¢(Ej;) = Ej; fori =1,...,n.
We now calculate the action of ¢ on the off-diagonal matrix units. With ¢ normalized
as above, we have

d(Lij) = 0(EyuEijEj;) = Eyd(Eij)Ejj.

Hence ¢(FE;j)er = 0 for k # j, and ¢(F;j)e; € Ce;. This implies that

o(Eij) = Nij Eij (3.1)
for some non-zero scalar \;;. Since ¢(E;;Ej1) = ¢(Eir), the scalars A;; satisfy the relations

AijNjk = Ak
Since we have normalized ¢ so that \;; = 1, it follows that /\Z-_j1 = Nji. Set A\; = A\j1. Then
Xij = AiAij = AAs
Set h = diag(\1, ..., \n). Then
hEijh_l = /\Z/\y_lEZJ = /\ijEija

so by equation (3.1) we have h™'¢(E;;)h = E;; for all i,j. Hence h™'¢(z)h = x for all
x € End(V). Thus ¢ is the inner automorphism given by h. ¢
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Proposition 3.2.3 Up to equivalence, the only irreducible representation of End(V') is the
representation T on V' given by T(x)v = zv.

Proof. Let (p, W) be an irreducible representation of End(V). Wedderburn’s theorem
implies that End(V) = End(W) as an algebra. Since dim End(V) = dim(V)?, we have
dim(V) = dim(W). Fix a linear bijection T': V' — W, and define

o(z) =T Lp(z)T, for z € End(V).

Then ¢ is an automorphism of End(V'), so by Scholium 3.2.2 there exists g € End(V') such
that ¢(z) = gzg~!. Set S = (Tg)~'. Then S: W — V and

Sp(x) = STP(x)T~" = STgxg ' T~ =S

for z € End(V). Since S is a linear bijection, we conclude that (p, W) = (V7). ¢

We now establish a canonical form for an arbitrary finite-dimensional representation of
End(V). For this we will need the following differentiated version of Scholium 3.2.2. Recall
that a derivation of an algebra A is a map D € End(A) such that D(zy) = (Dz)y + z(Dy)
for all z,y € A.

Scholium 3.2.4 Let D be a derivation of the associative algebra End(V'). Then there exists
A € End(V) such that D(x) = Ax — zA for all x € End(V).

Proof. For x,y € End(V),

D([z,y]) = (Dz)y+z(Dy)— (Dy)x —y(Dx)
= [Dx,y| + [z, Dy,

where [x,y] = zy — yx is the commutator. Thus D is also a derivation of End(V') as a Lie
algebra. Write I = Iyy. Then D(x) = D(Ix) = D(I)z+ D(x) for all z € End(V'), and hence
D(I)=0. Let g = sl(V). Since g = [g, g] we also have Dg C g.

Let Der(g) C End(g) be the vector space of all linear transformations 7" on g such that

T(X,Y]) =[TX,Y]+[X,TY] forall X,Y €g.
If Z € g then ad Z € Der(g) by the Jacobi identity. Furthermore, if T' € Der(g) then
[T,ad(2)|X =T([Z,X]) - [Z,T(X)]|=[T(Z),X]|=ad(T(Z))X forall X,Z € g.
Hence [T',ad(Z)] = ad(T'(Z)). This shows that
[ad(g), Der(g)] C ad(g). (32)
Thus we can obtain a representation p of g on Der(g) by
p(Z2)T =[ad(Z),T] for T € Der(g).

Since the subspace ad(g) of Der(g) is invariant under p(g) and every representation of g is
completely reducible (Theorem 2.4.6), there is a subspace U C Der(g) so that

Der(g) = ad(g) @ U, [ad(g),U]CU.
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On the other hand, [ad(g), U] C ad(g) by (3.2). Hence U = 0. This proves that
Der(g) = ad(g). (3.3)

Returning to the derivation D of End(V'), we conclude that there exists Z € g so that
D(X) = [X,Z] for all X € g. Since D(I) = 0, this equation holds for all X € End(V).
Thus we may take A = —Z2.

We now obtain a canonical form for the representations of End (V). We use the notation
Vh=V&-.--aV
_,._/
m copiles
to denote the direct sum of m copies of the representation of End(V') on V.
Theorem 3.2.5 Let A = End(V) and suppose (p, W) is a finite-dimensional representation
of A. Then dimW = mdimV, where m = dimHomyu(V, W), and there exists a linear
bijection
T:W —=V™  withTw = (v1,...,0m),

such that Tp(z)w = (zv1,...,2T0y) for x € A and w € W. Hence W is equivalent to the
A-module Hom4(V,W)®V, where x € A acts by - (u®v) = u® (zv) for uw € Hom4(V, W)
andv € V.

Proof. Since dim W is finite, W contains an irreducible submodule Wy. If Wi # W then
there is a submodule Wy D W; such that the representation of End(V) on Wy /W is
irreducible. Continuing in this way, we obtain a Jordan-Hdélder series

wicwy,c.--.cW,,=W

of submodules with each quotient W1 /W; irreducible and hence isomorphic to V by Propo-
sition 3.2.3. In particular,
dimW = mdimV.

We prove the existence of the map 71" by induction on m. When W = W7 we may take
T = I. Thus we may assume inductively that there are intertwining maps

T W2V, Ty:W/Wy = yem=1),

Let 7 : W — W/Wj be the canonical projection. Choose a subspace Z C W so that
W =W1 & Z, and let
P.W—Z Q:W-—-W;

be the corresponding projections. (Since Z is not necessarily a p-invariant subspace, these
projections are generally not intertwining operators.) Define a linear bijection

T-W—=V" T(w +z2)= (Tiw, Ton(2))
for w1 € W7 and z € Z. Since 14,15 and 7 are intertwining maps and 7P = 7, we have

Tp(z)(wi+2) = T(p(x)wi + Qp(z)z+ Pp(x)z)
= (2w +T1Qp(x)z, xTorz)
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for x € End(V). Thus if w € W and we write T'(w) = (v1, ..., vy) with v; € V| then
To(x)w = (xv; + Z,ui(:n)vi, TV, ., TUY), (3.4)
i=2

where p;(z) € End(V).
Obviously the maps pu;(z) depend linearly on z. From the equation p(zy) = p(z)p(y)
and equation (3.4) we find that

m m m
> wilry)vi =Y ap(y)oi + Y pilx)yv;
i=2 1=2 =2

for all v; € V and z,y € End(V). Hence for i = 1,...,m we have

wi(zy) = zp;(y) + pi(2)y.

Thus p,; is a derivation of End(V). By Scholium 3.2.4 there exists 4; € End(V) so that
pi(z) = [Ag, z].
We have now shown that p is equivalent to the representation p on V™ given by

ﬁ($)(vlv ) Um) = (:L”UI + Z[Alv :E]Uia v, . . ., ZL"Um)-
=2

Define a linear transformation g on V™ by

m
g-(vi,...,vm) :(vl—l—ZAivi, V2, ..., V).
=2

Then g is a linear bijection, with inverse
m
-1
g - (v1, .. 0m) = (v — E Ajvi, Vo, U).
i=2

It follows that
g_lﬁ(:n)g(vl, ce sy Um) = (zU1, .. TU).

Thus p is equivalent to the direct sum of m copies of the representation of End(V) on V.
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