
Chapter 3

Algebras and Representations

3.2 Simple Associative Algebras

3.2.1 Wedderburn’s Theorem

An associative algebra A is called simple if the only two-sided ideals in A are 0 and A.
We now show that a finite-dimensional simple algebra is completely determined by its

dimension.

Theorem 3.2.1 (Wedderburn) The algebra End(V ) is simple for every finite dimen-

sional complex vector space V . Conversely, if A is any finite dimensional simple alge-

bra over C with unit, then there is a finite dimensional complex vector space V such that

A ∼= End(V ).

Proof. If u, v are nonzero vectors in V , then there exists T ∈ End(V ) so that Tv = u (take
f ∈ V ∗ with f(v) = 1 and define Tx = f(x)u for x ∈ V ). Thus End(V )v = V . Now suppose
0 6= B ⊂ End(V ) is a two-sided ideal and 0 6= v ∈ V . Then Bv = BEnd(V )v = BV , since

B is a right ideal. But BV 6= 0 since B 6= 0, and BV is invariant under End(V ) since B is
a left ideal. Hence

Bv = V for all 0 6= v ∈ V.

This proves that V is an irreducible B-module. Burnside’s Theorem implies that B =

End(V ). Hence End(V ) is a simple algebra.

Now suppose A is a finite-dimensional simple algebra over C with unit. Define the left
regular representation

λ : A → End(A)

by λ(x)y = xy. Choose a left ideal V ⊂ A of minimal positive dimension, and define ρ(x) =
λ(x)|V for x ∈ A. Then (ρ, V ) is an irreducible representation of A. Hence ρ(A) = End(V )

by Burnside’s theorem. Furthermore Ker(ρ) is zero, since it is a two-sided ideal. Thus
A ∼= ρ(A) as an algebra. ♦
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3.2.2 Representations of End(V )

Let V be a finite-dimensional complex vector space. The representation of End(V ) on V
is irreducible (see the proof of Theorem 3.2.1). We shall prove that, up to equivalence,

this is the unique irreducible representation of End(V ). This will be a consequence of
Wedderburn’s Theorem once we prove that every automorphism of End(V ) is inner.

Scholium 3.2.2 Let φ ∈ Aut(End(V )). Then there exists g ∈ GL(V ) such that φ(x) =

gxg−1 for all x ∈ End(V ).

Proof. Choose a basis e1, . . . , en for V and let Eij ∈ End(V ) be the transformation that
maps ei to ej and annihilates ek for k 6= i. Set Pi = φ(Eii). Since φ is an automorphism of

End(V ), we have

P 2
i = Pi 6= 0, PiPj = δijPj ,

n∑

i=1

Pi = IV .

For i = 1, . . .n choose 0 6= fi ∈ PiV . Then the set {f1, . . . , fn} is linearly independent. To

prove this, we first note that Pifj = δijfj. If
∑

i cifi = 0 then

0 = Pj

(
∑

i

cifi

)

= cjfj.

Thus cj = 0 for all j. Since dimV = n, it follows that {f1, . . . , fn} is a basis for V . Hence

there exists x ∈ GL(V ) such that xei = fi for i = 1, . . . , n. Define φ̃ ∈ Aut(End(V )) by

φ̃(y) = x−1φ(y)x.

Then φ̃(Eii) = Eii, so replacing φ by φ̃ we may assume that φ(Eii) = Eii for i = 1, . . . , n.
We now calculate the action of φ on the off-diagonal matrix units. With φ normalized

as above, we have

φ(Eij) = φ(EiiEijEjj) = Eiiφ(Eij)Ejj.

Hence φ(Eij)ek = 0 for k 6= j, and φ(Eij)ej ∈ Cei. This implies that

φ(Eij) = λijEij (3.1)

for some non-zero scalar λij. Since φ(EijEjk) = φ(Eik), the scalars λij satisfy the relations

λijλjk = λik.

Since we have normalized φ so that λii = 1, it follows that λ−1
ij = λji. Set λi = λi1. Then

λij = λi1λ1j = λiλ
−1
j .

Set h = diag(λ1, . . . , λn). Then

hEijh
−1 = λiλ

−1
j Eij = λijEij,

so by equation (3.1) we have h−1φ(Eij)h = Eij for all i, j. Hence h−1φ(x)h = x for all
x ∈ End(V ). Thus φ is the inner automorphism given by h. ♦
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Proposition 3.2.3 Up to equivalence, the only irreducible representation of End(V ) is the

representation τ on V given by τ(x)v = xv.

Proof. Let (ρ, W ) be an irreducible representation of End(V ). Wedderburn’s theorem

implies that End(V ) ∼= End(W ) as an algebra. Since dim End(V ) = dim(V )2, we have
dim(V ) = dim(W ). Fix a linear bijection T : V → W , and define

φ(x) = T−1ρ(x)T, for x ∈ End(V ).

Then φ is an automorphism of End(V ), so by Scholium 3.2.2 there exists g ∈ End(V ) such
that φ(x) = gxg−1. Set S = (Tg)−1. Then S : W → V and

Sρ(x) = STφ(x)T−1 = STgxg−1T−1 = xS

for x ∈ End(V ). Since S is a linear bijection, we conclude that (ρ, W ) ∼= (V, τ). ♦

We now establish a canonical form for an arbitrary finite-dimensional representation of
End(V ). For this we will need the following differentiated version of Scholium 3.2.2. Recall

that a derivation of an algebra A is a map D ∈ End(A) such that D(xy) = (Dx)y + x(Dy)
for all x, y ∈ A.

Scholium 3.2.4 Let D be a derivation of the associative algebra End(V ). Then there exists

A ∈ End(V ) such that D(x) = Ax − xA for all x ∈ End(V ).

Proof. For x, y ∈ End(V ),

D([x, y]) = (Dx)y + x(Dy)− (Dy)x− y(Dx)

= [Dx, y] + [x, Dy],

where [x, y] = xy − yx is the commutator. Thus D is also a derivation of End(V ) as a Lie
algebra. Write I = IV . Then D(x) = D(Ix) = D(I)x+D(x) for all x ∈ End(V ), and hence

D(I) = 0. Let g = sl(V ). Since g = [g, g] we also have Dg ⊂ g.
Let Der(g) ⊂ End(g) be the vector space of all linear transformations T on g such that

T ([X, Y ]) = [TX, Y ] + [X, TY ] for all X, Y ∈ g.

If Z ∈ g then adZ ∈ Der(g) by the Jacobi identity. Furthermore, if T ∈ Der(g) then

[T, ad(Z)]X = T ([Z, X ])− [Z, T (X)] = [T (Z), X ] = ad(T (Z))X for all X, Z ∈ g.

Hence [T, ad(Z)] = ad(T (Z)). This shows that

[ad(g), Der(g)] ⊂ ad(g). (3.2)

Thus we can obtain a representation ρ of g on Der(g) by

ρ(Z)T = [ad(Z), T ] for T ∈ Der(g).

Since the subspace ad(g) of Der(g) is invariant under ρ(g) and every representation of g is

completely reducible (Theorem 2.4.6), there is a subspace U ⊂ Der(g) so that

Der(g) = ad(g)⊕ U, [ad(g), U ] ⊂ U.
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On the other hand, [ad(g), U ] ⊂ ad(g) by (3.2). Hence U = 0. This proves that

Der(g) = ad(g). (3.3)

Returning to the derivation D of End(V ), we conclude that there exists Z ∈ g so that

D(X) = [X, Z] for all X ∈ g. Since D(I) = 0, this equation holds for all X ∈ End(V ).
Thus we may take A = −Z. ♦

We now obtain a canonical form for the representations of End(V ). We use the notation

V m = V ⊕ · · · ⊕ V
︸ ︷︷ ︸

m copies

to denote the direct sum of m copies of the representation of End(V ) on V .

Theorem 3.2.5 Let A = End(V ) and suppose (ρ, W ) is a finite-dimensional representation

of A. Then dim W = m dimV , where m = dimHomA(V, W ), and there exists a linear

bijection

T : W → V m, with Tw = (v1, . . . , vm),

such that Tρ(x)w = (xv1, . . . , xvm) for x ∈ A and w ∈ W . Hence W is equivalent to the

A-module HomA(V, W )⊗V , where x ∈ A acts by x · (u⊗v) = u⊗(xv) for u ∈ HomA(V, W )

and v ∈ V .

Proof. Since dimW is finite, W contains an irreducible submodule W1. If W1 6= W then
there is a submodule W2 ⊃ W1 such that the representation of End(V ) on W2/W1 is

irreducible. Continuing in this way, we obtain a Jordan-Hölder series

W1 ⊂ W2 ⊂ · · · ⊂ Wm = W

of submodules with each quotient Wi+1/Wi irreducible and hence isomorphic to V by Propo-

sition 3.2.3. In particular,
dimW = m dimV.

We prove the existence of the map T by induction on m. When W = W1 we may take
T = I . Thus we may assume inductively that there are intertwining maps

T1 : W1
∼= V, T2 : W/W1

∼= V ⊗(m−1).

Let π : W → W/W1 be the canonical projection. Choose a subspace Z ⊂ W so that
W = W1 ⊕ Z, and let

P : W → Z, Q : W → W1

be the corresponding projections. (Since Z is not necessarily a ρ-invariant subspace, these
projections are generally not intertwining operators.) Define a linear bijection

T : W → V m, T (w1 + z) = (T1w1, T2π(z))

for w1 ∈ W1 and z ∈ Z. Since T1, T2 and π are intertwining maps and πP = π, we have

Tρ(x)(w1 + z) = T (ρ(x)w1 + Qρ(x)z + Pρ(x)z)

= (xT1w1 + T1Qρ(x)z, xT2πz)



3.2. SIMPLE ASSOCIATIVE ALGEBRAS 133

for x ∈ End(V ). Thus if w ∈ W and we write T (w) = (v1, . . . , vm) with vi ∈ V , then

Tρ(x)w = (xv1 +

m∑

i=2

µi(x)vi, xv2, . . . , xvm), (3.4)

where µi(x) ∈ End(V ).
Obviously the maps µi(x) depend linearly on x. From the equation ρ(xy) = ρ(x)ρ(y)

and equation (3.4) we find that

m∑

i=2

µi(xy)vi =

m∑

i=2

xµi(y)vi +

m∑

i=2

µi(x)yvi

for all vi ∈ V and x, y ∈ End(V ). Hence for i = 1, . . . , m we have

µi(xy) = xµi(y) + µi(x)y.

Thus µi is a derivation of End(V ). By Scholium 3.2.4 there exists Ai ∈ End(V ) so that
µi(x) = [Ai, x].

We have now shown that ρ is equivalent to the representation ρ̃ on V m given by

ρ̃(x)(v1, . . . , vm) = (xv1 +

m∑

i=2

[Ai, x]vi, xv2, . . . , xvm).

Define a linear transformation g on V m by

g · (v1, . . . , vm) = (v1 +

m∑

i=2

Aivi, v2, . . . , vm).

Then g is a linear bijection, with inverse

g−1 · (v1, . . . , vm) = (v1 −

m∑

i=2

Aivi, v2, . . . , vm).

It follows that
g−1ρ̃(x)g(v1, . . . , vm) = (xv1, . . . , xvm).

Thus ρ is equivalent to the direct sum of m copies of the representation of End(V ) on V .
♦


