Chapter 3

Algebras and Representations

3.2 Simple Associative Algebras

3.2.1 Wedderburn's Theorem

An associative algebra \mathcal{A} is called simple if the only two-sided ideals in \mathcal{A} are 0 and \mathcal{A}. We now show that a finite-dimensional simple algebra is completely determined by its dimension.

Theorem 3.2.1 (Wedderburn) The algebra $\operatorname{End}(V)$ is simple for every finite dimensional complex vector space V. Conversely, if \mathcal{A} is any finite dimensional simple algebra over \mathbb{C} with unit, then there is a finite dimensional complex vector space V such that $\mathcal{A} \cong \operatorname{End}(V)$.

Proof. If u, v are nonzero vectors in V, then there exists $T \in \operatorname{End}(V)$ so that $T v=u$ (take $f \in V^{*}$ with $f(v)=1$ and define $T x=f(x) u$ for $\left.x \in V\right)$. Thus $\operatorname{End}(V) v=V$. Now suppose $0 \neq \mathcal{B} \subset \operatorname{End}(V)$ is a two-sided ideal and $0 \neq v \in V$. Then $\mathcal{B} v=\mathcal{B} \operatorname{End}(V) v=\mathcal{B} V$, since \mathcal{B} is a right ideal. But $\mathcal{B} V \neq 0$ since $\mathcal{B} \neq 0$, and $\mathcal{B} V$ is invariant under $\operatorname{End}(V)$ since \mathcal{B} is a left ideal. Hence

$$
\mathcal{B} v=V \quad \text { for all } 0 \neq v \in V .
$$

This proves that V is an irreducible \mathcal{B}-module. Burnside's Theorem implies that $\mathcal{B}=$ $\operatorname{End}(V)$. Hence $\operatorname{End}(V)$ is a simple algebra.

Now suppose \mathcal{A} is a finite-dimensional simple algebra over \mathbb{C} with unit. Define the left regular representation

$$
\lambda: \mathcal{A} \rightarrow \operatorname{End}(\mathcal{A})
$$

by $\lambda(x) y=x y$. Choose a left ideal $V \subset \mathcal{A}$ of minimal positive dimension, and define $\rho(x)=$ $\left.\lambda(x)\right|_{V}$ for $x \in \mathcal{A}$. Then (ρ, V) is an irreducible representation of \mathcal{A}. Hence $\rho(\mathcal{A})=\operatorname{End}(V)$ by Burnside's theorem. Furthermore $\operatorname{Ker}(\rho)$ is zero, since it is a two-sided ideal. Thus $\mathcal{A} \cong \rho(\mathcal{A})$ as an algebra. \diamond

3.2.2 Representations of $\operatorname{End}(V)$

Let V be a finite-dimensional complex vector space. The representation of $\operatorname{End}(V)$ on V is irreducible (see the proof of Theorem 3.2.1). We shall prove that, up to equivalence, this is the unique irreducible representation of $\operatorname{End}(V)$. This will be a consequence of Wedderburn's Theorem once we prove that every automorphism of $\operatorname{End}(V)$ is inner.

Scholium 3.2.2 Let $\phi \in \operatorname{Aut}(\operatorname{End}(V))$. Then there exists $g \in \operatorname{GL}(V)$ such that $\phi(x)=$ $g x g^{-1}$ for all $x \in \operatorname{End}(V)$.

Proof. Choose a basis e_{1}, \ldots, e_{n} for V and let $E_{i j} \in \operatorname{End}(V)$ be the transformation that maps e_{i} to e_{j} and annihilates e_{k} for $k \neq i$. Set $P_{i}=\phi\left(E_{i i}\right)$. Since ϕ is an automorphism of $\operatorname{End}(V)$, we have

$$
P_{i}^{2}=P_{i} \neq 0, \quad P_{i} P_{j}=\delta_{i j} P_{j}, \quad \sum_{i=1}^{n} P_{i}=I_{V} .
$$

For $i=1, \ldots n$ choose $0 \neq f_{i} \in P_{i} V$. Then the set $\left\{f_{1}, \ldots, f_{n}\right\}$ is linearly independent. To prove this, we first note that $P_{i} f_{j}=\delta_{i j} f_{j}$. If $\sum_{i} c_{i} f_{i}=0$ then

$$
0=P_{j}\left(\sum_{i} c_{i} f_{i}\right)=c_{j} f_{j} .
$$

Thus $c_{j}=0$ for all j. Since $\operatorname{dim} V=n$, it follows that $\left\{f_{1}, \ldots, f_{n}\right\}_{\sim}$ is a basis for V. Hence there exists $x \in \operatorname{GL}(V)$ such that $x e_{i}=f_{i}$ for $i=1, \ldots, n$. Define $\tilde{\phi} \in \operatorname{Aut}(\operatorname{End}(V))$ by

$$
\tilde{\phi}(y)=x^{-1} \phi(y) x .
$$

Then $\tilde{\phi}\left(E_{i i}\right)=E_{i i}$, so replacing ϕ by $\tilde{\phi}$ we may assume that $\phi\left(E_{i i}\right)=E_{i i}$ for $i=1, \ldots, n$.
We now calculate the action of ϕ on the off-diagonal matrix units. With ϕ normalized as above, we have

$$
\phi\left(E_{i j}\right)=\phi\left(E_{i i} E_{i j} E_{j j}\right)=E_{i i} \phi\left(E_{i j}\right) E_{j j} .
$$

Hence $\phi\left(E_{i j}\right) e_{k}=0$ for $k \neq j$, and $\phi\left(E_{i j}\right) e_{j} \in \mathbb{C} e_{i}$. This implies that

$$
\begin{equation*}
\phi\left(E_{i j}\right)=\lambda_{i j} E_{i j} \tag{3.1}
\end{equation*}
$$

for some non-zero scalar $\lambda_{i j}$. Since $\phi\left(E_{i j} E_{j k}\right)=\phi\left(E_{i k}\right)$, the scalars $\lambda_{i j}$ satisfy the relations

$$
\lambda_{i j} \lambda_{j k}=\lambda_{i k} .
$$

Since we have normalized ϕ so that $\lambda_{i i}=1$, it follows that $\lambda_{i j}^{-1}=\lambda_{j i}$. Set $\lambda_{i}=\lambda_{i 1}$. Then

$$
\lambda_{i j}=\lambda_{i 1} \lambda_{1 j}=\lambda_{i} \lambda_{j}^{-1} .
$$

Set $h=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Then

$$
h E_{i j} h^{-1}=\lambda_{i} \lambda_{j}^{-1} E_{i j}=\lambda_{i j} E_{i j},
$$

so by equation (3.1) we have $h^{-1} \phi\left(E_{i j}\right) h=E_{i j}$ for all i, j. Hence $h^{-1} \phi(x) h=x$ for all $x \in \operatorname{End}(V)$. Thus ϕ is the inner automorphism given by h. \diamond

Proposition 3.2.3 Up to equivalence, the only irreducible representation of $\operatorname{End}(V)$ is the representation τ on V given by $\tau(x) v=x v$.

Proof. Let (ρ, W) be an irreducible representation of $\operatorname{End}(V)$. Wedderburn's theorem implies that $\operatorname{End}(V) \cong \operatorname{End}(W)$ as an algebra. Since $\operatorname{dim} \operatorname{End}(V)=\operatorname{dim}(V)^{2}$, we have $\operatorname{dim}(V)=\operatorname{dim}(W)$. Fix a linear bijection $T: V \rightarrow W$, and define

$$
\phi(x)=T^{-1} \rho(x) T, \quad \text { for } x \in \operatorname{End}(V) .
$$

Then ϕ is an automorphism of $\operatorname{End}(V)$, so by Scholium 3.2.2 there exists $g \in \operatorname{End}(V)$ such that $\phi(x)=g x g^{-1}$. Set $S=(T g)^{-1}$. Then $S: W \rightarrow V$ and

$$
S \rho(x)=S T \phi(x) T^{-1}=S T g x g^{-1} T^{-1}=x S
$$

for $x \in \operatorname{End}(V)$. Since S is a linear bijection, we conclude that $(\rho, W) \cong(V, \tau) . \diamond$
We now establish a canonical form for an arbitrary finite-dimensional representation of $\operatorname{End}(V)$. For this we will need the following differentiated version of Scholium 3.2.2. Recall that a derivation of an algebra \mathcal{A} is a map $D \in \operatorname{End}(\mathcal{A})$ such that $D(x y)=(D x) y+x(D y)$ for all $x, y \in \mathcal{A}$.

Scholium 3.2.4 Let D be a derivation of the associative algebra $\operatorname{End}(V)$. Then there exists $A \in \operatorname{End}(V)$ such that $D(x)=A x-x A$ for all $x \in \operatorname{End}(V)$.

Proof. For $x, y \in \operatorname{End}(V)$,

$$
\begin{aligned}
D([x, y]) & =(D x) y+x(D y)-(D y) x-y(D x) \\
& =[D x, y]+[x, D y],
\end{aligned}
$$

where $[x, y]=x y-y x$ is the commutator. Thus D is also a derivation of $\operatorname{End}(V)$ as a Lie algebra. Write $I=I_{V}$. Then $D(x)=D(I x)=D(I) x+D(x)$ for all $x \in \operatorname{End}(V)$, and hence $D(I)=0$. Let $\mathfrak{g}=\mathfrak{s l}(V)$. Since $\mathfrak{g}=[\mathfrak{g}, \mathfrak{g}]$ we also have $D \mathfrak{g} \subset \mathfrak{g}$.

Let $\operatorname{Der}(\mathfrak{g}) \subset \operatorname{End}(\mathfrak{g})$ be the vector space of all linear transformations T on \mathfrak{g} such that

$$
T([X, Y])=[T X, Y]+[X, T Y] \quad \text { for all } X, Y \in \mathfrak{g} .
$$

If $Z \in \mathfrak{g}$ then $\operatorname{ad} Z \in \operatorname{Der}(\mathfrak{g})$ by the Jacobi identity. Furthermore, if $T \in \operatorname{Der}(\mathfrak{g})$ then

$$
[T, \operatorname{ad}(Z)] X=T([Z, X])-[Z, T(X)]=[T(Z), X]=\operatorname{ad}(T(Z)) X \quad \text { for all } X, Z \in \mathfrak{g}
$$

Hence $[T, \operatorname{ad}(Z)]=\operatorname{ad}(T(Z))$. This shows that

$$
\begin{equation*}
[\operatorname{ad}(\mathfrak{g}), \operatorname{Der}(\mathfrak{g})] \subset \operatorname{ad}(\mathfrak{g}) . \tag{3.2}
\end{equation*}
$$

Thus we can obtain a representation ρ of \mathfrak{g} on $\operatorname{Der}(\mathfrak{g})$ by

$$
\rho(Z) T=[\operatorname{ad}(Z), T] \quad \text { for } T \in \operatorname{Der}(\mathfrak{g}) .
$$

Since the subspace $\operatorname{ad}(\mathfrak{g})$ of $\operatorname{Der}(\mathfrak{g})$ is invariant under $\rho(\mathfrak{g})$ and every representation of \mathfrak{g} is completely reducible (Theorem 2.4.6), there is a subspace $U \subset \operatorname{Der}(\mathfrak{g})$ so that

$$
\operatorname{Der}(\mathfrak{g})=\operatorname{ad}(\mathfrak{g}) \oplus U, \quad[\operatorname{ad}(\mathfrak{g}), U] \subset U
$$

On the other hand, $[\operatorname{ad}(\mathfrak{g}), U] \subset \operatorname{ad}(\mathfrak{g})$ by (3.2). Hence $U=0$. This proves that

$$
\begin{equation*}
\operatorname{Der}(\mathfrak{g})=\operatorname{ad}(\mathfrak{g}) . \tag{3.3}
\end{equation*}
$$

Returning to the derivation D of $\operatorname{End}(V)$, we conclude that there exists $Z \in \mathfrak{g}$ so that $D(X)=[X, Z]$ for all $X \in \mathfrak{g}$. Since $D(I)=0$, this equation holds for all $X \in \operatorname{End}(V)$. Thus we may take $A=-Z . \diamond$

We now obtain a canonical form for the representations of $\operatorname{End}(V)$. We use the notation

$$
V^{m}=\underbrace{V \oplus \cdots \oplus V}_{m \text { copies }}
$$

to denote the direct sum of m copies of the representation of $\operatorname{End}(V)$ on V.
Theorem 3.2.5 Let $\mathcal{A}=\operatorname{End}(V)$ and suppose (ρ, W) is a finite-dimensional representation of \mathcal{A}. Then $\operatorname{dim} W=m \operatorname{dim} V$, where $m=\operatorname{dim}_{\operatorname{Hom}_{\mathcal{A}}(V, W) \text {, and there exists a linear }}$ bijection

$$
T: W \rightarrow V^{m}, \quad \text { with } T w=\left(v_{1}, \ldots, v_{m}\right)
$$

such that $T \rho(x) w=\left(x v_{1}, \ldots, x v_{m}\right)$ for $x \in \mathcal{A}$ and $w \in W$. Hence W is equivalent to the \mathcal{A}-module $\operatorname{Hom}_{\mathcal{A}}(V, W) \otimes V$, where $x \in \mathcal{A}$ acts by $x \cdot(u \otimes v)=u \otimes(x v)$ for $u \in \operatorname{Hom}_{\mathcal{A}}(V, W)$ and $v \in V$.

Proof. Since $\operatorname{dim} W$ is finite, W contains an irreducible submodule W_{1}. If $W_{1} \neq W$ then there is a submodule $W_{2} \supset W_{1}$ such that the representation of $\operatorname{End}(V)$ on W_{2} / W_{1} is irreducible. Continuing in this way, we obtain a Jordan-Hölder series

$$
W_{1} \subset W_{2} \subset \cdots \subset W_{m}=W
$$

of submodules with each quotient W_{i+1} / W_{i} irreducible and hence isomorphic to V by Proposition 3.2.3. In particular,

$$
\operatorname{dim} W=m \operatorname{dim} V .
$$

We prove the existence of the map T by induction on m. When $W=W_{1}$ we may take $T=I$. Thus we may assume inductively that there are intertwining maps

$$
T_{1}: W_{1} \cong V, \quad T_{2}: W / W_{1} \cong V^{\otimes(m-1)}
$$

Let $\pi: W \rightarrow W / W_{1}$ be the canonical projection. Choose a subspace $Z \subset W$ so that $W=W_{1} \oplus Z$, and let

$$
P: W \rightarrow Z, \quad Q: W \rightarrow W_{1}
$$

be the corresponding projections. (Since Z is not necessarily a ρ-invariant subspace, these projections are generally not intertwining operators.) Define a linear bijection

$$
T: W \rightarrow V^{m}, \quad T\left(w_{1}+z\right)=\left(T_{1} w_{1}, T_{2} \pi(z)\right)
$$

for $w_{1} \in W_{1}$ and $z \in Z$. Since T_{1}, T_{2} and π are intertwining maps and $\pi P=\pi$, we have

$$
\begin{aligned}
T \rho(x)\left(w_{1}+z\right) & =T\left(\rho(x) w_{1}+Q \rho(x) z+P \rho(x) z\right) \\
& =\left(x T_{1} w_{1}+T_{1} Q \rho(x) z, x T_{2} \pi z\right)
\end{aligned}
$$

for $x \in \operatorname{End}(V)$. Thus if $w \in W$ and we write $T(w)=\left(v_{1}, \ldots, v_{m}\right)$ with $v_{i} \in V$, then

$$
\begin{equation*}
T \rho(x) w=\left(x v_{1}+\sum_{i=2}^{m} \mu_{i}(x) v_{i}, x v_{2}, \ldots, x v_{m}\right) \tag{3.4}
\end{equation*}
$$

where $\mu_{i}(x) \in \operatorname{End}(V)$.
Obviously the maps $\mu_{i}(x)$ depend linearly on x. From the equation $\rho(x y)=\rho(x) \rho(y)$ and equation (3.4) we find that

$$
\sum_{i=2}^{m} \mu_{i}(x y) v_{i}=\sum_{i=2}^{m} x \mu_{i}(y) v_{i}+\sum_{i=2}^{m} \mu_{i}(x) y v_{i}
$$

for all $v_{i} \in V$ and $x, y \in \operatorname{End}(V)$. Hence for $i=1, \ldots, m$ we have

$$
\mu_{i}(x y)=x \mu_{i}(y)+\mu_{i}(x) y .
$$

Thus μ_{i} is a derivation of $\operatorname{End}(V)$. By Scholium 3.2.4 there exists $A_{i} \in \operatorname{End}(V)$ so that $\mu_{i}(x)=\left[A_{i}, x\right]$.

We have now shown that ρ is equivalent to the representation $\tilde{\rho}$ on V^{m} given by

$$
\tilde{\rho}(x)\left(v_{1}, \ldots, v_{m}\right)=\left(x v_{1}+\sum_{i=2}^{m}\left[A_{i}, x\right] v_{i}, x v_{2}, \ldots, x v_{m}\right) .
$$

Define a linear transformation g on V^{m} by

$$
g \cdot\left(v_{1}, \ldots, v_{m}\right)=\left(v_{1}+\sum_{i=2}^{m} A_{i} v_{i}, v_{2}, \ldots, v_{m}\right) .
$$

Then g is a linear bijection, with inverse

$$
g^{-1} \cdot\left(v_{1}, \ldots, v_{m}\right)=\left(v_{1}-\sum_{i=2}^{m} A_{i} v_{i}, v_{2}, \ldots, v_{m}\right)
$$

It follows that

$$
g^{-1} \tilde{\rho}(x) g\left(v_{1}, \ldots, v_{m}\right)=\left(x v_{1}, \ldots, x v_{m}\right)
$$

Thus ρ is equivalent to the direct sum of m copies of the representation of $\operatorname{End}(V)$ on V. \diamond

