Chapter 3

Algebras and Representations

3.2 Simple Associative Algebras

3.2.1 Wedderburn's Theorem

An associative algebra \mathcal{A} is called *simple* if the only two-sided ideals in \mathcal{A} are 0 and \mathcal{A} . We now show that a finite-dimensional simple algebra is completely determined by its dimension.

Theorem 3.2.1 (Wedderburn) The algebra $\operatorname{End}(V)$ is simple for every finite dimensional complex vector space V. Conversely, if \mathcal{A} is any finite dimensional simple algebra over \mathbb{C} with unit, then there is a finite dimensional complex vector space V such that $\mathcal{A} \cong \operatorname{End}(V)$.

Proof. If u, v are nonzero vectors in V, then there exists $T \in \text{End}(V)$ so that Tv = u (take $f \in V^*$ with f(v) = 1 and define Tx = f(x)u for $x \in V$). Thus End(V)v = V. Now suppose $0 \neq \mathcal{B} \subset \text{End}(V)$ is a two-sided ideal and $0 \neq v \in V$. Then $\mathcal{B}v = \mathcal{B} \text{End}(V)v = \mathcal{B}V$, since \mathcal{B} is a right ideal. But $\mathcal{B}V \neq 0$ since $\mathcal{B} \neq 0$, and $\mathcal{B}V$ is invariant under End(V) since \mathcal{B} is a left ideal. Hence

 $\mathcal{B}v = V$ for all $0 \neq v \in V$.

This proves that V is an irreducible \mathcal{B} -module. Burnside's Theorem implies that $\mathcal{B} = \text{End}(V)$. Hence End(V) is a simple algebra.

Now suppose \mathcal{A} is a finite-dimensional simple algebra over \mathbb{C} with unit. Define the left regular representation

$$\lambda : \mathcal{A} \to \operatorname{End}(\mathcal{A})$$

by $\lambda(x)y = xy$. Choose a left ideal $V \subset \mathcal{A}$ of minimal positive dimension, and define $\rho(x) = \lambda(x)|_V$ for $x \in \mathcal{A}$. Then (ρ, V) is an irreducible representation of \mathcal{A} . Hence $\rho(\mathcal{A}) = \operatorname{End}(V)$ by Burnside's theorem. Furthermore $\operatorname{Ker}(\rho)$ is zero, since it is a two-sided ideal. Thus $\mathcal{A} \cong \rho(\mathcal{A})$ as an algebra. \Diamond

3.2.2 Representations of End(V)

Let V be a finite-dimensional complex vector space. The representation of End(V) on V is irreducible (see the proof of Theorem 3.2.1). We shall prove that, up to equivalence, this is the *unique* irreducible representation of End(V). This will be a consequence of Wedderburn's Theorem once we prove that every automorphism of End(V) is inner.

Scholium 3.2.2 Let $\phi \in \operatorname{Aut}(\operatorname{End}(V))$. Then there exists $g \in \operatorname{GL}(V)$ such that $\phi(x) = gxg^{-1}$ for all $x \in \operatorname{End}(V)$.

Proof. Choose a basis e_1, \ldots, e_n for V and let $E_{ij} \in \text{End}(V)$ be the transformation that maps e_i to e_j and annihilates e_k for $k \neq i$. Set $P_i = \phi(E_{ii})$. Since ϕ is an automorphism of End(V), we have

$$P_i^2 = P_i \neq 0, \quad P_i P_j = \delta_{ij} P_j, \quad \sum_{i=1}^n P_i = I_V.$$

For i = 1, ..., n choose $0 \neq f_i \in P_i V$. Then the set $\{f_1, ..., f_n\}$ is linearly independent. To prove this, we first note that $P_i f_j = \delta_{ij} f_j$. If $\sum_i c_i f_i = 0$ then

$$0 = P_j\left(\sum_i c_i f_i\right) = c_j f_j.$$

Thus $c_j = 0$ for all j. Since dim V = n, it follows that $\{f_1, \ldots, f_n\}$ is a basis for V. Hence there exists $x \in GL(V)$ such that $xe_i = f_i$ for $i = 1, \ldots, n$. Define $\tilde{\phi} \in Aut(End(V))$ by

$$\tilde{\phi}(y) = x^{-1}\phi(y)x$$

Then $\tilde{\phi}(E_{ii}) = E_{ii}$, so replacing ϕ by $\tilde{\phi}$ we may assume that $\phi(E_{ii}) = E_{ii}$ for $i = 1, \ldots, n$.

We now calculate the action of ϕ on the off-diagonal matrix units. With ϕ normalized as above, we have

$$\phi(E_{ij}) = \phi(E_{ii}E_{ij}E_{jj}) = E_{ii}\phi(E_{ij})E_{jj}$$

Hence $\phi(E_{ij})e_k = 0$ for $k \neq j$, and $\phi(E_{ij})e_j \in \mathbb{C}e_i$. This implies that

$$\phi(E_{ij}) = \lambda_{ij} E_{ij} \tag{3.1}$$

for some non-zero scalar λ_{ij} . Since $\phi(E_{ij}E_{jk}) = \phi(E_{ik})$, the scalars λ_{ij} satisfy the relations

$$\lambda_{ij}\lambda_{jk} = \lambda_{ik}.$$

Since we have normalized ϕ so that $\lambda_{ii} = 1$, it follows that $\lambda_{ij}^{-1} = \lambda_{ji}$. Set $\lambda_i = \lambda_{i1}$. Then

$$\lambda_{ij} = \lambda_{i1}\lambda_{1j} = \lambda_i\lambda_j^{-1}.$$

Set $h = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Then

$$hE_{ij}h^{-1} = \lambda_i \lambda_j^{-1} E_{ij} = \lambda_{ij} E_{ij},$$

so by equation (3.1) we have $h^{-1}\phi(E_{ij})h = E_{ij}$ for all i, j. Hence $h^{-1}\phi(x)h = x$ for all $x \in \text{End}(V)$. Thus ϕ is the inner automorphism given by h. \Diamond

Proposition 3.2.3 Up to equivalence, the only irreducible representation of End(V) is the representation τ on V given by $\tau(x)v = xv$.

Proof. Let (ρ, W) be an irreducible representation of $\operatorname{End}(V)$. Wedderburn's theorem implies that $\operatorname{End}(V) \cong \operatorname{End}(W)$ as an algebra. Since dim $\operatorname{End}(V) = \dim(V)^2$, we have $\dim(V) = \dim(W)$. Fix a linear bijection $T: V \to W$, and define

$$\phi(x) = T^{-1}\rho(x)T, \quad \text{for } x \in \text{End}(V).$$

Then ϕ is an automorphism of $\operatorname{End}(V)$, so by Scholium 3.2.2 there exists $g \in \operatorname{End}(V)$ such that $\phi(x) = gxg^{-1}$. Set $S = (Tg)^{-1}$. Then $S : W \to V$ and

$$S\rho(x) = ST\phi(x)T^{-1} = STgxg^{-1}T^{-1} = xS$$

for $x \in \text{End}(V)$. Since S is a linear bijection, we conclude that $(\rho, W) \cong (V, \tau)$.

We now establish a canonical form for an arbitrary finite-dimensional representation of $\operatorname{End}(V)$. For this we will need the following differentiated version of Scholium 3.2.2. Recall that a *derivation* of an algebra \mathcal{A} is a map $D \in \operatorname{End}(\mathcal{A})$ such that D(xy) = (Dx)y + x(Dy) for all $x, y \in \mathcal{A}$.

Scholium 3.2.4 Let D be a derivation of the associative algebra End(V). Then there exists $A \in \text{End}(V)$ such that D(x) = Ax - xA for all $x \in \text{End}(V)$.

Proof. For $x, y \in \text{End}(V)$,

$$D([x, y]) = (Dx)y + x(Dy) - (Dy)x - y(Dx) = [Dx, y] + [x, Dy],$$

where [x, y] = xy - yx is the commutator. Thus D is also a derivation of End(V) as a Lie algebra. Write $I = I_V$. Then D(x) = D(Ix) = D(I)x + D(x) for all $x \in End(V)$, and hence D(I) = 0. Let $\mathfrak{g} = \mathfrak{sl}(V)$. Since $\mathfrak{g} = [\mathfrak{g}, \mathfrak{g}]$ we also have $D\mathfrak{g} \subset \mathfrak{g}$.

Let $\operatorname{Der}(\mathfrak{g}) \subset \operatorname{End}(\mathfrak{g})$ be the vector space of all linear transformations T on \mathfrak{g} such that

$$T([X,Y]) = [TX,Y] + [X,TY] \text{ for all } X, Y \in \mathfrak{g}.$$

If $Z \in \mathfrak{g}$ then $\operatorname{ad} Z \in \operatorname{Der}(\mathfrak{g})$ by the Jacobi identity. Furthermore, if $T \in \operatorname{Der}(\mathfrak{g})$ then

$$[T, \mathrm{ad}(Z)]X = T([Z, X]) - [Z, T(X)] = [T(Z), X] = \mathrm{ad}(T(Z))X \quad \text{for all } X, Z \in \mathfrak{g}.$$

Hence $[T, \operatorname{ad}(Z)] = \operatorname{ad}(T(Z))$. This shows that

$$[\mathrm{ad}(\mathfrak{g}), \mathrm{Der}(\mathfrak{g})] \subset \mathrm{ad}(\mathfrak{g}).$$
 (3.2)

Thus we can obtain a representation ρ of \mathfrak{g} on $\text{Der}(\mathfrak{g})$ by

$$\rho(Z)T = [\operatorname{ad}(Z), T] \text{ for } T \in \operatorname{Der}(\mathfrak{g}).$$

Since the subspace $\operatorname{ad}(\mathfrak{g})$ of $\operatorname{Der}(\mathfrak{g})$ is invariant under $\rho(\mathfrak{g})$ and every representation of \mathfrak{g} is completely reducible (Theorem 2.4.6), there is a subspace $U \subset \operatorname{Der}(\mathfrak{g})$ so that

$$\operatorname{Der}(\mathfrak{g}) = \operatorname{ad}(\mathfrak{g}) \oplus U, \quad [\operatorname{ad}(\mathfrak{g}), U] \subset U.$$

On the other hand, $[\operatorname{ad}(\mathfrak{g}), U] \subset \operatorname{ad}(\mathfrak{g})$ by (3.2). Hence U = 0. This proves that

$$\operatorname{Der}(\mathfrak{g}) = \operatorname{ad}(\mathfrak{g}).$$
 (3.3)

Returning to the derivation D of $\operatorname{End}(V)$, we conclude that there exists $Z \in \mathfrak{g}$ so that D(X) = [X, Z] for all $X \in \mathfrak{g}$. Since D(I) = 0, this equation holds for all $X \in \operatorname{End}(V)$. Thus we may take A = -Z.

We now obtain a canonical form for the representations of End(V). We use the notation

$$V^m = \underbrace{V \oplus \dots \oplus V}_{m \text{ copies}}$$

to denote the direct sum of m copies of the representation of End(V) on V.

Theorem 3.2.5 Let $\mathcal{A} = \text{End}(V)$ and suppose (ρ, W) is a finite-dimensional representation of \mathcal{A} . Then dim $W = m \dim V$, where $m = \dim \text{Hom}_{\mathcal{A}}(V, W)$, and there exists a linear bijection

$$T: W \to V^m$$
, with $Tw = (v_1, \dots, v_m)$,

such that $T\rho(x)w = (xv_1, \ldots, xv_m)$ for $x \in A$ and $w \in W$. Hence W is equivalent to the A-module $\operatorname{Hom}_{\mathcal{A}}(V, W) \otimes V$, where $x \in A$ acts by $x \cdot (u \otimes v) = u \otimes (xv)$ for $u \in \operatorname{Hom}_{\mathcal{A}}(V, W)$ and $v \in V$.

Proof. Since dim W is finite, W contains an irreducible submodule W_1 . If $W_1 \neq W$ then there is a submodule $W_2 \supset W_1$ such that the representation of End(V) on W_2/W_1 is irreducible. Continuing in this way, we obtain a *Jordan-Hölder series*

$$W_1 \subset W_2 \subset \cdots \subset W_m = W$$

of submodules with each quotient W_{i+1}/W_i irreducible and hence isomorphic to V by Proposition 3.2.3. In particular,

$$\dim W = m \dim V.$$

We prove the existence of the map T by induction on m. When $W = W_1$ we may take T = I. Thus we may assume inductively that there are intertwining maps

$$T_1: W_1 \cong V, \quad T_2: W/W_1 \cong V^{\otimes (m-1)}$$

Let $\pi : W \to W/W_1$ be the canonical projection. Choose a subspace $Z \subset W$ so that $W = W_1 \oplus Z$, and let

$$P: W \to Z, \quad Q: W \to W_1$$

be the corresponding projections. (Since Z is not necessarily a ρ -invariant subspace, these projections are generally not intertwining operators.) Define a linear bijection

$$T: W \to V^m, \quad T(w_1 + z) = (T_1 w_1, T_2 \pi(z))$$

for $w_1 \in W_1$ and $z \in Z$. Since T_1, T_2 and π are intertwining maps and $\pi P = \pi$, we have

$$T\rho(x)(w_1 + z) = T(\rho(x)w_1 + Q\rho(x)z + P\rho(x)z) = (xT_1w_1 + T_1Q\rho(x)z, xT_2\pi z)$$

for $x \in \text{End}(V)$. Thus if $w \in W$ and we write $T(w) = (v_1, \ldots, v_m)$ with $v_i \in V$, then

$$T\rho(x)w = (xv_1 + \sum_{i=2}^{m} \mu_i(x)v_i, \ xv_2, \dots, xv_m),$$
(3.4)

where $\mu_i(x) \in \text{End}(V)$.

Obviously the maps $\mu_i(x)$ depend linearly on x. From the equation $\rho(xy) = \rho(x)\rho(y)$ and equation (3.4) we find that

$$\sum_{i=2}^{m} \mu_i(xy) v_i = \sum_{i=2}^{m} x \mu_i(y) v_i + \sum_{i=2}^{m} \mu_i(x) y v_i$$

for all $v_i \in V$ and $x, y \in \text{End}(V)$. Hence for i = 1, ..., m we have

$$\mu_i(xy) = x\mu_i(y) + \mu_i(x)y.$$

Thus μ_i is a derivation of End(V). By Scholium 3.2.4 there exists $A_i \in End(V)$ so that $\mu_i(x) = [A_i, x]$.

We have now shown that ρ is equivalent to the representation $\tilde{\rho}$ on V^m given by

$$\tilde{\rho}(x)(v_1,\ldots,v_m) = (xv_1 + \sum_{i=2}^m [A_i,x]v_i, xv_2,\ldots,xv_m).$$

Define a linear transformation g on V^m by

$$g \cdot (v_1, \dots, v_m) = (v_1 + \sum_{i=2}^m A_i v_i, v_2, \dots, v_m).$$

Then g is a linear bijection, with inverse

$$g^{-1} \cdot (v_1, \dots, v_m) = (v_1 - \sum_{i=2}^m A_i v_i, v_2, \dots, v_m).$$

It follows that

$$g^{-1}\tilde{\rho}(x)g(v_1,\ldots,v_m) = (xv_1,\ldots,xv_m)$$

Thus ρ is equivalent to the direct sum of m copies of the representation of End(V) on V. \Diamond