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Dedicated to the memory of Irving E. Segal, who in-
troduced me to the beauties and mysteries of repre-
sentation theory.

INTRODUCTION

The unifying theme of these lectures is the duality between the irreducible representations occuring in a
linear group action and irreducible representations of the commuting algebra relative to this action. This
notion of duality in representation theory was introduced by Schur a century ago, and it has developed
into an important tool with many applications. In keeping with the tutorial aspect, I have tried to
tell the story starting from the beginning and including complete proofs of all the major results (at
several points I refer to the lectures of Benson-Ratcliff in the present volume for details). Of course, this
limits the scope of the lectures to the more classical parts of the theory: Schur-Weyl-Brauer duality for
finite-dimensional representations, and Howe duality between finite-dimensional and infinite-dimensional
highest-weight representations. Substantial parts of these lectures are based on joint work with Nolan
Wallach and I would like to acknowledge his contributions to my understanding of representation theory.
I would also like to thank Eng-Chye Tan and Chen-Bo Zhu for inviting me to give these lectures and for
their wonderful hospitality.

LECTURE 1. REPRESENTATIONS AND DUALITY

1.1. Representations of Algebraic Groups. Assume that G C GL(n,C) is an algebraic group (defined
by a set of polynomial equations in the matrix entry functions). We denote by Aff(G) the commutative
algebra of regular functions on G (the restrictions to G of polynomials in the matrix entry functions x;;
and det ™).

Let (p, L) be a representation of G on a complex vector space L. If L is finite-dimensional, then we
say that p is regular (rational) if the representative functions g — tr(p(g)E), for E € End(L), are regular.
Every regular function on G arises as such a representative function. When L is infinite dimensional, we
say that p is locally regular if for all x € L there is finite-dimensional G-invariant subspace M containing
x so that (p|p, M) is a regular representation.

The most fundamental tool in representation theory is Schur’s Lemma: If E and F are irreducible,
finite-dimensional representations of a group G, then
1 fE=EF

dim Homg (E, F) = { 0 fELF
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(Homg (E, F) denotes the space of linear transformations 7' : E — F' that intertwine the G actions on
the two spaces). To prove Schur’s Lemma, observe that the null space and range of T are G-invariant
subspaces, so T must be either zero or bijective, with the first case holding if £ 22 F. When E = F and
S, T are two nonzero intertwining maps, take X to be an eigenvalue of S™1T. Since S~!T — AI commutes
with the action of G on E and has a nonzero null space, it must be zero.

1.2. Examples.

1. Let (m, V) be any regular (finite-dimensional) representation of G. We denote by P (V') the algebra of
complex-valued polynomial functions on V. Define a representation of G on P(V') by

p(9)f(v) = f(n(g)~v) for feP(V)andgeG.
Since the G action is linear, it commutes with the C* action on V' by scalar multiplication, and we have
the direct-sum decomposition into finite-dimensional G-invariant subspaces

P(V)=EPPHV),

k>0

where P*(V) is the space of homogeneous polynomials of degree k. The action of G on each of these
spaces is regular, so the representation p is locally regular. Furthermore, the G action preserves the
multiplication on P(V).

2. With (7, V) as above, we can take the full tensor algebra

T(V)=pVve*

k>0

with G action p(g)(v1 ® -+ @ vg) = w(g)v1 ® -+ @ w(g)vg. Since G leaves invariant each subspace
V®F  the representation p is locally regular. As in the previous example, the G action preserves the
(noncommutative) multiplication on 7 (V).

3. Let X C C™ be an affine algebraic set (the zero set of a family of polynomials) and suppose that there
is a regular G action on X
GxX—X, (g,2)—g-z.
Set L = Aff(X) (the restriction to X of the polynomial functions on C™). Let G act on L by p(g)f(z) =
f(g~t - ). We can prove that this representation is locally regular as follows.
Given f € Aff(X), set V; = Span{p(g)f : g € G}. The function (g,z) — f(¢g7'-z) on G x X is
regular, and Aff(G x X) = Aff(G) ® Aff(X), there are regular functions ¢; on G and ; on X so that

Fla™ 2) =" drlg)vn(a).
k=1

In particular, Vy C Span{ty} is finite-dimensional, so we can choose ¢i,...,g, in G such that the
functions f; = p(g:)f give a basis for Vy. Now choose points z1,..., 2 in X so that the evaluation
functionals d,, are a basis for V. Since

(p(9) i 62,) = plagi) f(x;) = > dr(9g:)v(x;),
k=1

we see that the representation of G on Vy is regular. Thus (p, L) is locally regular.

1.3. Reductive Groups and Isotypic Decompositions. A complex algebraic group G is called re-
ductive if every finite dimensional regular representation decomposes as a direct sum of irreducible rep-
resentations (this property is equivalent to every G-invariant subspace of a regular representation having
a G-invariant complementary subspace). The classical groups are reductive:

e the general linear group GL(n,C) of invertible n X n complex matrices

e the special linear group SL(n, C) of n x n complex matrices of determinant one

e the orthogonal group O(C™,w) of n x n matrices preserving a non-degenerate symmetric bilinear
form w(z,y) = 2! By on C", where B is a symmetric invertible n X n matrix (defining equation
g'Bg = B)

e the special orthogonal group SO(C",w) of orthogonal matrices of determinant one
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e the symplectic group Sp(C?", w) of 2n x 2n matrices preserving a non-degenerate skew-symmetric
bilinear form w(z,y) = x'Jy on C?", where J is a skew-symmetric invertible 2n x 2n matrix
(defining equation g*Jg = J)

Finite groups are shown to be reductive by the method of averaging over the group. The proof that
classical groups are reductive can be carried out analytically by integrating over a compact real form
(Weyl’s unitary trick — see [16, Theorem 2.4.7]), or algebraically by using a Casimir operator (see [16,
Theorem 2.4.5]). Direct products of reductive groups are reductive, and the quotient of a reductive group
by a closed normal subgroup is reductive (this is obvious). An algebraic group is reductive if and only if
its identity component is reductive.

Assume G is reductive, and let G be the equivalence classes of irreducible finite-dimensional regular
representations of G. For each A € G fix a representation (7}), F*) in the class A\. Let A\* be the
equivalence class of the contragredient representation on the dual space (F*)*.

Given a locally regular representation (p, L) of G, set

Ly = Z \%4 (sum of all V C L such that p|y = F?).

Call Ly the A-isotypic component of L. Define Spec(p) = {\ € G . Ly # 0} (the G-spectrum of
(p, L)).

Proposition 1.1. L =P, cgpeqr) Lovy  (algebraic direct sum).

Proof. We first verify that the sum is direct. Suppose, for the sake of contradiction, that Ly N L,y # 0
for some A, p € G with A # p. Then there exists a G-invariant subspace W # 0 so that W C L) N Ly,
and dim W < oo. Since G is reductive, W = V1 @ --- @ V,,, where each V; is an irreducible G-module.
Hence V; = F* and also V; & F*, a contradiction.

To see that L is the sum of its isotypic components, set Lo = @, L(x). If Lo # L, then there exists a
nonzero x € L\Lg. But z is contained in a finite dimensional G invariant subspace W that is the direct
sum of irreducible G-invariant subspaces. Hence W C Lg, a contradiction. [J

Corollary 1.2. There is a linear projection x — z* from L onto the space LE of G-fized vectors.

We now turn to the G-module structure of the isotypic components of a representation L. Denote by
Homg(F*, L) the vector space of all linear maps T': F» — L that intertwine the G actions on these
spaces. This is the space of covariants of type .

Theorem 1.3. If (p, L) is a locally reqular representation of a complex reductive algebraic group G, then
L= P E*erF
AESpec(p)

where E* = Homg(F*, L) and G acts by 1 ® p on each summand. In particular, the multiplicity of \ in
p is the dimension of the space of covariants of type .

Proof. Let T € Homg(F*, L) be a nonzero intertwining operator. Then T is injective, by Schur’s lemma.
Conversely, if W C L) is a G invariant irreducible subspace, then there is an intertwining map 7' so
that W = T(F*). This implies that the map T ® v +— Tv from E* ® F* to Ly is surjective.

It remains to prove that the map E* @ F» — Ly is injective. Suppose v; € F> and T; € E? satisfy
>_; Tjvj = 0. We may assume that {v;} is linearly independent. Fix a decomposition

Y )\
L(,\):@E, F, =~ F
[

This defines G-invariant projections P; : L(yy — F' A and by assumption
Z PTjv; =0 for alli.
J

By Schur’s lemma, P;T; = ¢;;1 for some ¢;; € C, so we conclude that ¢;; = 0 for all 4, j, by the linear
independence of {v;}. Hence T; = 0 for all j. O
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1.4. Multiplicities and Duality. One says that L is multiplicity-free as a G module if dim E* = 1 for
all A € Spec(p). In this case L is uniquely determined as a G-module by its spectrum. For a detailed
analysis of such representations when L = P(X) and X is a vector space or affine variety with regular G
action see the lectures by Benson—Ratcliff in this volume.

In these lectures we will study representations (p, L) that are not multiplicity free. We want to
determine

e The spectrum Spec(p) C G
e The multiplicities my = dim E*
o Explicit models for the multiplicity spaces E*.

Let Endg(L) be the algebra of linear transformations on L that commute with the G action. There
is a natural representation of this algebra on each multiplicity space E*. Indeed, if A € Endg(L) and
T € E*, then the linear map Ao T : F* — L also commutes with the G action on L, and hence is an
element of E*. Following the ideas of I. Schur, H. Weyl and R. Howe, the unifying theme in our approach
will be

Hidden Symmetry: Study the spaces E* as modules for good subalgebras of Endg(L).

The term hidden symmetry comes from applications of representation theory to quantum mechanics in
cases where the geometric symmetries such as rotation invariance do not suffice to explain the multiplic-
ities in the energy spectrum. In some cases, one can find a larger symmetry group containing G' and
extend the representation of G to a representation of this larger group on L that is multiplicity free. In
other cases the hidden symmetries are given by a Lie algebra of differential operators commuting with
the G action (see [30]).

When L is infinite-dimension (for example, when L = Aff(X) with X an affine G variety), then End(L)
is too big to deal with purely algebraically. In the context of unitary representations on a Hilbert space,
one uses the von Neumann algebra of bounded operators that commute with G. In our algebraic setting
we shall assume that L is of countable dimension and that we have a subalgebra R C End(L) that satisfies

(i) R acts irreducibly on L

(ii) R is invariant under G, relative to the action Ad(g)T = p(g)Tp(g)~!, and the representation Ad

of G on R is locally regular
In case dimL < oo we take R = End(L) 2 L ® L* and these conditions are always satisfied. When
L =P(X) with X a smooth affine G variety, we take R = D(X), the algebraic differential operators on
X (see Agricola [1]). In particular, if X is a vector space with linear G action, then D(X) is the Weyl
algebra PD(X) of differential operators with polynomial coefficients, which we will examine in detail in
Lecture 8.
Fix R satisfying the conditions (i) and (ii) and let

RE={TecR:Ad(g)T =T forall gecG}
(the commutant of p(G) in R).

Theorem 1.4. Each multiplicity space E* is an irreducible RE module. Furthermore, if \, u € Spec(p)
and E* =2 E* as an R module, then \ = p.

In the next lecture we will prove this theorem.? At this point we derive some consequences. The
following corollary plays a fundamental role in our approach to Howe duality.

Corollary 1.5. Let o be the representation of RE on L. Then (o,L) is a semisimple R module, and
each irreducible submodule E* occurs with finite multiplicity dim F.

When L is finite-dimensional then R = End(L), and from the inequivalence of the representations E*
together with Schur’s lemma we obtain the classical Double Commutant Theorem:

Corollary 1.6. Ifdim L < oo and B = Endg(L), then Span{p(G)} consists of all linear transformations
on L that commute with B.

8See [16, Theorem 4.5.12] for the case that R is a graded algebra; the generalization presented here is due to Agricola

(1].
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Corollary 1.7 (Duality Correspondence). Let Spec(o) denote the set of equivalence classes of the irre-
ducible representations of the algebra RS that occur in L. Then the map F* — E* sets up a bijection
between Spec(p) and Spec(o).

LECTURE 2. PROOF OF DUALITY THEOREM AND EXAMPLES
2.1. Density Lemmas.

Lemma 2.1 (Dixmier-Schur). Let L be a vector space over C of countable dimension. Let R C End(L)
be a subalgebra that acts irreducibly on L. Suppose A € End(L) commutes with R. Then A = X for
some A\ € C.

Proof. Suppose that A is not a multiple of the identity. Since R acts irreducibly, Schur’s lemma implies
that A — AI is invertible for all A € C. Hence for every nonzero polynomial p(z) in one variable the
operator p(A) is invertible (factor p(x) into linear factors). Thus there is an algebra homomorphism from
the field C(z) of rational functions in one variable into End(L) given by p(z)/q(z) — p(A)q(A)~!. Fix
a nonzero vector v € L. Then the linear map r(x) — r(A)v is injective from C(z) to L. But C(z) has
uncountable dimension as a vector space over C, since the functions {(z — A\)~! : A € C} are linearly
independent, a contradiction. [

Assume now that L has countable dimension as a complex vector space and that R C End(L) is a
subalgebra that acts irreducibly on L.

Lemma 2.2 (Jacobson). Let X be any finite-dimensional subspace of L. Then every f € Hom(X, L) is
of the form r|x for somer € R.

Proof. Let {x1,...,2,} be a basis for X. Define

LMW=Le.---aL XW=Xo---aX, z™=[z,...,2,]eX™.
——— N
n copies n copies

Let R act on L™ by 7 [y1,...,yn] = [ry1,...,7yn] for € R and y; € L, and extend f to a linear map
fm . X0 5 L) by
F s yal = (1), )]
Denote by M = R -z(™) the cyclic R submodule generated by (™. Define L; C L™ to be the vectors
that have arbitrary entries from L in the ¢th place and are zero in the other positions. Pick a maximal
subset I C {1,...,n} with the property that the sum

N=M+) L
icl
is direct. Then N is an R submodule of L™, Since R acts irreducibly on L, the R modules N N L; are
either zero or L; for each j. But if N N L; = 0, then the sum N + L; would be direct, contradicting the

choice of I. Hence N = L™ proving that M has an R-invariant complement. Thus there is a projection
P : L™ — M that commutes with the action of R. We can write

n n
P[yla"'ayn] = {Zpljyja"'azpnjy]}
j=1 j=1

where p;; € End(L). Since P commutes with R on L™ the transformations pi; all commute with R on
L. Hence p;; € CI by Lemma 2.1 and [p;;] is a matrix of scalars.
Now calculate

FMPlyr,. .yl = [Zpuf m an]f v)| = PFOls .l

Hence f( commutes with P. Since x(”) € M we have
f ) = () pr() — p () ¢ pr,

Thus there exists r € R so that f(™z(™) = rz(™ Since {x1,...,2,} is a basis for X, this implies that
f = 7°|X- (I
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Corollary 2.3 (Burnside). If dim L < co then R = End(L).

Now let (p, L) be a locally regular representation of G with dim L countable. Assume that R C End(L)
satisfies conditions (i) and (ii) stated before Theorem 1.4.

Lemma 2.4. Let X C L be a finite-dimensional G invariant subspace. Then R|x = Homg (X, L).

Proof. Let T € Homg (X, L). Then by Lemma 2.2 there exists r € R such that r|x = T. Since G is
reductive, condition (ii) implies that there is a projection r +— r? from R — RE. But the map R —
Hom(X, L) given by y + y|x intertwines the G actions, since X is G-invariant. Hence T = T% = 7f|x.
d

2.2. Proof of Duality Theorem. Take A € Spec(p) and let Z\ C L) be any irreducible G-submodule.
Given f € L, we denote by Uy = RYf the cyclic R® module generated by f. We write C[G] for the
group algebra of G (the formal finite linear combinations of the elements of G).
(@) If0# M C Ly is an RE -module, then M N Zy # 0.
To verify this, take 0 # m € M and set X = Span{p(G)m}. Then dim X < oo and X C L(,). Hence
there exists T € Homg (X, Z)) with Tm # 0. By Lemma 2.4 there exists » € R® with r|x = 7. Then
rm=Tm¢e MNZ,.
(b) IfO# feZy\ thenUrnNZy=Cf.
Take u =rf € U N Zy. Since Zy = Span{p(G)f}, we have

rZx = Span{p(G)rf} = Span{p(G)u} C Zy
Thus r|z, € Endg(Zy) = CI by Schur’s Lemma. So u =1 - f € Cf, proving (b).
(c) If f € Zy is nonzero, then Uy is an irreducible R%-module.

Indeed, if 0 # M C Uy is an R%-submodule, then 0 # M N Zy C Cf by (a) and (b). Thus f € M and
hence M = Uy, which proves (c).

d Let f1,..., fa be a basis of Zx. Set M; = Uy,. Then the sum C-l: M; is direct and M; = M as
fi =1 J
RE modules.

We have Span{p(g)|z, : g € G} = End(Z)) by Corollary 2.3. Thus for each i there exists an element
u; € C[G] such that p(u;)f; = d;;f;. Suppose m; € M; and ), m; = 0. There exist r; € RE so that
m; = 1; f;. Hence

0= p(uj)<zmi) = ZP(Uj)Tifi = an(uj)fi =rif; =m;

K2

for j = 1,...,d. This proves the first statement of (d). For the second, apply Corollary 2.3 again to obtain
uj; € C[G] such that p(u;;)fi = f;. Since M; and M; are irreducible by (c), the map p(uj;) : M; — M;
is an R“-module isomorphism, by Schur’s Lemma.

(e) Let M; be as in (d). Then Ly = @;.1:1 M;.

Recall that Ly is the sum of all irreducible G-submodules of L that are in the class A. Thus it is enough
to show that if W) is such a submodule then

d
(2.1) Wi C P M.

i=1
Take a G isomorphism T : Zy — Wy. Then Lemma 2.4 furnishes r € RS such that r = T on Z. Hence
W satisfies (2.1), which proves (e).

The first assertion of Theorem 1.4 now follows from (c), (d), and (e). To prove the second assertion,
it suffices to prove the following.

(f)  Let fx and f,, be nonzero vectors in irreducible G subspaces Zx and Z,,. Suppose Us, = Uy, as
RE-modules. Then \ = pu.
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Let T': Uy, — Uy, be an RE-module isomorphism. Let X be a finite-dimensional G-invariant subspace
containing fx and T'fx. There is a projection operator Py : X — Ly onto the A-isotypic component of
L, and Lemma 2.4 furnishes r € R¢ such that r|x = Px. Thus r- fy = f) so we have

Ti=Trfx=7rTfx=P\Tf\ € L.

Since T is an RE module isomorphism, it follows that U 7. C L. Hence f, € Ly, and so we conclude
that p=A. O

2.3. Examples.

1. (Product Groups) Let H and K be reductive complex algebraic groups, and let G = H x K
be the direct product algebraic group, where Aff(G) = Aff(H) @ Aff(K) under the natural pointwise
multiplication map. We can use the duality theorem to prove that G = H x K: FEvery irreducible regular
representation (L, p) of G is given by

(2.2) L=M®N, phk)=0ch)®@7(k) forhe HandkeK

where (o, M) is an irreducible representation of H and (7, N) is an irreducible representation K. To prove
this, suppose first that (p, L) is defined by (2.2). Then Corollary 2.3 implies that End(L) is spanned by
the transformations {p(h,k) : h € H,k € K} and hence Endg (L) = CI, showing that L is irreducible.

Conversely, given an irreducible regular representation (p, L) of G, use Theorem 1.4 (with R = End(L))
to decompose L as a K-module:

(2.3) L= EeF.
\eK

Set a(h) = p(h,1) and 7(k) = p(1,k). Since o(h) commututes with 7(k), H acts on each E* by some
representation p*. We claim that E* is irreducible under H. To prove this, note that

(2.4) Endg (L) = P End(EM) @ 1.

ek
Given T € Endg(L), we know by Corollary 2.3 that T is a linear combination of the transformations
o(h)T(k). Under the isomorphism (2.4) the K-invariant transformations only act on E*. This proves
that Endg (L) is spanned by {o(h) : h € H}, and hence E* is irreducible under H by Theorem 1.4.
Thus each summand in (2.3) is an irreducible G module, by the earlier argument, so there can be only
one summand.

2. (Multiplicity-free Representations of Product Groups) Suppose (p, L) is any locally regular
representation of GG that is multiplicity-free. By Example 1. the isotypic decomposition of L under H x K
is of the form

(2.5) L= @ E“oF°

(a, B)EA
where A C H x K and E® is the irreducible H-module of type «, while F? is the irreducible K-module
of type 8. Set 0 = p|g and 7 = p|x. Then Spec(c) is the projection A — ﬁ, whereas Spec(7) is the
projection A — K. In general A is not determined by these projections. If both of these projections are
injective, we say that the representation p sets up a duality correspondence between Spec(o) and Spec(7).

Clearly such representations of G must be very special, and in these lectures they will play an important
role. The next example is the most familiar of them.

3. (Two-sided group action) Let K be any reductive complex algebraic group. Set G = K x K and
L = Aff(K). Define the representation p of G on L by

p(zy)f(k) = fz™ ky) for k,z,y € K.

From Example 1. we know that G = K x K. Consider Aff(K) as a K-module relative to the right
translation action p(1, k) and apply Theorem 1.3:

(2.6) Aff(K) = @) E* o F*.
\eR
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Here K acts on E* = Homg (F*, Aff(K)) by p(k,1) o T, where T : F* — Aff(K) intertwines the action
of K on F* with the right translation action of K on Aff(K).
We claim that E* = F*". To prove this, define a map E* — FV (a special case of Frobenius
reciprocity) by
T—TeFN, (T,v)=(Tv)(1) forve F
This map obviously intertwines the action of K. It is injective, since (T)(1) = 0 for all v € F* implies
(Tv)(k) = (Tx*(k)v)(1) =0 for all k € K,
and hence T'= 0. The map is surjective, since v* € F** defines T' € E* by
(Tw) (k) = (v*, 7 (k)v).
Clearly T = v*. Thus the decomposition (2.6), relative to the action of K x K, is
Aff(K) = @ FY @ F* = (P End(F?).
AR AeK

This shows that Aff(K) is multiplicity free as a representation of K x K and there is a duality correspon-
dence A\ «—— \*.

4. (Harmonics on the zero-sphere) Let G = O(1) = {1} acting on C, and take L = P(C). In this
case R
G={F" F~} (trivial, signum).
The G-isotypic decomposition of L is thus
L=L"® L™ (even polynomials @ odd polynomials)

and each component has infinite multiplicity. We apply the duality philosophy to explain the multiplicities
by finding operators on L that commute with G. Let PD(C) be the polynomial coefficient differential
operators on P(C). Then one has
(a)  The operators A = (d/dx)?, multiplication by z2, and x(d/dx) + 1/2 (shifted Euler operator)
commute with G and span a Lie algebra g’ = 5((2,C) in PD(C).
(b)  The Lie algebra g' generates the commutant PD(C)Y of G.
The proof of (a) is an easy calculation. The proof of (b) follows by considering the symbol f(z,§) of a
differential operator and using the fact that the algebra of G-invariant polynomials in (z,§) is generated
by the quadratic polynomials z2, z¢, and £2.
We define the G-harmonic polynomials
H=Ker(A)=(C-1)® (C-z).
Since A commutes with G, we have G - H = H. Also H is multiplicity-free as a G-module. Let
I ="P(C)° = C[2?]

(the G-invariant polynomials). Then we have the Invariant-Harmonic Decomposition:

P(C)=Et®E ~2I®H
where ET = C[2?] -1, E~ = C[2?]- 2. We view this decomposition from the perspective of duality as
follows:

e E7 is an irreducible g’ module generated by 1.
e E~ is an irreducible g’ module generated by z.
e P(C) is multiplicity-free as module for g’ x G:

PC)=(E*@FN e (E-®F)

From the algebraic point of view, we now have a complete picture of P(C) as a module for G and
g’. However, there is much more that can be seen on the analytical side. There is a pre-Hilbert space
structure on P(C) given by the Fischer inner product:

(f | 9) = O(f)g"(0) = /C F(2)9@) du(x)



10 ROE GOODMAN

(where du(x) is normalized Gaussian measure on C). We define the Bargmann-Fock space H? as the
completion of P(C) in this norm. The elements of H? are holomorphic functions on C that are square-
integrable relative to Gaussian measure. Let

go = {X € ¢’ : X is skew-Hermitian relative to (- | -) }.

Then g}, is a real form of the Lic algebra g’ and is isomorphic to s[(2,R). Let ¢/ = SL(2,R) and let G’
be the two-fold cover of G’. The analytic duality correspondence between G and G’ is the following.

Theorem 2.5. The representation of g, on P(C) integrates to a unitary representation Of,G\/I on H? (the
oscillator or metaplectic representation). It decomposes under the action of G' X G as a direct sum of
irreducible Hilbert spaces

Hi®@F) e H2®F) (multiplicity-free)

This is a special case of Howe duality for unitary highest-weight representations. We will study it in full
generality in later lectures.

LECTURE 3. SCHUR-WEYL DUALITY

3.1. Commutant of GL(n) Action on Tensors. Consider the action of GL(n,C) on ®" C" by the
kth tensor power pj, of its defining representation:

PV ® - Qup) =gu1 ® - @ gu,  for v; € C™.
The symmetric group &y acts on ®k C™ by permuting the tensor positions:
ok (8) (V1 @ - ®Uk) = Vsm1(1) ® -+ @ V1)

(the vector in position ¢ is moved to the vector in position s()). It is clear that oy (s)pr(9) = pr(g)or(s)
for all g € GL(n,C) and s € &.

Proposition 3.1 (Schur). Any linear transformation B on ®" C" that commutes with o1,(S},) is a linear
combination of the transformations pi(g), g € GL(n,C).

Proof. Let {e;} be the standard basis for C". Then ®" C" has basis

er=eéj @ ®e;, wherel = (i1,...,4) with 1 <1i; <n.
For s € & we have o (s)e; = es.r, where s- 1 = (ig-1(1),...,%5-1(x)) (s moves the positions 1,.. .,k of the
indices; it does not permute their values 1,...,n). If we write Be; = )", bg@], then the condition that
B commute with &, is expressed by
(3.1) b = 5L for all s € G, and all indices I, J

Thus if we denote by = = {(I, J)} (all pairs of indices), then &, acts diagonally on = and the matrix for
B is an invariant function on =.

Set B = Endgk(®k C") and let T — T% be the projection from End(®" C") onto B. The bilinear
form (X,Y) = tr(XY) on B is nondegenerate, since (T,Y) = (T%Y) for T € End(®" C") and Y € B.
Write

By = Span{pi(g) : g € GL(n,C)}.

Then to show By = B, it suffices to show that if B € B and (B, px(g)) = 0 for all g € GL(n,C), then
B = 0. Define F(g) = (B, pr(g)). Since g — F(g) is a polynomial function on the space M, (C) of n x n
matrices and F vanishes on GL(n, C), it is identically zero. Hence {b}} satisfy the linear equations

(3.2) Z bhazr; =0 forall x € M,(C)
1,J
in addition to the invariance condition (3.1), where xr; = xi,j, - - Tip ji -

It is easy to verify that x;; = xp ;s as functions on M, (C) if and only if I = s-I' and J = s J' for
some s € Sy. Let I" be a cross section for the orbits of G on Z. Then the set of monomials {z, : v € T'}
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are all distinct, and hence linearly independent functions on M,,(C). Since b} is constant on &, orbits
by (3.1), equation (3.2) can be written as

Z ISk - y|byzy =0 for all x € M,(C).
yel

Thus by =0 for all v. O
Applying Proposition 3.1 and Theorem 1.4, we obtain a preliminary version of Schur-Weyl duality:

Corollary 3.2. There are irreducible, mutually inequivalent Sy modules E* and irreducible, mutually
inequivalent GL(n,C) modules F* so that

RQce @ Par

A€Spec(pk)
as a representation of Gy x GL(n,C). The representation E* uniquely determines F* and conversely.

3.2. Highest Weight Theory. To make Schur-Weyl duality an effective tool, we will construct the
irreducible regular representations of GL(n,C) by the Theorem of the Highest Weight. We give details
for GL(n, C); analogous results hold for any complex reductive algebraic group (see [16, Chap. 5]). The
starting point is the Gauss decomposition. Let H be the subgroup of diagonal matrices, N the subgroup
of upper-triangular unipotent matrices (all diagonal entries 1), and N the subgroup of lower triangular
unipotent matrices. Then NHN is a Zariski-dense open subset of G, and a generic element g € G has
a unique factorization ¢ = nhn.® Thus a regular representation of G is completely determined by its
restriction to the subgroups N, H, and N.

The subgroup H is a maximal algebraic torus in G. In particular, it is a reductive complex algebraic
group. The irreducible representations of H are one-dimensional and given by

mMn
n

h = diagx1,...,z,] — A* =2 -2 where u = [my,...,m,] € Z".

Thus we may identify H with Z". If (p, V) is a regular representation of G, then the restriction of p to
H decomposes into weight spaces:

V= @ V(w), where V(u) # 0 and p(h)v = h*v for v € V(u).
ned(V)

We call ®(V) C H the set of weights of V.

Let Norm ¢(H) be the normalizer of H in G (HgH = gH), and W = Norm ¢ (H)/H the Weyl group
of G. The elements of W permute the weight spaces and the weights of V. In this case, W = &,, may
be identified with the group of permutation matrices in G, and the action of W on H and H is by the
usual permutation of coordinates. Every W orbit in H contains a unique dominant weight

w=[my,...,my, my > mg > > My, .
We denote by Z7 | the set of all such p € Z™.
Examples
1. Let V = C" be the defining representation of G. Then
(V) ={ey,...,en}, wheree(h)=ua; for h = diag[zy,...,x,]
Here ®(V) =W - ¢ is a single W orbit with dominant weight ¢;.

2. Let V = ®" C". The basis {e;} used in the proof of Proposition 3.1 diagonalizes py(H). For an index
I=i1,..., 1], with 1 <i; <n, define

/11:[#1,-~-,Nn], where Np:#{] R Z]:p}
Then pg(h)ey = h*t ey for h € H. Hence for A € H,
V(X) = Span{es : pr = A}.

bThe precise condition from linear algebra is that the principal minors A;(g) # 0 for i = 1,2, ..., n.
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In particular, V() # 0 if and only if \; > 0 for i = 1,...,n and |A\| = k, where [A\| = A\; +---+ \,,. Thus
®(®" C") = W - Par(k, n), where Par(k, n) is the set of all partitions of k with at most n parts. Each
such partition defines a dominant weight p of H such that h +— h* is a polynomial function on H (no
negative powers of the coordinates x;).

3. Let g = Lie(G) = M,,(C) be the Lie algebra of G, and let Ad(g)z = gxg~! be the adjoint representa-
tion. The weights are 0 and {e; —¢; : 1 <14 # j < n}. We call the nonzero weights the roots of  on g.
The corresponding root spaces are

go = h = LIG(I{)7 gEi—Ej = (CEU

where E;; is the usual elementary matrix with 1 in position (4, j) and zero elsewhere. If @ = &; — ¢, then
we say o > 0 if i < j (so Ey; is upper triangular) and o < 0 if 4 > j. We denote the set of positive roots
by ®* and the set of negative roots by ®~. Thus

n="Lie(N)= @ go. 0=Lie(N)= P ga-

aedt aed—

The Lie algebra (additive) version of the Gauss decomposition is the triangular decomposition g = ndhdn.

If (p,V) is any regular representation of G, then there is an associated Lie algebra representation dp
of g defined by

dp(X)v = %p(exp tX)v

t=0
Clearly p(g)dp(X)v = dp(Ad(g)X)p(g)v. Hence if h € H, E, € go and v € V (i), then

p(R)dp(Ey)v = dp(Ad(h)Ea)p(h)v = R dp(Eq)v.
This shows that dp(ga)V (1) C V(p + «). Thus

(3.3) dpmViw c @ V.

Aepu+d+t
We call u € ®(V) an N-extreme weight if p+ a & ®(V) for all a € 7.

Theorem 3.3. Let (p, V') be an irreducible reqular representation of G. Then there is a unique N -extreme
weight oy € ®(V). This weight is dominant, the weight space V(ug) = VY (the N-fived vectors in V),
and dim VY = 1.

Proof. Define the dominance order on H by v < pif p # v and p— v is a nonnegative integer combination
of positive roots. Since ®(V') is a finite set, it contains an element o that is maximal relative to this
partial order. Any maximal element must be dominant, since if ;1o had a pair of coordinates m; < m;
for some i < j, then
v =po + (m; —mi)(e; — &5) = sijpo € B(V),
where s;; is the permutation ¢ < j. This would contradict the maximality of 1i9. Since no element of
po + ®T can be a weight of V', we see from (3.3) that dp(n)V (uo) = 0. But N = expn, so we conclude
that V(o) C V.
Take any nonzero vector vg € V(). Then by irreducibility and the Gauss Decomposition,

V' = Spanp(G)vg = Spanp(N)vg = dp(U(n))vo,

where U(n) is the universal enveloping algebra of n. But the nonzero weights of H on U(n) are positive
integer combinations of negative roots, and the zero weight space is C1. Hence

V=Cu+ P V.
A=<po
It follows that po is the unique maximal weight and V(o) = VY. O

We call pg the highest weight of the representation (p, V). We next show that uo determines (p, V')
uniquely up to isomorphism. Let sy € W be the permutation [1,2,...,n] — [n,...,2,1]. Then
Ad(sg)N = N and sg - @t = &~ (this last property uniquely characterizes sg). Since the weights
and weight multiplicities of (p, V') are invariant under the Weyl group, we see from Theorem 3.3 that
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®(V) has a unique minimal element —sopuq (the lowest weight), and V(—sopu) = V. The natural bilin-
ear form on V x V* is invariant under H, so its restriction to V(A) x V*(=\) is nondegenerate. Thus
— o is the lowest weight of V*.

Theorem 3.4. Let (p, V) and (o,U) be irreducible regular representations of G with the same highest
weight A. If vg € V and ug € U are highest weight vectors, then there exists a unique G-isomorphism
T:U — V such that Tug = vg. Thus (p, V) is uniquely determined by its highest weight.

Proof. We can take vy € VN and vi € V*V so that (v, vg) = 1. Set

©(g) = (p(g)vo, v5) (generating function).

Then ¢ € Aff(G) and p(nhn) = {p(h)ve, p*(2)vg) = h* for all nhn € NHN. This equation uniquely
determines ¢ in terms of the highest weight A\, and using U and ug would give the same generating
function.

Define Ty : V. — Aff(G) by Tov(g) = (p(g)v,vs). Then Ty intertwines the representation p on V
with the right translation representation on Aff(G). Since Tovg = ¢, the map Ty is nonzero. Hence it is
injective, by Schur’s lemma, and V = T(V). But V = Span{p(G)v}, so Tp(V) is spanned by the right
translates of the function . Let T} : U — Aff(G) be likewise defined. Then T' = T, 'T} is the desired
intertwining map. [

For applications to duality we will need the following sharpening of Theorem 3.3.

Theorem 3.5. Let (p,L) be any regular representation of G. Suppose that 0 # v € L(\)N. Then the
subspace V.= Span{p(G)vo} of L is an irreducible G-module with highest weight \.

Proof. From the proof of Theorem 3.3 we have a weight space decomposition

V=Cuwo PV
pn=X
Let Uy C V be a proper G-invariant subspace. Then vg & Uy, so Uy = ®/l"<)‘ Uo(p). Since G is reductive,
there is a complementary G-invariant subspace Uy so that V' = Uy @ U;. Since U is the direct sum of its
weight spaces, we have vg € U; and hence U; =V, proving irreducibility. O

Corollary 3.6. For every dominant weight \ of H there ewists an irreducible representation (7, F*)
with highest weight .

Proof. Let A(g) be the kth principal minor of g € GL(n,C), for k =1,...,n. If A = [mq,...,my], set
f)\ — A'inl—mg L. Amn—lfmnA:lnn'

n—1

Since A is dominant, we have my > mg--- > my,. Also A,(g) = det(g) # 0 for g € G. Hence f) is a
regular function on G. Also fy(nhn) = h* for nhn € NHN.

Let FA C Aff(G) be the span of the right translates of f, and let 7 be the restriction to F* of
the right translation representation of G on Aff(G). Then dim F* < oo since fy is a regular function.
Furthermore, 7 is irreducible with highest weight A by Theorem 3.5, since fy is N-fixed of weight A. O

We shall refer to Theorems 3.3, 3.4, and 3.5 and Corollary 3.6 collectively as the Theorem of the
Highest Weight.

3.3. Duality and N-fixed Vectors. Let (p, L) be any regular G-module. By the Theorem of the
Highest Weight we can identify Spec(p) with the set of dominant weights A such that L(\)Y # 0. For
A € Spec(p) set E* = L(\)V. This space is invariant under the commuting algebra Endg(L).

Theorem 3.7. Under the joint action of G and Endg (L) the space L decomposes as
(3.4) L P Eor
AESpec(p)

Furthermore, E* is an irreducible module for Endg (L), and distinct values of A give inequivalent modules
for Endg(L).
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Proof. Let )\ € Spec(p) and fix a highest weight vector vy € F*. Define a linear map
Homg(F* L) — LINY, T Toy.

This map is injective by the irreducibility of F*, surjective by Theorem 3.4, and it obviously intertwines
the action of Endg(L). The theorem now follows from Theorem 1.4. OJ

We can now give a more precise version of Schur-Weyl duality (Corollary 3.2). A regular representation
7 of G is said to be polynomial if the matrix entries of 7 are polynomial functions on G (with no negative
powers of det(g)). When 7 = 7 is irreducible, it is a polynomial representation if and only if A,, > 0. In
this case A corresponds to a partition of |A| with at most n parts.

Theorem 3.8 (Schur-Weyl Duality). For A € Par(k,n) let (c*, E*) be the representation of &}, on the
space of N-fized k-tensors of weight \, where N is the upper triangular unipotent subgroup of GL(n,C).
Let (’/T/\,F(/:I)) be the irreducible representation of GL(n,C) with highest weight X\. Then E* is an ir-

reducible &y module. Under the action of &y x GL(n,C), the space of k-tensors over C™ decomposes

as
®c= P PR,

AePar(k,n)

The representations E* are mutually inequivalent, and when n > k they give all the irreducible represen-
tations of Sy. Furthermore, every irreducible polynomial representation of GL(n,C) occurs in (C")®*
for some k.

Proof. From Example 2 of Section 3.2 the dominant weights of (C*)®* are in Par(k,n). To verify that
for every A € Par(k,n) there exists a nonzero N-fixed k-tensor of weight A, we define

w; = €1+ -+ &4, u; =er N---Ne; fori=1,2,...,n.
Then w; is the highest weight of GL(n,C) on /\Z C", and u; is the corresponding highest weight vector. If
we set ¢; = m;—m;11 (with m, 11 = 0), then ¢y, ..., ¢, are nonnegative integers and A = ¢y +- - ~+¢, .
The tensor

uy = u QU @ @ud € ®k c”
has weight A and is V-fixed, since G acts as automorphisms of the tensor algebra over C". It follows that
Spec(pi) = Par(k,n) (we label elements of G by their highest weights).

The assertions of the theorem now all follow from Corollary 3.2 and the Theorem of the Highest
Weight, except for fact that all irreducible representations of & occur when n > k. To prove this, recall
that the number of irreducible representations of a finite group is the same as the number of conjugacy
classes (this common number is the dimension of the center of the group algebra). In the case of &y,
each conjugacy class corresponds to a cycle decomposition, and the lengths of the cycles determine a
unique partition of k. Thus &, has #Par(k) irreducible representations, where Par(k) denotes the set of
all partitions of k. Since a partition of k has at most k parts, every partition occurs in Par(k,n) when
n >k, and hence (C")®* contains all irreducible representations of & in this case. [J

Examples.

1. The group 6 has two one-dimensional representations: the trivial representation and the sign rep-
resentation. The corresponding subspaces of ®" C™ are the symmetric tensors S¥(C") and (if n > k)
the skew symmetric tensors /\k C™. Hence these subspaces must be irreducible GL(n,C) modules, by
Schur-Weyl duality (this is also easy to verify directly). The symmetric tensor e?k is N-fixed with weight
key, while the skew-symmetric tensor e; A --- A ey is N-fixed with weight &1 + -+ + ¢ (when k < n).
Thus in the duality correspondence,

(trivial, C) = (¢!, Bty (z[F gk(Cm))
k
(sgn, ©) = (0, BNy — (@' ATCY) ifn >k
When k = 2 and n > 2 this gives the complete decomposition of ®>C": under G5 x GL(n, C):

C"®C" = {EW ® SQ((C”)} ® {E“’” N (C"} .
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2. Consider ®3 C™ for n > 3. There are three partitions of 3, giving the decomposition
®3 Cn {E[g,o} @ SS(cn)} @ {E[z,u 2 F[2,1}} @ {E[1,1,1] ® /\B(Cn}

under &3 x GL(n, C). Here the representation £ [21] of &3 is the two-dimensional standard representation
on C?/C[1,1,1].

We can view Schur-Weyl Duality as a method to construct representations of G’ = &, from represen-
tations of G = GL(n, C) via the Theorem of the Highest Weight. Here we take the representations of G
as the known objects, and the representations of G’ as the unknown objects.® The relative size of n (the
rank of G) and k then determines which representations of G’ we get this way.

n > k: All partitions of k£ have at most k& parts, so all representations of & occur in ®k C™ in this
case.

n < k: Only those representations of &y, occur in ®k C™ that correspond to partitions of k with at
most n parts.

To make this method effective, we will develop character formulas for the representations of & in the
next two lectures, based on the celebrated Weyl character formula for GL(n,C).

LECTURE 4. COMMUTANT CHARACTER FORMULAS

4.1. Characters. Let G be a connected complex reductive algebraic group. Then G contains a maximal
algebraic torus H and a maximal connected solvable subgroup HN (semidirect product), where N is
the unipotent radical of HN. In fact, one can always embed G into GL(n,C) so that H consists of
the diagonal matrices in GG, and N the upper-triangular unipotent matrices in G, just as in the case of
GL(n,C) treated in Lecture 3. Let h = Lie(H) and n = Lie(N).

The irreducible representations of the torus H are given by h — h*, where X is in the weight lattice
P C b* of H. By the Theorem of the Highest Weight (which is proved for G along the same lines as
in Lecture 3 for GL(n,C)), the irreducible regular representations of G are parameterized by the set
P, of dominant weights determined by the choice of N. For A € P, let (7*, F) be the irreducible
representation of G with highest weight A.

Let (m, V) be a finite-dimensional rational representation of G. Set B = Endg (V). From Theorem 3.7
V' decomposes under the joint action of G and B into a multiplicity-free direct sum

(4.1) v P EBer
A€Spec(m)
Here g € G acts by 1 ® 7(g) and b € B acts by 0*(b) ® 1 on the summands in (4.1). We may take
E* = V(A (the space of N-fixed vectors of weight A in V') with o*(b) the natural action of b € B on
this space.
Finding the spaces V()" explicitly is usually difficult. An easier problem is to calculate characters.

For A € P, we write
xa(b) = tr(c? (b)) = tr(bly ), forbe B.

4.2. Frobenius and Determinant Character Formulas. We now obtain two formulas for the char-
acters x that only involve the full H-weight spaces in V. Let ®* be the weights of Ad(H) on n and
p=1%>nco+ @ Let W =Normg(H)/H be the Weyl group of (G, H). Set
D(h) = Z sgn(s) h** for he H
seW
(the Weyl denominator). Here s +— sgn(s) = det(Ad(s)|y) is the usual signum character on W.

Theorem 4.1 (Generalized Frobenius Formula). For A € P14 and b € B one has
(4.2) xa(b) = coefficient of hW’*? in D(h) try (m(h)b)
(where h € H).
“The representations of G, can be constructed directly by group-theoretic and combinatorial methods. Special elements

of the group algebra C[G&y] (Young symmetrizers) project tensor space onto irreducible representations of GL(n,C) — the
so-called Weyl modules—see [16, §9.3].



16 ROE GOODMAN

Theorem 4.2 (Generalized Determinant Formula). For A € Py and b € B one has
(4.3) = > sgn(s) try (ap—sop) (b)-
seW
In particular,
(4.4) dim F* = Z sgn(s) dimV (A +p —s-p).
seW

4.3. Proof of Frobenius Character Formula. For A\ € P, we write

Xg) = tr(r*(g)) for g€ G.
(the character of the representation with highest weight ). We note from (4.1) that
(4.5) trv(n(gh) = Y xMg)xa() forgeGandbeB
AESpec()
By the Weyl character formula (VVCF)7 we have
Z sgn(s) hs AP for h € H.
seW
Using the WCF in (4.5) we can write
(4.6) D(h)try(x()b) = > > sgn(s) xa(b) b3

AESpec(m) seW

Due to the shift by p, the map (s, \) +— s- (A4 p) from W x P, — P is injective?. Hence the character
h + hAP only occurs once in (4.6), and has coefficient xx(b), as claimed. O

4.4. Proof of Determinant Character Formula. For the proof of Theorem 4.2, we need the following
consequence of the WCF (which is, in fact, equivalent to the WCF).

Lemma 4.3. Let my(u) = dim F*(u) for p € P and A\ € Py, (the multiplicity of the weight p in F).
Then for A\, € Py4 one has

ngn m,t)\-i-p—s p)—5k;t
seW

Proof. Write the Weyl denominator as an alternating sum over W of the characters h — h*?. Multiplying
this sum by x*, we get

D(h)x*(h) = Y { > sgn(s) my,(v) BT p} for h € H.
seW veP
In the inner sum make the substitution v — v + p — s - p; then the sum on the right becomes
Z { Z sgn(s)m,(v+p—s- p)}h”+”.
veP seW

On the other hand, the WCF asserts that the coefficient of h**# in D(h)x*(h) is 0, when A\, u € Py .
O

Proposition 4.4 (Outer Multiplicity Formula). Let L be any regular G module. For A € Py let
multz, () be the multiplicity of the representation F*. Then

(4.7) multz (A Z sgn(s) dimL(A+p—s-p)
seW

din the case of GL(n, C) the partition A + p has all parts of different sizes
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Proof. For v € P we have dim L(v) =Y multy, () m,,(v) Hence the right side of (4.7) is

weEP 4
> mutes ()] Y sen(s)mu (A +p—s-p)}
pneEP 4 seW
But the inner sum is ), by Lemma 4.3, which proves (4.7). O

Proof of Theorem 4.2: Let b € B. Then b has a Jordan decomposition b = bs +b,,, where by is semisimple,
by, is nilpotent, and bs is a polynomial in b. Hence by € B and xx(b) = x(bs). So we may assume b is
semisimple.

For ( € C and A € P, define

Ve={veV :b=_v} Eé\:{veE”\:bvzgv}.
These spaces are G-invariant and
vex D EteoF
A€l

as a G-module. In particular, the multiplicity of F* in Ve is dim Eg‘ Now apply Proposition 4.4 to the
G-module L = V; to get

b)) = Y ¢dimE

¢eC

= Z sgn(s){ Z( dim Ve(A+p — sp)}

seW ¢eC
= Z SgIl(S) trV(/\+p—s~p) (b)
seW
which proves Theorem 4.2. [

LECTURE 5. CHARACTER FORMULAS FOR SCHUR-WEYL DUALITY

5.1. Frobenius Formula for &; Characters. We now apply the commutant character formulas to
the Schur-Weyl duality between G = GL(n,C) and &y, both acting on V' = ®k C". Recall that the
conjugacy classes in & are described by cycle lengths. We denote by C(17272-..k") the class of
elements with r; cycles of length j, where r1 + 2ry + 373 4+ --- = k. A permutation s in this class has
fixed points, o transpositions, and so on. To apply Theorem 4.1 in this context, we need to calculate
the polynomial

h— try (pr(h)ok(s)), where h = diag[x1, ..., Ty
Recall that the tensors {er} give a basis for V. The action of h € H and s € &y, is

pr(h)er = o Dey, or(s)er = esg
where p(I) = [pa, -, in) With pu; = #{p : i, = j} and
s-I= [is—l(l), e ,is—l(k)].
Since o(s) permutes the basis {e;} and each ey is a weight vector for H, it follows that
(5.1) try (px(h)ok(s)) = trr, (pr(h)) for h € H,
where F, = Span{e; : s-I =1I}. Let V; = Span{e’, 7, --- 27} C Q' Cn.
Lemma 5.1. If s € C(1™272 .- k™) then
F,2VE VP @ V2™

as an H-module.

Proof. We may assume the cycle decomposition of s contains the integers 1,..., % in increasing order,
since replacing s by a conjugate element in & doesn’t change the H-module structure of Fy. In this case
the condition s- I = I for an index I means that

I=Ja1,...,ar,b1,b1, . bry,bryyC1,C1,Cly ooy Crgy Crgy Crgy - -

r1 singles T2 pairs r3 triples
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where a;, b;, ¢;, . .. range from 1 to n. Hence

2 2 c
er=eu ® Qe ey Q- Qep. Ve’ ® @l @

The lemma follows. O

For h = diag[x1, ..., z,] define
pj(x) = try, (pr(h)) = ) 4l (jth power sum).
Then Lemma 5.1 implies that

k k
e, (o (h) = [T trv, (oun))? = [] ().

Hence from Theorem 4.1 and (5.1) we obtain the Frobenius character formula:

Theorem 5.2. Let s € C(1"2™2 .- k™) and X € Par(k,n). Then
k
xa(s) = coefficient of 22 TP in Dn(x){ Hpj(x)”}
j=1

where piy=[n—1,n—2,...,1,0] and Dn(z) = [[1<;,<j<, (xi — 7).

Examples

1. Suppose s = (1,2,...,m)(m + 1) --- (k) is a single m-cycle with k¥ — m fixed points. Then

xA(s) = coefficient of AP in (zy 4 -+ 4 2,)" (2T + -+ 2) H (@i — xj).
1<i<j<n
We call a monomial z{* - - - 2% strictly dominant if a; > a2 > -+ > a,. For partitions A with two parts
and cycles of maximum length m = k, the strictly dominant terms in this formula are fo+1 — ¥y, Hence
for s =(1,2,...,k),
-1 for \=[k—-1,1],
Xa(s) = { 0  for A=[k—7,j] with j > 1.

2. Consider the group &3, which has three conjugacy classes: C(1%) = {identity}, C(1'2)
{(12), (13),(23)} and C(3') = {(123), (132)}. As we noted at the end of Lecture 3, the three representa-
tions of &3 are ol (the trivial representation), o[> (the two-dimensional standard representation), and
oL1 1 (the signum representation). To calculate the character of o[ by the Frobenius formula, we let
x = [x1,22] and expand the polynomials

Dy(x)pi(x)® = af+2afws + -
Dy(x)pi(x)p2(x) = i+
Do(x)p3(z) = a] —adwg+---
where --- indicates non-dominant terms. By Theorem 4.1 the coefficients of the dominant terms in
these formulas furnish the entries in the character table for &3. We write x, for the character of the
representation 0. For example, when A\ = [2,1] we have A + p = [3,1], so the coefficient of z$zy in

Dy (x)ps(x) gives the value of x[21] on the conjugacy class C(3'). Table I gives all the characters, where
the top row indicates the number of elements in each conjugacy class, and the rows in the table give the
character values for each irreducible representation.

Table I: Character Table of S3

# elements: 1 3 2
conjugacy class: C(1%) C(112!) C(3%)
X! 1 1 1
X1 2 0 -1

K1l 1 ~1 1
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5.2. Determinant Formula for G, Characters. We next apply Theorem 4.2 to obtain an alternating
sum formula for the characters of &. For this, we need to identify the weight spaces V' (v) as G-modules.
Here v = [v1,...,vy,] with v; > 0 and v4 + - -+ + v, = k. We have already seen that V(v) = Span{e; :

u(l) = v}.
Lemma 5.3. Let 6, =6,, x --- xS, C &j. Then V(v) = C[6;/6,] as a Si-module.
Proof. If I is a multi-index such that p(I) = v, then there is s € &, so that
s T=11,...,1,2,...,2,3,...,3,..].
Since oy (s)er = es.1, the lemma follows. O
From the lemma we see that oy(s) acts as a permutation matrix on V(v), and hence

try ) (ox(s)) = #{fixed points of s on &;/6,}.

The Weyl group for G is G,, and acts on the weight lattice P as permutations of the coordinates of the
weights. Applying Theorem 4.2 and using Lemma 5.3, we obtain the following character formula.

Theorem 5.4. Let A € Par(k,n) and s € &y. Then
xa(s) = ngn(t) #{fized points of s on Sr/Sxtp—t-pp }-
t

Here the sum is over all t € &,, such that all the coordinates of A\ + p,) —t - ppn) are non-negative. In
particular,

k
dim E* = Z sgn(t) < )
el At P} =t P
In Theorem 5.4 pp,) = [n —1,n—2,...,1,0] and
|
(k) = K (where v! = !l p,!)
v V!

is the multinomial coefficient (with the usual convention that it is zero if any entry in v is negative). The
dimension formula can be written as a determinant and then reduced to Vandermonde form. This gives
the following product formula for the dimension of the representation E* that is analogous to the Weyl
dimension formula for the representation F*.

k!
Corollary 5.5. Let A € Par(k,n). Then dim E* = —————— D, (A + pra1)-
A partition A = [A1,...,A,] can be represented in terms of its Ferrers diagram: a left-justified array

of boxes, with A; boxes in the ith row (counting from the top down). Each box in the diagram has a
hook length: the total number of boxes to the right and below the given box (including the box itself).
We can then fill each box with its hook length. For example, A = [4, 3,1] € Par(8, 3) has Ferrers diagram
and hook lengths

6]4[3]1]
41211
1
From Corollary 5.5 one obtains (by induction on the number of columns of A) the Hook Length Formula
k!
(5.2) dim B = ————
Hi J hij (N)

where h;;()) is the hook length of the ij box in the Ferrers diagram of A. By way of comparison, the
Weyl Dimension Formula for GL(n,C) can be written as

()‘er[n])!

5.3 dimF);L =
(5:3) ) p["]!Hij hij(A)
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(see [16, §9.1.4, Ex. #9]). For example, for Gg x GL(3,C) acting on ®8 C3 we have p3) = [2,1,0] and

8! 6! - 4!
dim B3 = 2 = 70, dimFi? = — 72— 15,

®) 21(6-4-4-3-2)
Thus E*31 @ F([;‘)’&l] is an irreducible subspace of ®° C? of dimension (70) - (15).
5.3. Schur-Weyl Duality and GL(k)-GL(n) Duality. There is another model for the irreducible

representations of &y, that comes from the identification of &y with the Weyl group of GL(k,C). Let
X = Mpyxn (k x n complex matrices) and let GL(k, C) x GL(n,C) act on P(X) by

p(g1,92)f(x) = f(gizgs) for g1 € GL(k,C) and g € GL(n, C).

This representation is multiplicity free and decomposes as

(5.4) PX) =P Fly ® F(y
"

with the sum over all partitions p with at most min{k, n} parts (see [16, §5.2.4] or the article by Benson-
Ratcliff in this volume).

Let Hi C GL(k,C) be the maximal torus of diagonal matrices, and embed &5 C GL(k,C) as the
permutation matrices. If we only consider the action of the subgroup Norm (Hy) = & x Hy, of GL(k, C)
on X together with the right action of GL(n,C), then

X (Ce--Ch).

k summands
Hence
P(X)=2S(C")®--- @ S(C)

k factors

as a representation of Norm (H) x GL(n,C). Here & acts by permuting the tensor factors, while
h = diag[x1, ..., z] € Hy acts by multiplication by x; on the jth factor. The weight space decomposition
of P(X) relative to the Hy, action is thus

(5.5) PX) (1) 2 S™(C) @ -+ ® S™(C")  for p = [ma, ..., my-

Here &y acts by permuting the factors in this decomposition while GL(n C) acts as usual on each copy
of C™. In particular, the weight det,, = [1,1,...,1] is fixed by & and the corresponding weight space is

P(X)(dety) = SH(C") @+ ®@ SH(C") = (C™)®F
with the usual commuting actions of &) and GL(n,C). On the other hand, if we calculate this weight
space using (5.4), we see that
€= P Fy(dety) @ F),

A€Par(k,n)
as a module for &5 x GL(n, C). Invoking Theorem 3.8 we conclude: For all A € Par(k,n),

E)\ = F(Ak,) (detk)
as a &y module, with the action of &y coming from its embedding into GL(k,C).

Examples

1. Take A = [1,...,1] € Par(k). Then the representation F(Ak) of GL(k,C) is AF C*, on which GL(k,C)
acts by g — det(g). This shows once again that E* is the sgn representation of &,.

2. Now take A = [k]. Then the representation F(),‘G) of GL(k,C) is S*(Ck) =2 P*((Ck)*). The det, weight

space is one-dimensional and spanned by the monomial z; - - - xx, which is fixed by &f. Again we see that
E[* is the trivial representation of &y.
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LECTURE 6. POLYNOMIAL INVARIANTS AND FFT

6.1. Invariant Polynomials. Let G be a reductive linear algebraic group. Recall from Lecture 1 that
given a regular representation (m, V) of G, we have a locally regular representation p of G as automor-
phisms of the commutative algebra P(V') of complex-valued polynomial functions on V:

p(9)f(v) = f(g~'v) for feP(V)andge G
(here we write gv for m(g)v when the action 7 is clear from the context). Since G acts by automorphisms
of P(V), the space J = P(V)¢ of G-invariant polynomials is a subalgebra of P(V). Thus we can consider
P (V) as a module for J under the action of pointwise multiplication, which commutes with the G action.
Then in the isotypic decomposition

PV)=EPPV)n
pN=tel

each summand is invariant under 7. By Corollary 1.2 there is a projection f +— f% from P(V') onto 7,
with deg f* < deg f. If f € P(V) and ¢ € J then

(6.1) (f)f = off

(Decompose f = f% +--- into isotypic components; then ¢f = @ff 4 --- is the isotypic decomposition
of pf.)

Theorem 6.1 (Hilbert-Hurwitz). J is finitely generated as an algebra over C.

Proof. Let J. ={f € J : f(0) = 0} and write R = P(V). Since R is a polynomial ring in dim V'
generators, the Hilbert basis theorem implies that the ideal RJ; is finitely generated as an R module:
there exist ¢; € Jy such that

RIy =Y Rej.
j=1
Furthermore, since 7, is invariant under the C* action on R (f(v) — f(Cv) for ¢ € C*), we may take
each ¢; to be homogeneous of some degree d; > 1.
We claim that {¢;} generate J as an algebra over C. Let f € J be of degree d and assume inductively
that all polynomials in J of degree less than d are polynomials in ¢1,...,¢,. We can find f; € R so
that f =3, fj¢;. Now project onto J and use (6.1):

f=1=3 U =3 s

J

Since degy; > 1, we have deg ff < deg f; < degf. Hence by induction each ff is a polynomial in
©1, .-+, ¥Pn, o the same is true of f. O
We shall say that {¢1,...,0,} C J is a basic set of G invariants if

(i) {¥1,--.,9n} generates J as an algebra over C
(ii) each ¢; is homogeneous (of some degree d;)

and n is as small as possible, subject to (i) and (ii). By Theorem 6.1 there always exists a basic set of
invariants (the polynomials ¢; are not unique but the set {dy,...,d,} of degrees is uniquely determined).

Example. Let G = G,, and V = C", with G acting as permutations of the coordinates. Then
p(s)f(x1, ... 2n) = f(T5(1),- - Tsn)) for feClzy,...,2,] and s € &,.

and J is the algebra of symmetric functions in n variables. By the fundamental theorem of symmetric
functions one has J = Cloy,...,0,], where

op(T1,...,2p) = Z Tjy T, (pth elementary symmetric function)
1<ji<<jp<n
Furthermore, the functions {o1,...,0,} are algebraically independent, so they give a basic set of invari-

ants with degrees d,, = p. (The function o, is the restriction to the diagonal matrices of the character of
AP C™ as a representation of GL(n,C).)
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6.2. Invariants of Vectors and Covectors. Take G as a classical group (GL(n,C), O(C", B), or
Sp(C™, Q) with n even) and V = C” the defining representation of G. Let

V= Vo ---aV , Vk=v*g...0V*
—_——— —_—
m column vectors k row vectors

with the natural G action on each summand. Then P(V**@&V ™) is the algebra of G-invariant polynomial
functions of k covectors and m vectors. The First Fundamental Theorem (FFT) of invariant theory for
the group G gives an explicit description of sets of basic invariants (for all values of k and m).

There is an alternate picture that reveals the hidden symmetries in this situation and gives an obvious
algebra of G-invariant polynomials together with a set of quadratic generators. Namely, we have the
G-isomorphisms

V*k
vm

My, right G action (matrix multiplication)

IR

My xm left G action (matrix multiplication)

where M.y, is the vector space of & X n complex matrices. In this picture we see that the reductive
group L = GL(k, C) x GL(m,C) acts on Myxn, & Mpxm by

(a,b)(z ®y) =ax @ yb~' for a € GL(k,C) and b € GL(m, C).

This action obviously commutes with the G action. The induced action on functions makes P(Myxn ®
Mnxm)G into an L module. Note that the maximal torus of diagonal matrices in L acts in the original
picture V** @ V™ by scalar multiplication in each vector summand, while the Weyl group &, x &,, of
L acts by permutation of positions of the summands.

Define the multiplication map

Wi Misn @ Mpxm — Mgxm x@yr—xy (matrix multiplication).
Obviously u(rg ® g~ ty) = u(x @ y) for all g € GL(n,C). Hence we have an algebra homomorphism
e P(Mixn) — PV @ VSO ()@ @ y) = f(ay).
In particular, if we take f = z;; (the (4, ) matrix entry function on My, ), then
:U/*(xij)(/u{a e 7UZ7U15 T 7UTI’L) = (U:5Uj>
(the contraction of the ith covector with the jth vector).

There is a natural action of L on My, with GL(k,C) acting by left multiplication and GL(m, C)
acting by right multiplication, Hence L acts on P(Myx,, ). The map p intertwines the two L actions.

6.3. Polynomial FFT for GL(n). The FFT for GL(n, C) is the assertion that the method just indicated
to construct invariants furnishes the complete algebra of polynomial invariants.

Theorem 6.2. Let G = GL(n,C). Then the map p* is surjective. Hence the km quadratic polynomials
Gij = p(ziy) with1 <i<k and 1 <j<m give a set of basic invariants for P(Myxn, & Myxm).

After discussing tensor invariants in the next lecture we shall show there how this theorem is an
immediate consequence of Proposition 3.1. At this point we observe that the image of y consists of all
k x m matrices  with rank(z) < min(k, m,n). This gives rise to the following dichotomy:

(1): If n > min(k, m), then p is surjective. Hence u* is injective and
P (M ® Mpxm) ) 22 P(Mjon)

is a polynomial algebra with km generators. One says that My, is the algebraic quotient of V*F @ V'™
by GL(n,C). The representation of L on P(Mpyxy,) is multiplicity-free (see [16, Theorem 5.2.7] or the
article by Benson-Ratcliff in this volume).

(2): If n < min(k,m) then Ker(p*) # 0. The group L acts on Ker(p*), and from the multiplicity-
free decomposition of P(Myxm,) under L one finds that Ker(u*) is a determinantal ideal generated by
(n+1)x (n+1) minors. Thus P(Mpsxn® My xm) ™) is the algebra of regular functions on the associated
determinantal variety. This is the Second Fundamental Theorem (SFT) for GL(n,C) invariants (see [16,
Theorem 5.2.15] for the complete statement).
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6.4. Polynomial FFT for the Orthogonal Group. We next consider the full orthogonal group relative
to the bilinear form B(x,y) = z'y on V = C™:
G =0(n,C) = {g € GL(n,C) : g'g =1}

Since V = V* as a G-module, via the form B, it suffices to consider the invariants of k vector arguments
P(VEYG = P(M,xx)¢, where G acts on M,,x by left multiplication. Define a map

T Mpxp — SMy,  (k x k symmetric matrices), 7(z) = 2'z.
For g € G we have 7(gr) = 2'g'gx = 7(z). Hence
T P(SMy) — P(VF)©

as in the case of GL(n,C). In particular, if we take f = z;; (the (i,j) matrix entry function on SMy),
then
T (@) (V1 vk) = vjv;
(the inner product of the ith and jth vectors).
The map 7 intertwines the right action of the hidden symmetry group L = GL(k,C) on M,,xx. Here

the action of L on SMj, is given by z — bxb® (for b € L).

Theorem 6.3. Let G = O(n,C). Then the map 7 is surjective. Hence the k(k + 1)/2 quadratic
polynomials 0;; = 7 (z;;) with 1 <i < j <k give a set of basic invariants for P(Mxx)¢.

Proof for the case n > k: There is a natural G-equivariant embedding M, xr C My xp; just add n — k
columns of zeros on the right to make x € M, «x into an n X n matrix. Hence we may assume that k = n.
Now see [16, Proposition 4.2.6] for the proof.c O

We shall complete the proof for the general case n < k after discussing tensor invariants in the

next lecture. Here we observe that the image of 7 consists of all k£ X k symmetric matrices x with
rank(z) < min(k,n). This gives rise to the following dichotomy:
(1): If n > k, then 7 is surjective. Hence 7* is injective and P (M, %)% = P(SM;) is a polynomial
algebra with k(k + 1)/2 generators. One says that SMj is the algebraic quotient of M, by O(n,C).
The representation of L on P (M, ;)¢ is multiplicity-free (see [16, Theorem 5.2.9] or the article by
Benson-Ratcliff in this volume).

(2): If n < k then Ker(7*) # 0. From the multiplicity-free decomposition of P(SM},) under L one finds
that Ker(7*) is a determinantal ideal generated by (n 4+ 1) x (n 4 1) minors. Thus P (M, xx) is the
algebra of functions on the associated symmetric determinantal variety. This is the Second Fundamental
Theorem (SFT) for O(n,C) invariants (see [16, Theorem 5.2.17] for the complete statement).

6.5. Polynomial FFT for the Symplectic Group. Now consider the symplectic group G = Sp(C™,Q),
where n = 2p is even and

— ot — 0 IP
Q(l‘,y)—.ﬁJy, J_|:Ip 0

Here I, is the p x p identity matrix. Thus G is the subgroup of GL(n,C) defined by ¢*Jg = J. Since

(C")* = C™ via the form , it suffices to consider the invariants of k vector arguments P(VF)¢ =
P(My,xk). Define a map

v Mpxr — AM;,  (k x k skew-symmetric matrices), ~(z) = z'Jx.
For g € G we have v(gx) = 2'g'Jgx = v(x). Hence
v P(AMy) — P(VF)

as in the case of O(n,C). In particular, if we take f = x;; (the (¢,7) matrix entry function on AMy),
then

’}/*(Zij)(vla to 7vk) = Q(via Uj)
(contraction of the ith and jth vectors by ).
€The proof is by induction on n and can be viewed as an algebraic group version of the QR factorization for M, and

the Cholesky Decomposition for SM,. This result is associated with a particular partial compactification of the symmetric
space GL(n,C)/O(n,C).
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The map 7 intertwines the right action of the hidden symmetry group L = GL(k,C) on M, x; with
the action of L on AMj, given by z — bzb® (for b € L).

Theorem 6.4. Let G = Sp(C", Q). Then the map v* is surjective. Hence the k(k — 1)/2 quadratic
polynomials w;j = v*(x;;) with 1 <14 < j < k give a set of basic invariants for P(Mx)®.

Proof for the case n > k: The same citation as for the orthogonal case. [J

We shall complete the proof for the general case n < k after discussing tensor invariants in the next

lecture. Here we observe that the image of v consists of all k£ x k skew-symmetric matrices x with
rank(z) < min(k,n). This gives rise to the following dichotomy:
(1): If n > k, then « is surjective. Hence v* is injective and P(M,xx)¢ = P(AMy) is a polynomial
algebra with k(k — 1)/2 generators. One says that AMj, is the algebraic quotient of M,y by Sp(C™, Q).
The representation of L on P(M,xx)® is multiplicity-free (see [16, Theorem 5.2.11] or the article by
Benson-Ratcliff in this volume). .

(2): If n < k then Ker(v*) # 0. From the multiplicity-free decomposition of P(AM},) under L one finds
that Ker(v*) is generated by a set of Pfaffian polynomials of degree n/2 4+ 1. Thus P (M, xx) is the
algebra of functions on the associated skew-symmetric Pfaffian variety. This is the Second Fundamental
Theorem (SFT) for O(n, C) invariants (see [16, Theorem 5.2.18] for the complete statement).

Summary: For a classical group G (general linear, orthogonal, symplectic), the G-invariant polynomial
functions of vectors and covectors are gemerated by all the possible G-invariant contractions of vectors
and covectors.

LECTURE 7. TENSOR INVARIANTS AND PROOF OF FFT

7.1. Tensor Invariants for GL(V). We turn now from consideration of invariant polynomials to the
general case of invariant tensors. Let V = C" and consider the mixed tensor space VE™ @ V*®k ag a
GL(V) module. For ¢ € C* the element (I, of GL(V) acts by (™% on this space. Hence there are no
nonzero GL(V') invariant tensors if m # k and we can assume m = k. In this case
(7.1) VO @ V*EF = End(VEF)
as a GL(V') module, and hence

(VO @ V*ERGLIY) 2 Endgy, ) (VER).

By Schur duality (Corollary 1.6 and Proposition 3.1) we know that EndGL(V)(V®k) is spanned by the
transformations o (s), s € Gy.

Let {e1,...,en} be the standard basis for C" and let {e},...,e’} be the dual basis. For an index
I=ir,...,i with 1 <4, <n weset |[I| =k and

er=¢e, @ Re, €V el =ej ® Qe € Vrek,
Recall from Lecture 3 that the action of s € & on k-tensors is oy (s)e; = es.;. Define
Cy = Z es.1 Q€]
\T|=k

Then Cs corresponds to ox(s) under the isomorphism (7.1). Thus we obtain the First Fundamental
Theorem of Tensor Invariants for GL(V):
Theorem 7.1. For k> 1 one has (V& @ V*®*)GLIV) = Span{C; : s € G }.

The vector space V& @ V*®* s self-dual as a GL(V') module, and hence each of the mixed tensors Cy
can also be viewed as a linear functional. This gives the alternate version of the Tensor FFT for GL(V)
in terms of total contractions of vectors with covectors:

Corollary 7.2. The space of GL(V)-invariant linear forms on VE*@V*®¥ js spanned by the contractions
k
0@ QU ®v} @ @vf = [[ (0, v)
j=1
for s € 6.
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7.2. Proof of Polynomial FFT for GL(V). The polynomial form of the FFT for GL(V) is a conse-
quence of Corollary 7.2. To prove this, we need to view GL(V)-invariant polynomials as tensors with
additional symmetries, as we did in Section 5.3. Let Ty, = (C*)* x (C*)™ and write t € T, as
t=[z1,...Tk,Y1,-..,Ym). Denote the regular characters of Ty ,,, as

k m
t — ¢Pal — H xfi H y?j
i=1 =1

for [p,q] € Z¥ x Z™. Let Tk, act on 2 = [v1,...,v5] ® [v],...,05] € VE® V*™ by
toz=[z1vr,. . TR0k ® (107, Ymp ]
This action commutes with the GL(V)-action on VF @ V*™ so GL(V) leaves invariant the weight spaces
of Tk,m in P(VF @ V*™). These weight spaces are described by the degrees of homogeneity of f €
P(VF @ V*™) in v; and v} as follows. For p € N*¥ and q € N™ set
pedk g yvm) = (fcP(VE@QV*™) : f(t 2) =P f(2)}.
Then
PVFav™) = P P Pravtevm),
pENFk geN™
and this decomposition is GL(V)-invariant. Thus
(7.2) PV*ev ™=@ @ [PrPIdt ey,
pENk gEN™

We now give another realization of these weight spaces in terms of tensors. Given p € N* and q € N™

we set
vV *®p ® V®a — 1/*®p1 R-® V/ *®Pk ® V®a Q- ® V®m

This space is isomorphic to V*®Pl @ V*®ldl and is a GL(V) module with the usual action. Let &, =
Bp, X -+ X 6y, , with each factor acting as a group of permutations of the corresponding tensor factor in
V®P. This gives a representation of S, X G4 on V*®P ® V¥4 that commutes with the action of GL(V).

Lemma 7.3. Let p € N¥ and q € N™. There is a linear isomorphism
(73) P[p,q](vk ® V*m)GL(V) ~ [(V*®\p\ ® V®|q|)GL(V)} 6p><6q'

Proof. We have the isomorphisms

PVFa V™)

IR

S(VHFpvm™)
SV - @SVHaSV)®---@SV).

k factors m factors

IR

as GL(V) modules. Hence
(7.4) p[p,q](vk eV Slpl V9 ® Slal V),
where SPI(V*) = SP1(V*) @ --- @ SP*(V*) and Sl(V) = S%(V) @ --- ® S (V). We also have a
GL(V)-module isomorphism
§(V) = [ver]T cver
with &, acting by permuting the tensor positions as usual. Combining this with (7.4) we obtain the

linear isomorphisms

[S[pl(v*) ® S[q](v)]GL(V)

[(V*®‘p‘ ® V®|q|)6p><6q} GL(V)'

This implies (7.3) since the actions of GL(V') and &, x 64 mutually commute. [

P[p,q] (Vk ® V*m)GL(V)

1%

We now prove the polynomial version of the First Fundamental Theorem for GL(V). This theorem
asserts that for each p € N*¥ and q € N™, the space

P[p’q] (Vk ® V*m)GL(V)
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is spanned by monomials of the form

kK m
(7.5) H H(Um U;-‘>”j

for suitable choices of k,m and r;;. The subgroup T = {CIy : { € C*} of GL(V) acts on PP-al(VEgy*m)
by the character ¢ — ¢l9=IPl| 5o we may assume that |p| = |q| = r, say. By Lemma 7.3,

SnxSa
(7.6) PIRa(Vk g Vo) SUY) & [(eer @ yer) ST

From Theorem 7.1 we know that the space (V*®"® V®7')GL(V) is spanned by the complete contractions
C, for s € &,. Hence the right side of (7.6) is spanned by the tensors

S alg) @b,
(9,h)ECEXxSg

for s € &,. Under the isomorphism (7.6), the action of &, x &4 disappears and these tensors correspond
to the polynomials

Fy(i,.. 05,05, ,0h) = Cs(f?' @ @up?* @ 0" @ .- @ vi®1m)

»Um
= <vi®p1®...®vl‘§pk7wr®...®w:>

n

[T tws.wi).

i=1

where each w; is v; for some j and each w; is v}, for some j' (depending on s). Obviously Fy is of the
form (7.5). O

7.3. Tensor Invariants for Orthogonal and Symplectic Groups. Consider now a nondegenerate
bilinear form w on V', which we assume to be either symmetric or skew-symmetric. Let G be the subgroup
of GL(V) that preserves w (so G is either the full orthogonal group or the symplectic group). Any mixed
tensor that is invariant under GL(V) is also invariant under G, of course. To find additional tensor
invariants, we can

use the G-module isomorphism V 22 V* furnished by w to restrict attention to V*®*. Furthermore,
(V*®k)G = 0 if k is odd, since —I € G. Hence we need only find a linear basis for (V*®2k)¢.

The given form w € (V*®2)¢ by definition. Since G preserves tensor multiplication, it follows that

O = w® € (V)4

The representation oo, of Gai on V*®2F commutes with the action of G, of course, so the tensors ooy, (5)0k
are also G invariant, for every s € Go.

Theorem 7.4. For all integers k > 1 one has (V*®2K)¢ = Span{oax(s)0k : s € Gy }.

Because of the symmetries of the tensor 6 under the action of Gsp, there are redundancies in the
spanning set of Theorem 7.4. A labeling that factors out these symmetries is the following, which
we will also use in Lecture 13. Define a two-partition of the set {1,...,2k} to be any set of k pairs
&={{i1,j1},---, {ir,jx}} such that {iy, ji1,...,ik, jx} consists of the integers 1,...,2k. Denote the set
of all 2-partitions of k by Zi. For £ € = define the complete contraction

k
)\5(’1)1 ® - Quak) = H w(vizﬂ Ujp)'
p=1

(We label the pairs in & so that i, < j,; then this definition has no sign ambiguity, even when w is
skew-symmetric.) The invariant tensors in Theorem 7.4 are just these contractions.

Corollary 7.5. For all integers k > 1 one has (V*®2)% = Span{)¢ : £ € Z;}.

Proof of Theorem 7.4. Following Attiyah-Bott-Patodi, we shift the action of G from V*®2* to EndV by
a tensor algebra version of the classical polarization operators.t This transforms the space of G-invariant

fThis can be viewed as unseparation of variables, and is another instance of a hidden symmetry.
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tensors into a different space of GL(V)-invariant tensors built from G-invariant polynomials on End(V).
The results of Lecture 6 allow us to express these G-invariant polynomials as covariant tensors with
no further G-invariance condition. By this means each G-invariant tensor gives rise to a unique mixed
GL(V)-invariant tensor. But we know that all such tensors are linear combinations of complete vector-
covector contractions. Finally, specializing the polarization variables, we find that the original G-invariant
tensor is in the span of the complete contractions relative to the form w.

In more detail, given A € V*®™ we define ®) € P¥(EndV) ®@ V*®™ by

O\(X,w) =\, X®w) for X € EndV and w € V&™,
Since (A, w) = @5 (I, w), we see that the map A\ — @, is injective.
Let G C GL(V) be any subgroup, for the moment. Let G act on P™(EndV) @ V*®™ by left multipli-
cation on End(V) only (no action on V*®™). Let GL(V) act by right multiplication on the EndV factor

and in the usual way on V*®"_ Since these actions of G and GL(V) mutually commute, we obtain a
representation of the product group G x GL(V). In particular,

(gah) ' (I))\(Xa ’LU) - <)‘a (gith)(gmhil ’ w) - (I)g~)\(Xaw)

for g € G,h € GL(V). Hence ®, is automatically invariant under GL(V) for any A, while if \ is G-
invariant, then so is ®,. Conversely, if ® € P™(EndV) ® V*®™ is invariant under G x GL(V'), then ®
is determined by the linear functional A : w — ®(I,w) since ®(h,w) = ®(I,h - w) for h € GL(V) and
GL(V) is dense in EndV. Furthermore, for g € G we have

(I, w) = D(gl,w) = P(Ig,w) =P(I, g w)

(here we have used the inclusion G C GL(V) to pass from the left action of G on EndV to the right
action of GL(V) on EndV). Hence ® = ®, with A € (V*®™)¢ The map A +— ®, thus gives a linear
isomorphism

(7.7) (V*@m)G = [P (EndV)H@) @ yrem] V)
where L(G) denotes the left-multiplication action of G on End(V).
Let \ € [V*®2k]G. Then by (7.7) with m = 2k, we have
GL(V)

Dy € [PF(EndV)¢ @ V@]

and A = ®,(I). By Theorems 6.3 and 6.4 (which we have proved in the case kK = dim V'), there is a
polynomial F) on SM, x V&2 when G = O(V) or on AM,, x V&% when G = Sp(V), so that for all
X € M,, and w € V®2k

[ FA(X'X, w) when G = O(V),
OA(X,w) = { F\(X*J,X, w) when G = Sp(V).

We view F) as an element of P¥(SM,) @ V*®2k (resp. of P¥(AM,,) ® V*®2F). Note that

Fy(I,, w) when G = 0(V),
(A w) = Ox (L, w) = { Fi([]m w) when G = Sp(V).

The next step is to translate the GL(V')-invariance of ® into an appropriate invariance property of
F. The map

O: M, =V @V*, O) =) zje@e]
4,J

furnishes GL(V')-module isomorphisms AM,, = /\2V* and SM,, = S?V*. Hence
PE(AM,) = SF(N*V),  PH(SM,) = S*(52V)
Thus there is a GL(V)-invariant tensor C € V®2F @ V*®2k 5 that
Fr(A,w) = (A®* @ w, O)

for w € V2 and A in either S2V* or A>V*. By the tensor FFT for GL(V) (tensor form) we may
assume that C' is a complete contraction :

C = Z 62,]@6]

|I|=2k
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for some s € Gg,. When G = O(V) we take A = I,, to recover the original G-invariant tensor A as

Nw) = F\(In,w) = (0(I,)®* @ w, C)
= Y {er, OL)F)(w, ef.p) = (oar(s)O (1) ®*, w).
|1|=2k

When G = Sp(V), we likewise take A = J,, to get (\, w) = {02k (5)O(J,)®*, w). Since

o — O(I,)%* when G = O(V)
71 ©(J,)%  when G = Sp(V),

we conclude that A = o2x(s)65. O

7.4. Proof of Polynomial FFT for Orthogonal and Symplectic Groups. We finally complete the
proof of the FFT for the action of G = O(V) or G = Sp(V) on P(V), using an argument similar to the
case of GL(V) to deduce the polynomial version of the FFT from the tensor version. Let p € N™. Since
—I € G and acts by (—1)Pl on PPI(V™) we may assume that |p| = 2k. We now show that the space
PPI(1™)C is spanned by monomials
(7.8) O(V1,.. ., 0m) = H w(v;, v;)"
i,j=1

of weight p. This will prove the FFT (polynomial version) for G.

By Lemma 7.3,

(7.9) PlRI(ym) = (V=2

The space (V*®2¥)€ is spanned by the tensors o3, (s)0; for s € G2y, (Theorem 7.4). Hence the right side
of (7.9) is spanned by the tensors

G}Gp.

> osn(ts)b;
teGp
for s € Gax. Under the isomorphism (7.9), the action of & disappears and these tensors correspond to
the polynomials
k
Fy(vi, ... 0m) = 05 (8)05 (07" @ - @ uiPm) = HW(Ui; Uk+4)
i=1

where each wu; is v; for some j (depending on s). Thus Fj is of the form (7.8). O

LECTURE 8. WEYL ALGEBRA AND HOWE DUALITY

8.1. Duality in the Weyl Algebra. We shall now apply the general duality theorem from Lecture 1 to
the following situation. Let V' be an n-dimensional vector space over C and let z1, ..., z, be coordinates
on V relative to a basis {e1,...,en}. Let &1,...,&, be the coordinates for V* relative to the dual basis
{e},...,el}. We denote by PD(V) the algebra of polynomial coefficient differential operators on V. This
is the subalgebra of End(P(V)) generated (as an associative algebra) by the operators

0

D; = Ere M; = multiplication by x; (i=1,...,n).

T4
Since (0/0x;)(z;f) = (0x;/0x;)f + x;(0f/0x;) for f € P(V), these operators satisfy the Heisenberg
commutation relations
(81) [Dz; MJ] :(SUI for ’L,jz 1,,71

(the algebra PD(V) is often called the Weyl algebra).

Define PDy(V) = CI and for k > 1 let PD(V) be the linear span of all products of k or fewer
operators from the generating set {Dy,..., Dy, My, ..., My,}. This defines an increasing filtration of the
algebra PD(V):

PDy(V) C -+ C PDR(V) C PDgya(V) C -+ with | PD(V) = PD(V)

k>0
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PDi(V) - PDp(V) C PDreyrm (V).

Let Gr(PD(V)) = Dy>o Gr*(PD(V)) be the associated graded algebra. If T € PD(V) then we say T
has filtration degree k if T € PDy(V) but T ¢ PDy_1(V), and we write deg(T') = k. We write

Gr(T) =T + PDy_1(V) € Gt*(PD(V))

when deg(T) = k. The map T — Gr(T) is a linear isomorphism (but not an algebra homomorphism)
from PD(V) to Gr(PD(V)). From (8.1) it is easily verified that

deg(M®D?) = |a| +8] for a, 8 € N"
and the set of operators {M*D? : «, 8 € N"} is a (vector-space) basis for PD(V), where we write
M® =M Mg, D =D...Din.
Let p be the representation of GL(V) on P(V) with
p(9)f(x) = f(g~"x) for f € P(V).
We view PD(V) as a GL(V)-module relative to the action
9T =p(9)Tp(g™") for T € PD(V), g€ GL(V).
For g € GL(V) with matrix [g;;] relative to the basis {e1,...,e,}, we calculate that

(8.2) p(9)Djp(g~") = ZgijD% p(9)Mip(g™") = ZgnM]‘-

The set {Gr(M®DP) : |a| + |3] = k} is a basis for Gr*(PD(V)). Thus the nonzero operators of
filtration degree k are those of the form
(8.3) T= > capM*D’
lee|+181<k
with cog # 0 for some pair a, 8 with |a| + |3] = k (note that the filtration degree of T' is generally larger

than the order of T as a differential operator). If T in (8.3) has filtration degree k then we define the
symbol of T to be the polynomial o(T) € P¥(V @ V*) given by

o(T) = Z CaptEP.
|| +B|=F
Lemma 8.1. The symbol map gives a linear isomorphism PD(V) = P(V & V*) as GL(V)-modules.
Proof. Using (8.1), one shows by induction on k that any monomial of degree k in the operators
Dy,...,D,, My, ..., M, is congruent (modulo PDj_1(V)) to a unique ordered monomial M D” with
la| + |8 = k. Hence o(T) = o(S5) if Gr(T) = Gr(S). Thus o gives a linear isomorphism
(8.4) Gr*(PD(V)) = PE(V @ V™).

Since p(¢)PDr(V)p(g™t) = PDy(V), there is a representation of GL(V) on Gr*(PD(V)) for each k.
From (8.2) we see that D; transforms as the vector e; under conjugation by GL(V'), while M, transforms
as the dual vector e. Since GL(V') acts by algebra automorphisms on Gr(PD(V)) and on P(V & V*),
this implies that (8.4) is an isomorphism of GL(V') modules. Now compose these maps with the canonical
quotient maps PDy (V) — Gr*(PDy(V)). O

We can now obtain the general Weyl algebra duality theorem:

Theorem 8.2. Let G be a reductive algebraic group acting reqularly on V. Then there is a multiplicity-
free decomposition

(8.5) PV)= P E*eF,
AeX(V)

as a module under the joint actions of PD(V)¢ and C[G]. Here (V) C G, F* is an irreducible regular
G-module of type \, and E* is an irreducible module for PD(V) that uniquely determines .
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Proof. We apply Theorem 1.4, with L = P(V) and R = PD(V). Note that L is the direct sum of
the finite-dimensional G-invariant subspaces Ly = P*(V') of homogeneous polynomials of degree k. The
action of G on each Ly, is regular, so L is a locally regular G module.

We shall show that R satisfies conditions (¢) and (i7) of Theorem 1.4. Let 0 # f € P(V) be of degree d.
Then there is some o € N™ with |a| = d such that 0 # D*f € C. Given any g € P(V), let M, € PD(V)
be the operator of multiplication by g. Then g € CM,D® f. This proves that R acts irreducibly on P(V)
(condition (7)). The algebra R is the union of the finite-dimensional G-invariant subalgebras PDy(V),
and the action of G on PDy(V) is regular by Lemma 8.1. Hence R also satisfies condition (iz). O

To use Theorem 8.2 effectively for a particular G-module V' we need a more explicit description of the
algebra PD(V)C. The following result is a first step in that direction.

Theorem 8.3. Let {11,...,1,} generate the algebra P(V & V*)C . Suppose T; € PD(V)C are such that
o(T;) = for j=1,...,r. Then {Ty,...,T,} generates the algebra PD(V)C.

Proof. Let J C PD(V)Y be the subalgebra generated by T1,...,T,. Then PDy(V)¢ = CI C J. Let
S € PDy(V)% have filtration degree k. We may assume by induction on k that PDy_;(V)¢ C J. Since
a(S) € P*(V @ V*)¢ by Lemma 8.1, we can write

o(S)= 3 stk

Jiseensdr

where cj, ..., € C. Set
Re Y o T T

Jiye-dr
Although R is not unique (it depends on the enumeration of the T}), we have o(R) = o(S) since o is
an algebra homomorphism. Hence R — S € PDy_1(V) by Lemma 8.1. By the induction hypothesis,
R—SeJ,sowehave S e J.

Corollary 8.4. (Notation as in Theorem 8.3) Suppose T1,...T, can be chosen so that
¢ = Span{Ty,...,T,}

is a Lie subalgebra of PD(V)Y. Then in the canonical decomposition (8.5) the spaces E* are irreducible
modules for the Lie algebra g', and X is uniquely determined by the equivalence class of E* as a g'-module.
Hence there is a bijection (duality correspondence)

(V) = AV),
where A(V') is the set of irreducible representations of g’ that occur in P(V).

Proof. The representations of the Lie algebra g’ are the same as the representations of the universal
enveloping algebra U(g’). Let p’ : U(g’) — End(P(V)) be the representation associated to the action of
g’ as differential operators. The assumption on T7, ..., T, implies that p/(U(g’)) = PD(V)%. Hence the
irreducible PD(V)%-modules are the same as irreducible g’-modules. [J

Remark. Theorem 8.2 is also valid when V is any smooth connected affine G-variety. Here we take
R = D(V) to be the ring of algebraic differential operators on V and use Theorem 1.4.8 The algebra
D(V)¥ in this case (G connected, reductive), has been studied by Knop [25]. He proves that its center
3¢ (V) is a polynomial ring in rankg (V') generators, where rankg (V) = dim Bx — dim Nz for a generic
point € V' (here B is a Borel subgroup of G with nilradical N). Furthermore, D(V)€ is a free module
over 3¢(V) (this is a generalization of results of Kostant [26] for the case V' = G, with G acting by left
multiplication). The representation theory of D(V)¢ seems to be unknown, in general, although special
cases have been studied by I. Agricola, F. Knop, T. Levasseur, G. Schwarz, J. Stafford, and others.

8See [1]; the smoothness assumption on V is essential here, since the action of D(V') on Aff(V) can fail to be irreducible
when V' is not smooth.
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8.2. Howe Duality for Orthogonal/Symplectic Groups. We now determine the structure of
PD(V)Y when G is an orthogonal or symplectic group and V is the sum of n copies of the funda-
mental representation of G. Using the First Fundamental Theorem of classical invariant theory, we will
show that the assumptions of Corollary 8.4 are satisfied. This will give the Howe duality between the
(finite-dimensional) regular representations of G occurring in P (V') and a set of irreducible representations
of the dual Lie algebra g’.

Let w be a nondegenerate bilinear form on C* that is either symmetric or skew symmetric, and let
G C GL(k, C) be the isometry group of w. Thus G is the (complex) orthogonal group when w is symmetric,
and G is the (complex) symplectic group when w is skew (and k even). Let V = (C¥)™. Then

PVeV)=PCFg.---aC*a(C* @ - @ (CH*).

. copies n copies

Hence if T' € PD(V) then the symbol of T is a polynomial function
f(x1, . %0, &1, ..,6),  where x; € CF, & € (CF)*.

From Lecture 6 we know that the algebra of G-invariant polynomials P(V @ V*)¢ is generated by three
types of quadratic polynomials:

evaluation of w on two vectors: Tii (X1, Xn, &1y 6n) = w(Xg, X5)
evaluation of w* on two covectors: pij (X1, .. X0, &1, -5 &) = w6, &)
contraction of vector-covector: Cij(X1, .o X, &1,y 6n) = (X4, &)

where 1 < 4,5 < n and w* is the form on (C*)* dual to w. There is a canonical GL(V )-module isomorphism
0 from P(V*) = S(V) to the algebra of constant-coefficient differential operators on V. The linear span
of the quadratic invariant polynomials above furnish symbols for the following Lie algebras of G-invariant

differential operators:

p_ Span{ multiplication by r;; : 1 <4,j <n}

p+ = Span{ differentiation by A;; = d(pi;) : 1 <i,j <n}

¢ Span{E;; + géij 1 <4, <n}
Here it is convenient to identify V' with M, «x, with G acting by right multiplication. If x; denotes the
ith row of x € M, «x, then

0
E,L'j = X; - ij = Z.ﬁi,« Y

The operators E;;, which correspond to vector-covector contractions, commute with the right action of
all of GL(k, C) (E;; is the classical polarization operator). Obviously [p—,p_] =0 and [p4,p4] =0. An
easy calculation shows that

[E,pL] =psr, [p—.pi]=t

The choice of shift 5d;; for the operators in £ arises from the last commutation relation.

Theorem 8.5. Set g’ =p_ + €+ py. Then g’ is a Lie algebra and it generates the associative algebra
PD(My,x1). Furthermore,

i~ | 59(n,C)  when w is symmetric
s50(2n,C) when w is skew

The subalgebra € = gl(n,C) acts on P(Myxk) by the differential of the representation
p(9)f(x) = (det 9) "2 f(g~"2)
of K = GL(n,C) (replace K by its two-fold cover if k is odd).
Proof. The first statement follows from Corollary 8.4. The other parts are easy calculations (see [16,
§4.5] for details). O

We call ¢’ the Howe dual of g = Lie(G) associated to the representation of g on V. Notice that
the correspondence between g and g’ interchanges orthogonal and symplectic Lie algebras. There is an
asymmetry between g and g’, however. The action of g on P(V) is by vector fields (corresponding to the
representation of G on V'), whereas the subalgebras p1 of g’ act by second-order differential operators
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and multiplication by quadratic polynomials, which do not come from a geometric action on V. We will
show in Lecture 11 how to ezponentiate the action of a real form of g’ on P(V') to a unitary representation
of an associated real Lie group on a Hilbert-space completion of P(V).

8.3. Howe Duality for GL(k). Now consider G = GL(k, C) acting on

V=Cte - -oC'o(C")a. o CH*
~—_————

p copies q copies

In this case the symbol of T € PD(V) is a polynomial function

f(xla'"aXpanla"'777q7§1a"'agpayla-“ayq)a

where [X1,...,Xp,M1,...74) € V and [&1,...,&p, ¥1,--.¥4) € V* (x4, y; are vectors in C* and &;, n; are
covectors in (C¥)*). Theorem 6.2 asserts that the algebra of G-invariant polynomials on V @ V* is
generated by contractions of a vector with a covector. Now there are four possibilities for contractions:

(1) wvector and covector in V: (x4, m5) forl<i<pand1<j<gqg
(2) vector and covector in V*: (yj &) forl<i<pandl<j<gq
(3) wvector from V, covector from V*: (x;, &) for1<i,j<p
(4) covector from V, vector from V*: (yi, m;) for1<i,j<gq

We can identify V' with M, )« if we make g € G act on the right by

)

Here x; is the ith row of x and n; the jth row of 7. Contractions of type (1) and (2) furnish symbols
for the G-invariant operators

ty—1
[ 2;9) ] for x € Mpxr, 1€ Mgxp.

p_ Span{ multiplication by r;; = (x;,1;)}
p+ = Span{ differentiation by A;;},

where

k
Aij =Vx, -V, = Zé)xﬂ anﬂ forl<i<pandl<j<gq.
=1

The linear span of contractions of type (3) and (4) furnishes symbols for the G-invariant operators
t = Span{E(a) %% 1<, i <p}d Span{Ei(;?) + g&ij 1 <i,j <q},

where EZ(;) is the polarization operator for the z variables and E(n) for the n variables. By the same
argument as in Theorem 8.5 we conclude that PD(V)% is generated by

g =p_+E+py.
These subalgebras have the commutation relations

[e,pe] =px, [p-,pi]CE

In this case ¢’ is isomorphic to gl(p+g¢, C) , with € = gl(p, C)®gl(g, C). The action of € on P (M, ®Myxk)
is the differential of the representation

p(g,h) f(z,n) = (det gdet h) /% f(g~ 'z, h ™ n)

for (g,h) € K = GL(p,C) x GL(gq,C). (We must replace K by the two-fold covers of each factor when n
is odd).
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LECTURE 9. HARMONIC DUALITY

9.1. Harmonic Polynomials. Let G be O(CF,w), Sp(C*,w), or GL(k, C) acting on V = M,,«j on the
right. In the case of GL(CF) the first p rows of x € M,y transform as vectors, whereas the remaining q
rows transform as covectors. From Lecture 8 the Howe dual to G is, respectively,

g’ = sp(n,C), so(2n,C), or gl(p+q,C) with p+q=n.

We will assume that p > 0 and ¢ > 0 in the third case.! With G fixed, the spectrum %(V) of G on P(V)
only depends on n (or the pair p, g in the third case); we can thus denote it by X(n) (or X(p,q)). From
the dual point of view if we fix g’, then the set A(V') of irreducible representations of g’ that occur in
P(V) only depends on k; we can thus denote it as A(k). The general duality theorem gives a bijection
Y(n) < A(k). We now show how to express this bijection in terms of harmonic duality.

In all cases there is a triangular decomposition

g =p_otop;.
Here ¢ is the Lie algebra of the reductive group K (a two-fold cover of GL(n,C) or GL(p,C) x GL(g,C)

in general). The representation of K on P(V) is the natural representation associated with the left
multiplication action of GL(n,C) on V tensored with the one-dimensional representation

g (detg) ™2 or (g,h) s (det gdeth) /2.

Let § denote this character, viewed as a weight of the maximal torus of K. The subalgebra p_ acts by
multiplication by G-invariant quadratic polynomials, whereas p acts by G-invariant constant-coefficient
Laplace operators {A;;}.

We define the G-harmonic polynomials to be

H = 'p(V)FUr — nz ; Ker(Aij)

Since Ad(K)p4 = p, the space H is invariant under the reductive group K x G. In this lecture we will
show that H gives a multiplicity-free duality pairing between irreducible representations of K and G;
furthermore, the decomposition of H generates the decomposition of P(V) under g’ and G.

Let U(k) C GL(k,C) denote the unitary group. Then Ky = K NU(n) is a compact real form of K.
We assume that the bilinear form w is chosen so that Go = G N U (k) is a compact real form of G and w
is real on R¥. Define an inner product on M, by

(z|y)=tr(y*z) for z,y € Mpxi (y* =7").

This inner product is invariant under U(n) x U(k), acting by left and right multiplication, hence it is
invariant under Ko x Ug. We set ||z[|? = (z | z).

Let f(z) = )", caz® be in P(V), where a is a multi-index and z® =[] (z;;)* as usual (x;; are the
matrix entry functions on M, «). Define the constant-coeflicient differential operator

8 «
a(f) = E — ] .
Then f — 9(f) is an algebra isomorphism from P (V') to the constant-coefficient differential operators

on V that is equivariant relative to the action of U(k) x U(n). Set g*(x) = ¢(z) for g € P(V). If
g(x) =3, dax®, then

(9-1) (0()g7)(0) =) ol cada.

We define (f | g) = (0(f)g*)(0) . From (9.1) we see that this is a positive definite Hermitian inner product
on P(V), called the Fischer inner product. We note that

(9:2) (fg | h)=(f10(g")h)

for all f, g, h € P(V).

The Fischer inner product has the following analytic definition. Denote Lebesgue measure on V' by
d\(z), where we identify V with R?"* via the real and imaginary parts of the matrix coordinates.

hpr =0or g =0 then £ = g’ and the modules E* ® F* that occur in the decomposition of P(V) are finite-dimensional.
This is the well-known GL(n)-GL(k) duality (see the lectures of Benson-Ratcliff in this volume).
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Lemma 9.1. For f,g € P(V) one has

F19)= = | e i)
(d=dimcV = nk).
Proof. See the article by Benson-Ratcliff in this volume. O

9.2. Main Theorem. We now apply the Weyl algebra theorem from Lecture 8 to obtain multiplicity-free
decompositions of the harmonic polynomials and the entire space P (V).

Theorem 9.2 (Harmonic Duality).
(1) The space H of G-harmonic polynomials on V decomposes under K x G into mutually orthogonal
subspaces (relative to the Fischer inner product) as

H = @ g'r(cr)+6 ® ]_-a.

oceX(V)

Here ©(V)) C G is the spectrum of P(V) as a G module, F° C H is an irreducible G-module of type o, and
ETOHS C H is an drreducible finite-dimensional K-module with highest weight T(c) + 6. In particular,
every irreducible representation of G in P(V') is realized in the harmonic polynomials.

(2) Set BT = (V)G . 7@+ Then ET(49 js an irreducible g' module and
PV)= P EOPeF

ceX(V)
is an orthogonal decomposition of P(V') (relative to the Fischer inner product) under the mutually com-
muting actions of g’ and G.

(3) The map o — 7(0) from S(V) — K is injective. Thus H is multiplicity-free as a K x G module.

Proof. Since H is an invariant subspace for the reductive group K x G, there is a subset I' C K x G and
multiplicity function m : T' — {1,2,...} such that

(9:3) H= P cre)gert g Fe
(mo)er

with K x G acting trivially on the multiplicity spaces C™(*?) Indeed, we first consider H as a locally-
finite K x G-module relative to the natural left-right action on V' = M, (omitting the determinant
twist from the K representation) and use Proposition 1.1 and Example 1 in Section 2.3. Then tensor with

the character det /2 of K to shift the highest weights from p to u+ 8. To prove that T' = {(r(0),0) :
o € X(V)} and m(7(0),0) = 1, we need to examine the action of g’ on P(V) in more detail.

Let J = P(V)% be the G-invariant polynomials, and let J; be the homogeneous polynomials of degree
jin J. Then J; = 0 for j odd, and (p_)7 acts by multiplication by J2; on P(V). Since the bilinear form
w is real on R¥, we have J* = J and H* = H. Let J, = {f € J : f(0) = 0}. We claim that

(9.4) H =T, -P(V)

(orthogonal complement relative to the Fischer inner product). Indeed, if f € Jy - P(V) and h € H then
d(f)h = 0 by definition of H, and thus f L h. Conversely, if h L J; - P(V) then for all f € P(V) and
g € J+,
0=(fglh)=(f]0(g")h).
Hence 9(g)h =0 for all g € J;, so we have h € H.
We can now determine the general structure of the irreducible g’-modules in P(V). The commutation
relations in g’ can be expressed as

pip- Cp_py+E  Ep_Cp_(E+1)

in the universal enveloping algebra U(g’). Hence by induction, one has

(9.5) pr(p)™ C(p)™pyr +(p)" B+,  E(p)™C(p)"(E+1)
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for all integers m > 1. Thus if Z C H is any ¢-invariant linear subspace, then (9.5) implies that
(9.6) pr(p)"-ZC(p-)"""-Z and E(p_)"-ZC (p-)" - Z
for all m > 1.

(a) Let £ C H be any t-irreducible subspace. Set E = J -E. Then E is an irreducible g’ -module and
E=ENH.

Indeed, (9.6) implies that F is invariant under g’. Also every f € E is of the form
(9.7) f=> _gih; where 0+ g; € Jo; and h; € £.
=0

Suppose F' C E is a nonzero g'-invariant subspace. Take f € F so that the integer m in (9.7) is minimal.
Then (9.6) implies that py f = 0. Hence f € H. Thus

m

> gih; = f — goho € H.

j=1
Since the left side is in Jy - P(V), it must be zero by (9.4). Hence we conclude that f € £. But ¢ acts
irreducibly on &, so U(¢)f = £ and thus F = E. The same argument shows that £ NH = &£, completing
the proof of (a).

(b) Let E C P(V) be an irreducible g'-module. Set € = ENH. Then & is an irreducible t-module and
E=7J-€&.

Note that the action of p on P(V) lowers the degree of polynomials, so £ # 0. If 0 # F C & were a
proper ¢-submodule, then J - F C E would be a proper irreducible g’-submodule by (a). Hence £ must
be irreducible as a ¢-module and E = J - £, proving (b).

(c) Let € and F be t-invariant subspaces of H. Assume that € L F (relative to the Fischer inner product).
SetE=J -Eand F=7J-F. Then E L F.

By (9.4) we have the orthogonal decompositions
E=¢0J,- & F=FaJ, F.
Thus £ L F and F L &, so we only need to verify that J; - €& L J; - F. Now
(T - €1 T F)=(|0(T4)Ty - F)
But 9(J4+)Jy - F C F since F is t-invariant. Hence £ 1 9(J+ )T+ - F, proving (c).

We now complete the proof of the theorem. It is clear from the integral formula for the Fischer inner
product (Lemma 9.1) that Gy and Ky act by unitary operators on P(V'), hence the decomposition (9.3) of
‘H is orthogonal relative to the Fischer inner product because Gy and K have the same finite-dimensional
invariant subspaces in P(V) as G and K, respectively (see [16, §2.4.4]). Also, since K is connected, a
finite-dimensional subspace of P(V) is invariant under K if and only if it is invariant under €.

Let (u,0) € T occur in (9.3). By (a), (b) and Theorem 3.4 we know that the irreducible g’-module
Ert0 = 7. ErF9 ymiquely determines p. On the other hand, Theorem 8.2 asserts that P (V) is semi-
simple as a g’-module, with the g’ multiplicity spaces being irreducible regular G-modules corresponding
bijectively to the associated g’-modules. Hence I' is determined by its projection onto G. If we call
this projection ¥ and write the elements of I' as (7(¢),0), then the map o — 7(0) is injective. The
multiplicities m(7(0),0) = 1 for all o € ¥, since otherwise (a) and (c¢) would imply that F7 is paired
with more than one copy of an irreducible g’ module, contradicting Theorem 8.2. Finally, (b) implies
that ¥ = 3(V), since P(V) is semisimple as a g’-module. O

Remarks. 1. Theorem 9.2 was obtained by Howe in his influential paper [21] (which circulated as a
preprint for more than a decade); his proof used an argument based on a filtration by finite-dimensional
subspaces and the classical double commutant theorem, instead of Theorem 8.2. Knowing that the
decomposition of the harmonics is multiplicity free simplifies the task of finding harmonic highest weight
vectors, as we will see in Lecture 10.
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2. The shift by ¢ in the highest weights for K in the harmonic decomposition would appear to be a
minor nuisance. In fact, it plays an important analytic role. For T € PD(V) let T* denote the adjoint
of T relative to the Fischer inner product:

(Tflg)=(f1T"g).

If we write T' in polarized form as T' = 3, f;0(g;) with f;, g; € P(V), then we see from (9.2) that
T = Zj Q;a(f;). Hence (p+)* = pg and £* = £. It follows that

g ={Teg : T"=-T}

is a real form of g’. We will show in Lecture 11 that the irreducible representation of g, on the space
E*, with A = 7(0) + 6, can be integrated to a unitary representation 7 of a (non-compact) real group

{ with Lie algebra g{,. The shift by § controls the rate of decay at infinity on G, of the matrix entries
of 7. We will show in Lecture 12 that for k large enough (relative to n), the representations 7* are

square-integrable (recall that § = kdy, where g is a fixed weight of g’).

3. The injective map o — #7(@)+9 ig called the theta-correspondence (more precisely, the local theta-
correspondence over R) because of the connection between the oscillator representation and theta-
functions (see [5]). There are many recent papers devoted to the problem of understanding the theta-
correspondence from a geometric orbit perspective (see [19, Ch. 12] for a survey).

LECTURE 10. DECOMPOSITION OF HARMONIC POLYNOMIALS

We now turn to the explicit determination of the harmonic duality from Lecture 9 when G is the
orthogonal group and g’ the symplectic Lie algebra (for the other two cases, when G is the symplectic or
general linear group, see [22] and [6]). It is convenient to take G as the orthogonal group O(CF,w) for
the symmetric form w(z,y) = 2!Cjy on C*, where

0 I 0 I, 0
Cr = "l whenk=2l, Cp,=|1 0 0 when k =20 + 1.
L0 0 0 1

Here I; denotes the [ x [ identity matrix. This choice of w ensures that the diagonal matrices in G
give a maximal torus. Also G is a self-adjoint matrix group (invariant under g — ¢*), so the subgroup
Go = GNU(k) is a compact real form of G, and w is real on the real matrices, as we assumed in Lecture
8.

In accordance with the block decomposition of C), we write elements z € M,,«x as
(10.1) z= [z y] whenk =2l z=[xz y t] whenk=20+1,
where x,y € M,,»; and t € C". Define the map

B: M,xr — SM,, B(z) = 2Cr2".

From Theorem 6.3 we know that the algebra of G-invariant polynomials on M,y (relative to right
G-multiplication) is generated by the matrix entries of 3:

le:1 (Yps Tgs + Tps Ygs) when k = 2,
(10.2) B(2)pg = l
D st (Ups Tgs + Tps Ygs) + tptq when k = 2] + 1.

We denote by A,, = 9(8,4) the corresponding constant-coefficient differential operators, as in Section
9.1.
The space of G-harmonic polynomials is

H={f€P(Mnxk) : Dpgf =0 forl<p,qg<n}.

Denote by HU) the G-harmonic polynomials that are homogeneous of degree j. The space H is invariant
under GL(n,C) x G with the action

m(h,g)f(2) = f(h~'zg) for h € GL(n,C) and g € G.
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(Note that we have omitted the factor (det )~*/2 that occurs in Theorem 8.5, so 7 is single-valued on
GL(n,C) even when k is odd). From Theorem 9.2 we know that H decomposes under the representation
7 as a multiplicity-free direct sum!

H = @57(0) ® F°.

ceX

We will now determine ¥ and the duality correspondence o — 7(o). The key point is to find generators
for the algebra H™»*N of harmonic highest weight vectors, relative to a Borel subgroup B, x B C
GL(n,C) xG. Here B,, = D,,N,, is the upper-triangular subgroup of GL(n, C) (D,, the diagonal matrices,
N, the unipotent upper-triangular matrices), and B = HN is a Borel subgroup of G. The fact that H
is multiplicity-free under GL(n,C) x G will play a crucial role.

Notation: We denote by ¢; the character diag[a; ,...,an] — a; of D,. We write N’j_+ for the integer
p-tuples A = [mq,...,mp]| with m; > mgo > --- > mp > 0. Set |\| =mq +--- + m,;, and define the depth
of A to be the smallest integer ¢ such that m; > 0 (if A = 0, set depth(0) = 0).

10.1. O(k) Harmonics (k odd). Assume that £k = 2/ + 1 is odd. Then G = G° x {£I}, where
G° = SO(CF,w) is the identity component of G. We fix the Borel subgroup B = HN C G° as follows.
The maximal torus H consists of the diagonal matrices

h = diag[z1,..., 2,27, .., 2 1], @ € CFL

The unipotent radical N has Lie algebra n consisting of the matrices with block decomposition

a b ¢
(10.3) 0 —a® 0 |, a€& My strictly upper-triangular, b = —b* € My, ¢ € C.
0 —c 0
The weights of H are parameterized by Z'. For h € H and A = [my,...,m;] € Z' we set h* = 2"t -+ - 2]

for the corresponding character of H.

The irreducible representations of G remain irreducible on restriction to G° and G is parameterized as
{m*¢}, where A € N/, | is the highest weight for G°, e = £1, and 7*¢(—1I) = ¢(—I)"*. Thus G =GUG_,
where R ~

Gi={(\1):xeN_},  Gi={(\-1):reN,},
(see [16, §5.2.2]).

Theorem 10.1. (G = O(C*,w), k =21+1) Let X be the spectrum of G on the G-harmonic polynomials
HC P(Myxk)-

(a) Assume k <n. Then X = G and hence S does not depend on n (G-stable range).
(b) Assumel <n < k. Then él Cc Y and
NGy ={(\—1): k—n <depth(A) <1}
(unstable range: ¥ depends on k and n).
(c) Assumen <I. Then XN G_1 =0 and
YNNGy ={(\1) : depth(A) < n}.
Thus ¥ does not depend on k (GL(n)-stable range).

The duality correspondence is given as follows: Let A =[mq,...,mq,0,...,0] € NZFJF have depth d with
0 <d <min{l,n}. Then

[0,...,0,—mg,...,—m1] for az(A,l)EEﬂél,
——
n—d
(o) =
[0,...,0,—-1,....,—1,—mg,...,—my] for c=(\,—-1)eXNG_
—_—— ———
n—k+d k—2d

iThe irreducible GL(n, C)-module £7(7) = F(Tn()g)7 in the notation of Lecture 3.
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Remark. The parameter ¢ for the representation 7€ is determined by the corresponding GL(n) highest
weight 7(\, €), since left multiplication by —I,, on M, is the same as right multiplication by —Ij. Hence
H is also multiplicity-free as a module for GL(n,C) x G° (this property will be used in the proof).

The first step in the proof of Theorem 10.1 is to find a set of generators for the joint eigenfunctions
of B, x B in H. Just as in the case of GL(n) x GL(k) duality (see the article by Benson-Ratcliff), the
general strategy is to take appropriate minor determinants. By (10.2) the operators A,, are given in
coordinates as

l
g 0 g 0 0?
10.4 Ay = + ) + .
(104) b ; <0yps O0xqs  OTps 0Ygs Otpt,
The minors of z = [& y t] are linear functions of each column of the matrix components z,y,t. If

the minors are chosen to depend only on x or to be linear in ¢, then they will obviously be harmonic. If
they depend on both x and y, then interchanging an x column for a y column will change the sign of the
minor but not change the action of the operators A,, = Ay, so once again the minor will be harmonic.

We now proceed to carry out this program. Let p < n and q < I. For u € M, «; define p X ¢ submatrices
L, (u) and R, ¢(u) of u by

" [ * * ] * *
Lpq(u) = * Ry q(u)
For t € C" and j < n define

=1 & |eC
tn

(the bottom j entries of t).
Let z=[x y t]€ M,xasin (10.1). Define
fi(z) =det L; j(x) for 1< j <min{l,n}.
If n > 1+ 1 then we also define
det [ Lj,l(l‘) t(j) } for j =141,
9(2) =
det [ Lji(z) Ry j—i—1(y) ty) | forl+2<j<min{n,k}.

Lemma 10.2.
(a) Let 1 < j <min{l,n}. Then f; € HY) and f; is a B, x B eigenfunction of weight (j1,v), where

U= —Ep—jy1 — " —En and v=er+---+¢€;.

(b) Assume n > 1 and let | +1 < j < min{n,k}. Then g; € HY) and g; is a B, x B eigenfunction of
weight (u, ), where
P=—En—jq1 = —En and y=¢e1+-+Ep

(here vy =01ifj=k).

Proof. Assume 1 < j < min{l,n}. It is clear from (10.4) that Ap,f;j(z) =0 for 1 < p,q < n, since f;(z)
only depends on x. The diagonal matrices in B,, and B act on f € P(M,xx) by

(10.5) f(z,y,t) — f(a tab, a tyb~™', a™'t), witha e D,, be Dy.

Since f; involves columns 1, ... j and rows n—j+1,...,n of z, it has weight (i, ) as stated (the columns
of x transform as vectors under H, whereas the rows of x transform as covectors under D,,). To verify
that f; is fixed under the left action of N,, note that u € IN,, acts by x — ux. Since u is unipotent upper
triangular, this action transforms the ith row of x by adding multiples of rows below the ith row, so it
fixes f;.

To verify that f; is fixed under the right action of the unipotent radical N = expn of B, we observe
from (10.3) that N is generated by the subgroups N4, Ng, N¢ consisting of the matrices

a 0 0 I b 0 1 f%cct c
(10.6) 0 (@)t o], 01 0|, o 1 0],
0 0 1 0 0 1 0 —ct 1
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respectively, where a is upper-triangular unipotent, b* = —b, and ¢ € C'. The elements of the subgroup
Ny act by [ y t] — [za y t], while the subgroups Np and N¢ fix . Hence the action of N
transforms the ¢th column of z by adding multiples of columns to the left of the ith column, so f; is
invariant under N. This proves part (a) of the lemma.

Now assume n > [ and [ + 1 < j < min{k,n}. Then g;(2) is a linear function of ¢ and does not
depend on the variables y, for s < k — j. Hence by (10.4) we have Apqg;(z) = 0 if min{p,q} <k —j. If
min{p,q} > k — j+ 1, then

!

8nai)= Y (g + o ) 0.

1 OYps Oxqs  OTps OYgs

Fix s with £k — j 4+ 1 < s < [. If the column #s of x and column #s of y are interchanged in the
determinant defining g;(2), then g;(z) changes sign. Hence the function

o 0 o 0
h(z) = <0yps 0xgs + O0xps 6yqs) 9i(2)

likewise changes sign since the differential operator is symmetric in the variables z and y. But h(z) is of
degree zero in the variables x5, Tgs, Ypss Ygs since g;(z) depends linearly on each variable. Hence h(z) = 0.
This proves that g;(z) is G-harmonic.

Since g; involves columns 1,...1 of x and columns k — j +1,...,1 of y, we see from (10.5) that g;
transforms under H by the weight

v=(Er e ta) = (e o he) = et ey

Since g; involves rows n — j 4+ 1,...,n of z, it transforms under D,, by the same weight 1 as does f;.
It is clear that g; is fixed under the left action of N,,. To verify that g; is fixed under the right action
of N, it suffices to check the action of the matrices in (10.6). These give the transformations

1
zwlza y t], zwelz y+axb t], z— [z y—§xcct—tct t+ xcl,

respectively. The determinant defining g; involves all the columns of z and ¢. Since the columns of zec!,
xc, and tct are linear combinations of the columns of x and ¢, it is clear that these transformations fix
95- U

Corollary 10.3. Let m = [my,...,m,]| € N, where r = min{l,n}. Assume that m has depth d and
set A =[m,0,...,0] € N\ . Define om = f{" "2« [0 f (when m = 0 set po(z) =1).
(a) @m is a G-harmonic polynomial, homogeneous of degree |m|. Thus ¢m(—2) = (=1)™lpy(2) for
z € My k. Furthermore, om is a By, X B eigenfunction of weight (a, \), where
a=10,...,0, —=mg,...,—mq]
——
n—d
(when m = 0 take o = 0).

(b) Suppose n >l and n —k+d > 0. For m # 0, define Ym = ©mgk—da/fd (when m = 0 set
Yo = g ). Then m is a G-harmonic polynomial, homogeneous of degree |m| + k — 2d. Thus m(—2) =
—(=1)™lep(2) for z € Myxr. Furthermore, m is a B, x B eigenfunction of weight (5, \), where

8=10,...,0, =1,--- , =1, —=mgq,...,—my].
—_—— ———
n—k+d k—2d
(When m =0 take 3 =1[0,...,0, —1,--- ,—1].)
—_—— ————
n—~k k
Proof. Since pm(z) is a function of x alone (where z = [z y t] as above), it is clear that ¢n, is

G-harmonic. For the same reason,
Apg¥m = (¢m/ fa) Dpg gk—a = 0,

Thus we see that ¢y, is also G-harmonic. The other assertions are immediate consequences of Lemma
10.2 O
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Now we turn to the proof of Theorem 10.1. A B,, X B joint eigenfunction generates an irreducible subspace
under the action of GL(n) x G° by Theorem 3.5. Since the space of harmonic polynomials on M,y is
a multiplicity-free GL(k, C) x G° module, it follows that a By x B eigenfunction is uniquely determined
(up to a scalar multiple) by its weight and parity. If m € Nﬂ_ . has depth d < n, then from Corollary 10.3
we see that the right translates of ¢n, under G span an irreducible space of type (m, 1), while the right
translates of ¥y, under G span an irreducible space of type (m,—1). When k < n, then the conditions
n>land n—k+d > 0 in part (b) of Corollary 10.3 are automatic. Thus every irreducible representation
of G occurs in H in this case, as asserted in part (a) of the theorem.

To prove parts (b) and (c) of the theorem, assume that k > n. Let f € H be a B,, X B eigenfunction.
Define a polynomial fon My xx by

_ ’
f <[ j,, }) = f(2") for 2’ € My,_pyxi and 2" € My k.

We claim that ]”vis G-harmonic. Indeed, if min{p, ¢} < k —n then quf: 0 since fdoes not depend on
the variables z,q for p < k —n. On the other hand, if min{p, ¢} > k — n then

Dpf(2) = Bpyg f(2") =0
(where p’ = p—k+n and ¢ = j—k+n), since f is G-harmonic. To see that fis a By X B eigenfunction,
write b € By, as

b= [ . ? } where & € By, # € Mj_nyxn, 0 € By.

Then f(b~12t') = f(6~12"¥) for b € B. Since f is B,, x B eigenfunction, it follows that fisa By x B-
eigenfunction. Furthermore this shows that Bj, weight u of f is of the form

w=1[0,...,0,an,...,a1] witha, >--->ay,

k—n

Thus by part (a) we know that fis a multiple of either ¢y, or ¥, for some m € Nﬂ_ 4 of depth d < n,
since f is homogeneous.

If ] < n <k, then ¢y, is defined for all m € NZJFJF, but ¥y, is only defined when the depth d of m
satisfies k —n < d <. This implies part (b) of the theorem. If n < I, then @y, is defined for all m of
depth d < n, but in this case ¥, is never defined. This implies part (c) of the theorem. The formula for
the map 7 follows from the formulas for a and 3 in Corollary 10.3. [J

10.2. O(k) Harmonics (k even). We now assume that k = 2! is even. We take the Borel subgroup
B C G whose Lie algebra consists of the matrices with block decomposition (block sizes I x [)

[ 8 _l;t } (a upper-triangular, b* = —b)

(If k=2 then b =0 and B = C*). Let N C B be the unipotent radical (the matrices as above with a
upper-triangular unipotent). Recall that

O(C*,w) = G° x {I,s}

where G° = SO(C*,w) is the identity component and s € G is the reflection interchanging the basis
vectors e; and eg; and fixing all other basis vectors e;. Since s normalizes B it acts on the characters of
B. Let A =[mq,...,my| € Nl++. If m; # 0, then s- A # X (since s changes m; to —m;). In this case
there is a unique irreducible G representation 7*° such that

7r’\’O|Go B

(where 7# denotes the irreducible G° representation with highest weight p). If m; = 0, then there are
two irreducible representations 7€ (e = 1) of G whose restriction to G° is 7*. They are related by

7M€ = det @M€
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and labeled so that 7¢(s) acts by € on the G° highest weight vector (see [16, §5.2.2]). Thus G can be
written as a disjoint union G = G_1 U Gy U G1, where

Gi1 = {7 : depth(\) <, e = £1}, Go = {7 : depth(\) =1,e=0}.

Theorem 10.4. (G = O(CF,w), k = 2l) Let ¥ be the spectrum of G on the G-harmonic polynomials
H C P(Mnxk)-

(a) Assume k <n. Then X = G and thus ¥ does not depend on n (G-stable range).
(b) Assumel <n < k. Then él U éo C X, whereas

NGy ={(\,—1) : k—n <depth(\) <1}
(unstable range: ¥ depends on k and n).
(c) Assume n=1. Then ¥ = Gy U G.
(d) Assume n < 1. Then ¥ = {(\,1) : depth(\) <n} C Gy.

Thus ¥ does not depend on k when n <1 (GL(n)-stable range). The duality correspondence is given as
follows: Let A=[mqy,...,mq,0,...,0] € Nl_H_ have depth d with 1 < d < min{l,n}. Then

[0,...,0,—mg,...,—m1] forJ:(A,e)GEQ(éluéo),
——
n—d
(o) =
[0,...,0,—-1,...,=1,—mg,...,—mq] foro=(\-1)eXNG_,.
—_—— ———
n—k+d k—2d

To prove the theorem, we will find a set of generators for the joint eigenfunctions of B, x B in ‘H. For
u € Mpxi, p <n,and ¢ <, define matrices Ly, ;(u) and R, 4(u) as in the proof of Theorem 10.1. In this
case we write z =[ ¢ y | asin (10.1) and we define

fi(z) =det L; j(x) for 1< j <min{l,n}.
If n > 1+ 1 then we also define
gj(z) = det [ L;i(z) R;,;—i(y) ] for 1 +1 < j < min{k,n}.
Lemma 10.5. (a) Let 1 < j < min{l,n}. Then f; € HY) and fj is a B, x B eigenfunction of weight
(1, v), where
U= —Ep—jy1 — " —En and v=er+---+¢gj.
Furthermore f;(zs) = f;(z) if j <, where s € G is the reflection e; < ey;.

(b) Suppose n > 1+1 and take [+1 < j < min{n,k}. Then g; € HY) and g; is a By x B eigenfunction
of weight (w,7y), where

W= —En—jt+1— ' —En and Yy=€1+ -+ Ek—j
(here v =0 if j = k). Furthermore g;(zs) = —g;(z), with s € G as in (a).

Proof. Essentially the same as the proof of Lemma 10.2. Note that in this case the unipotent radical N
of B is generated by the transformations

zlxa yl, zelx y+abl,
with a upper-triangular unipotent and b* = —b. [J
Corollary 10.6. Let m = [my,...,m,]| € N, where r = min{l,n}. Assume m has depth d and set

A=[m,0,...,0] € N\ . Define pm = f{" ™2 fr 07" f1' (when m = 0 set g = 1).
(a) ©m s a G-harmonic polynomial, homogeneous of degree |m|. Furthermore, om is a B, x B
eigenfunction of weight («, \), where
a=1[0,...,0, —=mg,...,—mq].
——
n—d
(when m =0 take oo =0). Set 3, (2) = Ym(zs). Then @5, = om when d <.
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(b) Letn > 1. Ifd <l and n—k+d > 0 define m = ©m gi—d/fa (when m = 0 set g = gi). Then
Ym 18 a G-harmonic polynomial, homogeneous of degree |m|+ k — 2d. Furthermore by, is a B, x B
eigenfunction of weight (3, ), where

6:[())"'707717"'771;7md7"'a7m1]
—_—— ————
n—k+d k—2d
(when m =0 take 8 =10,...,0, —=1,--- ,—1]). Set ¥5,(2) = Ym(zs). Then 5, = —tm.
—_—— ———
n—=k k

Proof. This follows from Lemma 10.5 by the same arguments as in the proof of Corollary 10.3. [

To prove Theorem 10.4, assume first that n > k. By Corollary 10.6 the functions ¢, are defined for
allm e Nﬁr 4. If m has depth [ then the right G-translates of ¢m, span an irreducible subspace of type
(m,0). If m has depth less than [ then vy, is also defined. In this case the right G-translates of ¢m
span a G-irreducible subspace of type (m, 1), whereas the right G-translates of ¢y, span an irreducible
subspace of type (m, —1). Thus we get all irreducible representations of G in H, as asserted in part (a)
of the theorem.

The argument when n < k proceeds as in the proof of Theorem 10.1 by lifting harmonic B,, x B
eigenfunctions from M« to M. Note that ¢, is defined for all m of depth d < min{n,{}, whereas
¥m 1s only defined when n > [ and k —n < d <. We omit the details. O

10.3. Examples of Harmonic Decompositions. 1. Assume n <[ and k = 2] + 1 or 2[, so that we
are in case (c) of Theorem 10.1 or cases (c¢) and (d) of Theorem 10.4. The restrictions to SO(k) of the
representations in ¥ are the class n representations of SO(k)-those that have a vector fixed under the
subgroup SO(k — n). This follows from the branching law (see [16, §8.1]). In this case the harmonic
polynomials on M,y decompose under GL(n) x SO(k) as

(10.7) H= P eV
AeNT
Here A" = [~my,, ..., —m1] and V* is the irreducible SO (k) module with highest weight A (when n = I,

k = 2l is even and m; # 0, then V* is the sum of the irreducible representations with highest weights A
and s-\). For n =1, (10.7) is the classical spherical harmonic decomposition and gives the decomposition
of polynomials restricted to the sphere SO(k)/SO(k — 1). For n > 1 (10.7) gives the decomposition of
polynomials restricted to the Stiefel manifold SO(k)/SO(k — n). This decomposition was obtained by
Gelbart [12] and Ton-That [32] before Kashiwara and Vergne [22] worked out the general case that we
have presented here.

2. Now assume [ < n < k, so that we are in case (b) of Theorems 10.1 and 10.4. The decomposition of
the harmonics in this case was obtained by Strichartz [29]. For example, let n = 2 and k& = 3. Then we

have the decomposition
H = glommgylmlt g grtmml g ylm]
(D je{® j

of the harmonic polynomials on Myys3. Here V™ denotes the irreducible SO(3) representation with
highest weight me;. The B x B harmonic eigenfunction ¢(,,,)(2) = 3" generates the summand &€ [0,—m] g
V™l The By x B harmonic eigenfunction Vimy(2) = x;”—l (x1ta—xot1) generates the summand gl-l-mlg

VIml Here we write
P I t1 '
T2 Y2 12

3. Let n =3 and k = 3 so that we are in case (a) of Theorem 10.1. Then we have the decomposition
H= { P o V[m]} o {5[*1’*17*” ® V[O]} - { Pt e v[m]}
m>0 m>1

of the harmonic polynomials on M35 as a module for GL(3) x SO(3). The B3 x B harmonic eigenfunction
@(m)(2) = 2} generates the summand E*0~™ @ VM. The B; x B harmonic eigenfunction ¢ ,,)(2) =
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x3m71(ac2t3 — x3ty) generates the summand g0, —L—m] & Plml  Here we write

r1 oy1 t
z = X9 Y2 tg
T3 Yys t3

For m = 0 the function 1 (z) = det z generates the one-dimensional summand L1l g plol,
Let C(™) denote the one-dimension representation g + (det g)™ of GL(3). Let w; = [1,0,0] and
ws = [1,1,0]. Then the GL(3) representations occurring in H are C(=1,

glo.0,—m] ~v o(=m) g gmw:

for all m > 0, and
5[0,71,7m] ~ (C(fm) ® 5w1+(m71)wz

for all m > 1.

LECTURE 11. SYMPLECTIC GROUP AND OSCILLATOR REPRESENTATION

We now turn to the functional-analytic aspects of the harmonic duality decomposition in Theorem
9.2 (recall Example 4 in Section 2.3). If we replace the complex group G by its compact real form
Go = GNU(V) then the finite-dimensional representations F? remain irreducible under Gy and the
action of Gy is unitary relative to the Fischer inner product.

We would like to have a similar picture for the dual representations E* (where A = 7(c) + §). At the
Lie algebra level it is clear that to obtain a unitary representation, we should take the real form g of g’
that acts by skew-hermitian operators relative to the Fischer inner product. The analytic problem is to
construct a unitary representation of an associated real Lie group G{, on the completion of P(V'), and to
describe its action on the Hilbert space completions of the infinite-dimensional spaces E*.

We will construct Gy, as a subgroup of the metaplectic group Mp(nk,R) (the two-sheeted cover of the
real symplectic group Sp(nk, R)). The associated unitary representation will be the restriction to Gy, of the
oscillator representation of the metaplectic group. This representation already appears in the harmonic
decomposition as a Lie algebra representation by elements of degree 2 in the Weyl algebra. However,
when we try to exponentiate it to a unitary group representation, we encounter the conflict between the
particle and the wave description of quantum mechanics; the representation has a simple description (the
holomorphic model) relative to the maximal compact subgroup Ky = U(n) of Sp(n, R), and another simple
description (the real-wave model) relative to the maximal parabolic subgroup P 2 GL(n,R) x SM,(R)
of Sp(n,R). In both descriptions Ko N P = O(n) acts geometrically, but some of the remaining group
elements act in a more subtle way. Thus it will be necessary to consider two matrix forms of the real
symplectic group and the intertwining operator (the Bargmann-Segal transform) that relates the two
versions of the oscillator representation.

11.1. Real Symplectic Group. Let Sp(n,C) be the subgroup of GL(2n,C) that preserves the skew-

form
n

Qz,y) = Z(Iz‘yn+i — Tn+tili)
i=1

on C?". Thus g € Sp(n,C) if and only if ¢g*J,g = J,, where g* denotes matrix transpose and .J,, is the

matrix
. 0 I,
)

We can also describe Sp(n,C) as the fixed-point group of the involution 7 : g +— J,(g*)"*J, ! on
GL(2n,C).
The Lie algebra sp(n,C) of Sp(n,C) consists of all X € Ma, such that J,X + X'J, = 0. These

matrices have block form

A B .

X = . with A € M,, and B,C € SM,.

Cc -A
Here we use the notation M, for the n x n complex matrices and SM,, for the n X n symmetric complex
matrices.
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The real symplectic group Sp(n,R) = Sp(n, C) N GL(2n,R). Its Lie algebra sp(n,R) consists of all the
real matrices in sp(n, C).

Mazximal Compact Subgroup. A fundamental technique for studying a unitary representation of a real
reductive group such as Sp(n,R) is to restrict the representation to a maximal compact subgroup, under
which the representation space decomposes as the (Hilbert-space) direct sum of multiples of irreducible
(finite-dimensional) subspaces. The real orthogonal group O(k) C U(k) is the subgroup of real unitary
matrices. Since Sp(n,C) and Sp(n,R) are invariant under the map g — g¢*, the groups

Sp(n) =Sp(n,C)NU(2n) and Sp(n,R)NU(2n) = Sp(n,R) N O(2n)

are maximal compact subgroups of Sp(n,C) and Sp(n,R), respectively (see [24, Proposition 1.2]). The
subgroup of diagonal matrices in Sp(n) is a maximal torus in Sp(n). However, the subgroup of diagonal
matrices in Sp(n, R) N O(2n) is finite and is not a maximal torus in Sp(n,R). Hence it is convenient to
replace Sp(n,R) by an isomorphic real form Gy so that the diagonal matrices in Gy N U(2n) comprise a
maximal (compact) torus in Gy.

Define
I, 0
Lo = [ .0 }

and let o be the conjugation (conjugate-holomorphic involution) o(g) = I, (g9*) I, on GL(2n,C).
The fixed-point set of o is the real form U(n,n) of GL(2n,C). Set

0 I,
K, =1,J, = [In 0 }
Then J,; llmn = K,, so it follows that o7 = 70. Hence o leaves Sp(n,C) invariant and its restriction

to Sp(n,C) defines a conjugation of Sp(n,C) which we continue to denote as o. If g € Sp(n,C) then
o(g) =o7(9) = K,,gK,,. In terms of the n x n block decomposition, o acts by

e o)1 5]
C D| | B Al
Define Gy = {g € Sp(n,C) : o(g) = g}. Then Gy is a real form of Sp(n, C). Its Lie algebra go = Lie(Go)
consists of all matrices X € sp(n,C) such that o(X) = X. In terms of the block decomposition, go
consists of the matrices
A B

(11.1) X = { I

}, A*=—A B=DB"
Lemma 11.1. The subgroup Ky = Go N'U(2n) is a mazimal compact subgroup of Gy and consists of all
matrices
A0
0 A

Hence Ko =2 U(n) and the subgroup of diagonal matrices in Ky is a mazimal compact torus of Gp.

} ,  with A € U(n).

Proof. Since o(g*) = o(g)* for g € GL(2n,C), the group Gy is invariant under g — ¢*. Hence Kj is a
maximal compact subgroup of Gp. Write g € GL(2n,C) as

g|:A B:| WlthA,B,C,DEMn

C D
Then g € U(n,n) if and only if ¢*I,, ng = I, . This condition can be written as
(11.2) A*A—C*C=1, B*B-D*D=—I, A*B—C*D=0.

On the other hand, g € U(2n) if and only if g*g = I2,. This condition can be written as
(11.3) A*A+C*C=1,, B*B+D*D=1,, A*B+C*D=0.

If g € U(2n) N U(n,n) then from (11.2) and (11.3) we have C*C' = 0 and B*B = 0. Hence B = 0 and
C =0,s0 A*A =1, and D*D = I,. Thus U(2n) N U(n,n) = U(n) x U(n). But if g € Sp(n,C) is in
block-diagonal form, then

A 0 .
g= { 0 (A1) ] ,  with A € GL(n,C).
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Hence g € K if and only if A € U(n). O
Define an involution  on Sp(n,C) by
9(9) = n,ngIn,n

(note that 6 is an inner automorphism of Sp(n,C)). If g € Gg then (¢*)~! = J,gJ,; ! and § = K, gK,,.
Hence (¢*)7! = JogJ,; ! = Ju,K,gK,J, 1. Since J, K, = Iy n, it follows that

0(g) = (g*)~" for g € Gy.
Thus the maximal compact subgroup Kj is the fixed-point set of 6 in Gy. Its complexification is
K ={g€SpnC) :0(g) =g}
Note that if g € GL(2n,C), then 0(g) = g if and only if

a 0
g{o d]’ a,d € GL(n,C).

If g € K, then in this block decomposition d = (a?)~!. Hence K = GL(n,C) via the homomorphism

N 0
“ 0 (a)t |
The complexification of the Lie algebra €, of K is the Lie algebra ¢ = gl(n,C) of K.
The involution # gives a decomposition of sp(n,C). The +1 eigenspace of 8 on sp(n,C) is ¢, whereas

the —1 eigenspace is
0 B
o ([0 2] ncesi)

We have sp(n,C) = €@ p with commutation relations
e.gCt [EplCp, [pplCE

The center of ¢ is spanned by I, , and ¢ = CI, ,, @ [, ¥], with the derived algebra [, €] = sl(n,C). The
+1 eigenspaces of adl, , on p are

pe={[5 ] mesm) b ={[ & 5] cesm).

These subspaces are invariant under £ and have the commutation relations
b4, p+] =0, [p—,p-]=0, [p4,p-]CE
Thus there is a triangular decomposition
sp(n,C) =p_@tdpy

(as we already noted in Lecture 8). The conjugation o interchanges p1 and p_, since

N (15 0D)-[5 4]

We can describe these decompositions in terms of root spaces as follows (see [16, §2.3.1]). The com-
plexification T of Ty is a maximal (algebraic) torus in Sp(n,C) and has Lie algebra

t={X = diag[z1,...,2n, —21,...,—2s] : ; € C}.

The set of roots ® = ®(g,t) of t on g is te; £ ¢; for 1 <4,j < n, where ¢;(X) = z; for X € t as above.
We have & = &, U ®,,, where

@c:{i(ai—sj):1§i<j§n}
is the set of compact roots (the roots of t on £) and
O, ={£(e;+¢;) : 1<i<j<n}

is the set of noncompact roots (the roots of t on p).
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Take the set of positive roots @1 to be ¢; £¢; for 1 <4 < j <n, and let ®F (respectively ;') be the
positive compact (respectively noncompact) roots. Then

E=t+ > 8o Pr= Y 8ip

acd, BeD)
The simple roots in ®* are ayq, ..., a,, where
o, =¢; —&i41 fori=1,...,n—1and a,, = 2¢,,.

The unique simple non-compact root is the long root ,, and the highest root is v = 2¢; (it is noncom-
pact). Let p be one-half the sum of the positive roots. Then

(11.4) p=ne1+(n—1ez+ -+ ey

Cayley Transform. We now show that the group Go = Sp(n,C)NU(n,n) is conjugate to Sp(n,R) within
Sp(n,C). To understand this in terms of the adjoint representation of sp(n,C), consider first the case
n =1 (recall that Sp(1,C) = SL(2,C)). Set

[0 11— IR
=0 *T9| =i a0 Y79l -1 |-

where 7 is a fixed choice of v/—1. Then [k,x] = 2x, [k,y] = -2y, [x,y] = k, so {x,y,k} is a TDS
(three-dimensional simple) triple. Furthermore, the one-parameter subgroup

cost —sint

£ exp(itk) = [ sint  cost

| ien

is a maximal compact torus in SL(2,R). Let

1 0 0 1 0 0
=l S e [0 0] =10
be the standard TDS in s[(2,C). We can conjugate {x,y,k} to {e,f, h} as follows: Since x +y = h, we
have

(ad(y —x))(k) = 2h, (ad(y —x))(h) = -2k,
and so
et 2=k — (cos 2t)h + (sin2t)k, for t € C.
Setting t = m/4, we obtain
e(m/Hadly—x)| — .

Since (y — x)?

= —1I, we have
exp[t(y — x)] = (cost)I + (sint)(y —x), forteC.
Define
B T T
c*exp[Z(yfx)] - E i 1|

Then c(ik)c™! = 7h. Thus ¢ conjugates the compact torus in SL(2,R) generated by ik to the compact
torus in Gy generated by ¢h:

cost —sint ] _; [e*t 0

sint cost Tl 0 e
The automorphism g — cgc™! is called the Cayley transform.

A similar construction works in Sp(n, C) (and for other real semisimple Lie groups). Set

e L[ I,
2 il I, |

Then ¢ € Sp(n) and ¢! =¢.
Lemma 11.2. Let Gy = U(n,n) N Sp(n,C). Then ¢ 1Goc = Sp(n,R).
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Proof. Since Gy is closed under g — g* it has a polar decomposition Gy = Ky exp(po). We already have
shown that Ky = U(n), hence Ky is connected. Thus Gy is also connected. So it will suffice to show that

Ad(c)"'go = sp(n, R).

Let X € go be given by (11.1). Then one calculates that

clxeo L (A+A)+i(B-B) i(A—A)+(B+B)

2| i(A-A)+(B+B)  (A+A)—i
Setu=1(A+A)+i(B-B),v=%(A-A)+1(B+B),andw =
and B = B?, we have
u=u V=U=0V, W=wW=W.

Also 3(A+ A) — £(B — B) = —u'. Hence

u (%

¢ ' Xec= [
w  —u

. } € sp(n,R).
Since go and sp(n,R) are real forms of sp(n,C), they have the same real dimension. Hence the map
X — ¢ ' Xc is a real Lie algebra isomorphism from go to sp(n,R). O

Mazimal Parabolic Subgroup. Let P be the subgroup of Sp(n,R) consisting of the matrices
[ A B

0 (AH)~! } , AeGL(n,R), BeSM,R),

where SM,(R) denotes the real n x n symmetric matrices. The group P is a mazimal parabolic subgroup
of Sp(n,R). It has the structure of a semidirect product M N, where M consists of the block-diagonal
matrices

A 0
[ 0 (At ] , AeGL(n,R)
and N consists of the matrices
I, B
[ 0 I, } , BeSM,(R).

Thus as Lie groups M = GL(n,R) and N = SM,(R) (an abelian group). The group Ky N P consists of
all matrices
A 0
0
where O(n) = {g € GL(n,R) : g'g = I,} is the usual real orthogonal group. Define N~ = N*. Thus
N~ is the group of matrices

}, A € 0(n)

I, O
c I,

Then P~ = M N~ is the opposite parabolic subgroup to P and PN P~ = M. Note that

I, B],.1 [ I 0 A 0 o [@ht oo
SR T F R A e )

Thus P~ = J,PJ, ! is conjugate to P in Sp(n,R).

Let
" [A B
9=1 ¢ b

be in Sp(n,R). If det A # 0, then D = (A*)~1 + CB (this follows from ¢'J,,g = J,,). Hence we can factor

g as
g=[1” OHA B ]GN‘MN.

] . C e SM,(R).

C I, || 0 (4!

Thus the subset N~ MN is open and dense in Sp(n,R). This shows that a continuous representation 7
of Sp(n, R) is uniquely determined by its restriction to the subgroup P together with the single operator
w(Jn).
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11.2. Holomorphic (coherent-state) Model for Oscillator Representation. We write H?(C") =

HQ(C",G’HZWd)\(z)) for the Hilbert-space completion of P(C™) relative to the Fischer inner product
introduced in Lecture 9. The elements of this space are naturally identified with holomorphic functions
f on C™ such that

/ 1F(2)[2e =P ar(z) < 0.
(Cn

For each w € C" the function K, (z) = e!**) is in H?(C") and plays the role of reproducing kernel for
this space:
flw) = (f | Ky) for feH*(C")
(see [7, Prop. XL.1.1)).
Define the annihilation operators A; and creation operators A; by

Aif(z) = a%f(z), Alf(z) =2 f(z) for f €P(C).

These operators satisfy the commutation relations [A;, A}L] = 0;;1. The are mutually adjoint relative to
the Fischer inner product:

(11.5) (Ajp | ) = (p | Aly)

for p,% € P(C™). The operators {A1, ..., Ay, AJ{, ..., Al'} generate the Weyl algebra PD(C").
Define a representation @ of sp(n,C) on P(C") as follows. For b € SM,, let Qu(z) = 2'bz be the
quadratic form on C™ defined by b. Let

0 b 0 0
X|:O O:|€p+a Y|:CO:|€pa

where b, ¢ € SM,,. Define operators w(X) and w(Y") on P(C™) by

S(X)f(:) = 0@ (), wV)I(2) = 5:Qul2)(2)

where ¢ = 1/—1 (recall the map @ — 9(Q) from P(C™) to constant-coefficient differential operators on
P(C™) that was introduced in the proof of Theorem 9.2). We calculate that

(X),w(¥)] = = (e 21 — tr(be)
7.k
h 0

LetH{O Y

} € ¢, where h € M,,. Define the operator w(H) by

0 1
7,k

be 0

0 —cb
[w(H),=(X)] =w(H X]), [@H)zY) =o(HY])

(note that H — w(H) is the standard representation of ¢ = gl(n,C) on P(C™) tensored with the one-

dimensional representation H +— —itr(h)). Thus @ is a representation of sp(n,C) on P(C") (this is the

representation of g’ = sp(n, C) in Theorem 8.5 for the case G = O(1,C)).
We can write the representation w in terms of the annihilation and creation operators as

1 1
w(X) = Q—Z.ijkAjAk, w(Y) = Q_Z'chkA;’A;rc
J.k gk

Since [X,Y] = [ }, we see that [w(X), w(Y)] = w([X,Y]). One calculates that

1
w(H) =~ 5 > h(4;A] + AL4))
Jk
for X,Y, H as above. Now take Y = ¢(X), where o is the conjugation defining the real form go of
sp(n,C). Then c;i = bji, so from (11.5) we see that

(11.6) (@(X)p [ 9) = —(¢ [ @w(o (X))
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for all X € py and ¢, 9 € P(C™). Since o(p+) = px and py, p_ generate sp(n, C), it follows that relation
(11.6) holds for all X € sp(n,C). Since g is the fixed-point set of o, we conclude that
(@(Z)¢ | ¥) = —(¢ | =(Z2)y) for Z € go.
One says that w is a unitarizable representation of go.
By the Cartan decomposition Gy = Kgexp(pg) the group Ky is a topological retract of Gy. Since €
has a one-dimensional center, it follows that Gy has an m-sheeted coverlng group for every integer m.
Let v : Mp(n,R) — Go be the two-sheeted covering and let Ko = 7 1(Ky). Then K is a two-sheeted

covering of U(n). If k € K¢ and z € C" we set k- z = uz, where

~ u 0 .
~v(k) = [ 0 } with v € U(n).
The function x : k — det(u)~'/2 is a (single-valued) character of K.

Theorem 11.3. There is a unitary representation @ of Mp(n,R) on H2(C"™) whose differential is the
representation w of go. If ke K, then
w(k)f(z) = x(k)f (k™" 2) for f € HA(C").
Proof. Let
il, 0
Ho[ 0 —’L'In:|€EO'

Take the basis for w(sp(n, C)) to be the operators A; A; and AIA; for1<i<j<nand %(AIAJ» +A;AD
for 1 <i,7 < n. Define the seminorms p; on P(C™) in terms of this basis and the norm ||¢|| as in Section
11.5.

Lemma 11.4. The inequality

(11.7) p1(e) < llell + [lew(Ho)ell
holds for all p € P(C™).

Proof of Lemma 11.4: Let ¢ = ) cq2z®. Since w(iHy) acts on z* by |a| + %, we have

HMMWW=2XM+§)MMV

We calculate that

Y (aiag) al|eq)? ifi # 3,
14iAjell* =
Y il —1)allea|? ifi=j.
Likewise,
||ATA o — Y (i + 1) (o + 1) al|ea|? ifdi # 4,
Yool + 1) (o +2) ol |eo? ifi=j.
Finally,

) S (i + Dajallea? ifi # g,

15 (4145 + A4;4]) ¢l = .
Yo (ai+3) alleal? ifi=j.

The estimate (11.7) now follows from these formulas and the inequality 2ab < (a + b)%. O

Proof of Theorem 11.3: From Lemma 11.4 and Corollary 11.9 we obtain a unitary representation w
of the universal covering group of Sp(n,R) whose differential is the representation ww. Now Hj spans
the center of £ and exp(2nHp) = I in Sp(n,C). Since the one-parameter unitary group w(exp(tHp))
acts by e(k+7/2) on PF(C"), we have w(exp(4rHy)) = I. Hence the representation w descends to a
single-valued representation of Mp(n,R). O

We will call w the oscillator representation of Sp(n,R). We write @™ if the dependence on n is not
evident from the context. An explicit formula for w(g) as an integral operator was obtained by Bargmann
(see [8, Theorem 4.37]).
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11.3. Bargmann-Segal Transform. To obtain a realization of the oscillator representation in which the
action of the maximal parabolic subgroup P of Sp(n, R) is easily described, we use another representation
of the creation and annihilation operators. Let S(R™) denote the Schwartz space of rapidly-decreasing
smooth functions on R™. Define creation and annihilation operators

oL 0 N (o
1T\ e ) YT R

on S(R™) for 1 < j < n. These operators satisfy the commutation relations [a;, a ] = §;;1 and they are
mutually adjoint relative to the L2(R"™, d\(x)) inner product. They leave 1nvar1ant the space P(R™) of
(complex-valued) polynomial functions on R™ and act irreducibly on this space.

Following [2] and [28], we construct a unitary operator

B: LAR", d\(z)) — H2(C™, e 1FI%ax(2))

that intertwines a; with A; and a; with A;L-. Since the space L?(R™) (respectively H?(C™)) is the n-fold
Hilbert-space tensor product of the space L2(R) (respectively H?(C)), it suffices to do the calculation for
the case n = 1.

Because H? has a reproducing kernel, any such operator B will be given as

B = [ Bl i

To intertwine the two pairs of creation-annihilation operators, the kernel B(z, 2) must be a holomorphic
function of z and smooth function of = that satisfies

%B(z,x) - L (% +:c> B(z, )

zB(z,z) = —& (% +ac) B(z,z)
These equations imply that

Z—f:(\/_ z)B and——(\/_z—x)

The solution is easily found to be
1
B(z,z) = Cexp {\/5:02 — 5(1'2 + 22)}

with C a constant. It remains to verify that the operator defined by this kernel is unitary (with appropriate
choice of C'). For this, take p € P(R) and the normalized Gaussian (ground state)

) = (1)

(note that a9 = 0). Then

1
B(pyo)(z \/_ / x) exp {—x2 + V22 — 522} dz.

Completing the square in the exponential and using the translation-invariance of the measure dx, we

obtain
B(pwo)( / ( ) e~ dr.
( \/_

The right side of this equation is obviously a polynomial of the same degree as p, so it follows that B is a
bijection from P(R)pg onto P(C). Furthermore By (z) = C. Since ¢g has L>norm 1 and the constant
function 1 has H2-norm 1, we conclude that C' = 1.

To complete the proof that B is a unitary operator, we observe that P(R)yg is the cyclic space
generated by ¢ under the action of the operators a; and aJ{. Likewise P(C) is the cyclic space generated
by the constant function 1 under the action of the operators A; and AJ{. The creation-annihilation
operators act irreducibly on these spaces. Since B* intertwines the pair {a;, a]{} with {4y, Ai}7 it follows
that B*B commutes with a; and a{ on P(R)yp, while BB* commutes with A; and AJ{ on P(C). Thus
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B*B and BB™* are both multiples of the identity by Lemma 2.1. Since we have normalized the kernel
B(z, z) so that B carries the unit vector ¢g to the unit vector 1, it follows that B is unitary in the case
n = 1. This implies that B is unitary for any n as remarked above.

For any integer n > 1 and polynomial p € P(R™), define

(118) Blen() =72 [ p(r+ ) i

for z € C", where ¢o(z) = 7~ "/?exp (—1a'z) for € R". Notice that if g € O(n) then ¢o(gz) = wo(2).
Thus if we set fy(z) = f(g~'z), then B(f,) = B(f), for f = pop and g € O(n). We have proved the
following.

Theorem 11.5 (Bargmann-Segal Transform). The operator B maps the space P(R™)po onto P(C™)
bijectively. It extends to a unitary operator from L*(R™;dxz) onto H2(C"). If f € S(R™) then

b, Lo ¢
Bf(z) = - f(x)exp{\/ﬁzzfi(:chrz z)}d)\(:c)

Furthermore, B intertwines the representations f — f, of O(n) on L*(R";dz) and on H?*(C"). Also
Ba;B~' = A; and BalB~' = Al on P(C").
Remark. Since B is unitary, B~! = B* is an integral operator on H?(C") with kernel B(z,z) = B(z, ).

11.4. Real (oscillatory-wave) Model for Oscillator Representation. We now use the Bargmann-
Segal transform to obtain the real-wave (Schrédinger) model of the oscillator representation.

Let v : Mp(n,R) — Sp(n,R) be the covering homomorphism and let ¢ € Sp(n) be the Cayley
transform. We define a unitary representation 7 of Mp(n,R) on L%(R") by

(11.9) 7(g) = B 'w(cge ')B
(here cgc™! € Mp(n, R) is the element such that y(cgc™!) = cy(g)c™?t). For f € S(R") let Ff be the

Fourier transform n/2
F(f)(w) = (l) / e f(y) dy.

™

Theorem 11.6. The action of w(g) on f € S(R™) is as follows:

(1) If y(g9) = 61 (Ato),l ] with A € GL(n,R) then (g)f(x) = (det A)~V/2f(A ).
(2) If v(g) = - 2 (1) } with b € SM,(R) then m(g)f(x) = e~ (/D="bx ()
(3) If v(9) = _ (1) ? } with b € SM,(R) then F(x(g)f)(x) = e@/='bz Ff(z).

These formulas uniquely determine 7.

Proof. For X € sp(n,R) write dr(X) = Bw(Ad(c)X)B~! for the Lie algebra representation correspond-
ing to m. Here the operator dm(X) acts on S(R™).

h 0
0 —h
the formulas of Section 11.2 give

0 —ih

(1): Let X = [ ] with h = diag[h1,...,h,] and h; € R. Then Ad(c)X = [ b0 ] . Hence

w(Ad(c)X) =-—

N~
INgE

h { (457 - (4))?}

<
Il
—_

1
hi(Aj + Ab)(A; — AT — S tx(h).

Il

I
DO
INgh

<
Il
—_

Now B™'A,;B = a; and B’IA;{B = a}. Also we have

(11.10) (aj +ab) f(z) = V2, f (), (a; —al) f(z) = V222 ()
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for f € S(R™). Thus we obtain
¢ o 1

This shows that (1) is true for A = exph (in this case det A > 0 and there is no need to pass to the
metaplectic group). If A € O(n) then (1) holds for g, since B intertwines the action of O(n) on L?(R")
and H?(C") (note that y(g) is in the maximal compact subgroup Ky of Gp, so w(g) is described in
Theorem 11.3). By the polar decomposition,

GL(n,R) = O(n)(exp a)O(n),
where a is the subspace of real diagonal matrices. Hence (1) holds for all A € GL(n,R).

(2): Let X = [ 2 8 } with b € SM,(R). Then Ad(c)X = 3 [ be sz‘b ] . Hence the formulas of Section
11.2 give
1 n
@Ad©X) = = D b {4540+ Ala] + 4;4] + ;)
k=1
1 n

el
Il

J,k=1

Now applying the Bargmann-Segal transform and using (11.10), we obtain
1 n
dr(X)f (@) = 5-{ > bjwrson } 1 (2).
J, =

This proves (2).

, o b . [ =ib b
(3): Let X = { 0 0 ] with b € SM,,(R). Then Ad(c)X = 5 [ b b } . Thus
1 n
@(Ad(©X) = - > b { A A+ Afaf - 4;4] - a4}

J,k=1

1 n
7 2 bie(A; — AD)(Ax — A)).

jk=1

Applying the Bargmann-Segal transform and using (11.10) again, we obtain

IR o 0
dr(X - b, 29
m(X)f (@) = 5 PO @)
for f € S(R™). Since F(9?/0z;0x;)F ! is the operator of multiplication by —x;xy, this proves (3).
Formulas (1), (2), and (3) uniquely determine 7 since N~ M N is dense in Sp(n,R). O

11.5. Analytic Vectors. Here we present refinements of some results of Nelson [27] concerning expo-
nentiation of Lie algebra representations, following the approach in [14]. Suppose go is a real finite-
dimensional Lie algebra, represented as skew-Hermitian (unbounded) operators on a complex inner prod-
uct space V (not assumed complete). Let g be the complexification of gg. Then X +— X* (the Hermitian
adjoint of X relative to the inner product on V) is a conjugate-linear anti-automorphism of g such that
X*=-X for X € go.
Fix a basis {X1,..., X4} for g. Define seminorms p,, on V by setting po(v) = ||v|| and
pn(v) = max [|X;, - X; v

forn =1,2,.... Here i1,...,4, run over 1,2,...,d and ||u|| denotes the norm of v € V. Let V be the
Hilbert-space completion of V relative to the norm ||v|| and let V'*° be the completion of V relative to the
family of seminorms {p,}. Then the representation of g on V extends continuously to a representation
on V°°. The seminorm p,(v) is also defined for v € V°*°.
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One says that v € V°° is an analytic vector for g if there is an r > 0 such that

oo n

(11.11) 3 %pn(v) < 0.

n=0 "
Let V¥ C V' be the subspace for which (11.11) holds. The space V¥ = J,.,V,* of analytic vectors for
g is invariant under g.

Theorem 11.7 (Nelson). Suppose there exists anr > 0 so that V¥ is dense in V. Then the representation
of go integrates to a strongly continuous unitary representation on V' of the simply-connected Lie group
G with Lie algebra go.
Proof. (Sketch) Define a norm on g by || Zle Xl = Zle lei]. If X € g then

1X"0l] < [1X["pn(v).
Hence the operator eX is defined from V. to V by the exponential series provided ||X|| < r. The
map expX > eX defines a local representation of the complex Lie group germ corresponding to g

(the rearrangement of the exponential series needed for the Campbell-Hausdorff formula is justified by
convergence of (11.11); see [3] or [18]). The operator e is unitary for X € g, since X is skew-Hermitian,

and the local representation extends to a strongly continuous unitary representation of éo on W. O
Suppose there is an element Hy € g such that

(11.12) p1(v) <||v|| + ||Hov|| forallve V.

Let A = maxi<;<q ||[Ho, Xi]|| (the norm of adHy on g). Note that A = 0 if and only if Hy is in the center

of g, and this case is of no interest here. So we assume A > 0.

Theorem 11.8. Every analytic vector for Hy is an analytic vector for g. More precisely, if
X .n
s
(11.13) E FHH&IUH < oo, for some s> 0,

n=0
then v € V¥ for all v < min{A~1, A71(1 — e=4%)}.

Remark. If s can be arbitrarily large in (11.13) (one says that v is an entire vector for Hy in this case),
then v € V¥ for all r < A=1. Note that this upper bound for r is controlled by the non-commutativity
of g and it is finite if A # 0. In general v is not an entire vector for g (see [15] for more precise results
along this line).

Proof. Let Y; be any of the basis elements X;. Then the a priori estimate (11.12) implies that
[Yons 1Y - Ye0l| < [V - Yl 4 | HoYpn - - Yiol|
for all v € V*°. Now

m
HoYy Y1 =Y - YiHo+ > Vi -+ Yio1[Ho, Yl Yiyr -+ Y1,
k=1

and by definition of p,, and the constant A we have ||Y,, - - [Ho, Yi] - - Y1v|| < Apy(v). Hence

Woir = Vil < Yoo YiHool| + (1 + mA)pn ()

< pr(Hov) + (1+mA) pa(v).

Since this holds for any choice of Y1, ..., Y, 41, it implies
(11.14) Pm+1(V) < pm(Hov) + (1 + mA)pm(v) forall v e V.

Now fix v € V*° and set am,n = pm(Hiv). Replacing v by Hjv in (11.14), we see that the sequence
{amn} satisfies the recursive inequalities

Am+1,n < Am n+1 + (1 + mA)amm.

To estimate the rate of growth of a,, ,, we introduce the majorant sequence by, , defined by by, = agn
for all n and
bm+t1n = bmnt1 + (1 +mAby,, forallm>0,n>0.

Clearly am,,n < b, for all m,n.
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Consider the generating function

play) =Y >

m=0n=

m

| 8

n
| | bm,n~

3
31S

0
The recursion for by, , implies that (as a formal series)

(1= A0) 5 p(w.9) = 5olen) + oly).

We assume that the series f(y) = ©(0,y) converges for y = s. The Cauchy problem for this analytic
first-order p.d.e. is easily solved by the method of characteristics, and one obtains
p(z,y) = (1 - Ax) VA f(y — A og(1 — Ax)).

(the analytic solution must agree with the formal solution since the line = 0 is non-characteristic).
Setting y = 0, we see that the series for ¢(z,0) converges absolutely for |x| < r provided

r<min{A"' A7 (1 - eiAS)}.

Since a0 < by,o this proves the theorem. [

Corollary 11.9. Suppose Hy € g and V has an (algebraic) basis consisting of eigenvectors for Hy. Then
V C V¥ for all < A™! and hence V¥ is dense in V for all v < A~'. Thus the representation of go
integrates to a strongly continuous unitary representation of Go on V.

Proof. If Hov = \v, then the left side of (11.13) is e*I*|, and hence is finite for all s > 0. By the remark
after Theorem (11.8) this implies that (11.11) holds for all r < A~!. Now apply Theorem 11.7 [J

LECTURE 12. DuAL PAIR Sp(n,R)-O(k)

The oscillator representation has many applications to analysis and physics (see [8] and [20], for exam-
ple). Here we apply it in the context of unitary representation theory and highest weight representations
(see [6] for more on this point). To determine which of the representations that occur in the decompo-
sition of the oscillator representation are square-integrable, we apply Harish-Chandra’s criterion to the
explicit formula for the #-correspondence that we calculated in Theorems 10.1 and 10.4. In particular,
we show that all the square-integrable highest-weight representations of Sp(n,R) occur in the duality
correspondence with O(2n) (this was first proved by Gelbart [11]).

12.1. Decomposition of H?(M, ) under Mp(n,R) x O(k). Let G = O(k,C) = {g € GL(k,C) :
ggt = I} and let G' = Sp(n,C) C GL(2n,C) be the symplectic group relative to the skew-form with
matrix J, as in Section 11.1. Define a skew form 2 on My, by

Qw, 2) = tr(w'J,z) for w,z € Maoyxs .
Then 2 is nondegenerate. We embed G’ x G into Sp(May,xk, 2) as follows. Let g € G and h € G'. Then
Q(hwg, hzg) = tr(w'(h' J,h)zgg") = Q(w, 2)

since ggt = I and h'J,h = J,. Hence we have an injective regular homomorphism L x R : G’ x G —
Sp(Mapnxk, Q) given by

R(g)z=z9"", L(h)z=hz forgc€ G, he G, z€ Maopxs.
We identify Ma, «; with C?™* by the map

c (C2nk

z=21,...,25] — 2
Zj,

where z; € C?" is the jth column of z. It is easy to check that
Qz,w) = ' Jopd,

50 Sp(Maynxk,2) becomes Sp(nk,C) under this identification. Thus we will view z either as a 2n x k
matrix or a vector in C2™*_ whichever is more convenient for the calculation at hand.
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Define a hermitian form on Ms,xx by
(z,w) = tr(w* I nz),

where I,, ,, is the matrix in Section 11.1. We have (z,w) = @0* Ik nkZ, 50 when z € Mo,y is identified
with 2 € C2"*, the form (z,w) becomes the one used in Lecture 11 to define the group U(nk,nk). Thus
we will denote the isometry group of this form as U(nk,nk). If g € U(n,n) then

(92, gw) = tr(w*g* I ngz) = (z,w)

since g*I, ng = I, . Thus the left multiplication homomorphism L : GL(2n,C) — GL(Maz,xx) carries
U(n,n) into U(nk,nk). If h € U(k) then

(zh,wh) = tr(w*I, pzhh™) = (z,w).

T xh
{ v } " [ yh ] '
Hence the right multiplication homomorphism R : GL(k, C) — GL(May, 1) carries U(k) into the maximal
compact subgroup U(nk) x U(nk) of U(nk, nk).

Let Gy = GNU(k) = O(k) be the compact real form of G, and let Gj = G' N U(n,n) = Sp(n,R)
be the real form of Sp(n,C) as in Section 11.1. Let Ky = G{; N U(2n) = U(n) be the maximal compact
subgroup of Gf,. Then the embedding L x R : Sp(n,C) x O(k,C) — Sp(nk,C) gives an embedding of the
real forms

Furthermore,

G x Gy — Sp(nk,C) N U(nk,nk) = Sp(nk, R)
and carries the maximal compact subgroup Ky x Gy into the maximal compact subgroup Sp(nk,C) N

(U(nk) x U(nk)) of Sp(nk,C) NU(nk,nk). If u € U(n) and ko = [ u 0

0 ] is the corresponding element

of Ky, then the pair (ko,g) € Ko x Go acts on May,x by
¢
x uzg
12.1 L(ko)R =| _ .
(121) (o)rta) | 0 | = | s |
We now calculate the restriction of the oscillator representation @ ™) to L(K) x R(Gp) in the holo-

morphic model on P(V), where V.= M, «. Let (ko,g) € Ko X Gy. From (12.1) and Theorem 11.3 we
see that

(12.2) @ " (L(ko)R(9)) f(x) = (detu)*/2(det g)"/2 f(u™ zg) for f e P(V)

(note that the determinant of the map z + u~txg is (det u)~*(det g)*). If k and n are both even, formula
(12.2) defines a representation of Ky x Go. For the general case, let Ko C Mp(n,R) be the two-sheeted
cover of Ky and let Gg be the lift of R(Gg) to Mp(nk,R). Then (12.2) gives a single-valued unitary
representation of I~(0 X C/:”B. In the following we shall simply drop the factor (det g)"/2 from (12.2) to
make the representation single-valued on Gy. However, the factor (det u)_k/ 2 is essential for extending

the representation from I~(0 to Mp(n,R). Let § denote the differential of this character of Kj.
Let g{, be the Lie algebra of G{, The complexification of gj is g’ = sp(n,C). We now calculate the

action of @™ (L(g')). Let X = [ 8 8 } and Y = [ (c) 8 ] with b,c € SM,. Then

=[5 5] [ 2, 0]

(where L(b)x = bx for x € My,x%). The quadratic form on V' associated with L(b) is
QL(b) (l‘) = I'tbl' = Z b”{ Z xipl'jp}-
i, p=1
Hence

n 82
" (L(X)) f(x) = % > bz‘j{ > W}
irj p=1 "TPTIIR
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and @™®) (L(Y)) is the operator of multiplication by —%QL(C). Since p4+ generate g’, these operators
determine w™*)(g'). From Theorem 8.5 we conclude that the algebra PD(V)¢ is generated by @™ (g').

We recall some notation that was introduced earlier. Let H denote the space of G-harmonic polynomials
on M, «x and let X C G be the spectrum of G on H. Let the map

T:X—=ACZ},

be as in Theorems 10.1 and 10.4. Let 7° C ‘H be an irreducible G-module in the class 0. Let ETO+ oy
be the irreducible finite-dimensional K-module with highest weight 7(c) + §, as in Theorem 9.2.

Let V. = M,,«j. Consider the unitary representation of Mp(n, R)x O(k) on H?(V), where Mp(n, R) acts
by the restriction of the oscillator representation @) and O(k) acts geometrically by right multiplication
on V. For o € ¥ let E™()9 he the closure in H?(V) of the g/-irreducible subspace P (V)& . £7(@)+3,

Theorem 12.1. The spaces E™O10 for o € ¥, are irreducible and mutually inequivalent unitary repre-
sentations of Mp(n,R). Furthermore, H?(V') decomposes as a multiplicity-free Hilbert space orthogonal
sum

(12.3) H*(V) = @PE T g F°
oED
under the action of Mp(n,R) x O(k).
Remark. When k is even the character u — (det u)~*/2 occuring in the oscillator representation is
well-defined on U(n) and E7(©)+9 gives an irreducible unitary representation of Sp(n, R).
Proof. The key point is the following density result:

(*) Suppose E C H?(V') is a closed subspace that is invariant under Mp(n,R). Set Eg = ENP(V). Then
Ey is dense in E and is invariant under g’ .

To prove this, let f(z) =Y, caz® be in H?(V) and set

fqlz) = Z cqr® forq=0,1,2,....

lel<q
Then f; € P(V) and it is clear from (9.1) that ||f — f4]| — 0 as ¢ — co. Now take
[, 0
HO_[ 0 z‘In}EEO’
as in the proof of Theorem 11.3. Since
el 0

exp(tHy) = { 0" ot } € Ky,

we see from (12.2) that ™" (Hy) acts by —i(j + &) on P7 (V). Hence if we define
q 4am
1 it(J n
(12.4) by = ?:O:g /0 e"TR/2) (k) (exp tH) dt,

then P, is a bounded operator on H?(V) and P, f = f, for ¢ =0,1,2,.... Since E is closed and invariant
under Mp(n, R), we know that F is invariant under the one-parameter unitary group t — w(nk) (exptHy).
Hence PyE C E for ¢ =0,1,2,.... This shows that Ey = P(V) N E is dense in E.

To prove that Ep is invariant under g/, take ¢ € Ep and ¢ € E+. If X € gf), then

(12.5) (w™) (exptX)p | ¢) =0 forallteR,

since F is invariant under Mp(n,R). But since ¢ € P(V), the left side of (12.5) is an analytic function
of ¢ for |t| near zero by Corollary 11.9. Taking the derivative in ¢ and setting ¢ = 0, we conclude that

(@™ (X))o |¢) =0 forallh € EL.
Hence w™®) (X )y € E, completing the proof of (x).

To prove the theorem, first observe that if E ¢ E™(®)*9 ig a proper closed subspace that is invariant
under Mp(n,R), then by (x) the space Ey is invariant under g’. Hence Ey = 0 by the irreducibility of
E7(@)+9 But Ey is dense in E, so E = 0, showing that E™(®)+9 is irreducible.
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If 0,0’ € ¥ and T is a bounded Mp(n,R) intertwining operator from ET(@)+9 to ET(¢)+3  then T
commutes with the projection operators P, in (12.4). Hence T maps ET@+8 5 £7(0)+5 Since the
functions in P(V) are analytic vectors for Mp(n,R), we conclude (as in the proof of (12.5)) that T
intertwines the g’ actions. Hence o = ¢’ by Theorem 9.2. The orthogonality of the decomposition also
follows from Theorem 9.2. O

12.2. Square-integrable Representations of Sp(n,R). The irreducible unitary representations of
Go = Mp(n,R) that occur in Theorem 12.1 are called highest-weight representations. Some of them also
appear as discrete summands in the decomposition of the left regular representation of G on L?(Gy)
(these representations are called square-integrable). We now apply Harish-Chandra’s criterion [17] to
determine which of the representations E™(?)19 are square-integrable. It is convenient to give separate
statements of the result depending on the parity of k.

Theorem 12.2. (notation of Theorem 10.1) Let k =2l + 1 be odd. Let o € X.

(a) If n > 1+ 1 then E™(9)*9 is never square-integrable.

(b) If n =141 then ET(+9 js square-integrable if and only if o = (X, —1) € G_1 and depth(A\) = 1.

(¢) If n <1 then B™(9)*9 is square-integrable for all o € X.

Proof. The general condition on the highest weight A for square-integrability is
(12.6) A p,77) <0,

where p is the one-half the sum of the positive roots and v is the coroot to the highest noncompact root
~v. For sp(n,R) we have p = [n,n—1,...,2,1] and v = 2e1, so v~ = &1 (see Section 11.1). We must check
this condition when A\ = 7(o) + 4§, with § = [-k/2,...,—k/2].

Let 7(0)1 denote the first coordinate of 7(0). Then (A + p,v") = 7(0)1 — k/2 + n. Since k = 2l + 1,
the Harish-Chandra condition (12.6) is

(12.7) T(oh <l+1—n.

Case (a): n > [+ 1. The formulas for 7(c) in Theorem 10.1 show that 7(o); is either 0 or —1 in this
case. But [ —n+1 < —1, so (12.7) is never satisfied.

Case (b): n =1+ 1. Now the right side of (12.7) is zero. The formulas for 7(¢) show that 7(c); < 0 if
and only if 0 = (A, —1) € G_1 with d =[.

Case (¢): n <I. Now the right side of (12.7) is positive. The formulas for 7(o) show that 7(o); < 0 for
all o € X, so (12.7) is always satisfied. O

Theorem 12.3. (notation of Theorem 10.4) Let k = 2l be even. Let o € X.

(a) If n > then E7(9)+ s never square-integrable.

(b) If n =1 then B™(9)*0 is square-integrable if and only if o = (),0) € Go and depth(A) = L.

(¢) If n < I then B™(9)*9 is square-integrable for all o € X.

Proof. When k = 2 the Harish-Chandra condition (12.6) becomes

(12.8) T(o)1 <l—n.

Case (a): n > [. The formulas for 7(o) in Theorem 10.4 show that 7(c); is either 0 or —1 in this case.
But I —n < —1, so (12.8) is never satisfied.

Case (b): n = 1. Now the right side of (12.8) is zero. The formulas for 7(o) show that 7(c); < 0 if and
only if o = (A, 0) € G and depth(\) = 1.

Case (¢): n < l. Now the right side of (12.8) is positive. The formulas for 7(o) show that 7(o); < 0 for
all o € X, so (12.8) is always satisfied. O
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Ezxamples.

1. Assume k is even. Then the oscillator representation w (™) is single-valued on Sp(n,R). If & > 2n
then we see from the formula for the #-correspondence that every GL(n, C)-highest weight A that satisfies
the Harish-Chandra inequality is of the form 7(c) + §, for some o € 3. Thus every highest-weight
discrete-series representation of Sp(n,R) occurs in the reduction of (™) in this case.

2. Let o be the trivial representation of O(k) (denoted by 7(®') in Sections 10.1 and 10.2). Then
o € X for all n > 1 and 7(0) = 0, by Theorems 10.1 and 10.4. The representation, call it 7+, of
Mp(n,R) that corresponds to o is square integrable if and only if 2n < k. It occurs with multiplicity
one in H2(M, ), and has highest weight 6 = [~k/2,...,—k/2]. This weight parameterizes the one-
dimensional representation g — det(g)_k/ 2 of the maximal compact subgroup of Mp(n,R). Since F°
consists of the constant functions, the space Hﬁ_ :=E° of nt is the completion (in the Fischer norm) of
the space P(M,xx)%, where G = O(k, C).

3. Let o be the representation g — det(g) of O(k) (denoted by 7(%~1) in Sections 10.1 and 10.2). Then
o € ¥ if and only if n > k. In this case

by Theorems 10.1 and 10.4. The representation, call it 7, of Mp(n,R) that corresponds to o is never
square integrable. It occurs with multiplicity one in H?(M,,xx) when n > k, and it has highest weight

AN=[—k/2,...,—k/2]+[0,...,0, —1,...,—1].
—_— —— ——— — —
n n—k k

This is the highest weight of the representation (det)*/2 ® /\k (C™)* of the maximal compact subgroup of
Mp(n,R). In this case 7 = Cgy, where gi(z) is the determinant of the bottom k x k block of z € M,,«x
when we take the orthogonal group G = O(CF,w) as in Lecture 10. Thus the space H? := E* of 7~ is
the completion (in the Fischer norm) of the space (P(Mpxx)® gr) ® A¥(C™)*. Note that for fixed n, one
obtains a distinguished set of n irreducible unitary highest-weight representations of Mp(n,R) this way
by taking k=1,...,n.

4. By the harmonic duality theorem, (H%,7%) are the only irreducible Mp(n,R) modules that occur

with multiplicity one in H?(M, xx). More details and other models for the representations ET(9)+9 can
be found in [6].

Final Remarks. In Schur-Weyl duality we took tensor powers of the representation of GL(n,C) on C"
(the representation of smallest dimension) to obtain all the irreducible finite-dimensional polynomial
representations of GL(n,C). The two irreducible components 7% of the oscillator representation on
H?(C") are the smallest unitary highest-weight representations of Mp(n,R) in the sense of Gelfand-
Kirillov dimension (see [31]). As we already noted in Section 11.3 the representation on H?(M,,«y) is the
k-fold tensor product of this representation:

k
(12.9) H2 (M, xx) = ® H?(C™) (Hilbert-space tensor product).
Thus the action of the group O(k) on the right-side of (12.9) is another instance of a hidden symmetry.)

LECTURE 13. BRAUER ALGEBRA AND TENSOR HARMONICS

In this final lecture we use duality to decompose the space of k-tensors under the action of the or-
thogonal or symplectic group G. This was first done by Brauer [4], who determined the generators and
relations of the G-centralizer algebra. The complication here is that this algebra is not a group algebra
(as was the case when G = GL(n,C)). However, just as in the case of Howe duality, there is an analog
of the harmonic duality of Lecture 9 in this situation. The centralizer algebra contains C[Sy] as a sub-
algebra, and there is a subspace of harmonic tensors (in Weyl’s terminology completely traceless) which
decomposes in a multiplicity-free way under the jointly commuting actions of G and &j. The full space

JThe unitary representations that occur in the decomposition of this tensor product are the mathematical analog of the
elementary particles, some familiar and some exotic, that physicists create by high-energy collisions of the basic particles.
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of k-tensors then decomposes as the sum of spaces of partially harmonic tensors (see [16, §10.3], [9], and
[10] for details).

13.1. Centralizer Algebra and Brauer Diagrams. Let G be the full isometry group of a nondegener-
ate bilinear form w on a finite-dimensional complex vector space V. We assume w to be either symmetric
or skew-symmetric. For f € V* define f> € V by

w(f’,v) = (f,v) forallveV.

The map f — f” is then a G-isomorphism between V* and V. Define a G-module isomorphism 7' :
V*@2k _, End(V®k) by

(13.1) T(fi® @ fau=w(f3@ 1@ fu) i@ ©
for f; € V* and u € V. Here we have extended w to a bilinear form on V®* by

k
WUl @ @up, 11 Q- QUg) = Hw(ui,vi) for u;,v; € V.
i=1

Theorem 13.1. Let =, be the set of two-partitions of {1,...,2k}. For £ € 2y let A\¢ € (V*®2K)C pe the
corresponding complete contraction. Then

Endg(V®*) = Span{T(\¢) : & € Ex}.
Proof. Since T is a G-module isomorphism this is a immediate consequence of Corollary 7.5. I

Theorem 13.1 only gives a spanning set for the centralizer algebra Endg(V ®*) as a vector space. To
describe the multiplicative structure of this algebra it is convenient to introduce a graphic presentation
of the set of two-partitions. We display the set {1,2,...,2k} as an array of two rows of k labeled dots,
with the dots in the top row labeled 1,3,...,2k — 1 from left to right, and the dots in the bottom row
labeled 2,4,...,2k. Consider the set X of all (unoriented) graphs whose vertices are the two rows of
dots, and such that each dot is connected with exactly one other dot by an edge. (A dot in the top row
can be connected either with another dot in the top row or with a dot in the bottom row.) An example
with k = 5 is shown in Figure 1. We call an element of X}, a Brauer diagram.X Thus we can identify the

T

FIGURE 1. A Brauer Diagram.

set = of two-partitions with Xy; if £ € = corresponds to the Brauer diagram x € X}, we shall write A,
for the complete contraction A¢.

The group Gof, acts transitively on X by permuting the dots according to their labels. If x € X} and
s € Gy, then s-x is the graph obtained by permuting the dots by s and maintaining the edge connections
(dot s(#) is connected to dot s(j) in s -z if and only if dot 4 is connected to dot j in z). Clearly

(13.2) 051(8) Az = A5y for s € Gy and x € X

Here o, denotes the representation of & on V&F, as in Lecture 3, and 03, is the contragredient repre-
sentation on V*®2% Let x¢ be the graph with each dot in the top row connected with the dot below it
(see Figure 2 for the case k = 5). Then the Brauer diagram z; in Figure 1 is s - o where s € &1 is the
cyclic permutation (2594).

Let 7 : & — &g, be defined by 7(s)(2j — 1) = 2s(j) — 1 and 7(s)(25) = 2j for j =1,..., k. If s € &,
then 7(s) acts on a Brauer diagram by permuting the top row of dots according to s while leaving each
dot in the bottom row fixed. Clearly 7 is an injective homomorphism, and from (13.1) and (13.2) we see
that

(13.3) 0k (8)T(A\e) = T(Ar(s).z) for s € & and x € X.

kKerov [23] uses the term chip because of the analogy with an integrated circuit chip, where the top row of dots are the
input ports and the bottom row of dots the output ports. For a development of Kerov’s approach, see [9] and [10].
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=TT

FI1GURE 2. Basic Diagram with Labeled Dots.

For the basic diagram o we have 7(s) - ©g = x¢ if and only if s is the identity, so the permutations in
Sy, correspond to the diagrams in the orbit 7(&y) - 2o (these diagrams are just the two-line notation for
a permutation). Hence by (13.3) the operators in Endg (V' ®*) associated with the orbit of xo come from
the natural action of & on V®*. In particular, the basic diagram zg corresponding to the G-invariant
tensor w®* gives the identity operator on V&,

The complete set of 7(Sy) orbits on X can be described as follows. For z € X}, let r be the number
of edges in the diagram of  that connect a dot in the top row with another dot in the top row (call such
an edge a top bar). The bottom row of = also must have r such edges (call them bottom bars), and we call
x an r-bar diagram. All diagrams in the 7(Sg)-orbit of = also have r top bars, and there is a unique z in
this orbit with all its edges either horizontal or vertical (that is, if z is considered as a two-partition of 2k,
then every odd-even pair {2i — 1,25} that occurs in z has ¢ = j). We will call such a Brauer diagram (or
two-partition) normalized. The normalized diagrams give a set of representatives for the (&) orbits on
Xj.. For example, when k = 3 and r = 1 then there are three orbits of 1-bar diagrams, with normalized
representatives indicated in Figure 3. These orbits correspond to the two-partitions

z1 = {{17 2}a {37 5}a {47 6}’}’5 22 = {{17 5}a {27 6}a {374}’}a 23 = {{17 3}a {274}5 {57 6}’}’
| A |
> -
FIGURE 3. Normalized 1-Bar Brauer Diagrams (k = 3).

If z is a normalized Brauer diagram, then for every top bar in z joining the dots numbered 2i — 1 and
27 — 1 there is a corresponding bottom bar joining the dots numbered 2¢ and 25. We will say that z
contains an (i, j)-bar in this case (with the convention that ¢ < j). For example, the normalized diagram
in the orbit 7(S5)x; (with z; from Figure 1) is shown in Figure 4; it contains a (2, 5)-bar.

L

FIGURE 4. Normalized Brauer Diagram with (2, 5)-Bar.

13.2. Generators for the Centralizer Algebra. A normalized Brauer diagram determines an element
of the algebra Endg(V®*) by Theorem 13.1. For example, the diagram shown in Figure 5 contains a
single (1,2)-bar corresponding to the tensor o3, (23)w®*, where (23) is the transposition 2 <> 3. Since
03, (23)w® = (05(23)w®?) ® w2*=2) we have

T(o5, 23 v @ ou = {3 wr, frn)olvs, )} Y fr @ 7 @
P2 P1
= w(v,m)lxu

for v1,vo € V and v € VO*=2) Here {fp} and {fP} are bases for V' with w(fp, f?) = dpq, and
0=> frofrecVeV)
P
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is the tensor dual to w. Thus this 1-bar diagram gives an operator T2 = T'(02;(23)60%) which is the
composition

_92)y D
V®k Cig V@(k 2) Diz V®k,

with C1g (’U1 ® Vo ® u) = w(vl, ’Ug)u a contraction operator (contract the first and second tensor positions
by w) and Di2(u) = 0 ® u an expansion operator (multiply on the left by 6). These operators obviously
intertwine the actions of G on V®* and V®*k-2)

*—e
FIGURE 5. Brauer Diagram for 75 = D15C12.

In general, for any pair 1 < i < j < k we define the ij-contraction operator Cyj : VEF — V®k=2) by
Cij(”l@"'®vk) :W(Uiavj)vl®"'®{)\i®"'®6}®"'®vk

(omit v; and v; in tensor product) and the ij-expansion operator D;; : VEK,=2) — Y&k by
n
Dij(n1® @k 2) = 1@ @ f @@ 7 @ @vp_a.
= N ~~
ith Jth

These operators intertwine the action of G and are mutually adjoint, relative to the invariant form w on
YOk,

(13.4) w(Ciju, w) = w(u, Djjw)  for u € VO w e VOE=2),

Set Tij = DijCij € EndG(V®k). Ifu=v®- - ®uv, with v; € V, then

(13.5) Tij(w) =wi,v) Y 1N Q fp @@ fF R - Quy.
j j 1; P J_
ith Jjth

The contraction and expansion operators satisfy the symmetry properties
(13.6) Cij =€Cji,  Dij=eDji,

since ), fp ® fP =€), f? ® fp. Hence 75 = 74, so the operator 7;; only depends on the set {1, j}.
Let Zi, C X} be the set of normalized r-bar Brauer diagrams, and set

[k/2]
Z = Zk.r.
r=0
Lemma 13.2. Suppose that z € Zy, , is a normalized r-bar Brauer diagram with bars {i1,j1}, ..., {ir, jr}-
Then
(13.7) TipdoTigda = TigdaTipip JOT P # -

Thus the operator T, = T4, -~ Ti,j,. only depends on z and not on the enumeration of the bars in z.
Furthermore, 7, = T'(\,).

Proof. The commutativity relation (13.7) is clear since 7;; only operates on the ith and jth tensor
positions. [J

Proposition 13.3. The algebra Endg(V®*%) is spanned by the set of operators o1.(s)7, with s € &, and
z € Zi. Furthermore, if dimV > 2k then this set of operators is linearly independent.

Proof. Since Zj, gives a cross-section for the 7(Sy) orbits on Xy, the first statement follows from Theorem
13.1, Lemma 13.2, and the intertwining relation (13.3). The proof of linear independence when dim V' >
2k is straightforward (see [16, Corollary 10.1.4]). O
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13.3. Relations in the Centralizer Algebra. We next determine the algebraic relations among the
operators in Proposition 13.3.

Lemma 13.4. Let n = dimV and set € = 1 if w is symmetric and € = —1 if w is skew. The operators
Tij (where 1 <i,7 <k and i # j) satisfy the following relations, where (il) denotes the transposition of i
and l:

(1) 7ij = i and 735 = n 7 (4) ok(8)Tijor(s) ™t = To(a),s(j) Jor all s € &y
(2) TijTim = TimTij for distinct i,5,0,m  (5) ox(ij)Ti; = eTij
(3) 1T = ok (i) for distinct 4, j, 1
Proof. The contraction and expansion operators satisfy
(13.8) Ci;Di; = nl,
which follows from ZZ=1 w(fp, f?) = n. This implies property (1). Property (2) was already checked in
Lemma 13.2. To verify (3), note that

7T (01 @ - @ v) = w(vg, 1) Y w(vi, fp)tpg,

p.q
where upg =01 Q@ ® f3 ®-- @ f1@---® ff ® - @uvg But
N ~~ ~—
ith jth Ith
Zw(vi,fp)upq:s:vl@---@ fe ®-® f1®--® v @ - Quy,
~— ~~ ~~
p ith jth lth

which gives (3). Relations (4) and (5) are simple calculations from the definition of 7;;. O

Define the Brauer Algebra By (e,n) with parameters k,e,n to be the associative algebra generated by
Sy and elements {r;; : 1 < i < j < k} subject to the relations (1)—(5) in Lemma 13.4; here n can be
any complex number and ¢ = +1. From these relations it is clear that By(g,n) is finite-dimensional. If
T is the subalgebra generated by {7;;}, then 7 is an ideal and we have the decomposition

(13.9) Bi(e,n) =C[6k] @ T.
From Proposition 13.3 and Lemma 13.4 we see that there is a surjective algebra homomorphism
Bi(e,n) — Endg(V®*)  (n=dimV)

with € = £1 determined as in Lemma 13.4 (5). The two algebras are isomorphic if n > 2k. In any case,
the centralizer algebra Endg(V®k) is the quotient of the associated Brauer algebra by a two-sided ideal,
so the representations of the centralizer algebra can be viewed as representations of the Brauer algebra.!

r or+1

FIGURE 6. Brauer Diagram for s,.

We can describe the multiplication in By(e,n) and the relations in Lemma 13.4 in terms of concate-
nation of Brauer diagrams. Let s, € Gy be the transposition r < r + 1. It corresponds to the Brauer
diagram shown in Figure 6. Let z. = 7,41 be the operator corresponding to the normalized Brauer
diagram with a single (r,r + 1) bar, as in Figure 7. Since &y, is generated by s1,..., 8,1, we see from
Proposition 13.3 and property (3) in Lemma 13.4 that the algebra By (en) is generated by the operators
S1y+..,8k—1 and 21,...,2r_1. If x,y are Brauer diagrams, then their product xy in the Brauer algebra
is obtained by placing the x above y and joining the lower row of dots in x to the upper row of dots in
y. When z,y correspond to elements of &, (no bars) this procedure obviously gives the multiplication
in 6. When x or y have bars, we remove the closed loops from the concatenated graph using relation
(1) in Lemma 13.4.

ISee [9] and [10] for recent work on the representation theory of the Brauer algebra and citations of earlier work.
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r or+1

FIGURE 7. Brauer Diagram for z,.

The general recipe for transforming the concatenated Brauer diagrams of  and y into a scalar multiple
of the Brauer diagram for zy is as follows:

(1): Delete each closed loop in the concatenated diagram and multiply by a scalar factor of n” if
there are r such loops.

(2): Multiply by a factor of e for every path in the concatenated diagram that begins and ends on
the top row of & or on bottom row of y.

For example, if 2 = 0(236)735746 and y = 0(46)712734756, then zy is obtained as shown in Figure 8 (see
[16, §10.1.2 and Exercises 10.1.3] for further details and examples).

@w*—'

=en

o ) G

FIGURE 8. The Relation (0(236)735746) - (0(46)T12734T56) = en 0 (23) T12734T56-

13.4. Harmonic Tensors. Let k > 2. A tensor u € V®F is called w-harmonic™ if it is annihilated by
all the contraction operators C;;. Denote by

H(VEF, w) = ﬂ1gi<j§k Ker(Cyj)

the space of all w-harmonic k-tensors. We will simply call these tensors harmonic and write H(V®F, w) =
H(VEF) when w is clear from the context.

Example. Assume w is symmetric and let v € V. Then C’Z-j’z)@k = w(v,v)v®(k*2). Thus the symmetric
tensor v®* is harmonic if and only if v is an isotropic vector for w. This is the same as the polynomial
function ¢ +— (£, x)* on V* being harmonic relative to the Laplace operator defined by w. On the other
hand, every skew-symmetric tensor is harmonic when w is symmetric.

Theorem 13.5 (Harmonic Tensor Duality). The space H(V®F) is invariant under &y x G and decom-
poses as

(13.10) HVE) =P E 0 U
AEA

Here A C Par(k), E* is the irreducible &1-module corresponding to the partition \ by Schur- Weyl duality,
and U is an irreducible G-module. Furthermore, the modules U are all distinct.

Proof. Since Cy;1;; = C;i;D;;Ci; = nCij, we have Ker(C;;) = Ker(r;;). Hence w is harmonic if and only
if T;;u=0for 1 <i < j <k Since 7;; commutes with pi(G), we see that H(V®F) is invariant under
G. Proposition 13.3 and Lemma 13.4 imply that H(V®*) is invariant under By (e,n) and the action of
Bk (e,n) on H(V®F) reduces to the action of &. Now apply Theorem 1.4. [J

MWeyl uses the term traceless; we prefer the term harmonic because when w is symmetric the contraction operators Cj;
act as Laplacians on the symmetric tensors.
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13.5. Decomposition of Harmonic Tensors for Sp(V). We now determine the set A of partitions
of k occurring in Theorem 13.5 and the corresponding irreducible representations U when G is the
symplectic group.” We take V = C" with n = 2] and the bilinear form

l

w(z,y) = Z TiYn+1—i — YiTn+1—i
i=1

(so the standard basis vectors e; are w-isotropic and e; is paired with e,,, es is paired with e,_1, and so
forth). Let G = Sp(V,w) and let H be the diagonal matrices in G. Then H is a maximal torus whose
elements are of the form

(13.11) h:diag[xl,...,xl,xfl,...,mfl], x; € C*

Following the notation in Lecture 10, we let D,, be the diagonal matrices, B, the upper-triangular
matrices, and N,, the upper-triangular unipotent matrices in GL(V). With our choice of w the group
B =GN B, is a Borel subgroup of G and N = G N N, is its unipotent radical. The weight lattice of H
is identified with Z!, where A\ = [my, ..., m;] gives the character

h — Z;’Ll e I'/IrrLL
when h is given by (13.11). The Weyl group W of G acts by all permutations and sign changes of the
coordinations of X. The set of B-dominant weights is thus identified with N/, | (see [16, §2.5]).
For A € N! | let (7*,U?) be the irreducible representation of G with highest weight A. If [\| = k then

we view \ as a partition of k with at most [ parts. Let E* = (V®%)N=()) be the corresponding irreducible
representation of &y on the space of GL(n, C) highest weight vectors of weight A, as in Theorem 3.8.

Theorem 13.6. Let A € Par(k,n). Then E* C H(V®F) if and only if X has at most | parts. Furthermore,
the space of w-harmonic k-tensors has isotypic decomposition

(13.12) HVE = P EeUM
A€Par(k,l)

under &y x Sp(V,w). Thus all the irreducible representations of Sp(V,w) occur in the decomposition of
the harmonic k-tensors, for k=1,2,....

The general form of decomposition (13.12) follows from Theorem 13.5. To determine the spectrum
A of Sp(V,w) on the harmonic tensors, we will compare the spaces of B eigenvectors in V®* with the
spaces B, If u = [my,...,m,] € Z" is a weight of D,,, then we denote by ji the restriction of u to H.
From (13.11)

(13.13) o=[mi—my,mo—mp_1,...,my —mMiq1].
Hence if p € N, is a B,-dominant weight, then i is a B-dominant weight. We introduce the notation
k kYN
WEN) = (VEHN(N), for e N .
Since N C N,,, we have E* C Wk(j).
Proposition 13.7. There are the following dichotomies:
(1) Assume X € N, . Then either W*(X\) N H(VEF) =0 or else WF(X) C H(VEF).
(2) Assume p € Par(k,n). Then either E*¥ NH(V®F) =0 or else E* = Wk (ji).

Proof. (1): By Theorems 3.7 and 13.1 we know that W¥()\) is an irreducible module for Bi(e,n). Since
Wk(A) N H(V®*) is a Bi(e,n)-invariant subspace of W¥()), it must be 0 or W¥*(\).

(2): Assume E*NH(V®F) #£ 0. Since E* € Wk(q), it follows by (1) that W* () € H(V®*). Furthermore,
W* (i) is irreducible under &,. Indeed, it is irreducible under By (g, n) by (1), and on the harmonic tensors
the action of By (e,n) is the same as the action of &;. By Theorem 3.8 it follows that W* (i) = E*. O

Proposition 13.8. Let i € Par(k,n). Then E* C H(V®*) if and only if u has at most | parts.

BSimilar methods work for the orthogonal groups but the details are considerable more intricate—see [16, §10.2] for a full
treatment.
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Proof. Let = [m1,...,my,). Define u, = u$" ® - @ u®°" as in Theorem 3.8, where u, =e1 A---Ae,
and ¢; = m; —mj 41 (with my,41 = 0). Then u, € E* and the depth of y is the largest integer d such
that c¢q # 0.

We first verify that u, is harmonic if and only if p < I. To see this, take any pair ¢, 7 with 1 <i < j < p.
If p <1, then C;ju, = 0 since w(e;, e;) = 0. Conversely, if p > [ then

Criviup=erN...Ne—1 ANejpa A... Nep #0,
since w(e;, e41) = 1. So u, is not harmonic in this case.

Thus to finish the proof of the proposition, we may assume that p has at most [ parts. Let 1 <p < g <.
We now show that

Cijlup@uqg) =0 forall1<i<p<j<p+aq.

Set v = up ® uq. In terms of the basis {es}, v is obtained by a double alternation:

1
v=— Z Z sgn(s)sgn(t) eg) ® - @ eg(p) @ 4(1) @ - -+ @ €y(q)-
pa SEG, tEG,

The contraction operator Cj; removes e,;) and e;;_p) from each term of the sum and multiplies the
resulting (p 4 ¢ — 2)-tensor by w(es(), €x(j—p)). But (i) +1(j —p) < p+q < n, while w(eq, ep) = 0 unless
a+b=n+1. Hence C; ;(v) =0. O

We now complete the proof of Theorem 13.6. By Propositions 13.7 and 13.8, it will suffice to prove
the following:
(x)  If X e N, is such that 0 # WH(X) C H(V®F), then |\ = k.
To establish (), take a nonzero tensor u € W¥*(\) and decompose u under the action of D,, as
u= Zuu, where p € Par(k,n) and u, € VE*(p).
"
Fix some p = [mq,...,m,] such that u, # 0. Then i = X and from (13.13) we see that

l

A = Z(ml — Mpt1-i) = k—2r, where r = Z m;.
i=1 i=l+1

Thus A € Par(k — 2r,1) so from Theorem 3.8 we know that 0 # E* C V@k=2r) Quppose for the sake of
contradiction that r > 0. Since the expansion operator Di, is injective and intertwines the action of G
on tensors, we have

0# (D12)"E* € WF(N).
Since C12D15 = nl, this implies that
Cia(D12)"E* = (D12)" 'E* £ 0.

But we have assumed that W¥()) in contained in the harmonic tensors, a contradiction. Thus r = 0 and
() is proved. O

Ezamples. 1. Assume k <[ and take A = [1,...,1] € Par(k). Then E* is the sgn representation of &y,
and U™ is the kth fundamental representation of Sp(V,w). From Theorem 13.6 we know that U* is the
sgn-isotypic component for &, in H(V®F). Hence

U = H(VER) N APV = Haew (VEF)
is the space of harmonic skew k-tensors.

2. Let k£ = 2 and assume [ > 2. Then the two partitions of 2 give the trivial and sgn representations of
Sy, respectively. Because the form w is skew-symmetric, every symmetric tensor is harmonic. Hence by
Theorem 13.6 we have

H(V®?) = S2(V) @ Hekew (V).

The summands are the irreducible representations of G with highest weights 2¢; and €1 + €.
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