
Chapter 3

Algebras and Representations

In this chapter we develop the basic facts about finite-dimensional representations of asso-
ciative algebras: Schur’s Lemma, Burnside’s Theorem, the theorem of Wedderburn charac-

terizing simple algebras and direct sums of simple algebras, complete reducibility of repre-
sentations, and the double commutant theorem. The duality between a semisimple algebra

of endomorphisms and its commutant is a key aspect of representation theory, and its im-
plications for representations of the classical groups will be worked out in later chapters.

We study the representations of a finite group through its group algebra and characters,
and we construct induced representations and calculate their characters.

3.1 Representations of Associative Algebras

3.1.1 Definitions and Examples

We know from the previous chapter that every regular representation (ρ, V ) of a classical

group G decomposes into a direct sum of irreducible representations. The next task is to
determine the extent of uniqueness of such a decomposition and to find explicit projection

operators onto irreducible subspaces of V . In the tradition of modern mathematics we will
attack these problems by putting them in a more general (abstract) context. We first allow

G to be an arbitrary group. We next introduce an algebra whose representation theory
contains that of G.

Consider linear operators on V of the form

T =

N∑

i=1

aiρ(gi)

where ai ∈ C, gi ∈ G, and N <∞. Suppose W ⊂ V is a linear subspace. If W is invariant
under G and w ∈ W , then Tw ∈ W , since ρ(gi)w ∈ W for all i. Conversely, if TW ⊂ W

for all such operators T , then ρ(G)W ⊂W , since we can take T = ρ(g) with g arbitrary in
G. It is convenient to use the notation

T =
∑

g∈G

c(g) ρ(g), (3.1)
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where the coefficients c(g) ∈ C and only a finite number of them are nonzero. The set
of operators of the form (3.1) includes all the operators ρ(g) for g ∈ G, of course. By its

very definition it is a linear subspace of End(V ). Furthermore, if A =
∑

g a(g)ρ(g) and
B =

∑
g b(g)ρ(g) are two such operators, then

AB =
∑

g

c(g)ρ(g), with c(g) =
∑

xy=g

a(x)b(y).

Thus this set of operators is a subalgebra of the associative algebra End(V ) with the same

invariant subspaces as G. Furthermore, an operator R ∈ End(V ) commutes with the action
of G if and only if it commutes with all the operators of the form (3.1). The advantage of
considering all these linear operators, instead of just the operators ρ(G), is that we can use

techniques from ring theory (ideals, images, kernels) to study group representations.
We proceed to study algebras of linear operators in more detail. We will first view them

as abstract algebras, and then study their representations as algebras of linear transforma-
tions.

An associative algebra over the complex field C is a vector space A over C together with

a bilinear multiplication map

µ : A × A → A, x, y 7→ xy = µ(x, y),

such that (xy)z = x(yz). The algebra A is said to have an identity element if there exists

e ∈ A such that ae = ea = a for all a ∈ A. If A has an identity element it is unique and we
will usually use the notation 1 for e.

Examples of Associative Algebras

1. Let V be a vector space over C, and let A = End(V ) be the space of C-linear trans-
formations on V . Then A is an associative algebra, with multiplication the composition of

transformations. When dim V = n < ∞, then this algebra has a basis consisting of the n2

elementary matrices Eij, for 1 ≤ i, j ≤ n, which multiply by

EijEkm = δjkEim.

This algebra will play a fundamental role in our study of associative algebras and their
representations.

2. Let G be any group (not necessarily a linear algebraic group). We define an associative
algebra C[G], called the group algebra of G, as follows. As a vector space, C[G] is the set of

all functions f : G → C such that the support of f (the set where f(g) 6= 0) is finite. This
space has a basis consisting of the functions {δg : g ∈ G}, where

δg(x) =

{
1 if x = g
0 otherwise

Thus an element x of C[G] has a unique expression as a formal sum

∑

g∈G

x(g) δg
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(with only a finite number of coefficients x(g) 6= 0).
We identify G with the elements δg in C[G], and we define multiplication on C[G] as

the bilinear extension of group multiplication. Thus, given functions x, y ∈ C[G], we define
their product x ∗ y by

(∑
x(g) δg

)
∗
(∑

y(h) δh

)
=
∑

x(g)y(h) δgh,

with the sum over g, h ∈ G. (We indicate the multiplication by ∗ so it will not be confused
with the pointwise multiplication of functions on G.) This product is associative by the

associativity of group multiplication. The identity element 1 ∈ G becomes the element δ1
in C[G] and G is a subgroup of the group of invertible elements of C[G]. The function x ∗ y

is called the convolution of the functions x and y; from the definition it is clear that

(x ∗ y)(g) =
∑

hk=g

x(h)y(k) =
∑

h∈G

x(h)y(h−1g).

If H is a group and φ : G → H is a group homomorphism, then φ extends uniquely to
a linear map φ̃ : C[G] → C[H ] by the rule

φ̃
(∑

x(g)δg

)
=
∑

x(g)δφ(g) .

From the definition of multiplication in C[G] we see that the extended map φ̃ is an associative

algebra homomorphism. Furthermore, if K is another group and ψ : H → K is a group

homomorphism, then ψ̃ ◦ φ = ψ̃ ◦ φ̃.
An important special case occurs when G is a subgroup of H and φ is the inclusion map.

Then φ̃ is injective (since the δg form a basis of C[G]). Thus we can identify C[G] with the
subalgebra of C[H ] consisting of functions supported on G.

3. Let g be a Lie algebra over C. Just as in the case of group algebras, there is an associative
algebra U(g) (the universal enveloping algebra of g) and an injective linear map j : g → U(g)

such that j(g) generates U(g) and

j([X, Y ]) = j(X)j(Y )− j(Y )j(X)

(the multiplication on the right is in U(g); see Appendix C.2.1 and Theorem C.2.4). Since

U(g) is uniquely determined by g, up to isomorphism, we will identify g with j(g). If h ⊂ g

is a Lie subalgebra then the Poincaré-Birkoff-Witt Theorem C.2.4 allows us to identify U(h)

with the associative subalgebra of U(g) generated by h, so we have the same situation as
for the group algebra of a subgroup H ⊂ G.

Let A be an associative algebra over the complex field C. A representation of A is a
pair (ρ, V ), where V is a vector space over C and ρ : A → End(V ) is an associative algebra
homomorphism. If A has an identity element 1, then we require that ρ(1) act as the identity

transformation IV on V . When the map ρ is understood from the context, we shall call V
an A-module and write av for ρ(a)v.

If V,W are both A-modules, then we make the vector space V ⊕W into an A-module
by the action a · (v ⊕ w) = av ⊕ aw.
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If U ⊂ V is a linear subspace such that ρ(a)U ⊂ U for all a ∈ A, then we say that U
is invariant under the representation. In this case we can define a representation (ρU , U)

by the restriction of ρ(A) to U , and a representation (ρV/U , V/U) by the natural quotient
action of ρ(A) on V/U . A representation (ρ, V ) is irreducible if the only invariant subspaces

are {0} and V .
Define Ker(ρ) = {x ∈ A : ρ(x) = 0}. This is a two-sided ideal in A, and V is a module

for the quotient algebra A/Ker(ρ) via the natural quotient map. A representation ρ is
faithful if Ker(ρ) = 0.

Let (ρ, V ) and (τ,W ) be representations of A, and let Hom(V,W ) be the space of C-
linear maps from V to W . We denote by HomA(V,W ) the set of all T ∈ Hom(V,W ) such

that Tρ(a) = τ(a)T for all a ∈ A. Such a map is called an intertwining operator between
the two representations or a module homomorphism. For example, if U ⊂ V is an invariant

subspace, then the inclusion map U → V and the quotient map V → V/U are intertwining
operators. The representations (ρ, V ) and (τ ,W ) are equivalent if there exists an invertible

operator in HomA(V,W ). In this case we write (ρ, V ) ∼= (τ,W ).
The composition of two intertwining operators, when defined, is again an intertwining

operator. In particular, when V = W and ρ = τ , then HomA(V, V ) is an associative algebra,
which we denote by EndA(V ).

Examples of Representations

1. Let A = C[x]. Let V be a finite-dimensional vector space, and let T ∈ End(V ). Define
a representation (ρ, V ) of A by ρ(f) = f(T ) for f ∈ C[x]. Then Ker(ρ) is the ideal in A

generated by the minimal polynomial of T . The problem of finding a canonical form for this

representation is the same as finding the Jordan canonical form for T (see Section B.1.2).

2. Let G be a group and let A = C[G] be the group algebra of G. If (ρ, V ) is a representation

of A, then the map g 7→ ρ(δg) is a group homomorphism from G to GL(V ). Conversely,
every representation π : G → GL(V ) extends uniquely to a representation ρ of C[G] on V
by

ρ(f) =
∑

g∈G

f(g)π(g)

for f ∈ C[G]. We shall use the same symbol to denote a representation of a group and the

group algebra.
Two important new constructions are possible in the case of group representations. The

first is the contragredient or dual representation (ρ∗, V ∗), where

(ρ∗(g)f)(v) = f(ρ(g−1)v)

for g ∈ G, v ∈ V and f ∈ V ∗. The second is the tensor product (ρ ⊗ σ, V ⊗W ) of two
representations by

(ρ⊗ σ)(g)(v⊗ w) = ρ(g)v⊗ σ(g)w.

For example, let (ρ, V ) and (σ,W ) be finite-dimensional representations of G. There is a

representation π of G on Hom(V,W ) by

π(g)T = σ(g)Tρ(g)−1, for T ∈ Hom(V,W ).
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There is a natural linear isomorphism

Hom(V,W ) ∼= W ⊗ V ∗ (3.2)

(see Section B.2.2). Here a tensor of the form w ⊗ v∗ gives the linear transformation
Tv = 〈v∗, v〉w from V toW . Since the tensor σ(g)w⊗ρ∗(g)v∗ gives the linear transformation

v 7→ 〈ρ∗(g)v∗, v〉σ(g)w= 〈v∗, ρ(g)−1v〉σ(g)w = σ(g)Tρ(g)−1v,

we see that π is equivalent to σ⊗ρ∗. In particular, the space HomG(V,W ) of G-intertwining
maps between V and W corresponds to the space (W⊗V ∗)G of G-fixed elements in W⊗V ∗.

We can iterate the tensor product construction to obtain G-modules
⊗k V = V ⊗k (the

k-fold tensor product of V with itself) with g ∈ G acting by

ρ⊗k(g)(v1 ⊗ · · · ⊗ vk) = ρ(g)v1 ⊗ · · · ⊗ ρ(g)vk

on decomposable tensors. The subspaces Sk(V ) (symmetric tensors) and
∧k V (skew-

symmetric tensors) are G-invariant (see Sections B.2.3 and B.2.4). These modules are

called the symmetric and skew-symmetric powers of ρ.
The contragredient and tensor product constructions for group representations are asso-

ciated with the inversion map g 7→ g−1 and the diagonal map g 7→ (g, g). The properties of
these maps can be described axiomatically using the notion of a Hopf algebra (see Exercises
3.1.5).

3. Let g be a Lie algebra over C, and let (ρ, V ) be a representation of g. The universal

mapping property implies that ρ extends uniquely to a representation of U(g) (see Section
C.2.1), and that every representation of g comes from a unique representation of U(g), just

as in the case of group algebras.
In this case we define the dual representation (ρ∗, V ∗) by

(ρ∗(X)f)(v) = −f(ρ(X)v)

for X ∈ g and f ∈ V ∗. We can also define the tensor product (ρ ⊗ σ, V ⊗W ) of two
representations by letting X ∈ g act by

X · (v ⊗w) = ρ(X)v⊗ w+ v ⊗ σ(X)w.

When g is the Lie algebra of a linear algebraic groupG and ρ, σ are the differentials of regular
representations of G, then these constructions are the same as those in Section 1.2.3. These

constructions are associated with the maps X 7→ −X and the map X 7→ X ⊗1+1⊗X . As
in the case of group algebras, the properties of these maps can be described axiomatically

using the notion of a Hopf algebra (see Exercises 3.1.5). The k-fold tensor powers of ρ and
the symmetric and skew-symmetric powers are defined by analogy with the case of group

representations. Here X ∈ g acts by

ρ⊗k(X)(v1 ⊗ · · · ⊗ vk) = ρ(X)v1 ⊗ · · · ⊗ vk + v1 ⊗ ρ(X)v2 ⊗ · · · ⊗ vk

+ · · ·+ v1 ⊗ · · · ⊗ ρ(X)vk

on decomposable tensors. This action extends linearly to all tensors.
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3.1.2 Schur’s Lemma

The following observation of I. Schur is a fundamental tool in representation theory.

Lemma 3.1.1 (Schur) If (ρ, V ) and (τ ,W ) are irreducible representations of an associa-
tive algebra A with dimV and dimW finite, then

dim HomA(V,W ) =

{
1 if (ρ, V ) ∼= (τ ,W )
0 otherwise.

Proof. Let T ∈ HomA(V,W ). Then Ker(T ) and Range(T ) are invariant subspaces of V and
W , respectively. If T 6= 0, then Ker(T ) 6= V and Range(T ) 6= 0. Hence by the irreducibility

of the representations Ker(T ) = 0 and Range(T ) = W , so that T is a linear isomorphism.
Thus HomA(V,W ) 6= 0 if and only if (ρ, V ) ∼= (τ ,W ).

Suppose the representations are equivalent. If S, T ∈ HomA(V,W ) are non-zero, then
T−1S ∈ EndA(V ). Since dimV <∞ there exists λ ∈ C such that

Ker(T−1S − λIV ) 6= 0.

Hence Ker(T−1S − λIV ) = V since it is an A-invariant subspace and V is irreducible. This
shows that S = λT and hence dim HomA(V,W ) = 1. ♦

3.1.3 Burnside’s Theorem

As a first step in understanding the structure of an associative algebra, we prove that the
image of the algebra in a finite-dimensional irreducible representation (ρ, V ) is completely

determined by dimV (the degree of the representation).

Theorem 3.1.2 (Burnside) Let (ρ, V ) be an irreducible representation of an associative
algebra A. If dimV is finite and ρ(A) 6= 0 then ρ(A) = End(V ).

Proof. Set B = ρ(A). Then B is a non-zero finite-dimensional algebra, and V is an
irreducible B-module. We first observe that if 0 6= v ∈ V then Bv 6= 0 (this is true for any

representation in case A has an identity element). Indeed, the subspace

{v ∈ V : Bv = 0}

is not all of V , since B 6= 0. Hence it must consist only of the zero vector, since it is

B-invariant. For any subset S ⊂ V , define its annihilator

Ann(S) = {b ∈ B : bv = 0 for all v ∈ S}.

Then Ann(S) is a left ideal in B. We observe that if C is any left ideal of B and v ∈ V ,
then Cv is an invariant subspace of V . Hence either Cv = 0 or Cv = V , by the irreducibility

of the representation.
Choose a left ideal C1 ⊂ B of minimal positive dimension, and choose a vector v1 ∈ V

such that C1v1 6= 0. Then
C1v1 = V (3.3)
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by the observation above. Define B1 = Ann{v1}. Then B1 ∩ C1 = 0, since it is a left ideal
properly contained in C1. In particular, the map

T1 : C1 → V, T1c = cv1

is bijective. Since C1 is a B-module under left multiplication and T1 ∈ Hom
B

(C1, V ), we

conclude that C1
∼= V as a B-module. Furthermore, if x ∈ B, then by equation (3.3) there

exists y ∈ C1 such that xv1 = yv1. Hence x− y ∈ B1. This proves that

B = B1 ⊕ C1.

If B1 6= 0, we repeat this construction by choosing a left ideal C2 ⊂ B1 of minimal

positive dimension, and a vector v2 ∈ V (as above), such that C2v2 = V . We set

B2 = Ann{v1, v2} ⊂ B1.

If we argue in exactly the same way as we did for C1 and B1 we find that B2 ∩ C2 = 0,
C2

∼= V as a B-module under the map

T2 : C2 → V, T2c = cv2,

and B1 = B2 ⊕ C2. Hence

B = B2 ⊕ C1 ⊕ C2.

Since dimB < ∞ this procedure terminates after a finite number of steps, giving us a
set of minimal left ideals C1, . . . , Cm and B-module isomorphisms Ti : Ci

∼= V such that

B = C1 ⊕ · · · ⊕ Cm. (3.4)

Hence B, viewed as a B-module under left multiplication, is equivalent to the direct sum of

m copies of V . In particular, dimB = mn, where n = dim V . Since

dim B ≤ dimEnd(V ) = n2,

we have m ≤ n. Thus it suffices to prove that m ≥ n.
Consider the action of right multiplication by x ∈ B on Cj. By equation (3.4) there are

linear maps Tij(x) : Cj → Ci such that

yx =

m∑

i=1

Tij(x)y, for y ∈ Cj. (3.5)

It is clear from equation (3.5) that Tij(x) ∈ HomB(Cj, Ci). But by Schur’s lemma, this

space is one-dimensional, and is spanned by T−1
i Tj. Hence there are scalars µij(x) ∈ C such

that

Tij(x) = µij(x)T
−1
i Tj

for i, j = 1, . . . , m. Clearly µij(x) is a linear function of x. Define µ(x) to be the matrix

[µij(x)]. Then
µ : B → Mm(C)
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is a linear map. If µ(x) = 0, then by equation (3.5) we have Bxv = 0 for all v ∈ V . Hence
xv = 0 for all v ∈ V , by the observation at the beginning of the proof, which implies that

x = 0. Thus the map µ is injective. It follows that

mn = dimB ≤ dimMm(C) = m2.

Hence n ≤ m, so we conclude that m = n and B ∼= Mn(C). ♦

3.1.4 Complete Reducibility

Let (ρ, V ) be a finite-dimensional representation of the associative algebra A. Suppose

W ⊂ V is an A-invariant subspace. By extending a basis for W to a basis for V , we obtain
a vector-space isomorphism V ∼= W ⊕ (V/W ). However, this isomorphism is not necessarily

an isomorphism of A-modules. We say that the A-module V is completely reducible if it is
finite-dimensional and for every A-invariant subspace W ⊂ V there exists a complementary

invariant subspace U ⊂ V such that V = W ⊕ U . In this case U ∼= V/W as an A-module.
To see this, let P : V → U be the projection operator such that Pw = 0 for all w ∈ W .

Since U is invariant under ρ(A), we have ρ(a)P = Pρ(a). Let P̃ : V/W → U be defined by

P̃ (v +W ) = Pv for v ∈ V

Then P̃ is an isomorphism of vector spaces and

ρ(a)P̃(v +W ) = ρ(a)Pv = Pρ(a)v = P̃ (ρ(a)v+W ).

This shows that P̃ defines an A-module isomorphism between V/W and U .

We have already proved that every regular representation of a classical group is com-
pletely reducible. We now show that for representations of any associative algebra, the

property of complete reducibility is inherited by subrepresentations and quotient represen-
tations.

Lemma 3.1.3 Let (ρ, V ) be completely reducible and suppose W ⊂ V is an invariant sub-

space. Set σ(x) = ρ(x)|W and π(x)(v +W ) = ρ(x)v +W for x ∈ A and v ∈ V . Then the
representations (σ,W ) and (π, V/W ) are completely reducible.

Proof. Write V = W ⊕ U for some invariant subspace U , and let P ∈ EndA(V ) be the

projection onto W with kernel U . If Y ⊂ W is an invariant subspace, then the subspace
U ⊕ Y is invariant. Hence there is an invariant subspace Z ⊂ V such that

V = (U ⊕ Y )⊕ Z. (3.6)

The subspace P (Z) ⊂W is invariant, and we claim that

W = Y ⊕ P (Z). (3.7)

We have dimW = dimV/U = dimY +dimZ by (3.6). Since KerP = U , the map z 7→ P (z)
is a bijective intertwining operator from Z to P (Z), so that dimZ = dimP (Z). Hence
dimW = dim Y + dimP (Z). Also

W = P (V ) = P (U) + P (Y ) + P (Z)

= Y + P (Z).
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Thus (3.7) holds, which proves the complete reducibility of (σ,W ).

LetM ⊂ V/W be an invariant subspace, and let M̃ = p−1(M) ⊂ V , where p : V → V/W

is the canonical quotient map. Then M̃ is invariant, so there exists an invariant subspace

Ñ with V = M̃ ⊕ Ñ . Set N = p(Ñ). This is an invariant subspace, and V/W = M ⊕N .
Thus (π, V/W ) is completely reducible. ♦

The converse to Lemma 3.1.3 is not true. For example, let A be the algebra of matrices

of the form [
x y

0 x

]
x, y ∈ C

acting on V = C2 (column vectors). The first column of the matrices in A defines an
irreducible invariant subspace W . Since V/W is one-dimensional it is also irreducible. But

the matrices in A have only one distinct eigenvalue and are not diagonal, so there is no
invariant complement to W in V . Thus V is not completely reducible as an A module.

Proposition 3.1.4 Let (ρ, V ) be a finite-dimensional representation of the associative al-

gebra A. The following are equivalent:
(1) (ρ, V ) is completely reducible.

(2) V = V1 ⊕ · · · ⊕ Vd with each Vi invariant and irreducible.

Proof. (1) ⇒ (2): If dimV = 1 then V is irreducible and (2) trivially holds. Assume that

(1) ⇒ (2) for all A-modules V of dimension less than r. Let V be a module of dimension
r. If V is irreducible then (2) trivially holds. Otherwise there are non-zero submodules W

and U such that V = U ⊕W . These submodules are completely reducible by Lemma 3.1.3,
and hence they decompose as the direct sum of irreducibles by the induction hypothesis.
Thus (2) also holds for V .

(2) ⇒ (1): We prove (1) by induction on the number d of irreducible summands in (2).
Let 0 6= W ⊂ V be a submodule. If d = 1, then W = V by irreducibility, and we are

done. If d > 1, let P1 : V → V1 be the projection operator associated with the direct sum
decomposition (2). If P1W = 0, then

W ⊂ V2 ⊕ · · · ⊕ Vd,

so by the induction hypothesis there is an A-invariant complement to W . If P1W 6= 0 then
P1W = V1, since it is an A-invariant subspace. Set

W ′ = Ker(P1|W ).

We have W ′ ⊂ V2 ⊕ · · · ⊕ Vd, so by the induction hypothesis there exists an A-invariant
subspace U ⊂ V2 ⊕ · · · ⊕ Vd such that

V2 ⊕ · · · ⊕ Vd = W ′ ⊕ U.

Since P1U = 0, we have W ∩ U ⊂W ′ ∩ U = 0. Also dimW = dimV1 + dimW ′, so

dimW + dimU = dimV1 + dimW ′ + dimU

= dimV1 +
∑

i≥2

dim Vi = dimV.

Hence V = U ⊕W . ♦
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Corollary 3.1.5 Suppose (ρ, V ) and (σ,W ) are completely reducible representations of A.
Then (ρ⊕ σ, V ⊕W ) is a completely reducible representation.

Proof. By Proposition 3.1.4 V and W are direct sums of irreducible invariant subspaces.
It follows that V ⊕W is a direct sum of irreducible invariant subspaces, hence completely

reducible. ♦

If U is a finite-dimensional irreducible A-module, we denote by [U ] the equivalence class

of all A-modules equivalent to U . Let Â be the set of all equivalence classes of finite-

dimensional irreducible A-modules. Suppose that V is a completely reducible A-module.
For each ξ ∈ Â we define

V(ξ) =
∑

U⊂V, [U ]=ξ

U,

where the subspaces U are invariant and irreducible under A and furnish representations

of A in the equivalence class ξ. We call V(ξ) the ξ-isotypic subspace of V .

For each ξ ∈ Â fix a module Eξ in the class ξ. There is a linear map

Sξ : HomA(Eξ, V ) ⊗Eξ → V, Sξ(u⊗ w) = u(w)

for u ∈ HomA(Eξ, V ) and w ∈ Eξ. If we make HomA(Eξ, V ) ⊗ Eξ into an A-module with
action x · (u ⊗ w) = u ⊗ (x · w) for x ∈ A, then Sξ is an A-intertwining map. If 0 6= u ∈

HomA(Eξ, V ) then Schur’s Lemma implies that u(Eξ) is an irreducible A-submodule of V
isomorphic to Eξ. Hence

Sξ(HomA(Eξ, V )⊗ Eξ) ⊂ V(ξ)

for every ξ ∈ Â.

Proposition 3.1.6 Let V be a completely reducible A-module. Let

V = V1 ⊕ · · · ⊕ Vd (3.8)

be any decomposition with each Vi invariant and irreducible. Then

V(ξ) =
⊕

[Vj ]=ξ

Vj (3.9)

for all ξ ∈ Â, and hence

V =
⊕

ξ∈ bA

V(ξ). (3.10)

The map Sξ gives an A-module isomorphism

HomA(Eξ, V ) ⊗Eξ
∼= V(ξ)

for each ξ ∈ Â.
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Proof. Suppose ξ ∈ Â and V(ξ) 6= {0}. Let U ⊂ V be any irreducible, invariant subspace
such that [U ] = ξ. Since U ∩ Vj is invariant under A, it must be either {0} or Vj. Hence

U ∩ Vj = {0} if [Vj] 6= ξ.

Hence Vj ∩ V(ξ) = {0} if [Vj] 6= ξ, by definition of V(ξ). Since Vi ⊂ V(ξ) for all i such that

[Vi] = ξ, this result implies (3.9), which implies (3.10).

To prove the last statement of the proposition, we take ξ ∈ Â so that V(ξ) 6= 0. Then
we may assume that

V(ξ) = Eξ ⊕ · · · ⊕ Eξ︸ ︷︷ ︸
m copies

.

Let U = HomA(Eξ, V ) and let φj ∈ U be the map

φj(w) = (0, . . . , 0, w︸︷︷︸
jth

, 0, . . . , 0).

If u ∈ U then the range of u is contained in V(ξ), so we can write

u(w) = (u1(w), . . . , um(w)) for w ∈ Eξ,

where uj ∈ EndA(Eξ). But EndA(Eξ) = CI by Schur’s Lemma, so it follows that

u(w) = (c1w, . . . , cmw) =

m∑

i=1

ciφi(w)

for some ci ∈ C. Hence {φ1, . . . , φm} spans U . Since this set is clearly linearly independent,

it is a basis for U . Hence
m = dimHomA(Eξ, V ).

For vi ∈ Eξ we have

Sξ(

m∑

i=1

φi ⊗ vi) = (v1, . . . , vm)

Hence Sξ is an A-module isomorphism between HomA(Eξ, V ) ⊗Eξ and V(ξ). ♦

We call (3.10) the primary decomposition of V . The cardinality mV (ξ) of the set {j :

[Vj] = ξ} is called the multiplicity of ξ in V . We have

mV (ξ) = dimHomA(Eξ, V ) = dimHomA(V, Eξ).

Here the first equality was proved in Proposition 3.1.6. To obtain the second inequality, we
may assume that

V = W ⊕Eξ ⊕ · · · ⊕ Eξ︸ ︷︷ ︸
m copies

,

where W is the sum of the isotypic subspaces for representations not equivalent to ξ. If

T ∈ HomA(V, Eξ) then by Schur’s Lemma T (W ) = 0 and T is a linear combination of the
operators {T1, . . . , Tm}, where

Ti(w⊕ v1 ⊕ · · · ⊕ vm) = vi.
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Since these operators are linearly independent, they furnish a basis for HomA(V, Eξ).

Let U and V be completely reducible A-modules. Define

〈U, V 〉 = dimHomA(U, V ).

Then from Proposition 3.1.6 we have

〈U, V 〉 =
∑

ξ∈ bA

mU (ξ)mV (ξ). (3.11)

It follows that

〈U, V 〉 = 〈V, U〉, 〈U, V ⊕W 〉 = 〈U, V 〉 + 〈U,W 〉

for any completely reducible A-modules U, V,W .

The multiplicities mV (ξ) have the following monotonicity properties.

Proposition 3.1.7 Let U and V be completely reducible A-modules.
(1) If T : U → V is a surjective A-module map, then mU(ξ) ≥ mV (ξ) for each ξ ∈ Â.

(2) If T : U → V is an injective A-module map, then mU(ξ) ≤ mV (ξ) for each ξ ∈ Â.

Proof. (1) Let S ∈ HomA(V, Eξ). Then ST ∈ HomA(U, Eξ). Since T is surjective, the map
S 7→ ST is an injection from HomA(V, Eξ) into HomA(U, Eξ). Thus

mU(ξ) = dimHomA(U, Eξ) ≥ dim HomA(V, Eξ) = mV (ξ).

(2) Let S ∈ HomA(Eξ, U). Then TS ∈ HomA(Eξ, V ). Since T is injective, the map
S 7→ TS is an injection from HomA(Eξ, U) into HomA(Eξ, V ). Thus mU(ξ) ≤ mV (ξ) in

this case. ♦

Using these general results we can determine the finite-dimensional irreducible repre-

sentations of the product of two groups. Let (ρ, V ) and (σ,W ) be representations of groups
G and H respectively. Their outer tensor product is the representation (ρ⊗̂σ, V ⊗W ) of

G×H given by (ρ⊗̂σ)(g, h) = ρ(g)⊗ σ(h). Notice that when G = H , then the restriction
of the outer tensor product ρ⊗̂σ to the diagonal subgroup {(g, g) : g ∈ G} of G×G is the

tensor product ρ⊗σ.

Proposition 3.1.8 Suppose (ρ, V ) and (σ,W ) are finite-dimensional and irreducible. Then
the outer tensor product (ρ⊗̂σ, V ⊗W ) is an irreducible representation of G×H , and every
finite-dimensional irreducible representation of G×H is of this form.

Proof. By Theorem 3.1.2 we have

ρ(C[G]) = End(V ), σ(C[H ]) = End(W ).

Hence (ρ⊗̂σ)(C[G×H ]) contains all operators T ⊗ S, for arbitrary T ∈ End(V ) and S ∈
End(W ). These operators span End(V ⊗W ), so ρ⊗̂σ is irreducible.

Let (τ, U) be an irreducible representation of G × H . Set τ1(g) = τ(g, 1) and τ2(h) =
τ(1, h) for g ∈ G and h ∈ H . Since dimU < ∞, there exists a nonzero subspace V ⊂ U
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that is invariant and irreducible for τ1. Set ρ = τ1|V . Since τ2(h) commutes with τ1(g),
the subspaces τ2(h)V are also invariant and irreducible for τ1, for every h ∈ H , and as G

modules they are all equivalent to (ρ, V ). Suppose V ′ ⊂ U is any subspace invariant under
G. Then by Schur’s lemma

(τ2(h)V ) ∩ V ′ =

{
τ2(h)V if (τ2(h)V ) ∩ V ′ 6= 0

0 otherwise.
(3.12)

By the irreducibility of τ

U = C[G×H ] · V = C[H ] · V. (3.13)

It follows by (3.12) and (3.13) that there are h1, . . . , hd ∈ H such that

U =

d⊕

j=1

τ2(hj)V.

This shows that (τ1, U) is a completely reducible G module. Since it is the sum of d copies

of (ρ, V ), there is a space W with dimW = d, and a G-module isomorphism

U ∼= V ⊗W, τ1 ∼= ρ⊗ IW . (3.14)

By Burnside’s Theorem, τ1(C[G]) maps onto End(V ) ⊗ IW under this isomorphism. Thus

the operators τ2(h), for h ∈ H , give operators that commute with all the operators X⊗IW .
We now use the following lemma.

Lemma 3.1.9 Let V,W be finite-dimensional vector spaces and let T ∈ End(V ⊗ W ).
Suppose that

T (X ⊗ IW ) = (X ⊗ IW )T

for all X ∈ End(V ). Then there exists Y ∈ End(W ) such that T = IV ⊗ Y .

Proof. We determine Y as follows: Given u∗ ∈ U∗, define a linear map Bu∗ : V ⊗ U → V
by

Bu∗(v ⊗ u) = u∗(u)v for u ∈ U, v ∈ V.

Given u ∈ U , define a linear map Au : V → V ⊗ U by

Au(v) = v ⊗ u.

Set Su∗ ,u = Bu∗ ◦ T ◦ Au. Then Su∗ ,u ∈ End(V ) and it satisfies

Su∗,uXv = Bu∗T (Xv⊗ u)

= Bu∗(X ⊗ IU)T (v ⊗ u)

= XBu∗T (Auv) = XSu∗,uv

for all X ∈ End(V ). By Schur’s lemma there is a scalar c(u∗, u) ∈ C such that Su∗,u =
c(u∗, u)IV . Clearly c(u∗, u) is a bilinear form on U∗ × U . Since U is finite-dimensional,

there exists Y ∈ End(U) such that

c(u∗, u) = u∗(Y u), for all u ∈ U, u∗ ∈ U∗.



124 CHAPTER 3. ALGEBRAS AND REPRESENTATIONS

Going back to the definition of Su∗,u, we find that

Bu∗T (v ⊗ u) = u∗(Y u)v = Bu∗(v ⊗ Y u).

Since this holds for all u∗ ∈ U∗, we have

T (v ⊗ u) = v ⊗ Y u

and hence T = IV ⊗ Y . ♦

Completion of proof of Proposition 3.1.8:
From Lemma 3.1.9 we see that there exists a representation σ of H on W so that

τ2 ∼= IV ⊗ σ.

Hence the original representation τ of G × H is equivalent to ρ⊗̂σ. The representation σ

must be irreducible. Indeed, if W1 ⊂ W is invariant under σ(H) then V ⊗W1 is invariant
under ρ⊗̂σ and is hence either 0 or V ⊗W by the irreducibility of τ . ♦

Proposition 3.1.10 Let (R,Aff(G)) be the right regular representation of a linear algebraic

group G. Suppose every finite-dimensional R(G)-invariant subspace of Aff(G) is completely
reducible. Then G is reductive.

Proof. Let (σ, V ) be a regular representation. For λ ∈ V ∗ define

Tλ : V → Aff(G), Tλ(v)(g) = λ(σ(g)v) for v ∈ V, g ∈ G.

Then Tλ ◦ σ(g) = R(g) ◦ Tλ, so Wλ = TλV is a finite-dimensional G submodule of Aff(G).

Also, if {λ1, . . . , λn} is a basis for V ∗ and we set

W = Wλ1
⊕ · · · ⊕Wλn ,

then the map T : V → W given by T (v) = Tλ1
(v)⊕· · ·⊕Tλn(v) is injective and intertwines

the G actions on V and W . By hypothesis each subspace Wλ is completely reducible under

R(G), so W is completely reducible. Since (σ, V ) is equivalent to a subrepresentation of
(R,W ), it is also completely reducible. ♦

Proposition 3.1.11 If G and H are reductive algebraic groups, then G×H is reductive.

Proof. Let U ⊂ Aff(G×H) be a finite-dimensional subspace invariant under R(G×H). We

have Aff(G×H) = Aff(G)⊗Aff(H) both as an algebra and as a G×H module, by Lemma
A.1.10. Hence by taking a basis for U we see that there are finite-dimensional invariant

subspaces V ⊂ Aff(G) and W ⊂ Aff(H) with U ⊂ V ⊗W . Since G and H are reductive,
V is the direct sum of irreducible submodules Vi and W is the direct sum of irreducible

submodules Wi. Thus
V ⊗W ∼=

⊕

i,j

Vi ⊗Wj .

By Proposition 3.1.8 Vi ⊗Wj is an irreducible G × H module. This shows that V ⊗W
is completely reducible, and hence so is U , by Lemma 3.1.3. From Proposition 3.1.10 we

conclude that G×H is reductive. ♦
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Theorem 3.1.12 Let H be an algebraic torus. Then H is reductive. Furthermore, if (ρ, V )
is a regular representation of H then there is a finite set X(V ) ⊂ X(H) such that

V =
⊕

λ∈X(V )

V (λ), (3.15)

where V (λ) = {v ∈ V : ρ(h)v = hλv for all h ∈ H}.

Proof. The group C× is reductive by Lemma 1.3.3. Thus H ∼= (C×)n is reductive by Propo-
sition 3.1.11. Also by Lemma 1.3.3 and Proposition 3.1.8 the irreducible representations of

H are one-dimensional. Hence the primary decomposition of (ρ, V ) is of the form (3.15). ♦

The characters occurring in Theorem 3.1.12 are called the weights of the representation

ρ. We define
mρ(λ) = dim V (λ)

(the multiplicity of λ in ρ). If all the multiplicities are one, then the representation is mul-
tiplicity free. For example, the defining representation of a classical group G is multiplicity

free for the diagonal subgroup H ⊂ G (cf. Section 2.1.1).

3.1.5 Exercises

1. Let A be an associative algebra over C with unit element 1. Then A ⊗ A is an

associative algebra with unit element 1 ⊗ 1, where the multiplication is defined by
(a⊗ b)(c⊗ d) = (ac)⊗ (bc) on decomposable tensors, and extended to be bilinear. A

bialgebra structure on A consists of an algebra homomorphism ∆ : A → A⊗A (called
the comultiplication) and an algebra homomorphism ε : A → C (called the counit)

which satisfy the following:

(coassociativity) The maps ∆ ⊗ IA and IA ⊗ ∆ from A to A ⊗ A ⊗ A coincide:

(∆⊗ IA)(∆(a)) = (IA ⊗ ∆)(∆(a)) for all a ∈ A,

where (A ⊗ A) ⊗ A is identified with A ⊗ (A ⊗ A) as usual and IA : A → A is
the identity map.

(counit) The maps (IA⊗ ε) ◦ ∆ and (ε⊗ IA) ◦∆ from A to A coincide:

(IA ⊗ ε)(∆(a)) = (ε⊗ IA)(∆(a)) for all a ∈ A,

where we identify C ⊗ A with A as usual.

(a) Let G be a group and let A = C[G] with convolution product. Define ∆ and ε on

the basis elements δx for x ∈ G by

∆(δx) = δx ⊗ δx, ε(δx) = 1

and extend these maps by linearity. Show that ∆ and ε satisfy the conditions for a
bialgebra structure on A and that

〈∆(f), g⊗ h〉 = 〈f, gh〉 for f, g, h ∈ C[G].
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Here we write 〈φ, ψ〉 =
∑

x∈X φ(x)ψ(x) for complex-valued functions φ, ψ on a set X ,
and gh denotes the pointwise product of the functions g and h.

(b) Let G be a group and consider C[G] as the commutative algebra of C-valued
function on G with pointwise multiplication of functions and the constant function

1 as identity element. Identify C[G] ⊗ C[G] with C[G × G] by δx ⊗ δy ↔ δ(x,y) for
x, y ∈ G. Define ∆ by ∆(f)(x, y) = f(xy) and define ε(f) = f(1), where 1 ∈ G is the
identity element. Show that this defines a bialgebra structure on C[G] and that

〈∆(f), g⊗ h〉 = 〈f, g ∗ h〉 for f, g, h ∈ C[G],

where 〈φ, ψ〉 is defined as in (a), and g ∗ h denotes the convolution product of the
functions g and h.

(c) Let G be a linear algebraic group consider Aff(G) as a (commutative) algebra
with pointwise multiplication of functions and the constant function 1 as the identity
element. Identify A⊗A with Aff(G×G) as in Lemma A.1.10 and define ∆ and ε by

the same formulas as in (b). Show that this defines a bialgebra structure on Aff[G].

(d) Let g be a Lie algebra over C and let U(g) be the universal enveloping algebra of

g. Define

∆(X) = X ⊗ 1 + 1 ⊗X for X ∈ g.

Show that ∆([X, Y ]) = ∆(X)∆(Y ) − ∆(Y )∆(X), and conclude that ∆ extends

uniquely to an algebra homomorphism ∆ : U(g) → U(g) ⊗ U(g). Let ε : U(g) → C

be the unique homomorphism such that ε(X) = 0 for all X ∈ g (note that by the

Poincaré-Birkhoff-Witt theorem U(g) = C1 ⊕ gU(g), so ε(u) = λ if u− λ1 ∈ gU(g)).
Show that ∆ and ε define a bialgebra structure on U(g).

(e) Suppose G is a linear algebraic group. Let g = Lie(G). Define a bilinear form on

U(g) × Aff(G) by 〈T, f〉 = Tf(1) for T ∈ U(g) and f ∈ Aff(G), where the action of
U(g) on Aff(G) comes from the action of g as left-invariant vector fields. Show that

〈∆(T ), f ⊗ g〉 = 〈T, fg〉 for all T ∈ U(g) and f, g ∈ Aff(G),

where ∆ is defined as in (d). (This shows that the comultiplication on U(g) is dual
to the pointwise multiplication on Aff(G)).

2. Let A be an associative algebra over C, and suppose ∆ and ε give A the structure of
a bialgebra, in the sense of the previous exercise. Let (V, ρ) and (W, σ) be represen-

tations of A.

(a) Show that the map (a, b) 7→ ρ(a) ⊗ σ(b) extends to a representation of A ⊗ A on

V ⊗W , denoted by ρ⊗̂σ

(b) Define (ρ⊗ σ)(a) = (ρ⊗̂σ)(∆(a)) for a ∈ A. Show that ρ⊗ σ is a representation
of A, called the tensor product ρ⊗ σ of the representations ρ and σ.

(c) When A and ∆ are given as in (a) or (d) of the previous exercise, verify that the

tensor product defined via the map ∆ is the same as the tensor product defined in
Section 3.1.1.
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3. Let A be a bialgebra, in the sense of the previous exercises with comultiplication map
∆ and counit ε. Let S : A → A be an antiautomorphsim (S(xy) = S(y)S(x) for all

x, y ∈ A). Then S is called an antipode if

µ((S ⊗ IA)(∆(a))) = ε(a)1, µ((IA⊗ S)(∆(a))) = ε(a)1 for all a ∈ A,

where µ : A ⊗ A → A is the multiplication map. A bialgebra with an antipode is

called a Hopf algebra.

(a) Let G be a group, and let A = C[G] with convolution multiplication. Let ∆ and ε
be defined as in the exercise above, and let Sf(x) = f(x−1) for f ∈ C[G] and x ∈ G.

Show that S is an antipode.

(b) Let G be a group, and let A = C[G] with pointwise multiplication. Let ∆ and ε
be defined as in the exercise above, and let Sf(x) = f(x−1) for f ∈ C[G] and x ∈ G.

Show that S is an antipode (the same holds when G is a linear algebraic group and
A = Aff(G)).

(c) Let g be a Lie algebra over C. Define the maps ∆ and ε on U(g) as in the exercise

above. Let S(X) = −X for X in g. Show that S extends to an antiautomorphism of
U(g) and satisfies the conditions for an antipode.

4. Let A be a Hopf algebra over C with antipode S.

(a) Given a representation (ρ, V ) of A, define ρS(x) = ρ(Sx)∗ for x ∈ A. Show that
(ρS, V ∗) is a representation of A.

(b) Show that the representation (ρS, V ∗) is the dual representation to (ρ, V ) when

A is either C[G] with convolution multiplication or U(g) (where g is a Lie algebra)
and the antipode is defined as in the exercise above.

5. Let A = C[x] and let T ∈Mn[C]. Define a representation ρ of A on Cn by ρ(x) = T .

(a) Suppose T has n distinct eigenvalues. Prove that ρ is completely reducible.

(b) Is the representation ρ always completely reducible? (Hint: Put T into Jordan
canonical form.)

6. Let A be an associative algebra and let V be a completely reducible finite-dimensional

A-module.

(a) Show that V is irreducible if and only if dim HomA(V, V ) = 1.

(b) Does (a) hold if V is not completely reducible? (Hint: Consider the algebra of all
upper-triangular 2 × 2 matrices.)

7. Let G be a linear algebraic group and (ρ, V ) a regular representation of G. Define a
representation π of G×G on End(V ) by

π(x, y)T = ρ(x)Tρ(y−1), for T ∈ End(V ), x, y ∈ G.

(a) Show that the space Eρ of representative functions (see Section 1.1.3) is invariant
under G×G (acting by left and right translations), and the map B 7→ fB from End(V )
to Eρ intertwines the actions π and L⊗̂R of G×G.

(b) Suppose ρ is irreducible. Prove that the map B 7→ fB from End(V ) to Aff(G) is

injective (Hint: Use Burnside’s theorem).
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3.2 Simple Associative Algebras

3.2.1 Wedderburn’s Theorem

An associative algebra A is called simple if the only two-sided ideals in A are 0 and A.

We now show that a finite-dimensional simple algebra is completely determined by its
dimension.

Theorem 3.2.1 (Wedderburn) The algebra End(V ) is simple for every finite dimen-
sional complex vector space V . Conversely, if A is any finite dimensional simple alge-

bra over C with unit, then there is a finite dimensional complex vector space V such that
A ∼= End(V ).

Proof. If u, v are nonzero vectors in V , then there exists T ∈ End(V ) so that Tv = u (take

f ∈ V ∗ with f(v) = 1 and define Tx = f(x)u for x ∈ V ). Thus End(V )v = V . Now suppose
0 6= B ⊂ End(V ) is a two-sided ideal and 0 6= v ∈ V . Then Bv = BEnd(V )v = BV , since

B is a right ideal. But BV 6= 0 since B 6= 0, and BV is invariant under End(V ) since B is
a left ideal. Hence

Bv = V for all 0 6= v ∈ V.

This proves that V is an irreducible B-module. Burnside’s Theorem (Theorem 3.1.2) implies

that B = End(V ). Hence End(V ) is a simple algebra.

Now suppose A is a finite-dimensional simple algebra over C with unit. Define the left
regular representation

λ : A → End(A)

by λ(x)y = xy. Choose a left ideal V ⊂ A of minimal positive dimension, and define ρ(x) =
λ(x)|V for x ∈ A. Then (ρ, V ) is an irreducible representation of A. Hence ρ(A) = End(V )

by Burnside’s theorem. Furthermore Ker(ρ) is zero, since it is a two-sided ideal. Thus
A ∼= ρ(A) as an algebra. ♦

3.2.2 Representations of End(V )

Let V be a finite-dimensional complex vector space. The representation of End(V ) on V

is irreducible (see the proof of Theorem 3.2.1). We shall prove that, up to equivalence,
this is the unique irreducible representation of End(V ). This will be a consequence of
Wedderburn’s Theorem once we prove that every automorphism of End(V ) is inner.

Scholium 3.2.2 Let φ ∈ Aut(End(V )). Then there exists g ∈ GL(V ) such that φ(x) =

gxg−1 for all x ∈ End(V ).

Proof. Choose a basis e1, . . . , en for V and let Eij ∈ End(V ) be the transformation that
maps ei to ej and annihilates ek for k 6= i. Set Pi = φ(Eii). Since φ is an automorphism of

End(V ), we have

P 2
i = Pi 6= 0, PiPj = δijPj ,

n∑

i=1

Pi = IV .
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For i = 1, . . .n choose 0 6= fi ∈ PiV . Then the set {f1, . . . , fn} is linearly independent. To
prove this, we first note that Pifj = δijfj. If

∑
i cifi = 0 then

0 = Pj

(∑

i

cifi

)
= cjfj.

Thus cj = 0 for all j. Since dimV = n, it follows that {f1, . . . , fn} is a basis for V . Hence

there exists x ∈ GL(V ) such that xei = fi for i = 1, . . . , n. Define φ̃ ∈ Aut(End(V )) by

φ̃(y) = x−1φ(y)x.

Then φ̃(Eii) = Eii, so replacing φ by φ̃ we may assume that φ(Eii) = Eii for i = 1, . . . , n.

We now calculate the action of φ on the off-diagonal matrix units. With φ normalized
as above, we have

φ(Eij) = φ(EiiEijEjj) = Eiiφ(Eij)Ejj.

Hence φ(Eij)ek = 0 for k 6= j, and φ(Eij)ej ∈ Cei. This implies that

φ(Eij) = λijEij (3.16)

for some non-zero scalar λij. Since φ(EijEjk) = φ(Eik), the scalars λij satisfy the relations

λijλjk = λik.

Since we have normalized φ so that λii = 1, it follows that λ−1
ij = λji. Set λi = λi1. Then

λij = λi1λ1j = λiλ
−1
j .

Set h = diag(λ1, . . . , λn). Then

hEijh
−1 = λiλ

−1
j Eij = λijEij,

so by equation (3.16) we have h−1φ(Eij)h = Eij for all i, j. Hence h−1φ(x)h = x for all
x ∈ End(V ). Thus φ is the inner automorphism given by h. ♦

Proposition 3.2.3 Up to equivalence, the only irreducible representation of End(V ) is the

representation τ on V given by τ(x)v = xv.

Proof. Let (ρ,W ) be an irreducible representation of End(V ). Wedderburn’s theorem
implies that End(V ) ∼= End(W ) as an algebra. Since dim End(V ) = dim(V )2, we have

dim(V ) = dim(W ). Fix a linear bijection T : V →W , and define

φ(x) = T−1ρ(x)T, for x ∈ End(V ).

Then φ is an automorphism of End(V ), so by Scholium 3.2.2 there exists g ∈ End(V ) such

that φ(x) = gxg−1. Set S = (Tg)−1. Then S : W → V and

Sρ(x) = STφ(x)T−1 = STgxg−1T−1 = xS

for x ∈ End(V ). Since S is a linear bijection, we conclude that (ρ,W ) ∼= (V, τ). ♦

We now establish a canonical form for an arbitrary finite-dimensional representation of
End(V ). For this we will need the following differentiated version of Scholium 3.2.2. Recall

that a derivation of an algebra A is a map D ∈ End(A) such that D(xy) = (Dx)y+ x(Dy)
for all x, y ∈ A.
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Scholium 3.2.4 Let D be a derivation of the associative algebra End(V ). Then there exists
A ∈ End(V ) such that D(x) = Ax − xA for all x ∈ End(V ).

Proof. For x, y ∈ End(V ),

D([x, y]) = (Dx)y + x(Dy)− (Dy)x− y(Dx)

= [Dx, y] + [x,Dy],

where [x, y] = xy − yx is the commutator. Thus D is also a derivation of End(V ) as a Lie

algebra. Write I = IV . Then D(x) = D(Ix) = D(I)x+D(x) for all x ∈ End(V ), and hence
D(I) = 0. Let g = sl(V ). Since g = [g, g] we also have Dg ⊂ g.

Let Der(g) ⊂ End(g) be the vector space of all linear transformations T on g such that

T ([X, Y ]) = [TX, Y ] + [X, TY ] for all X, Y ∈ g.

If Z ∈ g then adZ ∈ Der(g) by the Jacobi identity. Furthermore, if T ∈ Der(g) then

[T, ad(Z)]X = T ([Z,X ])− [Z, T (X)] = [T (Z), X ] = ad(T (Z))X for all X,Z ∈ g.

Hence [T, ad(Z)] = ad(T (Z)). This shows that

[ad(g),Der(g)] ⊂ ad(g). (3.17)

Thus we can obtain a representation ρ of g on Der(g) by

ρ(Z)T = [ad(Z), T ] for T ∈ Der(g).

Since the subspace ad(g) of Der(g) is invariant under ρ(g) and every representation of g is
completely reducible (Theorem 2.4.6), there is a subspace U ⊂ Der(g) so that

Der(g) = ad(g)⊕ U, [ad(g), U ] ⊂ U.

On the other hand, [ad(g), U ] ⊂ ad(g) by (3.17). Hence U = 0. This proves that

Der(g) = ad(g). (3.18)

Returning to the derivation D of End(V ), we conclude that there exists Z ∈ g so that
D(X) = [X,Z] for all X ∈ g. Since D(I) = 0, this equation holds for all X ∈ End(V ).

Thus we may take A = −Z. ♦

We now obtain a canonical form for the representations of End(V ). We use the notation

V m = V ⊕ · · · ⊕ V︸ ︷︷ ︸
m copies

to denote the direct sum of m copies of the representation of End(V ) on V .

Theorem 3.2.5 Let A = End(V ) and suppose (ρ,W ) is a finite-dimensional representation
of A. Then dimW = m dimV , where m = dimHomA(V,W ), and there exists a linear

bijection
T : W → V m, with Tw = (v1, . . . , vm),

such that Tρ(x)w = (xv1, . . . , xvm) for x ∈ A and w ∈ W . Hence W is equivalent to the

A-module HomA(V,W )⊗V , where x ∈ A acts by x · (u⊗v) = u⊗(xv) for u ∈ HomA(V,W )
and v ∈ V .
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Proof. Since dimW is finite, W contains an irreducible submodule W1. If W1 6= W then
there is a submodule W2 ⊃ W1 such that the representation of End(V ) on W2/W1 is

irreducible. Continuing in this way, we obtain a Jordan-Hölder series

W1 ⊂W2 ⊂ · · · ⊂Wm = W

of submodules with each quotientWi+1/Wi irreducible and hence isomorphic to V by Propo-

sition 3.2.3. In particular,

dimW = m dimV.

We prove the existence of the map T by induction on m. When W = W1 we may take

T = I . Thus we may assume inductively that there are intertwining maps

T1 : W1
∼= V, T2 : W/W1

∼= V ⊗(m−1).

Let π : W → W/W1 be the canonical projection. Choose a subspace Z ⊂ W so that
W = W1 ⊕ Z, and let

P : W → Z, Q : W →W1

be the corresponding projections. (Since Z is not necessarily a ρ-invariant subspace, these
projections are generally not intertwining operators.) Define a linear bijection

T : W → V m, T (w1 + z) = (T1w1, T2π(z))

for w1 ∈W1 and z ∈ Z. Since T1, T2 and π are intertwining maps and πP = π, we have

Tρ(x)(w1 + z) = T (ρ(x)w1 +Qρ(x)z + Pρ(x)z)

= (xT1w1 + T1Qρ(x)z, xT2πz)

for x ∈ End(V ). Thus if w ∈W and we write T (w) = (v1, . . . , vm) with vi ∈ V , then

Tρ(x)w = (xv1 +

m∑

i=2

µi(x)vi, xv2, . . . , xvm), (3.19)

where µi(x) ∈ End(V ).

Obviously the maps µi(x) depend linearly on x. From the equation ρ(xy) = ρ(x)ρ(y)

and equation (3.19) we find that

m∑

i=2

µi(xy)vi =

m∑

i=2

xµi(y)vi +

m∑

i=2

µi(x)yvi

for all vi ∈ V and x, y ∈ End(V ). Hence for i = 1, . . . , m we have

µi(xy) = xµi(y) + µi(x)y.

Thus µi is a derivation of End(V ). By Scholium 3.2.4 there exists Ai ∈ End(V ) so that
µi(x) = [Ai, x].
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We have now shown that ρ is equivalent to the representation ρ̃ on V m given by

ρ̃(x)(v1, . . . , vm) = (xv1 +

m∑

i=2

[Ai, x]vi, xv2, . . . , xvm).

Define a linear transformation g on V m by

g · (v1, . . . , vm) = (v1 +

m∑

i=2

Aivi, v2, . . . , vm).

Then g is a linear bijection, with inverse

g−1 · (v1, . . . , vm) = (v1 −

m∑

i=2

Aivi, v2, . . . , vm).

It follows that

g−1ρ̃(x)g(v1, . . . , vm) = (xv1, . . . , xvm).

Thus ρ is equivalent to the direct sum of m copies of the representation of End(V ) on V .

We have now proved, in particular, that V is the only irreducible A-module, up to
equivalence. Hence the last statement of the theorem follows by Proposition 3.1.6. ♦

3.2.3 Exercises

1. Let H be the algebra (over R) of quaternions (see Section 1.4.4).

(a) Let A = H ⊗R C be the complexification of H. Show that A is a simple algebra
and is isomorphic to M2(C).

(b) Let Mn(H) be the algebra (over R) of n × n matrices with coefficients in H. Let
A = Mn(H) ⊗R C be complexification of Mn(H). Show that A is a simple algebra

and is isomorphic to M2n(C).

2. Let A be an algebra over C (not assumed associative) and let D1, D2 be derivations
of A. Prove that the operator D1D2 −D2D1 is a derivation of A.

3. Let A be an associative algebra over C with unit 1. Let (ρ, U) and (σ, V ) be repre-
sentations of A.

(a) Let S ∈ Hom(V, U) be any linear map. Define τ(a) = ρ(a)S − Sσ(a) for a ∈ A.
Define π(a) ∈ End(U ⊕ V ) by

π(a)(u⊕ v) = (ρ(a)u+ τ(a)v)⊕ σ(a)v

for u ∈ U and v ∈ V . Show that τ satisfies the identity

(∗) τ(ab) = τ(a)σ(b) + ρ(a)τ(b) for all a, b ∈ A,
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and that π is a representation of A equivalent to the representation ρ ⊕ σ. (Hint:
Show that the operator T (u⊕ v) = (u+ Sv)⊕ v gives an equivalence between π and

ρ⊕ σ.)

(b) Suppose τ : A → Hom(V, U) is a linear map. Define a linear map π : A →

End(U ⊕ V ) by

π(a)(u⊕ v) = (ρ(a)u+ τ(a)v)⊕ σ(a)v for a ∈ A, u ∈ U, v ∈ V.

Show that π is a representation of A if and only if τ(1) = 0 and τ satisfies (∗).

(c) Suppose every linear map τ : A → Hom(V, U) which satisfies τ(1) = 0 and (∗) is of
the form τ(a) = ρ(a)S−Sσ(a) for some S ∈ Hom(V, U). Show that the representation

π in (b) is equivalent to the representation ρ⊕ σ.

(d) Rephrase the proof of Theorem 3.2.5 in this framework, when A = End(V ).

3.3 Commutants and Characters

3.3.1 Representations of Semisimple Algebras

A finite-dimensional associative algebra A with unit is said to be semisimple if it is the
direct sum of simple algebras. Throughout this section we assume that A is semisimple

with unit 1A. By Wedderburn’s theorem, there exist finite-dimensional vector spaces V λ,
with λ running over some finite set L, and an algebra isomorphism

Φ : A
∼=
−→

⊕

λ∈L

End(V λ). (3.20)

Conversely, every direct sum of matrix algebras is semisimple. Let Eλ ∈
⊕

λ∈L End(V λ)

denote the element
0 ⊕ · · · ⊕ IVλ

⊕ · · · ⊕ 0.

Set eλ = Φ−1(Eλ). Then eλx = xeλ for all x ∈ A, so eλ is in the center of A. Clearly

∑

λ∈L

eλ = 1A, eλeµ =

{
eλ, if λ = µ
0, otherwise.

Since the center of End(V λ) is CIV λ , the set {eλ}λ∈L is a basis for the center of A. The
property e2λ = eλ is described by saying that eλ is an idempotent. These central idempotents
are minimal: if u is any idempotent element in the center of A, then

u =
∑

λ∈M

±eλ (3.21)

for some subset M ⊂ L. Thus u = ±eλ if and only if M reduces to a single element λ (the

proof is left as an exercise).
Given the isomorphism Φ in (3.20), we can describe all the representations of A, as

follows. We identify
Φ(A)Eλ = End(V λ).



134 CHAPTER 3. ALGEBRAS AND REPRESENTATIONS

This gives a representation (πλ, V λ) of A, where

πλ(x) = Φ(x)Eλ for x ∈ A.

Proposition 3.3.1 The representations (πλ, V λ) are irreducible and mutually inequivalent.

Every irreducible representation of A is equivalent to some πλ.

Proof. Since πλ(A) = End(V λ), the representation πλ is irreducible. Suppose T : V λ → V µ

intertwines πλ and πµ for some µ 6= λ. Since πλ(x) = πλ(eλx) for all x ∈ A, we have

Tπλ(x) = Tπλ(eλx) = πµ(eλx)T = πµ(eµeλx)T = 0.

Hence T = 0, so πλ 6∼= πµ.
Let (π, V ) be an irreducible representation of A. Since

∑
λ eλ = 1, there is some λ ∈ L

so that π(eλ)V 6= 0. Since

π(x)π(eλ)V = π(xeλ)V = π(eλ)π(x)V ⊂ π(eλ)V,

the subspace π(eλ)V is invariant under A. The irreducibility of V implies that π(eλ)V = V .

If µ 6= λ, then
π(eµ)V = π(eµ)π(eλ)V = π(eµeλ)V = 0.

Thus π(x) = π(eλx) for all x ∈ A. But the map eλx 7→ πλ(x) gives an algebra isomorphism

eλA ∼= End(V λ),

so we may view (π, V ) as an irreducible representation of End(V λ). By Proposition 3.2.3

there is a linear isomorphism T : V → V λ such that

Tπ(eλx) = πλ(eλx)T for x ∈ A.

Since π(eλx) = π(x) and πλ(eλx) = πλ(x) for x ∈ A, it follows that the representations
(π, V ) and (πλ, V λ) of A are equivalent. ♦

From this proposition we may identify the index set L with Â (the set of equivalence

classes of irreducible representations of A). In particular, we see that Â is finite, and we

may write (3.20) as

Φ : A
∼=

−→
⊕

λ∈ bA

End(V λ). (3.22)

An arbitrary representation of A can be described as follows.

Proposition 3.3.2 Let A be given by (3.22) and suppose (ρ,W ) is a finite-dimensional

representation of A. Set Uλ = HomA(V λ, W ) for λ ∈ Â and define a linear map

S :
⊕

λ∈ bA

Uλ ⊗ V λ →W, S
(∑

λ∈ bA

uλ ⊗ vλ

)
=
∑

λ∈ bA

uλ(vλ).

Then S is an A-module isomorphism and

S−1ρ(x)S =
⊕

λ∈ bA

IUλ ⊗ πλ(x). (3.23)
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Proof. We use an argument similar to that of Proposition 3.3.1. Set Pλ = ρ(eλ). Then
since ρ is a representation, we have

PλPµ = δλµPλ,
∑

λ∈ bA

Pλ = IW .

Thus W =
⊕

λW
λ, where Wλ = PλW , and

ρ(eλA)Wµ = δλµW
λ,

so the subspace Wλ is a module for eλA ∼= End(V λ). Let Sλ : Uλ ⊗ V λ → Wλ be the
End(V λ)-module isomorphism from Theorem 3.2.5. Since S =

⊕
λ Sλ, it follows that S is

an A-module isomorphism. ♦

Recall from Section 3.1.4 that a completely reducible representation of an algebra A

decomposes uniquely into the direct sum of its isotypic components. For representations of

semisimple algebras we can obtain the projections onto the isotypic components from the
minimal central idempotents.

Corollary 3.3.3 Suppose A is a semisimple algebra. For each λ ∈ Â let eλ ∈ A be the

associated central idempotent. For any finite-dimensional representation (ρ, V ) of A the
λ-isotypic subspace is ρ(eλ)V and the primary decomposition is V =

⊕
λ∈ bA

ρ(eλ)V .

Proof. This follows from the definition of the primary decomposition and Proposition 3.3.2

♦

Every finite-dimensional representation ρ of a semisimple algebra A is completely re-
ducible (this follows from Proposition 3.3.2). We now show that this property characterizes

semisimple algebras.

Proposition 3.3.4 Let A be an associative algebra with unit. Suppose (ρ, V ) is a com-

pletely reducible representation of A. Then the algebra B = ρ(A) is semisimple.

Proof. We shall prove by induction on dimV that the algebra B is isomorphic to a direct
sum of matrix algebras. This is trivial when dimV = 1, since B = M1(C) in that case.

Consider the general case. If B acts irreducibly on V then B = End(V ) by Burnside’s
Theorem (Theorem 3.1.2) and the result is true. Otherwise, by the hypothesis of complete

reducibility there is a decomposition V = U ⊕W into non-zero B-invariant subspaces, with
U irreducible under B. Set

B0 = {T ∈ B : T |W = 0}.

Case 1: If B0 = 0, then as an algebra B is isomorphic to B|W . Since dimW < dimV

and W is completely reducible as a B-module by Lemma 3.1.3, the induction hypothesis
implies that B is isomorphic to a direct sum of matrix algebras.

Case 2: B0 6= 0. Since B0W = 0, we must have B0U 6= 0. Let 0 6= u ∈ U . Since U is
irreducible, we have Bu = U . But B0 is a two-sided ideal in B, so B0u = B0Bu = B0U is a

non-zero B-submodule. Hence B0u = U , which shows that U is irreducible as a B0 module
also. By Burnside’s Theorem, B0|U = End(U). Set

B1 = {T ∈ B : T |U = 0}.
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Then B1 is a two-sided ideal in B. Clearly B0 ∩ B1 = 0 and hence B1B0 = B0B1 = 0.
Furthermore, given X ∈ B, we can find Y ∈ B0 such that Y |U = X |U by the result just

proved. Hence X − Y ∈ B1. This shows that B = B0 ⊕ B1 as an algebra. In particular,
B|W = B1|W , so the action of B1 on W is completely reducible. Since the map T 7→ T |W
is injective on B1, the induction hypothesis implies that B1 is isomorphic to a direct sum
of matrix algebras. Thus B is semisimple. ♦

Corollary 3.3.5 (1) Let G be a reductive linear algebraic group and let (ρ, V ) be a regular
representation of G. Then ρ(C[G]) is a semisimple algebra.

(2) Let g be the Lie algebra of a classical group, and let z(g) be the center of g. Let
(π, V ) be a finite-dimensional representation of g and assume that π(Z) is diagonalizable
for all Z ∈ z(g). Then π(U(g)) is a semisimple algebra.

Proof. (1) This is an immediate consequence of the definition of reductive group and

Proposition 3.3.4.
(2) As in the proof of Theorem 2.5.7, we can write g = z(g) ⊕ g′, where g′ = [g, g]

is a semisimple Lie algebra (in fact, g′ is simple except for G = SO(4,C)). Hence the
representation π is completely reducible by Theorem 2.4.6 and the assumption on z(g).

Now apply Proposition 3.3.4. ♦

We now assemble these results to obtain the promised representation-theoretic charac-
terization of semisimple algebras.

Theorem 3.3.6 Suppose A is a finite-dimensional associative algebra with unit. The fol-
lowing are equivalent:

(1) The left regular representation (L,A) of A is completely reducible (where L(x)y = xy
for x, y ∈ A).

(2) Every finite-dimensional representation of A is completely reducible.
(3) A is a semisimple algebra.

Proof. (1) ⇒ (3): The algebra B = λ(A) is semisimple, by Proposition 3.3.4. But A ∼= λ(A)
since L is a faithful representation (1 ∈ A).

(3) ⇒ (2): This follows from Propositions 3.3.2 and 3.1.4.
(2) ⇒ (1): Note that (1) is a special case of (2). ♦

3.3.2 Double Commutant Theorem

Let V be a finite dimensional vector space. For any subset S ⊂ End(V ) we define

Comm(S) = {x ∈ End(V ) : xs = sx for all s ∈ S}

and call it the commutant of S. We observe that Comm(S) is an associative algebra with

unit IV .
Suppose now that A ⊂ End(V ) is a semisimple algebra with IV ∈ A. Set B = Comm(A).

The vector space A ⊗ B is an associative algebra under the multiplication

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′,
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and A (resp. B) is isomorphic to the subalgebra A ⊗ 1 (resp. 1⊗ B) of A ⊗ B.
By Proposition 3.3.2 there is an A-module isomorphism

V ∼=

r⊕

i=1

Vi ⊗ Ui (3.24)

where Vi is an irreducible A-module, Vi 6∼= Vj for i 6= j and Ui = HomA(Vi, V ). Under this
isomorphism

A ∼=

r⊕

i=1

End(Vi) ⊗ IUi
. (3.25)

We now use this isomorphism to obtain the basic dual relationship between the algebras

A and Comm(A). This duality will play a fundamental role in the invariant theory of the
classical groups.

Theorem 3.3.7 (Double Commutant) Let V be a finite-dimensional vector space and
A ⊂ End(V ) a semisimple algebra. Then the algebra B = Comm(A) is semisimple and

Comm(B) = A. Furthermore, relative to the isomorphisms (3.24), (3.25), one has

B ∼=

r⊕

i=1

IVi
⊗ End(Ui). (3.26)

Hence the subspaces Vi⊗Ui are irreducible and mutually inequivalent representations of the
algebra A ⊗ B.

Proof. We first prove (3.26). We may assume that V =
∑

i Vi ⊗Ui as in (3.24). Clearly the

right side of (3.26) is contained in B. For the opposite inclusion, let Pi : V → Vi ⊗ Ui, for
i = 1, . . . , r be the projections associated with this decomposition. Then Pi ∈ A by (3.25).

Hence if T ∈ B then

PiT = TPi, T =
r∑

i=1

T |Vi⊗Ui
.

Thus it suffices to prove (3.26) when r = 1, where it follows by Lemma 3.1.9.
From (3.26) we see that

B ∼=

r⊕

i=1

End(Ui),

as an associative algebra. This implies that B is semisimple and Ui 6∼= Uj as a B-module

if i 6= j. Repeating the argument just given, with the roles of A and B interchanged, we
conclude that A = Comm(B). Finally, since

End(Vi ⊗ Ui) = End(Vi) ⊗ End(Ui),

we see that Vi⊗Ui is an irreducible A⊗B-module and these modules are mutually inequiv-

alent. ♦

We can view (3.24) in two ways: as a decomposition of V into isotypic subspaces for A

(where the representation Vi occurs with multiplicity dimUi), or as a decomposition of V
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into isotypic subspaces for B (where the representation Ui occurs with multiplicity dimVi).
This dual point of view sets up a correspondence between irreducible representations of A

and irreducible representations of B, where Vi is paired with Ui.

We now apply the Double Commutant Theorem to obtain a result that will play a
central role in our study of tensor and polynomial invariants for the classical groups. Let

V be a finite-dimensional vector space and ρ the defining representation of GL(V ). For all
integers k ≥ 0 we have the representations ρk = ρ⊗k on

⊗k V . Since

ρk(g)(v1 ⊗ · · · ⊗ vk) = gv1 ⊗ · · · ⊗ gvk

for g ∈ GL(V ), we can permute the positions of the vectors in the tensor product without

changing the G-action. Thus there is the following algebra of operators that commute with
ρk(GL(V )). Let Sk be the group of permutations of {1, 2, . . . , k}. We define a representation
σk of Sk on

⊗k V by

σk(s)(v1 ⊗ · · · ⊗ vk) = vs−1(1) ⊗ · · · ⊗ vs−1(k).

for s ∈ Sk. Hence σk(s) moves the vector in the ith position in the tensor product to the

position s(i). It is clear from this description that σk(s)σk(t) = σk(st) for s, t ∈ Sk, so σk

is a representation of Sk.

Theorem 3.3.8 Set A = ρk(C[GL(V )]) and B = σk(C[Sk]). Then Comm(B) = A and
Comm(A) = B.

Proof. Since the algebra B is semisimple, as the group algebra of a finite group, it suffices
by Theorem 3.3.7 to prove that Comm(B) = A.

It is clear that σk(s) commutes with ρk(g) for all s ∈ Sk and g ∈ GL(V ). Thus
A ⊂ Comm(B). To prove the opposite inclusion, we fix a basis {e1, . . . , en} for V . For an

ordered k-tuple
I = (i1, . . . , ik) with 1 ≤ ij ≤ n,

set #I = k and
eI = ei1 ⊗ · · · ⊗ eik .

The elements eI form a basis for
⊗k V as I ranges over the finite set of all such k-tuples.

The group Sk permutes this basis by the action σk(s)eI = es·I , where for I = (i1, . . . , ik)
we set

s · (i1, . . . , ik) = (is−1(1), . . . , is−1(k))

for s ∈ Sk. Note that s changes the positions (1 to k) of the indices, not their values (1 to

n). We have (st) · I = s · (t · I) for s, t ∈ Sk.
Suppose T ∈ End(

⊗k V ) has matrix [aI,J ] relative to the basis {eI}:

TeJ =
∑

I

aI,J eI .

We have
T (σk(s)eJ ) = T (es·J) =

∑

I

aI,s·J eI
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for s ∈ Sk, while

σk(s)(TeJ) =
∑

I

aI,J es·I =
∑

I

as−1·I,J eI .

Thus T ∈ Comm(B) if and only if aI,s·J = as−1·I,J for all multi-indices I, J and all s ∈ Sk.
Replacing I by s · I , we can write this condition as

as·I,s·J = aI,J for all I, J and all s ∈ Sk. (3.27)

Consider the non-degenerate bilinear form

(X, Y ) = tr(XY )

on End(
⊗k V ). We claim that the restriction of this form to Comm(B) is non-degenerate.

Indeed, we have a projection X 7→ X \ of End(
⊗k V ) onto Comm(B) given by averaging

over Sk:

X \ =
1

k!

∑

s∈Sk

σk(s)Xσk(s)
−1.

If T ∈ Comm(B) then

(X \, T ) =
1

k!

∑

s∈Sk

tr(σk(s)Xσk(s)
−1T ) = (X, T ),

since σk(s)T = Tσk(s). Thus (Comm(B), T ) = 0 implies that (X, T ) = 0 for all X ∈

End(
⊗k V ), and so T = 0. This proves the non-degeneracy of the trace form on Comm(B).

Thus to prove that A = Comm(B), it suffices to show that if T ∈ Comm(B) is orthogonal

to A then T = 0. Now if g ∈ GL(V ) and gej =
∑

i gij ei , then ρk(g) has matrix

gI,J = gi1j1 · · ·gikjk
.

Thus we assume that
(T, ρk(g)) =

∑

I,J

aI,J gj1i1 · · ·gjkik = 0

for all g ∈ GL(n,C), where [aI,J ] is the matrix of T . But the function g 7→ (T, ρk(g))

on GL(n,C) extends to a polynomial function on Mn(C). Since this function vanishes on
GL(n,C), it must be identically zero. Hence for all X = [xij] ∈Mn(C) we have

∑

I,J

aI,J xj1i1 · · ·xjkik = 0. (3.28)

We now show that (3.27) and (3.28) imply that aI,J = 0 for all I, J. We begin by
grouping the terms in (3.28) according to distinct monomials in the matrix entries {xij}.

Introduce the notation
xI,J = xi1j1 · · ·xikjk

,

and view these monomials as polynomial functions on Mn(C). Let Ξ be the set of all

ordered pairs (I, J) of multi-indices with #I = #J = k. The group Sk acts on Ξ by
s · (I, J) = (s · I, s · J), and from (3.27) we see that T commutes with Sk if and only if
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the function (I, J) 7→ aI,J is constant on the orbits of Sk in Ξ. The action of Sk on Ξ
defines an equivalence relation on Ξ, where (I, J) ≡ (I ′, J ′) if (I ′, J ′) = (s · I, s · J) for some

s ∈ Sk. This gives a decomposition of Ξ into disjoint equivalence classes. Choose a set Γ of
representatives for the equivalence classes. Then every monomial xI,J with #I = #J = k

can be written as xγ for some γ ∈ Γ. Indeed, since the variables xij mutually commute, we
have

xγ = xs·γ

for all s ∈ Sk and γ ∈ Γ. Suppose xI,J = xI′,J ′ . Then there must be an integer p such that

xi′
1
j′
1

= xipjp .

Call p = 1′. Similarly, there must be an integer q 6= p such that

xi′
2
j′
2

= xiqjq .

Call q = 2′. Continuing this way, we obtain a permutation s : (1, 2, . . . , k) → (1′, 2′, . . . , k′)
such that I = s · I ′ and J = s · J ′. This proves that γ is uniquely determined by xγ . For
γ ∈ Γ let nγ = |Sk · γ| be the cardinality of the corresponding orbit.

Assume that the coefficients aI,J satisfy (3.27) and (3.28). Since aI,J = aγ for all
(I, J) ∈ Sk · γ, equation (3.28) implies that

∑

γ∈Γ

nγ aγ xγ = 0.

But the set of functions {xγ : γ ∈ Γ} is linearly independent, so this implies that aI,J = 0
for all (I, J) ∈ Ξ. ♦

3.3.3 Characters

Let A be an associative algebra with 1. If (ρ, V ) is a finite-dimensional representation of

A, then the character of the representation is the linear functional chV on A given by

chV (a) = trV (ρ(a)) for a ∈ A.

Proposition 3.3.9 The following properties hold for characters:

(1) chV (ab) = chV (ba) for all a, b ∈ A.
(2) chV (1) = dim V

(3) If U ⊂ V is a submodule, and W = V/U is the quotient module, then chV =
chU + chW .

Remark. In (3) we do not assume that U has a complementary submodule in V .

Proof. Properties (1) and (2) are obvious from the definition. As for (3), we pick a subspace
Z ⊂ V complementary to U . Then the matrix of ρ(a), a ∈ A relative to the decomposition
V = U ⊕ Z is in block triangular form. Its trace is the sum of the trace on U and on Z

mod U . But the action of ρ(a) on Z mod U is the same as the action on W , so the
traces coincide. ♦

The use of characters in representation theory is a powerful tool, as will become apparent

in Chapters 7, 8 and 9. Let us find the extent to which a representation is determined by
its character.
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Lemma 3.3.10 Suppose (ρ1, V1), . . . , (ρr, Vr) are finite-dimensional irreducible representa-
tions of A such that ρi is not equivalent to ρj when i 6= j. Then the set {chV1, . . . , chVr} of

linear functionals on A is linearly independent.

Proof. Set V = V1⊕· · ·⊕Vr and ρ = ρ1⊕· · ·⊕ρr . Since the representations Vi are mutually
inequivalent, Theorem 3.3.7 implies that

ρ(A) =

r⊕

i=1

End(Vi)

Let Ii ∈ End(Vi) be the identity operator on Vi , and pick Qi ∈ A with ρ(Qi) = Ii . Then

chVi(Qj) = tr(Ij|Vi
) = δij dim Vi .

Thus given a linear relation
∑
ai chVi = 0, we may evaluate on Qj to conclude that

aj dimVj = 0. Hence aj = 0 for all j. ♦

Let (ρ, V ) be a finite-dimensional A-module. A composition series (or Jordan-Hölder

series) for V is a sequence of submodules

(0) = V0 ⊂ V1 ⊂ · · · ⊂ Vr = V

such that 0 6= Wi = Vi/Vi−1 is irreducible for i = 1, . . . , r. It is clear by induction on dimV

that a composition series always exists. We define the semi-simplification of V to be the
module

Vss =
⊕

Wi .

By (3) of Proposition 3.3.9 and the obvious induction, we see that

chV =

r∑

i=1

ch(Vi/Vi−1) = chVss. (3.29)

Theorem 3.3.11 Let (ρ, V ) be a finite-dimensional A-module.

(1) The irreducible factors in a composition series for V are unique up to isomorphism

and order of appearance.

(2) The module Vss is uniquely determined by chV up to isomorphism. In particular, if

V is completely reducible, then V is uniquely determined up to isomorphism by chV .

Proof. Let (ρi, Ui), for i = 1, . . . , n, be the pairwise inequivalent irreducible representations
that occur in the composition series for V , with corresponding multiplicities mi. Then

chV =

n∑

i=1

mi ch(Ui)

by (3.29). Lemma 3.3.10 implies that the multiplicitiesmi are uniquely determined by chV .
This implies (1) and (2). ♦
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Example

Let G = SL(2,C) and let

d(q) =

[
q 0

0 q−1

]
for q ∈ C×.

If (ρ, V ) is a regular representation of G, then ch(V ) (as a character of the group algebra

C[G]) is completely determined by the rational function q 7→ ch(V )(d(q)) for q ∈ C×, since
the set

{gd(q)g−1 : g ∈ SL(2,C), q ∈ C×}

is Zariski-dense in SL(2,C). For example, let (ρk, Vk) be the (k+1)-dimensional irreducible
regular representation of SL(2,C) (see Proposition 2.2.3). Then

ch(Vk)(d(q)) = qk + qk−2 + · · ·+ q−k+2 + q−k.

For n a positive integer we define

[n]q = qn−1 + qn−3 + · · ·+ q−n+3 + q−n+1 =
qn − q−n

q − q−1
.

as a rational function of q. Thus we can write

ch(Vk)(d(q)) = [k + 1]q

Define [0]q = 1 and [n]q! =
∏n

j=0[n− j]q for n a positive integer and set

[
m+ n

n

]

q

=
[m+ n]q!

[m]q![n]q!

(the q-binomial coefficients). Note the symmetry

[
m+ n
n

]

q

=

[
m+ n
m

]

q

.

Theorem 3.3.12 (Hermite Reciprocity) Let Vk be the (k + 1)-dimensional irreducible
representation of SL(2,C). Let Sj(Vk) be the jth symmetric power of Vk. Then for q ∈ C×,

ch(Sj(Vk))(d(q)) =

[
k + j

k

]

q

. (3.30)

In particular, Sj(Vk) ∼= Sk(Vj) as representations of SL(2,C).

Proof. Since the representation Sj(Vk) is completely reducible, it is determined up to

equivalence by its character, by Theorem 3.3.11. Hence by the remarks above, it suffices to
prove (3.30).

We fix k and write
Fj(q) = ch(Sj(Vk))(d(q))

for q ∈ C×. Let {x0, . . . , xk} be a basis for Vk such that

ρk(d(q))xj = qk−2jxj.
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Then the monomials

xm0

0 xm1

1 · · ·xmk

k , m0 + · · ·+mk = j

give a basis for Sj(Vk), and d(q) acts on such a monomial by the scalar qr with

r = km0 + (k − 2)m1 + · · ·+ (2− k)mk−1 − kmk.

Hence

Fj(q) =
∑

m0,...,mk

qkm0+(k−2)m1+···+(2−k)mk−1−kmk

with the sum over all nonnegative integers m0, . . . , mk such that m0 + · · ·+mk = j.

We form the generating function

F (t, q) =

∞∑

j=0

tjFj(q),

which we view as a formal power series in the indeterminate t with coefficients in the ring

C[q, q−1] of rational functions of q.

Lemma 3.3.13

F (t, q) =

k∏

j=0

(1− tqk−2j)−1 (3.31)

Proof. By definition (1− tqk−2j)−1 is the formal power series

∞∑

m=0

tmqm(k−2j).

Hence the right side of (3.31) is

∑

m0,...,mk

tm0+···+mk qkm0+(k−2)m1+···+(2−k)mk−1−kmk

with the sum over all nonnegative integers m0, . . . , mk. Thus the coefficient of tj is Fj(q).
♦

To complete the proof of Theorem 3.3.12, it now suffices to prove the following result.

Lemma 3.3.14
k∏

j=0

(1 − tqk−2j)−1 =
∞∑

j=0

tj
[
k + j

k

]

q

.

Proof. By induction on k. If k = 0 then the equation says that (1− t)−1 =
∑

∞
j=0 t

j . We set

Hk(t, q) =

∞∑

j=0

tj
[
k + j

k

]

q
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and we assume that

Hk(t, q) =

k∏

j=0

(1− tqk−2j)−1

Now [
k + 1 + j

k + 1

]

q

=
qk+1+j − q−k−1−j

qk+1 − q−k−1

[
k + j

k

]

q

.

Thus

Hk+1(t, q) =
qk+1

qk+1 − q−k−1
Hk(tq, q) −

q−k−1

qk+1 − q−k−1
Hk(t/q, q)

=
qk+1

(qk+1 − q−k−1)
∏k

j=0(1− tqk+1−2j)
−

q−k−1

(qk+1 − q−k−1)
∏k

j=0(1− tqk−1−2j)

=
1

(qk+1 − q−k−1)
∏k

j=1(1− tqk+1−2j)

(
qk+1

1 − tqk+1
−

q−k−1

1 − tq−k−1

)

=

k+1∏

j=0

(1 − tqk+1−2j)−1

♦

3.3.4 Exercises

1. Let A be an associative algebra with 1 and let L : A → End(A) be the left regular
representation L(a)x = ax. Suppose T ∈ End(A) commutes with L(A). Prove that

there is an element b ∈ A so that T (a) = ab for all a ∈ A. (Hint: Consider the action
of T on 1.)

2. Let G be a group. Suppose T ∈ End(C[G]) commutes with left translations by G.

Show that there is a function φ ∈ C[G] so that Tf = f ∗ φ (convolution product) for
all f ∈ C[G]. (Hint: Use the previous exercise.)

3. Prove (3.21).

4. Let A = End(V ) with V a finite-dimensional complex vector space. Suppose S ∈ A∗

and S(xy) = S(yx) for all x, y ∈ A. Prove that S(x) = c tr(x) for some scalar c. (Hint:

Write S(x) = tr(zx) where z ∈ End(V ). Then tr(z[x, y]) = 0 for all x, y ∈ End(V ).
Now write z = cIV + w with tr(w) = 0 and use Theorem 2.3.1, (5).)

5. (Notation as in Section 3.3.1) Let A be a finite-dimensional semisimple associative
algebra over C with unit.

(a) Let S ∈ A
∗. Show that there exist operators zλ ∈ End(V λ) so that

S(x) =
∑

λ∈ bA

tr(zλπ
λ(x)) for all x ∈ A.
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(Hint: Use (3.22) and the nondegeneracy of the bilinear form trV λ(uv) on End(V λ).)

(b) Define a linear functional T on A by

T (x) =
∑

λ∈ bA

tr(πλ(x)).

Show that T (xy) = T (yx) for all x, y ∈ A.

(c) Suppose S ∈ A
∗ and S(xy) = S(yx) for all x, y ∈ A. Show that there exists an

element z in the center of A so that S(x) = T (zx) for all x ∈ A, where T is the linear
functional in (b). (Hint: Consider first the case that A is simple, and use the previous

exercise. Then apply (a).)

(d) Let S and z be as in (c). Show that the bilinear form B(x, y) = S(xy) on A is
nondegenerate if and only if z is invertible in A, and that this condition is the same

as πλ(z) 6= 0 for all λ ∈ Â.

6. Let (ρ, V ) and (σ,W ) be finite-dimensional representations of a group G, and let
g ∈ G.

(a) Show that ch(V ⊗W )(g) = ch(V )(g) · ch(W )(g).

(b) Show that ch(
∧2 V )(g) = 1

2

{
ch(V )(g)2 − ch(V )(g2)

}
.

(c) Show that ch(S2(V ))(g) = 1
2

{
ch(V )(g)2 + ch(V )(g2)

}
.

(Hint: Let {λi} be the eigenvalues of ρ(g) on V . Then {λiλj}i<j are the eigenvalues

of g on
∧2 V and {λiλj}i≤j are the eigenvalues of g on S2(V ).)

The following exercises use the notation in Section 3.3.3.

7. Let (σ,W ) be a regular representation of SL(2,C). For q ∈ C× let f(q) = ch(W )(d(q)).

Write f(q) = feven(q)+fodd(q), where feven(−q) = feven(q) and fodd(−q) = −fodd(q).

(a) Show that feven(q) = feven(q
−1) and fodd(q) = fodd(q

−1).

(b) Let feven(q) =
∑

k∈Z ak q
2k and fodd(q) =

∑
k∈Z bk q

2k+1. Show that the sequences

{ak} and {bk} are unimodal.

(Hint: See Exercises 2.4.5.)

8. Let (σ,W ) be a regular representation of SL(2,C) and let W ∼=
⊕

k≥0 mkVk be the
decomposition of W into isotypic components. Say that W is even if mk = 0 for all

odd integers k, and say that W is odd if mk = 0 for all even integers.

(a) Show W is even (resp. odd) if and only if ch(W )(d(−q)) = ch(W )(d(q)) (resp.

ch(W )(d(−q)) = − ch(W )(d(q))). (Hint: Use Proposition 2.2.3.)

(b) Show that Sj(Vk) is even if jk is even, and is odd if jk is odd. (Hint: Use the
model for Vk from Section 2.2.2 to show that −I ∈ SL(2,C) acts on Vk by (−1)k and

hence acts by (−1)jk on Sj(Vk).)

9. Set f(q) =

[
m+ n

m

]

q

for q ∈ C× and positive integers m, n.



146 CHAPTER 3. ALGEBRAS AND REPRESENTATIONS

(a) Show that f(q) = f(q−1).

(b) Show that f(q) =
∑

k∈Z ak q
2k+ε, where ε = 0 when mn is even and ε = 1 when

mn is odd.

(c) Show that the sequence {ak} in (b) is unimodal.

(Hint: Use the previous exercises and Theorem 3.3.12.)

10. (a) Show (by a computer algebra system or otherwise) that
[

4 + 3

3

]

q

= q12 + q10 + 2q8 + 3q6 + 4q4 + 4q2 + 5 + · · ·

(where · · · indicates terms in negative powers of q).

(b) Use (a) to prove that

S3(V4) ∼= S4(V3) ∼= V12 ⊕ V8 ⊕ V6 ⊕ V4 ⊕ V0.

(Hint: Use Proposition 2.2.3 and Theorem 3.3.12.)

11. (a) Show (by a computer algebra system or otherwise) that
[

5 + 3

3

]

q

= q15 + q13 + 2q11 + 3q9 + 4q7 + 5q5 + 6q3 + 6q + · · ·

(where · · · indicates terms in negative powers of q).

(b) Use (a) to prove that

S3(V5) ∼= S5(V3) ∼= V15 ⊕ V11 ⊕ V9 ⊕ V7 ⊕ V5 ⊕ V3.

(Hint: Use Proposition 2.2.3 and Theorem 3.3.12.)

12. For n ∈ N and q ∈ C define

{n}q = qn−1 + qn−2 + · · ·+ q + 1 =
qn − 1

q − 1

(some authors write [n]q for {n}q).

(a) Show that {n}q2 = qn−1[n]q.

(b) Define

Cn+m,m(q) =
{m+ n}q!

{m}q!{n}q!

(this is an alternate version of the q-binomial coefficient which also gives the ordinary

binomial coefficient when q = 1). Let F be the field with q elements (q = pn with
p a prime). Prove that Cm+n,m(q) is the number of m-dimensional subspaces in the

vector space Fm+n. (Hint: The number of nonzero elements of Fm+n is qn+m − 1. If
v ∈ Fm+n −{0} then the number of elements that are not multiples of v is qn+m − q.
Continuing in this way we find that the cardinality of the set of all linearly independent

m-tuples {v1, ..., vm} is (qn+m − 1)(qn+m−1 − 1) · · ·(qn+1 − 1) = an,m. The desired
cardinality is thus an,m/a0,m = Cn+m,m(q).)


