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Dedicated to the memory of Irving E. Segal, who in-
troduced me to the beauties and mysteries of repre-
sentation theory.

Introduction

The unifying theme of these lectures is the duality between the irreducible representations occuring in a
linear group action and irreducible representations of the commuting algebra relative to this action. This
notion of duality in representation theory was introduced by Schur a century ago, and it has developed
into an important tool with many applications. In keeping with the tutorial aspect, I have tried to
tell the story starting from the beginning and including complete proofs of all the major results (at
several points I refer to the lectures of Benson-Ratcliff in the present volume for details). Of course, this
limits the scope of the lectures to the more classical parts of the theory: Schur-Weyl-Brauer duality for
finite-dimensional representations, and Howe duality between finite-dimensional and infinite-dimensional
highest-weight representations. Substantial parts of these lectures are based on joint work with Nolan
Wallach and I would like to acknowledge his contributions to my understanding of representation theory.
I would also like to thank Eng-Chye Tan and Chen-Bo Zhu for inviting me to give these lectures and for
their wonderful hospitality.

Lecture 1. Representations and Duality

1.1. Representations of Algebraic Groups. Assume that G ⊂ GL(n,C) is an algebraic group (defined
by a set of polynomial equations in the matrix entry functions). We denote by Aff(G) the commutative
algebra of regular functions on G (the restrictions to G of polynomials in the matrix entry functions xij

and det−1).
Let (ρ, L) be a representation of G on a complex vector space L. If L is finite-dimensional, then we

say that ρ is regular (rational) if the representative functions g 7→ tr(ρ(g)E), for E ∈ End(L), are regular.
Every regular function on G arises as such a representative function. When L is infinite dimensional, we
say that ρ is locally regular if for all x ∈ L there is finite-dimensional G-invariant subspace M containing
x so that (ρ|M , M) is a regular representation.

The most fundamental tool in representation theory is Schur’s Lemma: If E and F are irreducible,
finite-dimensional representations of a group G, then

dim HomG(E,F ) =
{

1 if E ∼= F
0 if E 6∼= F
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(HomG(E,F ) denotes the space of linear transformations T : E → F that intertwine the G actions on
the two spaces). To prove Schur’s Lemma, observe that the null space and range of T are G-invariant
subspaces, so T must be either zero or bijective, with the first case holding if E 6∼= F . When E ∼= F and
S, T are two nonzero intertwining maps, take λ to be an eigenvalue of S−1T . Since S−1T −λI commutes
with the action of G on E and has a nonzero null space, it must be zero.

1.2. Examples.

1. Let (π, V ) be any regular (finite-dimensional) representation of G. We denote by P(V ) the algebra of
complex-valued polynomial functions on V . Define a representation of G on P(V ) by

ρ(g)f(v) = f(π(g)−1v) for f ∈ P(V ) and g ∈ G.

Since the G action is linear, it commutes with the C× action on V by scalar multiplication, and we have
the direct-sum decomposition into finite-dimensional G-invariant subspaces

P(V ) =
⊕

k≥0

Pk(V ),

where Pk(V ) is the space of homogeneous polynomials of degree k. The action of G on each of these
spaces is regular, so the representation ρ is locally regular. Furthermore, the G action preserves the
multiplication on P(V ).

2. With (π, V ) as above, we can take the full tensor algebra

T (V ) =
⊕

k≥0

V ⊗k

with G action ρ(g)(v1 ⊗ · · · ⊗ vk) = π(g)v1 ⊗ · · · ⊗ π(g)vk. Since G leaves invariant each subspace
V ⊗k, the representation ρ is locally regular. As in the previous example, the G action preserves the
(noncommutative) multiplication on T (V ).

3. Let X ⊂ Cm be an affine algebraic set (the zero set of a family of polynomials) and suppose that there
is a regular G action on X

G×X −→ X, (g, x) 7→ g · x.
Set L = Aff(X) (the restriction to X of the polynomial functions on Cm). Let G act on L by ρ(g)f(x) =
f(g−1 · x). We can prove that this representation is locally regular as follows.

Given f ∈ Aff(X), set Vf = Span{ρ(g)f : g ∈ G}. The function (g, x) 7→ f(g−1 · x) on G × X is
regular, and Aff(G×X) = Aff(G)⊗Aff(X), there are regular functions φi on G and ψi on X so that

f(g−1 · x) =
p∑

k=1

φk(g)ψk(x).

In particular, Vf ⊂ Span{ψk} is finite-dimensional, so we can choose g1, . . . , gr in G such that the
functions fi = ρ(gi)f give a basis for Vf . Now choose points x1, . . . , xk in X so that the evaluation
functionals δxi are a basis for V ∗

f . Since

〈ρ(g)fi, δxj 〉 = ρ(ggi)f(xj) =
r∑

k=1

φk(ggi)ψ(xj),

we see that the representation of G on Vf is regular. Thus (ρ, L) is locally regular.

1.3. Reductive Groups and Isotypic Decompositions. A complex algebraic group G is called re-
ductive if every finite dimensional regular representation decomposes as a direct sum of irreducible rep-
resentations (this property is equivalent to every G-invariant subspace of a regular representation having
a G-invariant complementary subspace). The classical groups are reductive:

• the general linear group GL(n,C) of invertible n× n complex matrices
• the special linear group SL(n,C) of n× n complex matrices of determinant one
• the orthogonal group O(Cn, ω) of n×n matrices preserving a non-degenerate symmetric bilinear

form ω(x, y) = xtBy on Cn, where B is a symmetric invertible n× n matrix (defining equation
gtBg = B)
• the special orthogonal group SO(Cn, ω) of orthogonal matrices of determinant one
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• the symplectic group Sp(C2n, ω) of 2n×2n matrices preserving a non-degenerate skew-symmetric
bilinear form ω(x, y) = xtJy on C2n, where J is a skew-symmetric invertible 2n × 2n matrix
(defining equation gtJg = J)

Finite groups are shown to be reductive by the method of averaging over the group. The proof that
classical groups are reductive can be carried out analytically by integrating over a compact real form
(Weyl’s unitary trick – see [16, Theorem 2.4.7]), or algebraically by using a Casimir operator (see [16,
Theorem 2.4.5]). Direct products of reductive groups are reductive, and the quotient of a reductive group
by a closed normal subgroup is reductive (this is obvious). An algebraic group is reductive if and only if
its identity component is reductive.

Assume G is reductive, and let Ĝ be the equivalence classes of irreducible finite-dimensional regular
representations of G. For each λ ∈ Ĝ fix a representation (πλ), F λ) in the class λ. Let λ∗ be the
equivalence class of the contragredient representation on the dual space (F λ)∗.

Given a locally regular representation (ρ, L) of G, set

L(λ) =
∑

V (sum of all V ⊂ L such that ρ|V ∼= F λ).

Call L(λ) the λ–isotypic component of L. Define Spec(ρ) = {λ ∈ Ĝ : L(λ) 6= 0} (the G-spectrum of
(ρ, L)).

Proposition 1.1. L =
⊕

λ∈Spec(L)L(λ) (algebraic direct sum).

Proof. We first verify that the sum is direct. Suppose, for the sake of contradiction, that L(λ) ∩L(µ) 6= 0
for some λ, µ ∈ Ĝ with λ 6= µ. Then there exists a G-invariant subspace W 6= 0 so that W ⊂ L(λ) ∩ L(µ)

and dimW < ∞. Since G is reductive, W = V1 ⊕ · · · ⊕ Vn, where each Vj is an irreducible G-module.
Hence Vj

∼= F λ and also Vj
∼= F µ, a contradiction.

To see that L is the sum of its isotypic components, set L0 =
⊕

λ L(λ). If L0 6= L, then there exists a
nonzero x ∈ L\L0. But x is contained in a finite dimensional G invariant subspace W that is the direct
sum of irreducible G-invariant subspaces. Hence W ⊂ L0, a contradiction. �

Corollary 1.2. There is a linear projection x 7→ x\ from L onto the space LG of G-fixed vectors.

We now turn to the G-module structure of the isotypic components of a representation L. Denote by
HomG(F λ, L) the vector space of all linear maps T : F λ → L that intertwine the G actions on these
spaces. This is the space of covariants of type λ.

Theorem 1.3. If (ρ, L) is a locally regular representation of a complex reductive algebraic group G, then

L ∼=
⊕

λ∈Spec(ρ)

Eλ ⊗ F λ,

where Eλ = HomG(F λ, L) and G acts by 1⊗ ρ on each summand. In particular, the multiplicity of λ in
ρ is the dimension of the space of covariants of type λ.

Proof. Let T ∈ HomG(F λ, L) be a nonzero intertwining operator. Then T is injective, by Schur’s lemma.
Conversely, if W ⊂ L(λ) is a G invariant irreducible subspace, then there is an intertwining map T so
that W = T (F λ). This implies that the map T ⊗ v 7→ Tv from Eλ ⊗ F λ to L(λ) is surjective.

It remains to prove that the map Eλ ⊗ F λ → L(λ) is injective. Suppose vj ∈ F λ and Tj ∈ Eλ satisfy∑
j Tjvj = 0. We may assume that {vj} is linearly independent. Fix a decomposition

L(λ) =
⊕

i

Fi, Fi
∼= F λ.

This defines G-invariant projections Pi : L(λ) → F λ, and by assumption
∑

j

PiTjvj = 0 for all i.

By Schur’s lemma, PiTj = cijI for some cij ∈ C, so we conclude that cij = 0 for all i, j, by the linear
independence of {vj}. Hence Tj = 0 for all j. �
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1.4. Multiplicities and Duality. One says that L is multiplicity-free as a G module if dimEλ = 1 for
all λ ∈ Spec(ρ). In this case L is uniquely determined as a G-module by its spectrum. For a detailed
analysis of such representations when L = P(X) and X is a vector space or affine variety with regular G
action see the lectures by Benson–Ratcliff in this volume.

In these lectures we will study representations (ρ, L) that are not multiplicity free. We want to
determine

• The spectrum Spec(ρ) ⊂ Ĝ
• The multiplicities mλ = dimEλ

• Explicit models for the multiplicity spaces Eλ.
Let EndG(L) be the algebra of linear transformations on L that commute with the G action. There

is a natural representation of this algebra on each multiplicity space Eλ. Indeed, if A ∈ EndG(L) and
T ∈ Eλ, then the linear map A ◦ T : F λ → L also commutes with the G action on L, and hence is an
element of Eλ. Following the ideas of I. Schur, H. Weyl and R. Howe, the unifying theme in our approach
will be

Hidden Symmetry: Study the spaces Eλ as modules for good subalgebras of EndG(L).
The term hidden symmetry comes from applications of representation theory to quantum mechanics in
cases where the geometric symmetries such as rotation invariance do not suffice to explain the multiplic-
ities in the energy spectrum. In some cases, one can find a larger symmetry group containing G and
extend the representation of G to a representation of this larger group on L that is multiplicity free. In
other cases the hidden symmetries are given by a Lie algebra of differential operators commuting with
the G action (see [30]).

When L is infinite-dimension (for example, when L = Aff(X) with X an affine G variety), then End(L)
is too big to deal with purely algebraically. In the context of unitary representations on a Hilbert space,
one uses the von Neumann algebra of bounded operators that commute with G. In our algebraic setting
we shall assume that L is of countable dimension and that we have a subalgebraR ⊂ End(L) that satisfies

(i) R acts irreducibly on L
(ii) R is invariant under G, relative to the action Ad(g)T = ρ(g)Tρ(g)−1, and the representation Ad

of G on R is locally regular
In case dimL < ∞ we take R = End(L) ∼= L ⊗ L∗ and these conditions are always satisfied. When
L = P(X) with X a smooth affine G variety, we take R = D(X), the algebraic differential operators on
X (see Agricola [1]). In particular, if X is a vector space with linear G action, then D(X) is the Weyl
algebra PD(X) of differential operators with polynomial coefficients, which we will examine in detail in
Lecture 8.

Fix R satisfying the conditions (i) and (ii) and let

RG = {T ∈ R : Ad(g)T = T for all g ∈ G}
(the commutant of ρ(G) in R).

Theorem 1.4. Each multiplicity space Eλ is an irreducible RG module. Furthermore, if λ, µ ∈ Spec(ρ)
and Eλ ∼= Eµ as an RG module, then λ = µ.

In the next lecture we will prove this theorem.a At this point we derive some consequences. The
following corollary plays a fundamental role in our approach to Howe duality.

Corollary 1.5. Let σ be the representation of RG on L. Then (σ, L) is a semisimple RG module, and
each irreducible submodule Eλ occurs with finite multiplicity dimF λ.

When L is finite-dimensional then R = End(L), and from the inequivalence of the representations Eλ

together with Schur’s lemma we obtain the classical Double Commutant Theorem:

Corollary 1.6. If dimL <∞ and B = EndG(L), then Span{ρ(G)} consists of all linear transformations
on L that commute with B.

aSee [16, Theorem 4.5.12] for the case that R is a graded algebra; the generalization presented here is due to Agricola
[1].
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Corollary 1.7 (Duality Correspondence). Let Spec(σ) denote the set of equivalence classes of the irre-
ducible representations of the algebra RG that occur in L. Then the map F λ → Eλ sets up a bijection
between Spec(ρ) and Spec(σ).

Lecture 2. Proof of Duality Theorem and Examples

2.1. Density Lemmas.

Lemma 2.1 (Dixmier-Schur). Let L be a vector space over C of countable dimension. Let R ⊂ End(L)
be a subalgebra that acts irreducibly on L. Suppose A ∈ End(L) commutes with R. Then A = λI for
some λ ∈ C.

Proof. Suppose that A is not a multiple of the identity. Since R acts irreducibly, Schur’s lemma implies
that A − λI is invertible for all λ ∈ C. Hence for every nonzero polynomial p(x) in one variable the
operator p(A) is invertible (factor p(x) into linear factors). Thus there is an algebra homomorphism from
the field C(x) of rational functions in one variable into End(L) given by p(x)/q(x) 7→ p(A)q(A)−1. Fix
a nonzero vector v ∈ L. Then the linear map r(x) 7→ r(A)v is injective from C(x) to L. But C(x) has
uncountable dimension as a vector space over C, since the functions {(x − λ)−1 : λ ∈ C} are linearly
independent, a contradiction. �

Assume now that L has countable dimension as a complex vector space and that R ⊂ End(L) is a
subalgebra that acts irreducibly on L.

Lemma 2.2 (Jacobson). Let X be any finite-dimensional subspace of L. Then every f ∈ Hom(X,L) is
of the form r|X for some r ∈ R.

Proof. Let {x1, . . . , xn} be a basis for X . Define

L(n) = L⊕ · · · ⊕ L︸ ︷︷ ︸
n copies

, X(n) = X ⊕ · · · ⊕X︸ ︷︷ ︸
n copies

, x(n) = [x1, . . . , xn] ∈ X(n).

Let R act on L(n) by r · [y1, . . . , yn] = [ry1, . . . , ryn] for r ∈ R and yi ∈ L, and extend f to a linear map
f (n) : X(n) → L(n) by

f (n)[y1, . . . , yn] = [f(y1), . . . , f(yn)].
Denote by M = R·x(n) the cyclic R submodule generated by x(n). Define Li ⊂ L(n) to be the vectors

that have arbitrary entries from L in the ith place and are zero in the other positions. Pick a maximal
subset I ⊂ {1, . . . , n} with the property that the sum

N = M +
∑

i∈I

Li

is direct. Then N is an R submodule of L(n). Since R acts irreducibly on L, the R modules N ∩ Lj are
either zero or Lj for each j. But if N ∩ Lj = 0, then the sum N +Lj would be direct, contradicting the
choice of I . Hence N = L(n), proving that M has an R-invariant complement. Thus there is a projection
P : L(n) →M that commutes with the action of R. We can write

P [y1, . . . , yn] =
[ n∑

j=1

p1jyj , . . . ,

n∑

j=1

pnjyj

]

where pij ∈ End(L). Since P commutes with R on L(n), the transformations pij all commute with R on
L. Hence pij ∈ CI by Lemma 2.1 and [pij ] is a matrix of scalars.

Now calculate

f (n)P [y1, . . . , yn] =
[ n∑

j=1

p1jf(yj), . . . ,
n∑

j=1

pnjf(yj)
]

= Pf (n)[y1, . . . , yn].

Hence f (n) commutes with P . Since x(n) ∈M we have

f (n)x(n) = f (n)Px(n) = Pf (n)x(n) ∈M.

Thus there exists r ∈ R so that f (n)x(n) = rx(n). Since {x1, . . . , xn} is a basis for X , this implies that
f = r|X . �
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Corollary 2.3 (Burnside). If dimL <∞ then R = End(L).

Now let (ρ, L) be a locally regular representation of G with dimL countable. Assume that R ⊂ End(L)
satisfies conditions (i) and (ii) stated before Theorem 1.4.

Lemma 2.4. Let X ⊂ L be a finite-dimensional G invariant subspace. Then RG|X = HomG(X,L).

Proof. Let T ∈ HomG(X,L). Then by Lemma 2.2 there exists r ∈ R such that r|X = T . Since G is
reductive, condition (ii) implies that there is a projection r 7→ r\ from R → RG. But the map R →
Hom(X,L) given by y 7→ y|X intertwines the G actions, since X is G-invariant. Hence T = T \ = r\|X .
�

2.2. Proof of Duality Theorem. Take λ ∈ Spec(ρ) and let Zλ ⊂ L(λ) be any irreducible G-submodule.
Given f ∈ L, we denote by Uf = RGf the cyclic RG module generated by f . We write C[G] for the
group algebra of G (the formal finite linear combinations of the elements of G).

(a) If 0 6= M ⊂ L(λ) is an RG-module, then M ∩ Zλ 6= 0.

To verify this, take 0 6= m ∈ M and set X = Span{ρ(G)m}. Then dimX < ∞ and X ⊂ L(λ). Hence
there exists T ∈ HomG(X,Zλ) with Tm 6= 0. By Lemma 2.4 there exists r ∈ RG with r|X = T . Then
rm = Tm ∈M ∩ Zλ.

(b) If 0 6= f ∈ Zλ then Uf ∩ Zλ = Cf .
Take u = rf ∈ Uf ∩ Zλ. Since Zλ = Span{ρ(G)f}, we have

rZλ = Span{ρ(G)rf} = Span{ρ(G)u} ⊂ Zλ

Thus r|Zλ
∈ EndG(Zλ) = CI by Schur’s Lemma. So u = r · f ∈ Cf , proving (b).

(c) If f ∈ Zλ is nonzero, then Uf is an irreducible RG-module.

Indeed, if 0 6= M ⊂ Uf is an RG-submodule, then 0 6= M ∩ Zλ ⊂ Cf by (a) and (b). Thus f ∈ M and
hence M = Uf , which proves (c).

(d) Let f1, . . . , fd be a basis of Zλ. Set Mi = Ufi . Then the sum
∑d

i=1Mi is direct and Mi
∼= Mj as

RG modules.

We have Span{ρ(g)|Zλ
: g ∈ G} = End(Zλ) by Corollary 2.3. Thus for each i there exists an element

ui ∈ C[G] such that ρ(ui)fj = δijfj . Suppose mi ∈ Mi and
∑

imi = 0. There exist ri ∈ RG so that
mi = rifi. Hence

0 = ρ(uj)
( ∑

i

mi

)
=

∑

i

ρ(uj)rifi =
∑

i

riρ(uj)fi = rjfj = mj

for j = 1, . . . , d. This proves the first statement of (d). For the second, apply Corollary 2.3 again to obtain
uji ∈ C[G] such that ρ(uji)fi = fj . Since Mi and Mj are irreducible by (c), the map ρ(uji) : Mi → Mj

is an RG-module isomorphism, by Schur’s Lemma.

(e) Let Mi be as in (d). Then L(λ) =
⊕d

i=1Mi.

Recall that L(λ) is the sum of all irreducible G-submodules of L that are in the class λ. Thus it is enough
to show that if Wλ is such a submodule then

(2.1) Wλ ⊂
d⊕

i=1

Mi .

Take a G isomorphism T : Zλ →Wλ. Then Lemma 2.4 furnishes r ∈ RG such that r = T on Zλ. Hence
Wλ satisfies (2.1), which proves (e).

The first assertion of Theorem 1.4 now follows from (c), (d), and (e). To prove the second assertion,
it suffices to prove the following.

(f) Let fλ and fµ be nonzero vectors in irreducible G subspaces Zλ and Zµ. Suppose Ufλ
∼= Ufµ as

RG-modules. Then λ = µ.
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Let T : Ufλ
→ Ufµ be an RG-module isomorphism. Let X be a finite-dimensional G-invariant subspace

containing fλ and Tfλ. There is a projection operator Pλ : X → L(λ) onto the λ-isotypic component of
L, and Lemma 2.4 furnishes r ∈ RG such that r|X = Pλ. Thus r · fλ = fλ so we have

Tfλ = Trfλ = rTfλ = PλTfλ ∈ L(λ).

Since T is an RG module isomorphism, it follows that Ufµ ⊂ L(λ). Hence fµ ∈ L(λ), and so we conclude
that µ = λ. �

2.3. Examples.

1. (Product Groups) Let H and K be reductive complex algebraic groups, and let G = H × K
be the direct product algebraic group, where Aff(G) ∼= Aff(H) ⊗ Aff(K) under the natural pointwise
multiplication map. We can use the duality theorem to prove that Ĝ = Ĥ × K̂: Every irreducible regular
representation (L, ρ) of G is given by

(2.2) L = M ⊗N, ρ(h, k) = σ(h)⊗ τ(k) for h ∈ H and k ∈ K
where (σ,M) is an irreducible representation of H and (τ,N) is an irreducible representation K. To prove
this, suppose first that (ρ, L) is defined by (2.2). Then Corollary 2.3 implies that End(L) is spanned by
the transformations {ρ(h, k) : h ∈ H, k ∈ K} and hence EndG(L) = CI , showing that L is irreducible.

Conversely, given an irreducible regular representation (ρ, L) of G, use Theorem 1.4 (withR = End(L))
to decompose L as a K-module:

(2.3) L =
⊕

λ∈K̂

Eλ ⊗ F λ .

Set σ(h) = ρ(h, 1) and τ(k) = ρ(1, k). Since σ(h) commututes with τ(k), H acts on each Eλ by some
representation µλ. We claim that Eλ is irreducible under H . To prove this, note that

(2.4) EndK(L) ∼=
⊕

λ∈K̂

End(Eλ)⊗ I .

Given T ∈ EndK(L), we know by Corollary 2.3 that T is a linear combination of the transformations
σ(h)τ(k). Under the isomorphism (2.4) the K-invariant transformations only act on Eλ. This proves
that EndK(L) is spanned by {σ(h) : h ∈ H}, and hence Eλ is irreducible under H by Theorem 1.4.
Thus each summand in (2.3) is an irreducible G module, by the earlier argument, so there can be only
one summand.

2. (Multiplicity-free Representations of Product Groups) Suppose (ρ, L) is any locally regular
representation of G that is multiplicity-free. By Example 1. the isotypic decomposition of L under H×K
is of the form

(2.5) L =
⊕

(α, β)∈Λ

Eα ⊗ F β

where Λ ⊂ Ĥ × K̂ and Eα is the irreducible H-module of type α, while F β is the irreducible K-module
of type β. Set σ = ρ|H and τ = ρ|K . Then Spec(σ) is the projection Λ → Ĥ , whereas Spec(τ) is the
projection Λ→ K̂. In general Λ is not determined by these projections. If both of these projections are
injective, we say that the representation ρ sets up a duality correspondence between Spec(σ) and Spec(τ).
Clearly such representations of G must be very special, and in these lectures they will play an important
role. The next example is the most familiar of them.

3. (Two-sided group action) Let K be any reductive complex algebraic group. Set G = K ×K and
L = Aff(K). Define the representation ρ of G on L by

ρ(x, y)f(k) = f(x−1ky) for k, x, y ∈ K.

From Example 1. we know that Ĝ = K̂ × K̂. Consider Aff(K) as a K-module relative to the right
translation action ρ(1, k) and apply Theorem 1.3:

(2.6) Aff(K) =
⊕

λ∈K̂

Eλ ⊗ F λ .
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Here K acts on Eλ = HomK(F λ,Aff(K)) by ρ(k, 1) ◦ T , where T : F λ → Aff(K) intertwines the action
of K on F λ with the right translation action of K on Aff(K).

We claim that Eλ ∼= F λ∗
. To prove this, define a map Eλ → F λ∗

(a special case of Frobenius
reciprocity) by

T 7→ T̂ ∈ F λ∗
, 〈T̂ , v〉 = (Tv)(1) for v ∈ F λ.

This map obviously intertwines the action of K. It is injective, since (Tv)(1) = 0 for all v ∈ F λ implies

(Tv)(k) = (Tπλ(k)v)(1) = 0 for all k ∈ K,

and hence T = 0. The map is surjective, since v∗ ∈ F λ∗
defines T ∈ Eλ by

(Tv)(k) = 〈v∗, πλ(k)v〉.

Clearly T̂ = v∗. Thus the decomposition (2.6), relative to the action of K ×K, is

Aff(K) ∼=
⊕

λ∈K̂

F λ∗
⊗ F λ ∼=

⊕

λ∈K̂

End(F λ) .

This shows that Aff(K) is multiplicity free as a representation of K×K and there is a duality correspon-
dence λ←→ λ∗.

4. (Harmonics on the zero-sphere) Let G = O(1) = {±1} acting on C, and take L = P(C). In this
case

Ĝ = {F+, F−} (trivial, signum).
The G-isotypic decomposition of L is thus

L = L+ ⊕ L− (even polynomials ⊕ odd polynomials)

and each component has infinite multiplicity. We apply the duality philosophy to explain the multiplicities
by finding operators on L that commute with G. Let PD(C) be the polynomial coefficient differential
operators on P(C). Then one has

(a) The operators ∆ = (d/dx)2, multiplication by x2, and x(d/dx) + 1/2 (shifted Euler operator)
commute with G and span a Lie algebra g′ ∼= sl(2,C) in PD(C).

(b) The Lie algebra g′ generates the commutant PD(C)G of G.

The proof of (a) is an easy calculation. The proof of (b) follows by considering the symbol f(x, ξ) of a
differential operator and using the fact that the algebra of G-invariant polynomials in (x, ξ) is generated
by the quadratic polynomials x2, xξ, and ξ2.

We define the G-harmonic polynomials

H = Ker(∆) = (C · 1)⊕ (C · x).
Since ∆ commutes with G, we have G · H = H. Also H is multiplicity-free as a G-module. Let

I = P(C)G = C[x2]

(the G-invariant polynomials). Then we have the Invariant-Harmonic Decomposition:

P(C) = E+ ⊕E− ∼= I ⊗H

where E+ = C[x2] · 1, E− = C[x2] · x. We view this decomposition from the perspective of duality as
follows:

• E+ is an irreducible g′ module generated by 1.
• E− is an irreducible g′ module generated by x.
• P(C) is multiplicity-free as module for g′ ×G:

P(C) = (E+ ⊗ F+)⊕ (E− ⊗ F−)

From the algebraic point of view, we now have a complete picture of P(C) as a module for G and
g′. However, there is much more that can be seen on the analytical side. There is a pre-Hilbert space
structure on P(C) given by the Fischer inner product:

〈f | g〉 = ∂(f)g∗(0) =
∫

C
f(x)g(x) dµ(x)
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(where dµ(x) is normalized Gaussian measure on C). We define the Bargmann-Fock space H2 as the
completion of P(C) in this norm. The elements of H2 are holomorphic functions on C that are square-
integrable relative to Gaussian measure. Let

g′0 = {X ∈ g′ : X is skew-Hermitian relative to 〈· | ·〉 }.

Then g′0 is a real form of the Lie algebra g′ and is isomorphic to sl(2,R). Let G′ = SL(2,R) and let G̃′

be the two-fold cover of G′. The analytic duality correspondence between G and G̃′ is the following.

Theorem 2.5. The representation of g′0 on P(C) integrates to a unitary representation of G̃′ on H2 (the
oscillator or metaplectic representation). It decomposes under the action of G̃′ × G as a direct sum of
irreducible Hilbert spaces

(H2
+ ⊗ F+)⊕ (H2

− ⊗ F−) (multiplicity-free)

This is a special case of Howe duality for unitary highest-weight representations. We will study it in full
generality in later lectures.

Lecture 3. Schur-Weyl Duality

3.1. Commutant of GL(n) Action on Tensors. Consider the action of GL(n,C) on
⊗k Cn by the

kth tensor power ρk of its defining representation:

ρk(g)(v1 ⊗ · · · ⊗ vk) = gv1 ⊗ · · · ⊗ gvk for vi ∈ Cn.

The symmetric group Sk acts on
⊗k Cn by permuting the tensor positions:

σk(s)(v1 ⊗ · · · ⊗ vk) = vs−1(1) ⊗ · · · ⊗ vs−1(k)

(the vector in position i is moved to the vector in position s(i)). It is clear that σk(s)ρk(g) = ρk(g)σk(s)
for all g ∈ GL(n,C) and s ∈ Sk.

Proposition 3.1 (Schur). Any linear transformation B on
⊗k Cn that commutes with σk(Sk) is a linear

combination of the transformations ρk(g), g ∈ GL(n,C).

Proof. Let {ei} be the standard basis for Cn. Then
⊗k Cn has basis

eI = ei1 ⊗ · · · ⊗ eik
, where I = (i1, . . . , ik) with 1 ≤ ij ≤ n.

For s ∈ S we have σk(s)eI = es·I , where s · I = (is−1(1), . . . , is−1(k)) (s moves the positions 1, . . . , k of the
indices; it does not permute their values 1, . . . , n). If we write BeJ =

∑
I b

I
JeI , then the condition that

B commute with Sk is expressed by

(3.1) bIJ = bs·Is·J for all s ∈ Sk and all indices I, J

Thus if we denote by Ξ = {(I, J)} (all pairs of indices), then Sk acts diagonally on Ξ and the matrix for
B is an invariant function on Ξ.

Set B = EndSk
(
⊗k Cn) and let T 7→ T \ be the projection from End(

⊗k Cn) onto B. The bilinear
form (X,Y ) = tr(XY ) on B is nondegenerate, since (T, Y ) = (T \, Y ) for T ∈ End(

⊗k Cn) and Y ∈ B.
Write

B0 = Span{ρk(g) : g ∈ GL(n,C)}.
Then to show B0 = B, it suffices to show that if B ∈ B and (B, ρk(g)) = 0 for all g ∈ GL(n,C), then
B = 0. Define F (g) = (B, ρk(g)). Since g 7→ F (g) is a polynomial function on the space Mn(C) of n× n
matrices and F vanishes on GL(n,C), it is identically zero. Hence {bIJ} satisfy the linear equations

(3.2)
∑

I,J

bIJxIJ = 0 for all x ∈Mn(C)

in addition to the invariance condition (3.1), where xIJ = xi1j1 · · ·xikjk
.

It is easy to verify that xIJ = xI′J′ as functions on Mn(C) if and only if I = s · I ′ and J = s · J ′ for
some s ∈ Sk. Let Γ be a cross section for the orbits of Sk on Ξ. Then the set of monomials {xγ : γ ∈ Γ}
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are all distinct, and hence linearly independent functions on Mn(C). Since bIJ is constant on Sk orbits
by (3.1), equation (3.2) can be written as

∑

γ∈Γ

|Sk · γ|bγxγ = 0 for all x ∈Mn(C).

Thus bγ = 0 for all γ. �
Applying Proposition 3.1 and Theorem 1.4, we obtain a preliminary version of Schur-Weyl duality:

Corollary 3.2. There are irreducible, mutually inequivalent Sk modules Eλ and irreducible, mutually
inequivalent GL(n,C) modules F λ so that

⊗k
Cn ∼=

⊕

λ∈Spec(ρk)

Eλ ⊗ F λ

as a representation of Sk ×GL(n,C). The representation Eλ uniquely determines F λ and conversely.

3.2. Highest Weight Theory. To make Schur-Weyl duality an effective tool, we will construct the
irreducible regular representations of GL(n,C) by the Theorem of the Highest Weight. We give details
for GL(n,C); analogous results hold for any complex reductive algebraic group (see [16, Chap. 5]). The
starting point is the Gauss decomposition. Let H be the subgroup of diagonal matrices, N the subgroup
of upper-triangular unipotent matrices (all diagonal entries 1), and N̄ the subgroup of lower triangular
unipotent matrices. Then N̄HN is a Zariski-dense open subset of G, and a generic element g ∈ G has
a unique factorization g = n̄hn.b Thus a regular representation of G is completely determined by its
restriction to the subgroups N̄ , H , and N .

The subgroup H is a maximal algebraic torus in G. In particular, it is a reductive complex algebraic
group. The irreducible representations of H are one-dimensional and given by

h = diag[x1, . . . , xn] 7→ hµ = xm1
1 · · ·xmn

n , where µ = [m1, . . . ,mn] ∈ Zn.

Thus we may identify Ĥ with Zn. If (ρ, V ) is a regular representation of G, then the restriction of ρ to
H decomposes into weight spaces:

V =
⊕

µ∈Φ(V )

V (µ), where V (µ) 6= 0 and ρ(h)v = hµv for v ∈ V (µ).

We call Φ(V ) ⊂ Ĥ the set of weights of V .
Let Norm G(H) be the normalizer of H in G (HgH = gH), and W = Norm G(H)/H the Weyl group

of G. The elements of W permute the weight spaces and the weights of V . In this case, W ∼= Sn may
be identified with the group of permutation matrices in G, and the action of W on H and Ĥ is by the
usual permutation of coordinates. Every W orbit in Ĥ contains a unique dominant weight

µ = [m1, . . . ,mn], m1 ≥ m2 ≥ · · · ≥ mn .

We denote by Zn
++ the set of all such µ ∈ Zn.

Examples

1. Let V = Cn be the defining representation of G. Then

Φ(V ) = {ε1, . . . , εn}, where ε(h) = xi for h = diag[x1, . . . , xn]

Here Φ(V ) = W · ε1 is a single W orbit with dominant weight ε1.

2. Let V =
⊗k Cn. The basis {eI} used in the proof of Proposition 3.1 diagonalizes ρk(H). For an index

I = [i1, . . . , ik], with 1 ≤ ij ≤ n, define

µI = [µ1, . . . , µn], where µp = #{j : ij = p}.

Then ρk(h)eI = hµI eI for h ∈ H . Hence for λ ∈ Ĥ ,

V (λ) = Span{eI : µI = λ}.

bThe precise condition from linear algebra is that the principal minors ∆i(g) 6= 0 for i = 1, 2, ..., n.
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In particular, V (λ) 6= 0 if and only if λi ≥ 0 for i = 1, . . . , n and |λ| = k, where |λ| = λ1 + · · ·+λn. Thus
Φ(

⊗k Cn) = W · Par(k, n), where Par(k, n) is the set of all partitions of k with at most n parts. Each
such partition defines a dominant weight µ of H such that h 7→ hµ is a polynomial function on H (no
negative powers of the coordinates xi).

3. Let g = Lie(G) = Mn(C) be the Lie algebra of G, and let Ad(g)x = gxg−1 be the adjoint representa-
tion. The weights are 0 and {εi − εj : 1 ≤ i 6= j ≤ n}. We call the nonzero weights the roots of h on g.
The corresponding root spaces are

g0 = h = Lie(H), gεi−εj = CEij

where Eij is the usual elementary matrix with 1 in position (i, j) and zero elsewhere. If α = εi− εj , then
we say α > 0 if i < j (so Eij is upper triangular) and α < 0 if i > j. We denote the set of positive roots
by Φ+ and the set of negative roots by Φ−. Thus

n = Lie(N) =
⊕

α∈Φ+

gα, n̄ = Lie(N̄) =
⊕

α∈Φ−

gα.

The Lie algebra (additive) version of the Gauss decomposition is the triangular decomposition g = n̄⊕h⊕n.

If (ρ, V ) is any regular representation of G, then there is an associated Lie algebra representation dρ
of g defined by

dρ(X)v =
d

dt
ρ(exp tX)v

∣∣∣∣
t=0

Clearly ρ(g)dρ(X)v = dρ(Ad(g)X)ρ(g)v. Hence if h ∈ H , Eα ∈ gα and v ∈ V (µ), then

ρ(h)dρ(Eα)v = dρ(Ad(h)Eα)ρ(h)v = hα+µdρ(Eα)v.

This shows that dρ(gα)V (µ) ⊂ V (µ+ α). Thus

(3.3) dρ(n)V (µ) ⊂
⊕

λ∈µ+Φ+

V (λ).

We call µ ∈ Φ(V ) an N -extreme weight if µ+ α 6∈ Φ(V ) for all α ∈ Φ+.

Theorem 3.3. Let (ρ, V ) be an irreducible regular representation of G. Then there is a unique N -extreme
weight µ0 ∈ Φ(V ). This weight is dominant, the weight space V (µ0) = V N (the N -fixed vectors in V ),
and dimV N = 1.

Proof. Define the dominance order on Ĥ by ν ≺ µ if µ 6= ν and µ−ν is a nonnegative integer combination
of positive roots. Since Φ(V ) is a finite set, it contains an element µ0 that is maximal relative to this
partial order. Any maximal element must be dominant, since if µ0 had a pair of coordinates mi < mj

for some i < j, then
ν = µ0 + (mj −mi)(εi − εj) = sijµ0 ∈ Φ(V ),

where sij is the permutation i ↔ j. This would contradict the maximality of µ0. Since no element of
µ0 + Φ+ can be a weight of V , we see from (3.3) that dρ(n)V (µ0) = 0. But N = expn, so we conclude
that V (µ0) ⊂ V N .

Take any nonzero vector v0 ∈ V (µ0). Then by irreducibility and the Gauss Decomposition,

V = Spanρ(G)v0 = Spanρ(N̄)v0 = dρ(U(n̄))v0,

where U(n̄) is the universal enveloping algebra of n̄. But the nonzero weights of H on U(n̄) are positive
integer combinations of negative roots, and the zero weight space is C1. Hence

V = Cv0 +
⊕

λ≺µ0

V (λ).

It follows that µ0 is the unique maximal weight and V (µ0) = V N . �
We call µ0 the highest weight of the representation (ρ, V ). We next show that µ0 determines (ρ, V )

uniquely up to isomorphism. Let s0 ∈ W be the permutation [1, 2, . . . , n] 7→ [n, . . . , 2, 1]. Then
Ad(s0)N = N̄ and s0 · Φ+ = Φ− (this last property uniquely characterizes s0). Since the weights
and weight multiplicities of (ρ, V ) are invariant under the Weyl group, we see from Theorem 3.3 that
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Φ(V ) has a unique minimal element −s0µ0 (the lowest weight), and V (−s0µ0) = V N̄ . The natural bilin-
ear form on V × V ∗ is invariant under H , so its restriction to V (λ) × V ∗(−λ) is nondegenerate. Thus
−µ0 is the lowest weight of V ∗.

Theorem 3.4. Let (ρ, V ) and (σ, U) be irreducible regular representations of G with the same highest
weight λ. If v0 ∈ V and u0 ∈ U are highest weight vectors, then there exists a unique G-isomorphism
T : U → V such that Tu0 = v0. Thus (ρ, V ) is uniquely determined by its highest weight.

Proof. We can take v0 ∈ V N and v∗0 ∈ V ∗N̄ so that 〈v0, v∗0〉 = 1. Set

ϕ(g) = 〈ρ(g)v0, v∗0〉 (generating function).

Then ϕ ∈ Aff(G) and ϕ(n̄hn) = 〈ρ(h)v0, ρ∗(n̄)v∗0〉 = hλ for all n̄hn ∈ N̄HN . This equation uniquely
determines ϕ in terms of the highest weight λ, and using U and u0 would give the same generating
function.

Define T0 : V → Aff(G) by T0v(g) = 〈ρ(g)v, v∗0〉. Then T0 intertwines the representation ρ on V
with the right translation representation on Aff(G). Since T0v0 = ϕ, the map T0 is nonzero. Hence it is
injective, by Schur’s lemma, and V ∼= T0(V ). But V = Span{ρ(G)v}, so T0(V ) is spanned by the right
translates of the function ϕ. Let T1 : U → Aff(G) be likewise defined. Then T = T−1

0 T1 is the desired
intertwining map. �

For applications to duality we will need the following sharpening of Theorem 3.3.

Theorem 3.5. Let (ρ, L) be any regular representation of G. Suppose that 0 6= v0 ∈ L(λ)N . Then the
subspace V = Span{ρ(G)v0} of L is an irreducible G-module with highest weight λ.

Proof. From the proof of Theorem 3.3 we have a weight space decomposition

V = Cv0 ⊕
⊕

µ≺λ

V (µ).

Let U0 ⊂ V be a proper G-invariant subspace. Then v0 6∈ U0, so U0 =
⊕

µ≺λ U0(µ). Since G is reductive,
there is a complementary G-invariant subspace U1 so that V = U0⊕U1. Since U1 is the direct sum of its
weight spaces, we have v0 ∈ U1 and hence U1 = V , proving irreducibility. �

Corollary 3.6. For every dominant weight λ of H there exists an irreducible representation (πλ, F λ)
with highest weight λ.

Proof. Let ∆k(g) be the kth principal minor of g ∈ GL(n,C), for k = 1, . . . , n. If λ = [m1, . . . ,mn], set

fλ = ∆m1−m2
1 · · ·∆mn−1−mn

n−1 ∆mn
n .

Since λ is dominant, we have m1 ≥ m2 · · · ≥ mn. Also ∆n(g) = det(g) 6= 0 for g ∈ G. Hence fλ is a
regular function on G. Also fλ(n̄hn) = hλ for n̄hn ∈ N̄HN .

Let F λ ⊂ Aff(G) be the span of the right translates of fλ, and let πλ be the restriction to F λ of
the right translation representation of G on Aff(G). Then dimF λ < ∞ since fλ is a regular function.
Furthermore, πλ is irreducible with highest weight λ by Theorem 3.5, since fλ is N -fixed of weight λ. �

We shall refer to Theorems 3.3, 3.4, and 3.5 and Corollary 3.6 collectively as the Theorem of the
Highest Weight.

3.3. Duality and N-fixed Vectors. Let (ρ, L) be any regular G-module. By the Theorem of the
Highest Weight we can identify Spec(ρ) with the set of dominant weights λ such that L(λ)N 6= 0. For
λ ∈ Spec(ρ) set Eλ = L(λ)N . This space is invariant under the commuting algebra EndG(L).

Theorem 3.7. Under the joint action of G and EndG(L) the space L decomposes as

(3.4) L ∼=
⊕

λ∈Spec(ρ)

Eλ ⊗ F λ.

Furthermore, Eλ is an irreducible module for EndG(L), and distinct values of λ give inequivalent modules
for EndG(L).
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Proof. Let λ ∈ Spec(ρ) and fix a highest weight vector vλ ∈ F λ. Define a linear map

HomG(F λ, L)→ L(λ)N , T 7→ Tvλ.

This map is injective by the irreducibility of F λ, surjective by Theorem 3.4, and it obviously intertwines
the action of EndG(L). The theorem now follows from Theorem 1.4. �

We can now give a more precise version of Schur-Weyl duality (Corollary 3.2). A regular representation
π of G is said to be polynomial if the matrix entries of π are polynomial functions on G (with no negative
powers of det(g)). When π = πλ is irreducible, it is a polynomial representation if and only if λn ≥ 0. In
this case λ corresponds to a partition of |λ| with at most n parts.

Theorem 3.8 (Schur-Weyl Duality). For λ ∈ Par(k, n) let (σλ, Eλ) be the representation of Sk on the
space of N -fixed k-tensors of weight λ, where N is the upper triangular unipotent subgroup of GL(n,C).
Let (πλ, F λ

(n)) be the irreducible representation of GL(n,C) with highest weight λ. Then Eλ is an ir-
reducible Sk module. Under the action of Sk × GL(n,C), the space of k-tensors over Cn decomposes
as ⊗k

Cn ∼=
⊕

λ∈Par(k,n)

Eλ ⊗ F λ
(n).

The representations Eλ are mutually inequivalent, and when n ≥ k they give all the irreducible represen-
tations of Sk. Furthermore, every irreducible polynomial representation of GL(n,C) occurs in (Cn)⊗k

for some k.

Proof. From Example 2 of Section 3.2 the dominant weights of (Cn)⊗k are in Par(k, n). To verify that
for every λ ∈ Par(k, n) there exists a nonzero N -fixed k-tensor of weight λ, we define

$i = ε1 + · · ·+ εi, ui = e1 ∧ · · · ∧ ei for i = 1, 2, . . . , n.

Then $i is the highest weight of GL(n,C) on
∧i Cn, and ui is the corresponding highest weight vector. If

we set ci = mi−mi+1 (withmn+1 = 0), then c1, . . . , cn are nonnegative integers and λ = c1$1+· · ·+cn$n.
The tensor

uλ = u⊗c1
1 ⊗ u⊗c2

2 ⊗ · · · ⊗ u⊗cn
n ∈

⊗k
Cn

has weight λ and is N -fixed, since G acts as automorphisms of the tensor algebra over Cn. It follows that
Spec(ρk) = Par(k, n) (we label elements of Ĝ by their highest weights).

The assertions of the theorem now all follow from Corollary 3.2 and the Theorem of the Highest
Weight, except for fact that all irreducible representations of Sk occur when n ≥ k. To prove this, recall
that the number of irreducible representations of a finite group is the same as the number of conjugacy
classes (this common number is the dimension of the center of the group algebra). In the case of Sk,
each conjugacy class corresponds to a cycle decomposition, and the lengths of the cycles determine a
unique partition of k. Thus Sk has #Par(k) irreducible representations, where Par(k) denotes the set of
all partitions of k. Since a partition of k has at most k parts, every partition occurs in Par(k, n) when
n ≥ k, and hence (Cn)⊗k contains all irreducible representations of Sk in this case. �

Examples.

1. The group Sk has two one-dimensional representations: the trivial representation and the sign rep-
resentation. The corresponding subspaces of

⊗k Cn are the symmetric tensors Sk(Cn) and (if n ≥ k)
the skew symmetric tensors

∧k Cn. Hence these subspaces must be irreducible GL(n,C) modules, by
Schur-Weyl duality (this is also easy to verify directly). The symmetric tensor e⊗k

1 is N -fixed with weight
kε1, while the skew-symmetric tensor e1 ∧ · · · ∧ ek is N -fixed with weight ε1 + · · · + εk (when k ≤ n).
Thus in the duality correspondence,

(trivial, C) = (σ[k], E[k]) ←→ (π[k], Sk(Cn))

(sgn, C) = (σ[1k ], E[1k]) ←→ (π[1k ],
∧k

Cn) if n ≥ k.

When k = 2 and n ≥ 2 this gives the complete decomposition of
⊗2 Cn: under S2 ×GL(n,C):

Cn ⊗Cn ∼=
{
E[2,0] ⊗ S2(Cn)

}
⊕

{
E[1,1] ⊗

∧2
Cn

}
.
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2. Consider
⊗3 Cn for n ≥ 3. There are three partitions of 3, giving the decomposition

⊗3
Cn ∼=

{
E[3,0] ⊗ S3(Cn)

}
⊕

{
E[2,1] ⊗ F [2,1]

}
⊕

{
E[1,1,1] ⊗

∧
3Cn

}

under S3×GL(n,C). Here the representation E[2,1] of S3 is the two-dimensional standard representation
on C3/C[1, 1, 1].

We can view Schur-Weyl Duality as a method to construct representations of G′ = Sk from represen-
tations of G = GL(n,C) via the Theorem of the Highest Weight. Here we take the representations of G
as the known objects, and the representations of G′ as the unknown objects.c The relative size of n (the
rank of G) and k then determines which representations of G′ we get this way.

n ≥ k: All partitions of k have at most k parts, so all representations of Sk occur in
⊗k Cn in this

case.
n ≤ k: Only those representations of Sk occur in

⊗k Cn that correspond to partitions of k with at
most n parts.

To make this method effective, we will develop character formulas for the representations of Sk in the
next two lectures, based on the celebrated Weyl character formula for GL(n,C).

Lecture 4. Commutant Character Formulas

4.1. Characters. Let G be a connected complex reductive algebraic group. Then G contains a maximal
algebraic torus H and a maximal connected solvable subgroup HN (semidirect product), where N is
the unipotent radical of HN . In fact, one can always embed G into GL(n,C) so that H consists of
the diagonal matrices in G, and N the upper-triangular unipotent matrices in G, just as in the case of
GL(n,C) treated in Lecture 3. Let h = Lie(H) and n = Lie(N).

The irreducible representations of the torus H are given by h 7→ hλ, where λ is in the weight lattice
P ⊂ h∗ of H . By the Theorem of the Highest Weight (which is proved for G along the same lines as
in Lecture 3 for GL(n,C)), the irreducible regular representations of G are parameterized by the set
P++ of dominant weights determined by the choice of N . For λ ∈ P++ let (πλ, F λ) be the irreducible
representation of G with highest weight λ.

Let (π, V ) be a finite-dimensional rational representation of G. Set B = EndG(V ). From Theorem 3.7
V decomposes under the joint action of G and B into a multiplicity-free direct sum

(4.1) V ∼=
⊕

λ∈Spec(π)

Eλ ⊗ F λ

Here g ∈ G acts by 1 ⊗ πλ(g) and b ∈ B acts by σλ(b) ⊗ 1 on the summands in (4.1). We may take
Eλ = V (λ)N (the space of N -fixed vectors of weight λ in V ) with σλ(b) the natural action of b ∈ B on
this space.

Finding the spaces V (λ)N explicitly is usually difficult. An easier problem is to calculate characters.
For λ ∈ P++ we write

χλ(b) = tr(σλ(b)) = tr(b|V (λ)N ), for b ∈ B.

4.2. Frobenius and Determinant Character Formulas. We now obtain two formulas for the char-
acters χλ that only involve the full H-weight spaces in V . Let Φ+ be the weights of Ad(H) on n and
ρ = 1

2

∑
α∈Φ+ α. Let W = Norm G(H)/H be the Weyl group of (G,H). Set

D(h) =
∑

s∈W

sgn(s)hs·ρ for h ∈ H

(the Weyl denominator). Here s 7→ sgn(s) = det(Ad(s)|h) is the usual signum character on W .

Theorem 4.1 (Generalized Frobenius Formula). For λ ∈ P++ and b ∈ B one has

(4.2) χλ(b) = coefficient of hλ+ρ in D(h) trV (π(h)b)

(where h ∈ H).

cThe representations of Sk can be constructed directly by group-theoretic and combinatorial methods. Special elements
of the group algebra C[Sk] (Young symmetrizers) project tensor space onto irreducible representations of GL(n,C) – the
so-called Weyl modules–see [16, §9.3].
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Theorem 4.2 (Generalized Determinant Formula). For λ ∈ P++ and b ∈ B one has

(4.3) χλ(b) =
∑

s∈W

sgn(s) trV (λ+ρ−s·ρ)(b).

In particular,

(4.4) dimEλ =
∑

s∈W

sgn(s) dimV (λ+ ρ− s · ρ).

4.3. Proof of Frobenius Character Formula. For λ ∈ P++ we write

χλ(g) = tr(πλ(g)) for g ∈ G.

(the character of the representation with highest weight λ). We note from (4.1) that

(4.5) trV (π(g)b) =
∑

λ∈Spec(π)

χλ(g)χλ(b) for g ∈ G and b ∈ B

By the Weyl character formula (WCF), we have

D(h)χλ(h) =
∑

s∈W

sgn(s)hs·(λ+ρ) for h ∈ H .

Using the WCF in (4.5) we can write

(4.6) D(h) trV (π(h)b) =
∑

λ∈Spec(π)

∑

s∈W

sgn(s)χλ(b)hs·(λ+ρ)

Due to the shift by ρ, the map (s, λ) 7→ s · (λ+ ρ) from W ×P++ → P is injectived. Hence the character
h 7→ hλ+ρ only occurs once in (4.6), and has coefficient χλ(b), as claimed. �

4.4. Proof of Determinant Character Formula. For the proof of Theorem 4.2, we need the following
consequence of the WCF (which is, in fact, equivalent to the WCF).

Lemma 4.3. Let mλ(µ) = dimF λ(µ) for µ ∈ P and λ ∈ P++ (the multiplicity of the weight µ in F λ).
Then for λ, µ ∈ P++ one has ∑

s∈W

sgn(s)mµ(λ + ρ− s · ρ) = δλµ.

Proof. Write the Weyl denominator as an alternating sum overW of the characters h 7→ hs·ρ. Multiplying
this sum by χµ, we get

D(h)χµ(h) =
∑

s∈W

{ ∑

ν∈P

sgn(s)mµ(ν)hν+s·ρ
}

for h ∈ H.

In the inner sum make the substitution ν → ν + ρ− s · ρ; then the sum on the right becomes
∑

ν∈P

{ ∑

s∈W

sgn(s)mµ(ν + ρ− s · ρ)
}
hν+ρ.

On the other hand, the WCF asserts that the coefficient of hλ+ρ in D(h)χµ(h) is δλµ when λ, µ ∈ P++.
�

Proposition 4.4 (Outer Multiplicity Formula). Let L be any regular G module. For λ ∈ P++ let
multL(λ) be the multiplicity of the representation F λ. Then

(4.7) multL(λ) =
∑

s∈W

sgn(s) dimL(λ+ ρ− s · ρ)

din the case of GL(n,C) the partition λ + ρ has all parts of different sizes
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Proof. For ν ∈ P we have dimL(ν) =
∑

µ∈P++
multL(µ)mµ(ν) Hence the right side of (4.7) is

∑

µ∈P++

multL(µ)
{ ∑

s∈W

sgn(s)mµ(λ+ ρ− s · ρ)
}

But the inner sum is δλµ by Lemma 4.3, which proves (4.7). �
Proof of Theorem 4.2: Let b ∈ B. Then b has a Jordan decomposition b = bs+bn, where bs is semisimple,
bn is nilpotent, and bs is a polynomial in b. Hence bs ∈ B and χλ(b) = χλ(bs). So we may assume b is
semisimple.

For ζ ∈ C and λ ∈ P++ define

Vζ = {v ∈ V : bv = ζv}, Eλ
ζ = {v ∈ Eλ : bv = ζv}.

These spaces are G-invariant and
Vζ
∼=

⊕

λ∈P++

Eλ
ζ ⊗ F λ

as a G-module. In particular, the multiplicity of F λ in Vζ is dimEλ
ζ . Now apply Proposition 4.4 to the

G-module L = Vζ to get

χλ(b) =
∑

ζ∈C
ζ dimEλ

ζ

=
∑

s∈W

sgn(s)
{ ∑

ζ∈C

ζ dimVζ(λ+ ρ− s · ρ)
}

=
∑

s∈W

sgn(s) trV (λ+ρ−s·ρ)(b)

which proves Theorem 4.2. �

Lecture 5. Character Formulas for Schur-Weyl Duality

5.1. Frobenius Formula for Sk Characters. We now apply the commutant character formulas to
the Schur-Weyl duality between G = GL(n,C) and Sk, both acting on V =

⊗k Cn. Recall that the
conjugacy classes in Sk are described by cycle lengths. We denote by C(1r12r2 · · · krk ) the class of
elements with rj cycles of length j, where r1 + 2r2 + 3r3 + · · · = k. A permutation s in this class has r1
fixed points, r2 transpositions, and so on. To apply Theorem 4.1 in this context, we need to calculate
the polynomial

h 7→ trV (ρk(h)σk(s)), where h = diag[x1, . . . , xn].
Recall that the tensors {eI} give a basis for V . The action of h ∈ H and s ∈ Sk is

ρk(h)eI = xµ(I)eI , σk(s)eI = es·I

where µ(I) = [µ1, · · · , µn] with µj = #{p : ip = j} and

s · I = [is−1(1), . . . , is−1(k)].

Since σ(s) permutes the basis {eI} and each eI is a weight vector for H , it follows that

(5.1) trV (ρk(h)σk(s)) = trFs(ρk(h)) for h ∈ H,

where Fs = Span{eI : s · I = I}. Let Vj = Span{e⊗j
1 , e⊗j

2 , · · · , e⊗j
n } ⊂

⊗j Cn.

Lemma 5.1. If s ∈ C(1r12r2 · · · krk) then

Fs
∼= V ⊗r1

1 ⊗ V ⊗r2
2 ⊗ · · · ⊗ V ⊗rk

k

as an H-module.

Proof. We may assume the cycle decomposition of s contains the integers 1, . . . , k in increasing order,
since replacing s by a conjugate element in Sk doesn’t change the H-module structure of Fs. In this case
the condition s · I = I for an index I means that

I = [a1, . . . , ar1︸ ︷︷ ︸
r1 singles

, b1, b1, . . . , br2 , br2︸ ︷︷ ︸
r2 pairs

, c1, c1, c1, . . . , cr3 , cr3 , cr3︸ ︷︷ ︸
r3 triples

, . . .]
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where ai, bi, ci, . . . range from 1 to n. Hence

eI = ea1 ⊗ · · · ⊗ ear1
⊗ e⊗2

b1
⊗ · · · ⊗ e⊗2

br2
⊗ e⊗3

c1
⊗ · · · ⊗ e⊗3

cr3
⊗ · · ·

The lemma follows. �
For h = diag[x1, . . . , xn] define

pj(x) = trVj (ρk(h)) = xj
1 + · · ·+ xj

n (jth power sum).

Then Lemma 5.1 implies that

trFs(ρk(h)) =
k∏

j=1

trVj (ρk(h))rj =
k∏

j=1

pj(x)rj .

Hence from Theorem 4.1 and (5.1) we obtain the Frobenius character formula:

Theorem 5.2. Let s ∈ C(1r12r2 · · · krk) and λ ∈ Par(k, n). Then

χλ(s) = coefficient of xλ+ρ[n] in Dn(x)
{ k∏

j=1

pj(x)rj

}

where ρ[n] = [n− 1, n− 2, . . . , 1, 0] and Dn(x) =
∏

1≤i<j≤n(xi − xj).

Examples

1. Suppose s = (1, 2, . . . ,m)(m+ 1) · · · (k) is a single m-cycle with k −m fixed points. Then

χλ(s) = coefficient of xλ+ρ[n] in (x1 + · · ·+ xn)k−m(xm
1 + · · ·+ xm

n )
∏

1≤i<j≤n

(xi − xj).

We call a monomial xa1
1 · · ·xan

n strictly dominant if a1 > a2 > · · · > an. For partitions λ with two parts
and cycles of maximum length m = k, the strictly dominant terms in this formula are xk+1

1 −xk
1x2. Hence

for s = (1, 2, . . . , k),

χλ(s) =
{
−1 for λ = [k − 1, 1],

0 for λ = [k − j, j] with j > 1.

2. Consider the group S3, which has three conjugacy classes: C(13) = {identity}, C(1121) =
{(12), (13), (23)} and C(31) = {(123), (132)}. As we noted at the end of Lecture 3, the three representa-
tions of S3 are σ[3] (the trivial representation), σ[2,1] (the two-dimensional standard representation), and
σ[1,1,1] (the signum representation). To calculate the character of σ[2,1] by the Frobenius formula, we let
x = [x1, x2] and expand the polynomials

D2(x)p1(x)3 = x4
1 + 2x3

1x2 + · · ·
D2(x)p1(x)p2(x) = x4

1 + · · ·
D2(x)p3(x) = x4

1 − x3
1x2 + · · ·

where · · · indicates non-dominant terms. By Theorem 4.1 the coefficients of the dominant terms in
these formulas furnish the entries in the character table for S3. We write χλ for the character of the
representation σλ. For example, when λ = [2, 1] we have λ + ρ = [3, 1], so the coefficient of x3

1x2 in
D2(x)p3(x) gives the value of χ[2,1] on the conjugacy class C(31). Table I gives all the characters, where
the top row indicates the number of elements in each conjugacy class, and the rows in the table give the
character values for each irreducible representation.

Table I: Character Table of S3

# elements: 1 3 2
conjugacy class: C(13) C(1121) C(31)
χ[3] 1 1 1
χ[2,1] 2 0 −1
χ[1,1,1] 1 −1 1
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5.2. Determinant Formula for Sk Characters. We next apply Theorem 4.2 to obtain an alternating
sum formula for the characters of Sk. For this, we need to identify the weight spaces V (ν) as Sk-modules.
Here ν = [ν1, . . . , νn] with νi ≥ 0 and ν1 + · · · + νn = k. We have already seen that V (ν) = Span{eI :
µ(I) = ν}.

Lemma 5.3. Let Sν = Sν1 × · · · ×Sνn ⊂ Sk. Then V (ν) ∼= C[Sk/Sν ] as a Sk-module.

Proof. If I is a multi-index such that µ(I) = ν, then there is s ∈ Sk so that

s · I = [1, . . . , 1︸ ︷︷ ︸
ν1

, 2, . . . , 2︸ ︷︷ ︸
ν2

, 3, . . . , 3︸ ︷︷ ︸
ν3

, . . .].

Since σk(s)eI = es·I , the lemma follows. �
From the lemma we see that σk(s) acts as a permutation matrix on V (ν), and hence

trV (ν)(σk(s)) = #{fixed points of s on Sk/Sν}.

The Weyl group for G is Sn and acts on the weight lattice P as permutations of the coordinates of the
weights. Applying Theorem 4.2 and using Lemma 5.3, we obtain the following character formula.

Theorem 5.4. Let λ ∈ Par(k, n) and s ∈ Sk. Then

χλ(s) =
∑

t

sgn(t) #{fixed points of s on Sk/Sλ+ρ[n]−t·ρ[n]}.

Here the sum is over all t ∈ Sn such that all the coordinates of λ + ρ[n] − t · ρ[n] are non-negative. In
particular,

dimEλ =
∑

t∈Sn

sgn(t)
(

k

λ+ ρ[n] − t · ρ[n]

)
.

In Theorem 5.4 ρ[n] = [n− 1, n− 2, . . . , 1, 0] and
(
k

ν

)
=
k!
ν!

(where ν! = ν1! · · · νn!)

is the multinomial coefficient (with the usual convention that it is zero if any entry in ν is negative). The
dimension formula can be written as a determinant and then reduced to Vandermonde form. This gives
the following product formula for the dimension of the representation Eλ that is analogous to the Weyl
dimension formula for the representation F λ.

Corollary 5.5. Let λ ∈ Par(k, n). Then dimEλ =
k!

(λ+ ρ[n])!
Dn(λ+ ρ[n]).

A partition λ = [λ1, . . . , λn] can be represented in terms of its Ferrers diagram: a left-justified array
of boxes, with λi boxes in the ith row (counting from the top down). Each box in the diagram has a
hook length: the total number of boxes to the right and below the given box (including the box itself).
We can then fill each box with its hook length. For example, λ = [4, 3, 1] ∈ Par(8, 3) has Ferrers diagram
and hook lengths

6 4 3 1

4 2 1

1

From Corollary 5.5 one obtains (by induction on the number of columns of λ) the Hook Length Formula

(5.2) dimEλ =
k!∏

ij hij(λ)

where hij(λ) is the hook length of the ij box in the Ferrers diagram of λ. By way of comparison, the
Weyl Dimension Formula for GL(n,C) can be written as

(5.3) dimF λ
(n) =

(λ+ ρ[n])!
ρ[n]!

∏
ij hij(λ)
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(see [16, §9.1.4, Ex. #9]). For example, for S8 ×GL(3,C) acting on
⊗8 C3 we have ρ[3] = [2, 1, 0] and

dimE[4,3,1] =
8!

6 · 4 · 4 · 3 · 2 = 70, dimF
[4,3,1]
(3) =

6! · 4!
2!(6 · 4 · 4 · 3 · 2)

= 15.

Thus E[4,3,1] ⊗ F [4,3,1]
(3) is an irreducible subspace of

⊗8 C3 of dimension (70) · (15).

5.3. Schur-Weyl Duality and GL(k)-GL(n) Duality. There is another model for the irreducible
representations of Sk that comes from the identification of Sk with the Weyl group of GL(k,C). Let
X = Mk×n (k × n complex matrices) and let GL(k,C)×GL(n,C) act on P(X) by

ρ(g1, g2)f(x) = f(gt
1xg2) for g1 ∈ GL(k,C) and g2 ∈ GL(n,C).

This representation is multiplicity free and decomposes as

(5.4) P(X) ∼=
⊕

µ

F µ
(k) ⊗ F

µ
(n)

with the sum over all partitions µ with at most min{k, n} parts (see [16, §5.2.4] or the article by Benson-
Ratcliff in this volume).

Let Hk ⊂ GL(k,C) be the maximal torus of diagonal matrices, and embed Sk ⊂ GL(k,C) as the
permutation matrices. If we only consider the action of the subgroup Norm (Hk) ∼= Sk nHk of GL(k,C)
on X together with the right action of GL(n,C), then

X ∼= (Cn)∗ ⊕ · · · ⊕ (Cn)∗︸ ︷︷ ︸
k summands

.

Hence
P(X) ∼= S(Cn)⊗ · · · ⊗ S(Cn)︸ ︷︷ ︸

k factors

as a representation of Norm (Hk) × GL(n,C). Here Sk acts by permuting the tensor factors, while
h = diag[x1, . . . , xk] ∈ Hk acts by multiplication by xj on the jth factor. The weight space decomposition
of P(X) relative to the Hk action is thus

(5.5) P(X)(µ) ∼= Sm1(Cn)⊗ · · · ⊗ Smk(Cn) for µ = [m1, . . . ,mk].

Here Sk acts by permuting the factors in this decomposition while GL(nC) acts as usual on each copy
of Cn. In particular, the weight detk = [1, 1, . . . , 1] is fixed by Sk and the corresponding weight space is

P(X)(detk) ∼= S1(Cn)⊗ · · · ⊗ S1(Cn) = (Cn)⊗k

with the usual commuting actions of Sk and GL(n,C). On the other hand, if we calculate this weight
space using (5.4), we see that

(Cn)⊗k ∼=
⊕

λ∈Par(k,n)

F λ
(k)(detk)⊗ F λ

(n)

as a module for Sk ×GL(n,C). Invoking Theorem 3.8 we conclude: For all λ ∈ Par(k, n),

Eλ ∼= F λ
(k)(detk)

as a Sk module, with the action of Sk coming from its embedding into GL(k,C).

Examples

1. Take λ = [1, . . . , 1] ∈ Par(k). Then the representation F λ
(k) of GL(k,C) is

∧k Ck, on which GL(k,C)
acts by g 7→ det(g). This shows once again that Eλ is the sgn representation of Sk.

2. Now take λ = [k]. Then the representation F λ
(k) of GL(k,C) is Sk(Ck) ∼= Pk((Ck)∗). The detk weight

space is one-dimensional and spanned by the monomial x1 · · ·xk, which is fixed by Sk. Again we see that
E[k] is the trivial representation of Sk.
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Lecture 6. Polynomial Invariants and FFT

6.1. Invariant Polynomials. Let G be a reductive linear algebraic group. Recall from Lecture 1 that
given a regular representation (π, V ) of G, we have a locally regular representation ρ of G as automor-
phisms of the commutative algebra P(V ) of complex-valued polynomial functions on V :

ρ(g)f(v) = f(g−1v) for f ∈ P(V ) and g ∈ G
(here we write gv for π(g)v when the action π is clear from the context). Since G acts by automorphisms
of P(V ), the space J = P(V )G of G-invariant polynomials is a subalgebra of P(V ). Thus we can consider
P(V ) as a module for J under the action of pointwise multiplication, which commutes with the G action.
Then in the isotypic decomposition

P(V ) =
⊕

λ∈Ĝ

P(V )(λ)

each summand is invariant under J . By Corollary 1.2 there is a projection f 7→ f \ from P(V ) onto J ,
with deg f \ ≤ deg f . If f ∈ P(V ) and ϕ ∈ J then

(6.1) (ϕf)\ = ϕf \

(Decompose f = f \ + · · · into isotypic components; then ϕf = ϕf \ + · · · is the isotypic decomposition
of ϕf .)

Theorem 6.1 (Hilbert-Hurwitz). J is finitely generated as an algebra over C.

Proof. Let J+ = {f ∈ J : f(0) = 0} and write R = P(V ). Since R is a polynomial ring in dim V
generators, the Hilbert basis theorem implies that the ideal RJ+ is finitely generated as an R module:
there exist ϕj ∈ J+ such that

RJ+ =
n∑

j=1

Rϕj .

Furthermore, since J+ is invariant under the C× action on R (f(v) 7→ f(ζv) for ζ ∈ C×), we may take
each ϕj to be homogeneous of some degree dj ≥ 1.

We claim that {ϕj} generate J as an algebra over C. Let f ∈ J be of degree d and assume inductively
that all polynomials in J of degree less than d are polynomials in ϕ1, . . . , ϕn. We can find fj ∈ R so
that f =

∑
j fjϕj . Now project onto J and use (6.1):

f = f \ =
∑

j

(fjϕj)\ =
∑

j

f \
jϕj .

Since degϕj ≥ 1, we have deg f \
j ≤ deg fj < deg f . Hence by induction each f \

j is a polynomial in
ϕ1, . . . , ϕn, so the same is true of f . �

We shall say that {ϕ1, . . . , ϕn} ⊂ J is a basic set of G invariants if
(i) {ϕ1, . . . , ϕn} generates J as an algebra over C
(ii) each ϕi is homogeneous (of some degree di)

and n is as small as possible, subject to (i) and (ii). By Theorem 6.1 there always exists a basic set of
invariants (the polynomials ϕi are not unique but the set {d1, . . . , dn} of degrees is uniquely determined).

Example. Let G = Sn and V = Cn, with G acting as permutations of the coordinates. Then

ρ(s)f(x1, . . . , xn) = f(xs(1), . . . , xs(n)) for f ∈ C[x1, . . . , xn] and s ∈ Sn.

and J is the algebra of symmetric functions in n variables. By the fundamental theorem of symmetric
functions one has J = C[σ1, . . . , σn], where

σp(x1, . . . , xn) =
∑

1≤j1<···<jp≤n

xj1 · · ·xjp (pth elementary symmetric function)

Furthermore, the functions {σ1, . . . , σn} are algebraically independent, so they give a basic set of invari-
ants with degrees dp = p. (The function σp is the restriction to the diagonal matrices of the character of∧p Cn as a representation of GL(n,C).)
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6.2. Invariants of Vectors and Covectors. Take G as a classical group (GL(n,C), O(Cn, B), or
Sp(Cn,Ω) with n even) and V = Cn the defining representation of G. Let

V m = V ⊕ · · · ⊕ V︸ ︷︷ ︸
m column vectors

, V ∗k = V ∗ ⊕ · · · ⊕ V ∗
︸ ︷︷ ︸

k row vectors

with the naturalG action on each summand. Then P(V ∗k⊕V m)G is the algebra ofG-invariant polynomial
functions of k covectors and m vectors. The First Fundamental Theorem (FFT) of invariant theory for
the group G gives an explicit description of sets of basic invariants (for all values of k and m).

There is an alternate picture that reveals the hidden symmetries in this situation and gives an obvious
algebra of G-invariant polynomials together with a set of quadratic generators. Namely, we have the
G-isomorphisms

V ∗k ∼= Mk×n right G action (matrix multiplication)
V m ∼= Mn×m left G action (matrix multiplication)

where Mk×n is the vector space of k × n complex matrices. In this picture we see that the reductive
group L = GL(k,C)×GL(m,C) acts on Mk×n ⊕Mn×m by

(a, b)(x⊕ y) = ax⊕ yb−1 for a ∈ GL(k,C) and b ∈ GL(m,C).

This action obviously commutes with the G action. The induced action on functions makes P(Mk×n ⊕
Mn×m)G into an L module. Note that the maximal torus of diagonal matrices in L acts in the original
picture V ∗k ⊕ V m by scalar multiplication in each vector summand, while the Weyl group Sk ×Sm of
L acts by permutation of positions of the summands.

Define the multiplication map

µ : Mk×n ⊕Mn×m →Mk×m x⊕ y 7→ xy (matrix multiplication).

Obviously µ(xg ⊕ g−1y) = µ(x ⊕ y) for all g ∈ GL(n,C). Hence we have an algebra homomorphism

µ∗ : P(Mk×m)→ P(V ∗k ⊕ V m)GL(n,C), µ∗(f)(x⊕ y) = f(xy).

In particular, if we take f = xij (the (i, j) matrix entry function on Mk×m), then

µ∗(xij )(v∗1 , · · · , v∗k, v1, · · · , vm) = 〈v∗i , vj〉

(the contraction of the ith covector with the jth vector).
There is a natural action of L on Mk×m with GL(k,C) acting by left multiplication and GL(m,C)

acting by right multiplication, Hence L acts on P(Mk×m)G. The map µ intertwines the two L actions.

6.3. Polynomial FFT for GL(n). The FFT for GL(n,C) is the assertion that the method just indicated
to construct invariants furnishes the complete algebra of polynomial invariants.

Theorem 6.2. Let G = GL(n,C). Then the map µ∗ is surjective. Hence the km quadratic polynomials
φij = µ∗(xij) with 1 ≤ i ≤ k and 1 ≤ j ≤ m give a set of basic invariants for P(Mk×n ⊕Mn×m)G.

After discussing tensor invariants in the next lecture we shall show there how this theorem is an
immediate consequence of Proposition 3.1. At this point we observe that the image of µ consists of all
k ×m matrices x with rank(x) ≤ min(k,m, n). This gives rise to the following dichotomy:

(1): If n ≥ min(k,m), then µ is surjective. Hence µ∗ is injective and

P(Mk×n ⊕Mn×m)GL(n,C) ∼= P(Mk×m)

is a polynomial algebra with km generators. One says that Mk×m is the algebraic quotient of V ∗k ⊕ V m

by GL(n,C). The representation of L on P(Mk×m) is multiplicity-free (see [16, Theorem 5.2.7] or the
article by Benson-Ratcliff in this volume).

(2): If n < min(k,m) then Ker(µ∗) 6= 0. The group L acts on Ker(µ∗), and from the multiplicity-
free decomposition of P(Mk×m) under L one finds that Ker(µ∗) is a determinantal ideal generated by
(n+1)×(n+1) minors. Thus P(Mk×n⊕Mn×m)GL(n,C) is the algebra of regular functions on the associated
determinantal variety. This is the Second Fundamental Theorem (SFT) for GL(n,C) invariants (see [16,
Theorem 5.2.15] for the complete statement).
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6.4. Polynomial FFT for the Orthogonal Group. We next consider the full orthogonal group relative
to the bilinear form B(x, y) = xty on V = Cn:

G = O(n,C) = {g ∈ GL(n,C) : gtg = I}
Since V ∼= V ∗ as a G-module, via the form B, it suffices to consider the invariants of k vector arguments
P(V k)G = P(Mn×k)G, where G acts on Mm×k by left multiplication. Define a map

τ : Mn×k → SMk (k × k symmetric matrices), τ(x) = xtx.

For g ∈ G we have τ(gx) = xtgtgx = τ(x). Hence

τ∗ : P(SMk)→ P(V k)G

as in the case of GL(n,C). In particular, if we take f = xij (the (i, j) matrix entry function on SMk),
then

τ∗(xij)(v1, · · · , vk) = vt
ivj

(the inner product of the ith and jth vectors).
The map τ intertwines the right action of the hidden symmetry group L = GL(k,C) on Mn×k. Here

the action of L on SMk is given by x 7→ bxbt (for b ∈ L).

Theorem 6.3. Let G = O(n,C). Then the map τ∗ is surjective. Hence the k(k + 1)/2 quadratic
polynomials θij = τ∗(xij) with 1 ≤ i ≤ j ≤ k give a set of basic invariants for P(Mn×k)G.

Proof for the case n ≥ k: There is a natural G-equivariant embedding Mn×k ⊂ Mn×n; just add n − k
columns of zeros on the right to make x ∈Mn×k into an n×n matrix. Hence we may assume that k = n.
Now see [16, Proposition 4.2.6] for the proof.e �

We shall complete the proof for the general case n < k after discussing tensor invariants in the
next lecture. Here we observe that the image of τ consists of all k × k symmetric matrices x with
rank(x) ≤ min(k, n). This gives rise to the following dichotomy:

(1): If n ≥ k, then τ is surjective. Hence τ∗ is injective and P(Mn×k)G ∼= P(SMk) is a polynomial
algebra with k(k + 1)/2 generators. One says that SMk is the algebraic quotient of Mn×k by O(n,C).
The representation of L on P(Mn×k)G is multiplicity-free (see [16, Theorem 5.2.9] or the article by
Benson-Ratcliff in this volume).

(2): If n < k then Ker(τ∗) 6= 0. From the multiplicity-free decomposition of P(SMk) under L one finds
that Ker(τ∗) is a determinantal ideal generated by (n + 1) × (n + 1) minors. Thus P(Mn×k)G is the
algebra of functions on the associated symmetric determinantal variety. This is the Second Fundamental
Theorem (SFT) for O(n,C) invariants (see [16, Theorem 5.2.17] for the complete statement).

6.5. Polynomial FFT for the Symplectic Group. Now consider the symplectic group G = Sp(Cn,Ω),
where n = 2p is even and

Ω(x, y) = xtJy, J =
[

0 Ip
−Ip 0

]

Here Ip is the p × p identity matrix. Thus G is the subgroup of GL(n,C) defined by gtJg = J . Since
(Cn)∗ ∼= Cn via the form Ω, it suffices to consider the invariants of k vector arguments P(V k)G =
P(Mn×k). Define a map

γ : Mn×k → AMk (k × k skew-symmetric matrices), γ(x) = xtJx.

For g ∈ G we have γ(gx) = xtgtJgx = γ(x). Hence

γ∗ : P(AMk)→ P(V k)G

as in the case of O(n,C). In particular, if we take f = xij (the (i, j) matrix entry function on AMk),
then

γ∗(xij)(v1, · · · , vk) = Ω(vi, vj)
(contraction of the ith and jth vectors by Ω).

eThe proof is by induction on n and can be viewed as an algebraic group version of the QR factorization for Mn and
the Cholesky Decomposition for SMn. This result is associated with a particular partial compactification of the symmetric
space GL(n,C)/O(n,C).
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The map τ intertwines the right action of the hidden symmetry group L = GL(k,C) on Mn×k with
the action of L on AMk given by x 7→ bxbt (for b ∈ L).

Theorem 6.4. Let G = Sp(Cn,Ω). Then the map γ∗ is surjective. Hence the k(k − 1)/2 quadratic
polynomials ωij = γ∗(xij) with 1 ≤ i < j ≤ k give a set of basic invariants for P(Mn×k)G.

Proof for the case n ≥ k: The same citation as for the orthogonal case. �

We shall complete the proof for the general case n < k after discussing tensor invariants in the next
lecture. Here we observe that the image of γ consists of all k × k skew-symmetric matrices x with
rank(x) ≤ min(k, n). This gives rise to the following dichotomy:

(1): If n ≥ k, then γ is surjective. Hence γ∗ is injective and P(Mn×k)G ∼= P(AMk) is a polynomial
algebra with k(k − 1)/2 generators. One says that AMk is the algebraic quotient of Mn×k by Sp(Cn,Ω).
The representation of L on P(Mn×k)G is multiplicity-free (see [16, Theorem 5.2.11] or the article by
Benson-Ratcliff in this volume). .

(2): If n < k then Ker(γ∗) 6= 0. From the multiplicity-free decomposition of P(AMk) under L one finds
that Ker(γ∗) is generated by a set of Pfaffian polynomials of degree n/2 + 1. Thus P(Mn×k)G is the
algebra of functions on the associated skew-symmetric Pfaffian variety. This is the Second Fundamental
Theorem (SFT) for O(n,C) invariants (see [16, Theorem 5.2.18] for the complete statement).

Summary: For a classical group G (general linear, orthogonal, symplectic), the G-invariant polynomial
functions of vectors and covectors are generated by all the possible G-invariant contractions of vectors
and covectors.

Lecture 7. Tensor Invariants and Proof of FFT

7.1. Tensor Invariants for GL(V ). We turn now from consideration of invariant polynomials to the
general case of invariant tensors. Let V = Cn and consider the mixed tensor space V ⊗m ⊗ V ∗⊗k as a
GL(V ) module. For ζ ∈ C× the element ζIn of GL(V ) acts by ζm−k on this space. Hence there are no
nonzero GL(V ) invariant tensors if m 6= k and we can assume m = k. In this case

(7.1) V ⊗k ⊗ V ∗⊗k ∼= End(V ⊗k)

as a GL(V ) module, and hence

(V ⊗k ⊗ V ∗⊗k)GL(V) ∼= EndGL(V )(V ⊗k).

By Schur duality (Corollary 1.6 and Proposition 3.1) we know that EndGL(V )(V ⊗k) is spanned by the
transformations σk(s), s ∈ Sk.

Let {e1, . . . , en} be the standard basis for Cn and let {e∗1, . . . , e∗n} be the dual basis. For an index
I = [i1, . . . , ik] with 1 ≤ ip ≤ n we set |I | = k and

eI = ei1 ⊗ · · · ⊗ eik
∈ V ⊗k, e∗I = e∗i1 ⊗ · · · ⊗ e

∗
ik
∈ V ∗⊗k.

Recall from Lecture 3 that the action of s ∈ Sk on k-tensors is σk(s)eI = es·I . Define

Cs =
∑

|I|=k

es·I ⊗ e∗I

Then Cs corresponds to σk(s) under the isomorphism (7.1). Thus we obtain the First Fundamental
Theorem of Tensor Invariants for GL(V ):

Theorem 7.1. For k ≥ 1 one has (V ⊗k ⊗ V ∗⊗k)GL(V ) = Span{Cs : s ∈ Sk}.
The vector space V ⊗k⊗V ∗⊗k is self-dual as a GL(V ) module, and hence each of the mixed tensors Cs

can also be viewed as a linear functional. This gives the alternate version of the Tensor FFT for GL(V )
in terms of total contractions of vectors with covectors:

Corollary 7.2. The space of GL(V )-invariant linear forms on V ⊗k⊗V ∗⊗k is spanned by the contractions

v1 ⊗ · · · ⊗ vk ⊗ v∗1 ⊗ · · · ⊗ v∗k 7→
k∏

j=1

〈v∗s(j), vj〉

for s ∈ Sk.
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7.2. Proof of Polynomial FFT for GL(V ). The polynomial form of the FFT for GL(V ) is a conse-
quence of Corollary 7.2. To prove this, we need to view GL(V )-invariant polynomials as tensors with
additional symmetries, as we did in Section 5.3. Let Tk,m = (C×)k × (C×)m and write t ∈ Tk,m as
t = [x1, . . . xk, y1, . . . , ym]. Denote the regular characters of Tk,m as

t 7→ t[p,q] =
k∏

i=1

xpi

i

m∏

j=1

y
qj

j

for [p,q] ∈ Zk × Zm. Let Tk,m act on z = [v1, . . . , vk]⊕ [v∗1 , . . . , v∗m] ∈ V k ⊕ V ∗m by

t · z = [x1v1, . . . , xkvk]⊕ [y1v∗1 , . . . , ymv
∗
m].

This action commutes with the GL(V )-action on V k ⊕V ∗m, so GL(V ) leaves invariant the weight spaces
of Tk,m in P(V k ⊕ V ∗m). These weight spaces are described by the degrees of homogeneity of f ∈
P(V k ⊕ V ∗m) in vi and v∗j as follows. For p ∈ Nk and q ∈ Nm set

P [p,q](V k ⊕ V ∗m) = {f ∈ P(V k ⊕ V ∗m) : f(t · z) = t[p,q]f(z)}.
Then

P(V k ⊕ V ∗m) =
⊕

p∈Nk

⊕

q∈Nm

P [p,q](V k ⊕ V ∗m),

and this decomposition is GL(V )-invariant. Thus

(7.2) P(V k ⊕ V ∗m)G =
⊕

p∈Nk

⊕

q∈Nm

[
P [p,q](V k ⊕ V ∗m)

]GL(V )
.

We now give another realization of these weight spaces in terms of tensors. Given p ∈ Nk and q ∈ Nm

we set
V ∗⊗p ⊗ V ⊗q = V ∗⊗p1 ⊗ · · · ⊗ V ∗⊗pk ⊗ V ⊗q1 ⊗ · · · ⊗ V ⊗qm .

This space is isomorphic to V ∗⊗|p| ⊗ V ∗⊗|q| and is a GL(V ) module with the usual action. Let Sp =
Sp1 × · · ·×Spk

, with each factor acting as a group of permutations of the corresponding tensor factor in
V ⊗p. This gives a representation of Sp ×Sq on V ∗⊗p ⊗ V ⊗q that commutes with the action of GL(V ).

Lemma 7.3. Let p ∈ Nk and q ∈ Nm. There is a linear isomorphism

(7.3) P [p,q](V k ⊕ V ∗m)GL(V ) ∼=
[(
V ∗⊗|p| ⊗ V ⊗|q|)GL(V )]Sp×Sq

.

Proof. We have the isomorphisms

P(V k ⊕ V ∗m) ∼= S((V ∗)k ⊕ V m)
∼= S(V ∗)⊗ · · · ⊗ S(V ∗)︸ ︷︷ ︸

k factors

⊗S(V )⊗ · · · ⊗ S(V )︸ ︷︷ ︸
m factors

.

as GL(V ) modules. Hence

(7.4) P [p,q](V k ⊕ V ∗m) ∼= S[p](V ∗)⊗ S[q](V ),

where S[p](V ∗) = Sp1(V ∗) ⊗ · · · ⊗ Spk(V ∗) and S[q](V ) = Sq1(V ) ⊗ · · · ⊗ Sqm(V ). We also have a
GL(V )-module isomorphism

Sr(V ) ∼=
[
V ⊗r

]Sr ⊂ V ⊗r

with Sr acting by permuting the tensor positions as usual. Combining this with (7.4) we obtain the
linear isomorphisms

P [p,q](V k ⊕ V ∗m)GL(V ) ∼=
[
S[p](V ∗)⊗ S[q](V )

]GL(V )

∼=
[(
V ∗⊗|p| ⊗ V ⊗|q|)Sp×Sq

]GL(V )
.

This implies (7.3) since the actions of GL(V ) and Sp ×Sq mutually commute. �
We now prove the polynomial version of the First Fundamental Theorem for GL(V ). This theorem

asserts that for each p ∈ Nk and q ∈ Nm, the space

P [p,q](V k ⊕ V ∗m)GL(V )
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is spanned by monomials of the form

(7.5)
k∏

i=1

m∏

j=1

〈vi, v
∗
j 〉rij

for suitable choices of k,m and rij . The subgroup T = {ζIV : ζ ∈ C×} of GL(V ) acts on P [p,q](V k⊕V ∗m)
by the character ζ 7→ ζ|q|−|p|, so we may assume that |p| = |q| = r, say. By Lemma 7.3,

(7.6) P [p,q](V k ⊕ V ∗m)GL(V ) ∼=
[(
V ∗⊗r ⊗ V ⊗r

)GL(V )
]Sp×Sq

.

From Theorem 7.1 we know that the space (V ∗⊗r⊗V ⊗r)GL(V ) is spanned by the complete contractions
Cs for s ∈ Sr. Hence the right side of (7.6) is spanned by the tensors

∑

(g,h)∈Sp×Sq

σ∗
r (g)⊗ σr(h)Cs

for s ∈ Sr. Under the isomorphism (7.6), the action of Sp×Sq disappears and these tensors correspond
to the polynomials

Fs(v1, . . . , vk, v
∗
1 , . . . , v

∗
m) = Cs(v

⊗p1
1 ⊗ · · · ⊗ v⊗pk

k ⊗ v∗⊗q1
1 ⊗ · · · ⊗ v∗⊗qm

m )

= 〈v⊗p1
1 ⊗ · · · ⊗ v⊗pk

k , w∗
1 ⊗ · · · ⊗ w∗

r 〉

=
n∏

i=1

〈wi, w
∗
i 〉,

where each wi is vj for some j and each w∗
i is v∗j′ for some j′ (depending on s). Obviously Fs is of the

form (7.5). �

7.3. Tensor Invariants for Orthogonal and Symplectic Groups. Consider now a nondegenerate
bilinear form ω on V , which we assume to be either symmetric or skew-symmetric. Let G be the subgroup
of GL(V ) that preserves ω (so G is either the full orthogonal group or the symplectic group). Any mixed
tensor that is invariant under GL(V ) is also invariant under G, of course. To find additional tensor
invariants, we can

use the G-module isomorphism V ∼= V ∗ furnished by ω to restrict attention to V ∗⊗k. Furthermore,
(V ∗⊗k)G = 0 if k is odd, since −I ∈ G. Hence we need only find a linear basis for (V ∗⊗2k)G.

The given form ω ∈ (V ∗⊗2)G by definition. Since G preserves tensor multiplication, it follows that

θk = ω⊗k ∈ (V ∗⊗2k)G.

The representation σ2k of S2k on V ∗⊗2k commutes with the action of G, of course, so the tensors σ2k(s)θk

are also G invariant, for every s ∈ S2k.

Theorem 7.4. For all integers k ≥ 1 one has (V ∗⊗2k)G = Span{σ2k(s)θk : s ∈ S2k}.

Because of the symmetries of the tensor θk under the action of S2k, there are redundancies in the
spanning set of Theorem 7.4. A labeling that factors out these symmetries is the following, which
we will also use in Lecture 13. Define a two-partition of the set {1, . . . , 2k} to be any set of k pairs
ξ = {{i1, j1}, . . . , {ik, jk}} such that {i1, j1, . . . , ik, jk} consists of the integers 1, . . . , 2k. Denote the set
of all 2-partitions of k by Ξk . For ξ ∈ Ξk define the complete contraction

λξ(v1 ⊗ · · · ⊗ v2k) =
k∏

p=1

ω(vip , vjp).

(We label the pairs in ξ so that ip < jp; then this definition has no sign ambiguity, even when ω is
skew-symmetric.) The invariant tensors in Theorem 7.4 are just these contractions.

Corollary 7.5. For all integers k ≥ 1 one has (V ∗⊗2k)G = Span{λξ : ξ ∈ Ξk}.

Proof of Theorem 7.4. Following Attiyah-Bott-Patodi, we shift the action of G from V ∗⊗2k to EndV by
a tensor algebra version of the classical polarization operators.f This transforms the space of G-invariant

fThis can be viewed as unseparation of variables, and is another instance of a hidden symmetry.
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tensors into a different space of GL(V )-invariant tensors built from G-invariant polynomials on End(V ).
The results of Lecture 6 allow us to express these G-invariant polynomials as covariant tensors with
no further G-invariance condition. By this means each G-invariant tensor gives rise to a unique mixed
GL(V )-invariant tensor. But we know that all such tensors are linear combinations of complete vector-
covector contractions. Finally, specializing the polarization variables, we find that the originalG-invariant
tensor is in the span of the complete contractions relative to the form ω.

In more detail, given λ ∈ V ∗⊗m we define Φλ ∈ Pk(EndV )⊗ V ∗⊗m by

Φλ(X,w) = 〈λ, X⊗mw〉 for X ∈ EndV and w ∈ V ⊗m.

Since 〈λ,w〉 = Φλ(I, w), we see that the map λ 7→ Φλ is injective.
Let G ⊂ GL(V ) be any subgroup, for the moment. Let G act on Pm(EndV )⊗ V ∗⊗m by left multipli-

cation on End(V ) only (no action on V ∗⊗m). Let GL(V ) act by right multiplication on the EndV factor
and in the usual way on V ∗⊗m. Since these actions of G and GL(V ) mutually commute, we obtain a
representation of the product group G×GL(V ). In particular,

(g, h) ·Φλ(X,w) = 〈λ, (g−1Xh)⊗mh−1 · w) = Φg·λ(X,w)

for g ∈ G, h ∈ GL(V ). Hence Φλ is automatically invariant under GL(V ) for any λ, while if λ is G-
invariant, then so is Φλ. Conversely, if Φ ∈ Pm(EndV ) ⊗ V ∗⊗m is invariant under G × GL(V ), then Φ
is determined by the linear functional λ : w 7→ Φ(I, w) since Φ(h,w) = Φ(I, h · w) for h ∈ GL(V ) and
GL(V ) is dense in EndV . Furthermore, for g ∈ G we have

Φ(I, w) = Φ(gI, w) = Φ(Ig, w) = Φ(I, g · w)

(here we have used the inclusion G ⊂ GL(V ) to pass from the left action of G on EndV to the right
action of GL(V ) on EndV ). Hence Φ = Φλ with λ ∈ (V ∗⊗m)G. The map λ 7→ Φλ thus gives a linear
isomorphism

(7.7) (V ∗⊗m)G ∼=
[
Pm(EndV )L(G) ⊗ V ∗⊗m

]GL(V )

where L(G) denotes the left-multiplication action of G on End(V ).
Let λ ∈

[
V ∗⊗2k

]G. Then by (7.7) with m = 2k, we have

Φλ ∈
[
P2k(EndV )G ⊗ V ∗⊗2k

]GL(V )
.

and λ = Φλ(I). By Theorems 6.3 and 6.4 (which we have proved in the case k = dim V ), there is a
polynomial Fλ on SMn × V ⊗2k when G = O(V ) or on AMn × V ⊗2k when G = Sp(V ), so that for all
X ∈Mn and w ∈ V ⊗2k,

Φλ(X,w) =
{
Fλ(XtX, w) when G = O(V ),
Fλ(XtJnX, w) when G = Sp(V ).

We view Fλ as an element of Pk(SMn)⊗ V ∗⊗2k (resp. of Pk(AMn)⊗ V ∗⊗2k). Note that

〈λ,w〉 = Φλ(In, w) =
{
Fλ(In, w) when G = O(V ),
Fλ(Jn, w) when G = Sp(V ).

The next step is to translate the GL(V )-invariance of Φλ into an appropriate invariance property of
Fλ. The map

Θ : Mn → V ∗ ⊗ V ∗, Θ(x) =
∑

i,j

xij e
∗
i ⊗ e∗j

furnishes GL(V )-module isomorphisms AMn
∼=

∧2
V ∗ and SMn

∼= S2V ∗. Hence

Pk(AMn) ∼= Sk(
∧2V ), Pk(SMn) ∼= Sk(S2V )

Thus there is a GL(V )-invariant tensor C ∈ V ⊗2k ⊗ V ∗⊗2k so that

Fλ(A,w) = 〈A⊗k ⊗ w, C〉

for w ∈ V ⊗2k and A in either S2V ∗ or
∧2 V ∗. By the tensor FFT for GL(V ) (tensor form) we may

assume that C is a complete contraction :

C =
∑

|I|=2k

e∗s·I ⊗ eI
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for some s ∈ S2k. When G = O(V ) we take A = In to recover the original G-invariant tensor λ as

〈λ,w〉 = Fλ(In, w) = 〈Θ(In)⊗k ⊗ w, C〉
=

∑

|I|=2k

〈eI , Θ(In)⊗k〉〈w, e∗s·I〉 = 〈σ2k(s)Θ(In)⊗k, w〉.

When G = Sp(V ), we likewise take A = Jn to get 〈λ,w〉 = 〈σ2k(s)Θ(Jn)⊗k, w〉. Since

θ∗k =
{

Θ(In)⊗k when G = O(V )
Θ(Jn)⊗k when G = Sp(V ),

we conclude that λ = σ2k(s)θ∗k. �

7.4. Proof of Polynomial FFT for Orthogonal and Symplectic Groups. We finally complete the
proof of the FFT for the action of G = O(V ) or G = Sp(V ) on P(V ), using an argument similar to the
case of GL(V ) to deduce the polynomial version of the FFT from the tensor version. Let p ∈ Nm. Since
−I ∈ G and acts by (−1)|p| on P [p](V m), we may assume that |p| = 2k. We now show that the space
P [p](V m)G is spanned by monomials

(7.8) ϕ(v1, . . . , vm) =
m∏

i,j=1

ω(vi, vj)rij

of weight p. This will prove the FFT (polynomial version) for G.
By Lemma 7.3,

(7.9) P [p](V m)G ∼=
[(
V ∗⊗2k

)G]Sp
.

The space (V ∗⊗2k)G is spanned by the tensors σ∗
2k(s)θ∗k for s ∈ S2k (Theorem 7.4). Hence the right side

of (7.9) is spanned by the tensors ∑

t∈Sp

σ∗
2k(ts)θ∗k

for s ∈ S2k. Under the isomorphism (7.9), the action of Sp disappears and these tensors correspond to
the polynomials

Fs(v1, . . . , vm) = σ∗
2k(s)θ∗k(v⊗p1

1 ⊗ · · · ⊗ v⊗pm
m ) =

k∏

i=1

ω(ui, uk+i),

where each ui is vj for some j (depending on s). Thus Fs is of the form (7.8). �

Lecture 8. Weyl Algebra and Howe Duality

8.1. Duality in the Weyl Algebra. We shall now apply the general duality theorem from Lecture 1 to
the following situation. Let V be an n-dimensional vector space over C and let x1, . . . , xn be coordinates
on V relative to a basis {e1, . . . , en}. Let ξ1, . . . , ξn be the coordinates for V ∗ relative to the dual basis
{e∗1, . . . , e∗n}. We denote by PD(V ) the algebra of polynomial coefficient differential operators on V . This
is the subalgebra of End(P(V )) generated (as an associative algebra) by the operators

Di =
∂

∂xi
, Mi = multiplication by xi (i = 1, . . . , n).

Since (∂/∂xi)(xjf) = (∂xj/∂xi)f + xj(∂f/∂xi) for f ∈ P(V ), these operators satisfy the Heisenberg
commutation relations

(8.1) [Di, Mj ] = δijI for i, j = 1, . . . , n.

(the algebra PD(V ) is often called the Weyl algebra).
Define PD0(V ) = CI and for k ≥ 1 let PDk(V ) be the linear span of all products of k or fewer

operators from the generating set {D1, . . . , Dn,M1, . . . ,Mn}. This defines an increasing filtration of the
algebra PD(V ):

PD0(V ) ⊂ · · · ⊂ PDk(V ) ⊂ PDk+1(V ) ⊂ · · · with
⋃

k≥0

PDk(V ) = PD(V )
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PDk(V ) · PDm(V ) ⊂ PDk+m(V ).

Let Gr(PD(V )) =
⊕

k≥0 Grk(PD(V )) be the associated graded algebra. If T ∈ PD(V ) then we say T
has filtration degree k if T ∈ PDk(V ) but T /∈ PDk−1(V ), and we write deg(T ) = k. We write

Gr(T ) = T + PDk−1(V ) ∈ Grk(PD(V ))

when deg(T ) = k. The map T 7→ Gr(T ) is a linear isomorphism (but not an algebra homomorphism)
from PD(V ) to Gr(PD(V )). From (8.1) it is easily verified that

deg(MαDβ) = |α|+ |β| for α, β ∈ Nn

and the set of operators {MαDβ : α, β ∈ Nn} is a (vector-space) basis for PD(V ), where we write

Mα = Mα1
1 · · ·Mαn

n , Dβ = Dβ1
1 · · ·Dβn

n .

Let ρ be the representation of GL(V ) on P(V ) with

ρ(g)f(x) = f(g−1x) for f ∈ P(V ).

We view PD(V ) as a GL(V )-module relative to the action

g · T = ρ(g)Tρ(g−1) for T ∈ PD(V ), g ∈ GL(V ).

For g ∈ GL(V ) with matrix [gij ] relative to the basis {e1, . . . , en}, we calculate that

(8.2) ρ(g)Djρ(g−1) =
n∑

i=1

gijDi, ρ(g)Miρ(g−1) =
n∑

j=1

gijMj .

The set {Gr(MαDβ) : |α| + |β| = k} is a basis for Grk(PD(V )). Thus the nonzero operators of
filtration degree k are those of the form

(8.3) T =
∑

|α|+|β|≤k

cαβM
αDβ

with cαβ 6= 0 for some pair α, β with |α|+ |β| = k (note that the filtration degree of T is generally larger
than the order of T as a differential operator). If T in (8.3) has filtration degree k then we define the
symbol of T to be the polynomial σ(T ) ∈ Pk(V ⊕ V ∗) given by

σ(T ) =
∑

|α|+|β|=k

cαβx
αξβ.

Lemma 8.1. The symbol map gives a linear isomorphism PD(V ) ∼= P(V ⊕ V ∗) as GL(V )-modules.

Proof. Using (8.1), one shows by induction on k that any monomial of degree k in the operators
D1, . . . , Dn, M1, . . . ,Mn is congruent (modulo PDk−1(V )) to a unique ordered monomial MαDβ with
|α|+ |β| = k. Hence σ(T ) = σ(S) if Gr(T ) = Gr(S). Thus σ gives a linear isomorphism

(8.4) Grk(PD(V ))
∼=−→ Pk(V ⊕ V ∗).

Since ρ(g)PDk(V )ρ(g−1) = PDk(V ), there is a representation of GL(V ) on Grk(PD(V )) for each k.
From (8.2) we see that Di transforms as the vector ei under conjugation by GL(V ), while Mi transforms
as the dual vector e∗i . Since GL(V ) acts by algebra automorphisms on Gr(PD(V )) and on P(V ⊕ V ∗),
this implies that (8.4) is an isomorphism of GL(V ) modules. Now compose these maps with the canonical
quotient maps PDk(V )→ Grk(PDk(V )). �

We can now obtain the general Weyl algebra duality theorem:

Theorem 8.2. Let G be a reductive algebraic group acting regularly on V . Then there is a multiplicity-
free decomposition

(8.5) P(V ) ∼=
⊕

λ∈Σ(V )

Eλ ⊗ F λ,

as a module under the joint actions of PD(V )G and C[G]. Here Σ(V ) ⊂ Ĝ, F λ is an irreducible regular
G-module of type λ, and Eλ is an irreducible module for PD(V )G that uniquely determines λ.
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Proof. We apply Theorem 1.4, with L = P(V ) and R = PD(V ). Note that L is the direct sum of
the finite-dimensional G-invariant subspaces Lk = Pk(V ) of homogeneous polynomials of degree k. The
action of G on each Lk is regular, so L is a locally regular G module.

We shall show that R satisfies conditions (i) and (ii) of Theorem 1.4. Let 0 6= f ∈ P(V ) be of degree d.
Then there is some α ∈ Nn with |α| = d such that 0 6= Dαf ∈ C. Given any g ∈ P(V ), let Mg ∈ PD(V )
be the operator of multiplication by g. Then g ∈ CMgD

αf . This proves that R acts irreducibly on P(V )
(condition (i)). The algebra R is the union of the finite-dimensional G-invariant subalgebras PDk(V ),
and the action of G on PDk(V ) is regular by Lemma 8.1. Hence R also satisfies condition (ii). �

To use Theorem 8.2 effectively for a particular G-module V we need a more explicit description of the
algebra PD(V )G. The following result is a first step in that direction.

Theorem 8.3. Let {ψ1, . . . , ψr} generate the algebra P(V ⊕V ∗)G . Suppose Tj ∈ PD(V )G are such that
σ(Tj) = ψj for j = 1, . . . , r. Then {T1, . . . , Tr} generates the algebra PD(V )G.

Proof. Let J ⊂ PD(V )G be the subalgebra generated by T1, . . . , Tr. Then PD0(V )G = CI ⊂ J . Let
S ∈ PDk(V )G have filtration degree k. We may assume by induction on k that PDk−1(V )G ⊂ J . Since
σ(S) ∈ Pk(V ⊕ V ∗)G by Lemma 8.1, we can write

σ(S) =
∑

j1,...,jr

cj1···jr ψ
j1
1 · · ·ψ

jr
r

where cj1···jr ∈ C. Set

R =
∑

j1,...,jr

cj1···jr T
j1
1 · · ·T

jr
r .

Although R is not unique (it depends on the enumeration of the Tj), we have σ(R) = σ(S) since σ is
an algebra homomorphism. Hence R − S ∈ PDk−1(V ) by Lemma 8.1. By the induction hypothesis,
R− S ∈ J , so we have S ∈ J . �

Corollary 8.4. (Notation as in Theorem 8.3) Suppose T1, . . . Tr can be chosen so that

g′ = Span{T1, . . . , Tr}

is a Lie subalgebra of PD(V )G. Then in the canonical decomposition (8.5) the spaces Eλ are irreducible
modules for the Lie algebra g′, and λ is uniquely determined by the equivalence class of Eλ as a g′-module.
Hence there is a bijection (duality correspondence)

Σ(V )↔ Λ(V ),

where Λ(V ) is the set of irreducible representations of g′ that occur in P(V ).

Proof. The representations of the Lie algebra g′ are the same as the representations of the universal
enveloping algebra U(g′). Let ρ′ : U(g′) → End(P(V )) be the representation associated to the action of
g′ as differential operators. The assumption on T1, . . . , Tr implies that ρ′(U(g′)) = PD(V )G. Hence the
irreducible PD(V )G-modules are the same as irreducible g′-modules. �

Remark. Theorem 8.2 is also valid when V is any smooth connected affine G-variety. Here we take
R = D(V ) to be the ring of algebraic differential operators on V and use Theorem 1.4.g The algebra
D(V )G in this case (G connected, reductive), has been studied by Knop [25]. He proves that its center
ZG(V ) is a polynomial ring in rankG(V ) generators, where rankG(V ) = dimBx − dimNx for a generic
point x ∈ V (here B is a Borel subgroup of G with nilradical N). Furthermore, D(V )G is a free module
over ZG(V ) (this is a generalization of results of Kostant [26] for the case V = G, with G acting by left
multiplication). The representation theory of D(V )G seems to be unknown, in general, although special
cases have been studied by I. Agricola, F. Knop, T. Levasseur, G. Schwarz, J. Stafford, and others.

gSee [1]; the smoothness assumption on V is essential here, since the action of D(V ) on Aff(V ) can fail to be irreducible
when V is not smooth.
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8.2. Howe Duality for Orthogonal/Symplectic Groups. We now determine the structure of
PD(V )G when G is an orthogonal or symplectic group and V is the sum of n copies of the funda-
mental representation of G. Using the First Fundamental Theorem of classical invariant theory, we will
show that the assumptions of Corollary 8.4 are satisfied. This will give the Howe duality between the
(finite-dimensional) regular representations of G occurring in P(V ) and a set of irreducible representations
of the dual Lie algebra g′.

Let ω be a nondegenerate bilinear form on Ck that is either symmetric or skew symmetric, and let
G ⊂ GL(k,C) be the isometry group of ω. ThusG is the (complex) orthogonal group when ω is symmetric,
and G is the (complex) symplectic group when ω is skew (and k even). Let V = (Ck)n. Then

P(V ⊕ V ∗) = P(Ck ⊕ · · · ⊕Ck

︸ ︷︷ ︸
n copies

⊕ (Ck)∗ ⊕ · · · ⊕ (Ck)∗︸ ︷︷ ︸
n copies

).

Hence if T ∈ PD(V ) then the symbol of T is a polynomial function

f(x1, . . . ,xn, ξ1, . . . , ξn), where xi ∈ Ck, ξj ∈ (Ck)∗.

From Lecture 6 we know that the algebra of G-invariant polynomials P (V ⊕ V ∗)G is generated by three
types of quadratic polynomials:

evaluation of ω on two vectors: rij(x1, . . . ,xn, ξ1, . . . , ξn) = ω(xi, xj)
evaluation of ω∗ on two covectors: ρij(x1, . . . ,xn, ξ1, . . . , ξn) = ω∗(ξi, ξj)
contraction of vector-covector: cij(x1, . . . ,xn, ξ1, . . . , ξn) = 〈xi, ξj〉

where 1 ≤ i, j ≤ n and ω∗ is the form on (Ck)∗ dual to ω. There is a canonical GL(V )-module isomorphism
∂ from P(V ∗) ∼= S(V ) to the algebra of constant-coefficient differential operators on V . The linear span
of the quadratic invariant polynomials above furnish symbols for the following Lie algebras of G-invariant
differential operators:

p− = Span{ multiplication by rij : 1 ≤ i, j ≤ n}
p+ = Span{ differentiation by ∆ij = ∂(ρij) : 1 ≤ i, j ≤ n}
k = Span{Eij + k

2 δij : 1 ≤ i, j ≤ n}
Here it is convenient to identify V with Mn×k, with G acting by right multiplication. If xi denotes the
ith row of x ∈Mn×k, then

Eij = xi · ∇xj =
k∑

r=1

xir
∂

∂xjr
.

The operators Eij , which correspond to vector-covector contractions, commute with the right action of
all of GL(k,C) (Eij is the classical polarization operator). Obviously [p−, p−] = 0 and [p+, p+] = 0. An
easy calculation shows that

[k, p±] = p±, [p−, p+] = k.

The choice of shift n
2 δij for the operators in k arises from the last commutation relation.

Theorem 8.5. Set g′ = p− + k + p+. Then g′ is a Lie algebra and it generates the associative algebra
PD(Mn×k)G. Furthermore,

g′ ∼=
{

sp(n,C) when ω is symmetric
so(2n,C) when ω is skew

The subalgebra k ∼= gl(n,C) acts on P(Mn×k) by the differential of the representation

ρ(g)f(x) = (det g)−k/2f(g−1x)

of K = GL(n,C) (replace K by its two-fold cover if k is odd).

Proof. The first statement follows from Corollary 8.4. The other parts are easy calculations (see [16,
§4.5] for details). �

We call g′ the Howe dual of g = Lie(G) associated to the representation of g on V. Notice that
the correspondence between g and g′ interchanges orthogonal and symplectic Lie algebras. There is an
asymmetry between g and g′, however. The action of g on P(V ) is by vector fields (corresponding to the
representation of G on V ), whereas the subalgebras p± of g′ act by second-order differential operators
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and multiplication by quadratic polynomials, which do not come from a geometric action on V . We will
show in Lecture 11 how to exponentiate the action of a real form of g′ on P(V ) to a unitary representation
of an associated real Lie group on a Hilbert-space completion of P(V ).

8.3. Howe Duality for GL(k). Now consider G = GL(k,C) acting on

V = Ck ⊕ · · · ⊕Ck

︸ ︷︷ ︸
p copies

⊕ (Ck)∗ ⊕ · · · ⊕ (Ck)∗︸ ︷︷ ︸
q copies

In this case the symbol of T ∈ PD(V ) is a polynomial function

f(x1, . . . ,xp, η1, . . . , ηq, ξ1, . . . , ξp,y1, . . . ,yq),

where [x1, . . . ,xp, η1, . . . ηq ] ∈ V and [ξ1, . . . , ξp,y1, . . .yq ] ∈ V ∗ (xi, yj are vectors in Ck and ξi, ηj are
covectors in (Ck)∗). Theorem 6.2 asserts that the algebra of G-invariant polynomials on V ⊕ V ∗ is
generated by contractions of a vector with a covector. Now there are four possibilities for contractions:

(1) vector and covector in V : 〈xi, ηj〉 for 1 ≤ i ≤ p and 1 ≤ j ≤ q
(2) vector and covector in V ∗: 〈yj , ξi〉 for 1 ≤ i ≤ p and 1 ≤ j ≤ q
(3) vector from V , covector from V ∗: 〈xi, ξj〉 for 1 ≤ i, j ≤ p
(4) covector from V , vector from V ∗: 〈yi, ηj〉 for 1 ≤ i, j ≤ q

We can identify V with M(p+q)×k if we make g ∈ G act on the right by
[
x
η

]
· g =

[
x(gt)−1

ηg

]
for x ∈Mp×k, η ∈Mq×k.

Here xi is the ith row of x and ηj the jth row of η. Contractions of type (1) and (2) furnish symbols
for the G-invariant operators

p− = Span{ multiplication by rij = 〈xi, ηj〉}
p+ = Span{ differentiation by ∆ij},

where

∆ij = ∇xi · ∇ηj =
k∑

r=1

∂

∂xir

∂

∂ηjr
for 1 ≤ i ≤ p and 1 ≤ j ≤ q.

The linear span of contractions of type (3) and (4) furnishes symbols for the G-invariant operators

k = Span{E(x)
ij + k

2 δij : 1 ≤ i, j ≤ p} ⊕ Span{E(η)
ij + k

2 δij : 1 ≤ i, j ≤ q},

where E(x)
ij is the polarization operator for the x variables and E

(η)
ij for the η variables. By the same

argument as in Theorem 8.5 we conclude that PD(V )G is generated by

g′ = p− + k + p+ .

These subalgebras have the commutation relations

[k, p±] = p±, [p−, p+] ⊂ k.

In this case g′ is isomorphic to gl(p+q,C) , with k ∼= gl(p,C)⊕gl(q,C). The action of k on P(Mp×k⊕Mq×k)
is the differential of the representation

ρ(g, h)f(x, η) = (det g deth)−k/2f(g−1x, h−1η)

for (g, h) ∈ K = GL(p,C)×GL(q,C). (We must replace K by the two-fold covers of each factor when n
is odd).
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Lecture 9. Harmonic Duality

9.1. Harmonic Polynomials. Let G be O(Ck, ω), Sp(Ck, ω), or GL(k,C) acting on V = Mn×k on the
right. In the case of GL(Ck) the first p rows of x ∈Mn×k transform as vectors, whereas the remaining q
rows transform as covectors. From Lecture 8 the Howe dual to G is, respectively,

g′ ∼= sp(n,C), so(2n,C), or gl(p+ q,C) with p+ q = n.

We will assume that p > 0 and q > 0 in the third case.h With G fixed, the spectrum Σ(V ) of G on P(V )
only depends on n (or the pair p, q in the third case); we can thus denote it by Σ(n) (or Σ(p, q)). From
the dual point of view if we fix g′, then the set Λ(V ) of irreducible representations of g′ that occur in
P(V ) only depends on k; we can thus denote it as Λ(k). The general duality theorem gives a bijection
Σ(n)↔ Λ(k). We now show how to express this bijection in terms of harmonic duality.

In all cases there is a triangular decomposition

g′ = p− ⊕ k⊕ p+ .

Here k is the Lie algebra of the reductive group K (a two-fold cover of GL(n,C) or GL(p,C)×GL(q,C)
in general). The representation of K on P(V ) is the natural representation associated with the left
multiplication action of GL(n,C) on V tensored with the one-dimensional representation

g 7→ (det g)−k/2 or (g, h) 7→ (det g deth)−k/2.

Let δ denote this character, viewed as a weight of the maximal torus of K. The subalgebra p− acts by
multiplication by G-invariant quadratic polynomials, whereas p+ acts by G-invariant constant-coefficient
Laplace operators {∆ij}.

We define the G-harmonic polynomials to be

H = P(V )p+ =
⋂

i,j
Ker(∆ij)

Since Ad(K)p+ = p+, the space H is invariant under the reductive group K ×G. In this lecture we will
show that H gives a multiplicity-free duality pairing between irreducible representations of K and G;
furthermore, the decomposition of H generates the decomposition of P(V ) under g′ and G.

Let U(k) ⊂ GL(k,C) denote the unitary group. Then K0 = K ∩ U(n) is a compact real form of K.
We assume that the bilinear form ω is chosen so that G0 = G ∩ U(k) is a compact real form of G and ω
is real on Rk. Define an inner product on Mn×k by

(x | y) = tr(y∗x) for x, y ∈Mn×k (y∗ = ȳt).

This inner product is invariant under U(n) × U(k), acting by left and right multiplication, hence it is
invariant under K0 × U0. We set ||x||2 = (x | x).

Let f(x) =
∑

α cαx
α be in P(V ), where α is a multi-index and xα =

∏
α(xij)αij as usual (xij are the

matrix entry functions on Mn×k). Define the constant-coefficient differential operator

∂(f) =
∑

α

cα

(
∂

∂x

)α

.

Then f 7→ ∂(f) is an algebra isomorphism from P(V ) to the constant-coefficient differential operators
on V that is equivariant relative to the action of U(k) × U(n). Set g∗(x) = g(x̄) for g ∈ P(V ). If
g(x) =

∑
α dαx

α, then

(9.1) (∂(f)g∗)(0) =
∑

α

α! cαdα .

We define 〈f | g〉 = (∂(f)g∗)(0) . From (9.1) we see that this is a positive definite Hermitian inner product
on P(V ), called the Fischer inner product. We note that

(9.2) 〈fg | h〉 = 〈f | ∂(g∗)h〉
for all f , g, h ∈ P(V ).

The Fischer inner product has the following analytic definition. Denote Lebesgue measure on V by
dλ(z), where we identify V with R2nk via the real and imaginary parts of the matrix coordinates.

hIf p = 0 or q = 0 then k = g′ and the modules Eλ ⊗F λ that occur in the decomposition of P(V ) are finite-dimensional.
This is the well-known GL(n)-GL(k) duality (see the lectures of Benson-Ratcliff in this volume).
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Lemma 9.1. For f, g ∈ P(V ) one has

〈f | g〉 = 1
πd

∫

V

f(z)g(z) e−||z||2 dλ(z)

(d = dimC V = nk).

Proof. See the article by Benson-Ratcliff in this volume. �

9.2. Main Theorem. We now apply the Weyl algebra theorem from Lecture 8 to obtain multiplicity-free
decompositions of the harmonic polynomials and the entire space P(V ).

Theorem 9.2 (Harmonic Duality).
(1) The space H of G-harmonic polynomials on V decomposes under K × G into mutually orthogonal
subspaces (relative to the Fischer inner product) as

H =
⊕

σ∈Σ(V )

Eτ(σ)+δ ⊗Fσ.

Here Σ(V ) ⊂ Ĝ is the spectrum of P(V ) as a G module, Fσ ⊂ H is an irreducible G-module of type σ, and
Eτ(σ)+δ ⊂ H is an irreducible finite-dimensional K-module with highest weight τ(σ) + δ. In particular,
every irreducible representation of G in P(V ) is realized in the harmonic polynomials.

(2) Set Eτ(σ)+δ = P(V )G · Eτ(σ)+δ. Then Eτ(σ)+δ is an irreducible g′ module and

P(V ) =
⊕

σ∈Σ(V )

Eτ(σ)+δ ⊗Fσ

is an orthogonal decomposition of P(V ) (relative to the Fischer inner product) under the mutually com-
muting actions of g′ and G.

(3) The map σ 7→ τ(σ) from Σ(V )→ K̂ is injective. Thus H is multiplicity-free as a K ×G module.

Proof. Since H is an invariant subspace for the reductive group K ×G, there is a subset Γ ⊂ K̂ × Ĝ and
multiplicity function m : Γ→ {1, 2, . . .} such that

(9.3) H ∼=
⊕

(µ,σ)∈Γ

Cm(µ,σ) ⊗ Eµ+δ ⊗Fσ

with K ×G acting trivially on the multiplicity spaces Cm(µ,σ). Indeed, we first consider H as a locally-
finite K × G-module relative to the natural left-right action on V = Mn×k (omitting the determinant
twist from the K representation) and use Proposition 1.1 and Example 1 in Section 2.3. Then tensor with
the character det−k/2 of K to shift the highest weights from µ to µ+ δ. To prove that Γ = {(τ(σ), σ) :
σ ∈ Σ(V )} and m(τ(σ), σ) = 1, we need to examine the action of g′ on P(V ) in more detail.

Let J = P(V )G be the G-invariant polynomials, and let Jj be the homogeneous polynomials of degree
j in J . Then Jj = 0 for j odd, and (p−)j acts by multiplication by J2j on P(V ). Since the bilinear form
ω is real on Rk, we have J ∗ = J and H∗ = H. Let J+ = {f ∈ J : f(0) = 0}. We claim that

(9.4) H⊥ = J+ · P(V )

(orthogonal complement relative to the Fischer inner product). Indeed, if f ∈ J+ · P(V ) and h ∈ H then
∂(f)h = 0 by definition of H, and thus f ⊥ h. Conversely, if h ⊥ J+ · P(V ) then for all f ∈ P(V ) and
g ∈ J+,

0 = 〈fg | h〉 = 〈f | ∂(g∗)h〉.
Hence ∂(g)h = 0 for all g ∈ J+, so we have h ∈ H.

We can now determine the general structure of the irreducible g′-modules in P(V ). The commutation
relations in g′ can be expressed as

p+p− ⊂ p−p+ + k, k p− ⊂ p−(k + 1)

in the universal enveloping algebra U(g′). Hence by induction, one has

(9.5) p+(p−)m ⊂ (p−)mp+ + (p−)m−1(k + 1), k (p−)m ⊂ (p−)m(k + 1)
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for all integers m ≥ 1. Thus if Z ⊂ H is any k-invariant linear subspace, then (9.5) implies that

(9.6) p+(p−)m · Z ⊂ (p−)m−1 · Z and k (p−)m · Z ⊂ (p−)m · Z

for all m ≥ 1.

(a) Let E ⊂ H be any k-irreducible subspace. Set E = J · E. Then E is an irreducible g′-module and
E = E ∩ H.

Indeed, (9.6) implies that E is invariant under g′. Also every f ∈ E is of the form

(9.7) f =
m∑

j=0

gjhj where 0 6= gj ∈ J2j and hj ∈ E .

Suppose F ⊂ E is a nonzero g′-invariant subspace. Take f ∈ F so that the integer m in (9.7) is minimal.
Then (9.6) implies that p+f = 0. Hence f ∈ H. Thus

m∑

j=1

gjhj = f − g0h0 ∈ H.

Since the left side is in J+ · P(V ), it must be zero by (9.4). Hence we conclude that f ∈ E . But k acts
irreducibly on E , so U(k)f = E and thus F = E. The same argument shows that E ∩H = E , completing
the proof of (a).

(b) Let E ⊂ P(V ) be an irreducible g′-module. Set E = E ∩ H. Then E is an irreducible k-module and
E = J · E.
Note that the action of p+ on P(V ) lowers the degree of polynomials, so E 6= 0. If 0 6= F ⊂ E were a
proper k-submodule, then J · F ⊂ E would be a proper irreducible g′-submodule by (a). Hence E must
be irreducible as a k-module and E = J · E , proving (b).

(c) Let E and F be k-invariant subspaces of H. Assume that E ⊥ F (relative to the Fischer inner product).
Set E = J · E and F = J · F . Then E ⊥ F .

By (9.4) we have the orthogonal decompositions

E = E ⊕ J+ · E F = F ⊕ J+ · F .

Thus E ⊥ F and F ⊥ E , so we only need to verify that J+ · E ⊥ J+ · F . Now

〈J+ · E | J+ · F〉 = 〈E | ∂(J+)J+ · F〉

But ∂(J+)J+ · F ⊂ F since F is k-invariant. Hence E ⊥ ∂(J+)J+ · F , proving (c).

We now complete the proof of the theorem. It is clear from the integral formula for the Fischer inner
product (Lemma 9.1) that G0 and K0 act by unitary operators on P(V ), hence the decomposition (9.3) of
H is orthogonal relative to the Fischer inner product because G0 and K0 have the same finite-dimensional
invariant subspaces in P(V ) as G and K, respectively (see [16, §2.4.4]). Also, since K is connected, a
finite-dimensional subspace of P(V ) is invariant under K if and only if it is invariant under k.

Let (µ, σ) ∈ Γ occur in (9.3). By (a), (b) and Theorem 3.4 we know that the irreducible g′-module
Eµ+δ = J · Eµ+δ uniquely determines µ. On the other hand, Theorem 8.2 asserts that P(V ) is semi-
simple as a g′-module, with the g′ multiplicity spaces being irreducible regular G-modules corresponding
bijectively to the associated g′-modules. Hence Γ is determined by its projection onto Ĝ. If we call
this projection Σ and write the elements of Γ as (τ(σ), σ), then the map σ 7→ τ(σ) is injective. The
multiplicities m(τ(σ), σ) = 1 for all σ ∈ Σ, since otherwise (a) and (c) would imply that Fσ is paired
with more than one copy of an irreducible g′ module, contradicting Theorem 8.2. Finally, (b) implies
that Σ = Σ(V ), since P(V ) is semisimple as a g′-module. �

Remarks. 1. Theorem 9.2 was obtained by Howe in his influential paper [21] (which circulated as a
preprint for more than a decade); his proof used an argument based on a filtration by finite-dimensional
subspaces and the classical double commutant theorem, instead of Theorem 8.2. Knowing that the
decomposition of the harmonics is multiplicity free simplifies the task of finding harmonic highest weight
vectors, as we will see in Lecture 10.
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2. The shift by δ in the highest weights for K in the harmonic decomposition would appear to be a
minor nuisance. In fact, it plays an important analytic role. For T ∈ PD(V ) let T ∗ denote the adjoint
of T relative to the Fischer inner product:

〈Tf | g〉 = 〈f | T ∗g〉.

If we write T in polarized form as T =
∑

j fj∂(gj) with fj , gj ∈ P(V ), then we see from (9.2) that
T ∗ =

∑
j g

∗
j ∂(f∗

j ). Hence (p±)∗ = p∓ and k∗ = k. It follows that

g′0 := {T ∈ g′ : T ∗ = −T}

is a real form of g′. We will show in Lecture 11 that the irreducible representation of g′0 on the space
Eλ, with λ = τ(σ) + δ, can be integrated to a unitary representation πλ of a (non-compact) real group
G′

0 with Lie algebra g′0. The shift by δ controls the rate of decay at infinity on G′
0 of the matrix entries

of πλ. We will show in Lecture 12 that for k large enough (relative to n), the representations πλ are
square-integrable (recall that δ = kδ0, where δ0 is a fixed weight of g′).

3. The injective map σ 7→ πτ(σ)+δ is called the theta-correspondence (more precisely, the local theta-
correspondence over R) because of the connection between the oscillator representation and theta-
functions (see [5]). There are many recent papers devoted to the problem of understanding the theta-
correspondence from a geometric orbit perspective (see [19, Ch. 12] for a survey).

Lecture 10. Decomposition of Harmonic Polynomials

We now turn to the explicit determination of the harmonic duality from Lecture 9 when G is the
orthogonal group and g′ the symplectic Lie algebra (for the other two cases, when G is the symplectic or
general linear group, see [22] and [6]). It is convenient to take G as the orthogonal group O(Ck, ω) for
the symmetric form ω(x, y) = xtCky on Ck, where

Ck =
[

0 Il
Il 0

]
when k = 2l, Ck =




0 Il 0
Il 0 0
0 0 1


 when k = 2l + 1.

Here Il denotes the l × l identity matrix. This choice of ω ensures that the diagonal matrices in G
give a maximal torus. Also G is a self-adjoint matrix group (invariant under g 7→ g∗), so the subgroup
G0 = G∩U(k) is a compact real form of G, and ω is real on the real matrices, as we assumed in Lecture
8.

In accordance with the block decomposition of Ck, we write elements z ∈Mn×k as

(10.1) z = [x y ] when k = 2l, z = [x y t ] when k = 2l+ 1,

where x, y ∈Mn×l and t ∈ Cn. Define the map

β : Mn×k → SMn, β(z) = zCkz
t.

From Theorem 6.3 we know that the algebra of G-invariant polynomials on Mn×k (relative to right
G-multiplication) is generated by the matrix entries of β:

(10.2) β(z)pq =





∑l
s=1 (yps xqs + xps yqs) when k = 2l,

∑l
s=1 (yps xqs + xps yqs) + tptq when k = 2l + 1.

We denote by ∆pq = ∂(βpq) the corresponding constant-coefficient differential operators, as in Section
9.1.

The space of G-harmonic polynomials is

H = {f ∈ P(Mn×k) : ∆pqf = 0 for 1 ≤ p, q ≤ n}.

Denote by H(j) the G-harmonic polynomials that are homogeneous of degree j. The space H is invariant
under GL(n,C)×G with the action

π(h, g)f(z) = f(h−1zg) for h ∈ GL(n,C) and g ∈ G.
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(Note that we have omitted the factor (deth)−k/2 that occurs in Theorem 8.5, so π is single-valued on
GL(n,C) even when k is odd). From Theorem 9.2 we know that H decomposes under the representation
π as a multiplicity-free direct sumi

H =
⊕

σ∈Σ

Eτ(σ) ⊗Fσ .

We will now determine Σ and the duality correspondence σ 7→ τ(σ). The key point is to find generators
for the algebra HNn×N of harmonic highest weight vectors, relative to a Borel subgroup Bn × B ⊂
GL(n,C)×G. Here Bn = DnNn is the upper-triangular subgroup of GL(n,C) (Dn the diagonal matrices,
Nn the unipotent upper-triangular matrices), and B = HN is a Borel subgroup of G. The fact that H
is multiplicity-free under GL(n,C)×G will play a crucial role.

Notation: We denote by εj the character diag[ a1 , . . . , an ] 7→ aj of Dn. We write Np
++ for the integer

p-tuples λ = [m1 , . . . ,mp ] with m1 ≥ m2 ≥ · · · ≥ mp ≥ 0. Set |λ| = m1 + · · ·+mp and define the depth
of λ to be the smallest integer i such that mi > 0 (if λ = 0, set depth(0) = 0).

10.1. O(k) Harmonics (k odd). Assume that k = 2l + 1 is odd. Then G = G◦ × {±I}, where
G◦ = SO(Ck , ω) is the identity component of G. We fix the Borel subgroup B = HN ⊂ G◦ as follows.
The maximal torus H consists of the diagonal matrices

h = diag[x1, . . . , xl, x
−1
1 , . . . , x−1

l , 1 ], xi ∈ C×.

The unipotent radical N has Lie algebra n consisting of the matrices with block decomposition

(10.3)



a b c
0 −at 0
0 −ct 0


 , a ∈Ml×l strictly upper-triangular, b = −bt ∈Ml×l, c ∈ Cl.

The weights of H are parameterized by Zl. For h ∈ H and λ = [m1, . . . ,ml ] ∈ Zl we set hλ = xm1
1 · · ·xml

l

for the corresponding character of H .
The irreducible representations of G remain irreducible on restriction to G◦ and Ĝ is parameterized as

{πλ,ε}, where λ ∈ Nl
++ is the highest weight forG◦, ε = ±1, and πλ,ε(−I) = ε(−I)|λ|. Thus Ĝ = Ĝ1∪Ĝ−1,

where
Ĝ1 = {(λ, 1) : λ ∈ Nl

++ }, Ĝ−1 = {(λ,−1) : λ ∈ Nl
++ },

(see [16, §5.2.2]).

Theorem 10.1. (G = O(Ck, ω), k = 2l+1) Let Σ be the spectrum of G on the G-harmonic polynomials
H ⊂ P(Mn×k).

(a) Assume k ≤ n. Then Σ = Ĝ and hence Σ does not depend on n (G-stable range).

(b) Assume l < n < k. Then Ĝ1 ⊂ Σ and

Σ ∩ Ĝ−1 = {(λ,−1) : k − n ≤ depth(λ) ≤ l }
(unstable range: Σ depends on k and n).

(c) Assume n ≤ l. Then Σ ∩ Ĝ−1 = ∅ and

Σ ∩ Ĝ1 = {(λ, 1) : depth(λ) ≤ n }.
Thus Σ does not depend on k (GL(n)-stable range).

The duality correspondence is given as follows: Let λ = [m1 , . . . ,md , 0, . . . , 0 ] ∈ Nl
++ have depth d with

0 ≤ d ≤ min{l, n}. Then

τ(σ) =





[ 0, . . . , 0︸ ︷︷ ︸
n−d

,−md, . . . ,−m1 ] for σ = (λ, 1) ∈ Σ ∩ Ĝ1,

[ 0, . . . , 0︸ ︷︷ ︸
n−k+d

,−1, . . . ,−1︸ ︷︷ ︸
k−2d

,−md, . . . ,−m1 ] for σ = (λ,−1) ∈ Σ ∩ Ĝ−1 .

iThe irreducible GL(n,C)-module Eτ(σ) ∼= F
τ(σ)
(n)

, in the notation of Lecture 3.
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Remark. The parameter ε for the representation πλ,ε is determined by the corresponding GL(n) highest
weight τ(λ, ε), since left multiplication by −In on Mn×k is the same as right multiplication by −Ik. Hence
H is also multiplicity-free as a module for GL(n,C)×G◦ (this property will be used in the proof).

The first step in the proof of Theorem 10.1 is to find a set of generators for the joint eigenfunctions
of Bn × B in H. Just as in the case of GL(n) × GL(k) duality (see the article by Benson-Ratcliff), the
general strategy is to take appropriate minor determinants. By (10.2) the operators ∆pq are given in
coordinates as

(10.4) ∆pq =
l∑

s=1

(
∂

∂yps

∂

∂xqs
+

∂

∂xps

∂

∂yqs

)
+

∂2

∂tptq
.

The minors of z = [x y t ] are linear functions of each column of the matrix components x, y, t. If
the minors are chosen to depend only on x or to be linear in t, then they will obviously be harmonic. If
they depend on both x and y, then interchanging an x column for a y column will change the sign of the
minor but not change the action of the operators ∆pq = ∆qp, so once again the minor will be harmonic.

We now proceed to carry out this program. Let p ≤ n and q ≤ l. For u ∈Mn×l define p×q submatrices
Lp,q(u) and Rp,q(u) of u by

u =
[

∗ ∗
Lp,q(u) ∗

]
=

[
∗ ∗
∗ Rp,q(u)

]

For t ∈ Cn and j ≤ n define

t(j) =



tn−j+1

...
tn


 ∈ Cn−j

(the bottom j entries of t).
Let z = [ x y t ] ∈Mn×k as in (10.1). Define

fj(z) = detLj,j(x) for 1 ≤ j ≤ min{l, n}.
If n ≥ l+ 1 then we also define

gj(z) =





det
[
Lj,l(x) t(j)

]
for j = l + 1,

det
[
Lj,l(x) Rj, j−l−1(y) t(j)

]
for l + 2 ≤ j ≤ min{n, k}.

Lemma 10.2.
(a) Let 1 ≤ j ≤ min{l, n}. Then fj ∈ H(j) and fj is a Bn ×B eigenfunction of weight (µ, ν), where

µ = −εn−j+1 − · · · − εn and ν = ε1 + · · ·+ εj .

(b) Assume n > l and let l + 1 ≤ j ≤ min{n, k}. Then gj ∈ H(j) and gj is a Bn × B eigenfunction of
weight (µ, γ), where

µ = −εn−j+1 − · · · − εn and γ = ε1 + · · ·+ εk−j

(here γ = 0 if j = k).

Proof. Assume 1 ≤ j ≤ min{l, n}. It is clear from (10.4) that ∆pqfj(z) = 0 for 1 ≤ p, q ≤ n, since fj(z)
only depends on x. The diagonal matrices in Bn and B act on f ∈ P(Mn×k) by

(10.5) f(x, y, t) 7→ f(a−1xb, a−1yb−1, a−1t), with a ∈ Dn, b ∈ Dl.

Since fj involves columns 1, . . . j and rows n−j+1, . . . , n of x, it has weight (µ, ν) as stated (the columns
of x transform as vectors under H , whereas the rows of x transform as covectors under Dn). To verify
that fj is fixed under the left action of Nn, note that u ∈ Nn acts by x 7→ ux. Since u is unipotent upper
triangular, this action transforms the ith row of x by adding multiples of rows below the ith row, so it
fixes fj .

To verify that fj is fixed under the right action of the unipotent radical N = exp n of B, we observe
from (10.3) that N is generated by the subgroups NA, NB , NC consisting of the matrices

(10.6)



a 0 0
0 (at)−1 0
0 0 1


 ,



I b 0
0 I 0
0 0 1


 ,



I − 1

2cc
t c

0 I 0
0 −ct 1


 ,
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respectively, where a is upper-triangular unipotent, bt = −b, and c ∈ Cl. The elements of the subgroup
NA act by [x y t ] 7→ [xa y t ], while the subgroups NB and NC fix x. Hence the action of N
transforms the ith column of x by adding multiples of columns to the left of the ith column, so fj is
invariant under N . This proves part (a) of the lemma.

Now assume n > l and l + 1 ≤ j ≤ min{k, n}. Then gj(z) is a linear function of t and does not
depend on the variables yrs for s ≤ k− j. Hence by (10.4) we have ∆pqgj(z) = 0 if min{p, q} ≤ k − j. If
min{p, q} ≥ k − j + 1, then

∆pq gj(z) =
l∑

s=k−j+1

(
∂

∂yps

∂

∂xqs
+

∂

∂xps

∂

∂yqs

)
gj(z) .

Fix s with k − j + 1 ≤ s ≤ l. If the column #s of x and column #s of y are interchanged in the
determinant defining gj(z), then gj(z) changes sign. Hence the function

h(z) =
(

∂

∂yps

∂

∂xqs
+

∂

∂xps

∂

∂yqs

)
gj(z)

likewise changes sign since the differential operator is symmetric in the variables x and y. But h(z) is of
degree zero in the variables xps, xqs, yps, yqs since gj(z) depends linearly on each variable. Hence h(z) = 0.
This proves that gj(z) is G-harmonic.

Since gj involves columns 1, . . . l of x and columns k − j + 1, . . . , l of y, we see from (10.5) that gj

transforms under H by the weight

γ = (ε1 + · · ·+ εl)− (εk−j+1 + · · ·+ εl) = ε1 + · · ·+ εk−j .

Since gj involves rows n− j + 1, . . . , n of z, it transforms under Dn by the same weight µ as does fj .
It is clear that gj is fixed under the left action of Nn. To verify that gj is fixed under the right action

of N , it suffices to check the action of the matrices in (10.6). These give the transformations

z 7→ [xa y t ], z 7→ [x y + xb t ], z 7→ [x y − 1
2
xcct − tct t+ xc ],

respectively. The determinant defining gj involves all the columns of x and t. Since the columns of xcct,
xc, and tct are linear combinations of the columns of x and t, it is clear that these transformations fix
gj . �

Corollary 10.3. Let m = [m1 , . . . ,mr ] ∈ Nr
++, where r = min{l, n}. Assume that m has depth d and

set λ = [m, 0, . . . , 0 ] ∈ Nl
++. Define ϕm = fm1−m2

1 · · · fmd−1−md

d−1 fmd

d (when m = 0 set ϕ0(z) = 1).

(a) ϕm is a G-harmonic polynomial, homogeneous of degree |m|. Thus ϕm(−z) = (−1)|m|ϕm(z) for
z ∈Mn×k. Furthermore, ϕm is a Bn ×B eigenfunction of weight (α, λ), where

α = [ 0, . . . , 0︸ ︷︷ ︸
n−d

, −md , . . . ,−m1 ]

(when m = 0 take α = 0).

(b) Suppose n > l and n − k + d ≥ 0. For m 6= 0, define ψm = ϕm gk−d/fd (when m = 0 set
ψ0 = gk). Then ψm is a G-harmonic polynomial, homogeneous of degree |m|+ k − 2d. Thus ψm(−z) =
−(−1)|m|ψm(z) for z ∈Mn×k. Furthermore, ψm is a Bn ×B eigenfunction of weight (β, λ), where

β = [ 0, . . . , 0︸ ︷︷ ︸
n−k+d

, −1, · · · ,−1︸ ︷︷ ︸
k−2d

, −md , . . . ,−m1 ].

(When m = 0 take β = [ 0, . . . , 0︸ ︷︷ ︸
n−k

, −1, · · · ,−1︸ ︷︷ ︸
k

].)

Proof. Since ϕm(z) is a function of x alone (where z = [x y t ] as above), it is clear that ϕm is
G-harmonic. For the same reason,

∆pq ψm = (ϕm/fd) ∆pq gk−d = 0,

Thus we see that ψm is also G-harmonic. The other assertions are immediate consequences of Lemma
10.2 �
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Now we turn to the proof of Theorem 10.1. A Bn×B joint eigenfunction generates an irreducible subspace
under the action of GL(n) × G◦ by Theorem 3.5. Since the space of harmonic polynomials on Mn×k is
a multiplicity-free GL(k,C)×G◦ module, it follows that a Bk ×B eigenfunction is uniquely determined
(up to a scalar multiple) by its weight and parity. If m ∈ Nl

++ has depth d ≤ n, then from Corollary 10.3
we see that the right translates of ϕm under G span an irreducible space of type (m, 1), while the right
translates of ψm under G span an irreducible space of type (m,−1). When k ≤ n, then the conditions
n > l and n−k+d ≥ 0 in part (b) of Corollary 10.3 are automatic. Thus every irreducible representation
of G occurs in H in this case, as asserted in part (a) of the theorem.

To prove parts (b) and (c) of the theorem, assume that k > n. Let f ∈ H be a Bn ×B eigenfunction.
Define a polynomial f̃ on Mk×k by

f̃

([
z′

z′′

])
= f(z′′) for z′ ∈M(k−n)×k and z′′ ∈Mn×k.

We claim that f̃ is G-harmonic. Indeed, if min{p, q} ≤ k − n then ∆pq f̃ = 0 since f̃ does not depend on
the variables zpq for p ≤ k − n. On the other hand, if min{p, q} > k − n then

∆pq f̃(z) = ∆p′q′f(z′′) = 0

(where p′ = p−k+n and q′ = j−k+n), since f is G-harmonic. To see that f̃ is a Bk×B eigenfunction,
write b ∈ Bk as

b =
[
α β
0 δ

]
, where α ∈ Bk−n, β ∈M(k−n)×n, δ ∈ Bn.

Then f̃(b−1zb′) = f(δ−1z′′b′) for b′ ∈ B. Since f is Bn × B eigenfunction, it follows that f̃ is a Bk ×B-
eigenfunction. Furthermore this shows that Bk weight µ of f̃ is of the form

µ = [ 0, . . . , 0︸ ︷︷ ︸
k−n

, an , . . . , a1 ] with an ≥ · · · ≥ a1,

Thus by part (a) we know that f̃ is a multiple of either ϕm or ψm for some m ∈ Nl
++ of depth d ≤ n,

since f is homogeneous.
If l < n < k, then ϕm is defined for all m ∈ Nl

++, but ψm is only defined when the depth d of m
satisfies k − n ≤ d ≤ l. This implies part (b) of the theorem. If n ≤ l, then ϕm is defined for all m of
depth d ≤ n, but in this case ψm is never defined. This implies part (c) of the theorem. The formula for
the map τ follows from the formulas for α and β in Corollary 10.3. �

10.2. O(k) Harmonics (k even). We now assume that k = 2l is even. We take the Borel subgroup
B ⊂ G whose Lie algebra consists of the matrices with block decomposition (block sizes l × l)

[
a b
0 −at

]
(a upper-triangular, bt = −b)

(If k = 2 then b = 0 and B ∼= C×). Let N ⊂ B be the unipotent radical (the matrices as above with a
upper-triangular unipotent). Recall that

O(Ck, ω) = G◦ o {I, s}

where G◦ = SO(Ck, ω) is the identity component and s ∈ G is the reflection interchanging the basis
vectors el and e2l and fixing all other basis vectors ei. Since s normalizes B it acts on the characters of
B. Let λ = [m1 , . . . ,ml ] ∈ Nl

++. If ml 6= 0, then s · λ 6= λ (since s changes ml to −ml). In this case
there is a unique irreducible G representation πλ,0 such that

πλ,0|G◦ = πλ ⊕ πs·λ

(where πµ denotes the irreducible G◦ representation with highest weight µ). If ml = 0, then there are
two irreducible representations πλ,ε (ε = ±1) of G whose restriction to G◦ is πλ. They are related by

πλ,ε = det⊗πλ,−ε
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and labeled so that πλ,ε(s) acts by ε on the G◦ highest weight vector (see [16, §5.2.2]). Thus Ĝ can be
written as a disjoint union Ĝ = Ĝ−1 ∪ Ĝ0 ∪ Ĝ1, where

Ĝ±1 = {πλ,ε : depth(λ) < l, ε = ±1 }, Ĝ0 = {πλ,ε : depth(λ) = l, ε = 0 }.

Theorem 10.4. (G = O(Ck, ω), k = 2l) Let Σ be the spectrum of G on the G-harmonic polynomials
H ⊂ P(Mn×k).

(a) Assume k ≤ n. Then Σ = Ĝ and thus Σ does not depend on n (G-stable range).

(b) Assume l < n < k. Then Ĝ1 ∪ Ĝ0 ⊂ Σ, whereas

Σ ∩ Ĝ−1 = {(λ,−1) : k − n ≤ depth(λ) < l }
(unstable range: Σ depends on k and n).

(c) Assume n = l. Then Σ = Ĝ1 ∪ Ĝ0.

(d) Assume n < l. Then Σ = {(λ, 1) : depth(λ) ≤ n } ⊂ Ĝ1.

Thus Σ does not depend on k when n ≤ l (GL(n)-stable range). The duality correspondence is given as
follows: Let λ = [m1 , . . . ,md , 0, . . . , 0] ∈ Nl

++ have depth d with 1 ≤ d ≤ min{l, n}. Then

τ(σ) =





[ 0, . . . , 0︸ ︷︷ ︸
n−d

,−md , . . . ,−m1 ] for σ = (λ, ε) ∈ Σ ∩ (Ĝ1 ∪ Ĝ0),

[ 0, . . . , 0︸ ︷︷ ︸
n−k+d

,−1, . . . ,−1︸ ︷︷ ︸
k−2d

,−md , . . . ,−m1 ] for σ = (λ,−1) ∈ Σ ∩ Ĝ−1.

To prove the theorem, we will find a set of generators for the joint eigenfunctions of Bn×B in H. For
u ∈Mn×l, p ≤ n, and q ≤ l, define matrices Lp,q(u) and Rp,q(u) as in the proof of Theorem 10.1. In this
case we write z = [ x y ] as in (10.1) and we define

fj(z) = detLj,j(x) for 1 ≤ j ≤ min{l, n}.
If n ≥ l+ 1 then we also define

gj(z) = det
[
Lj,l(x) Rj,j−l(y)

]
for l + 1 ≤ j ≤ min{k, n}.

Lemma 10.5. (a) Let 1 ≤ j ≤ min{l, n}. Then fj ∈ H(j) and fj is a Bn × B eigenfunction of weight
(µ, ν), where

µ = −εn−j+1 − · · · − εn and ν = ε1 + · · ·+ εj .

Furthermore fj(zs) = fj(z) if j < l, where s ∈ G is the reflection el ↔ e2l.

(b) Suppose n ≥ l+1 and take l+1 ≤ j ≤ min{n, k}. Then gj ∈ H(j) and gj is a Bn×B eigenfunction
of weight (µ, γ), where

µ = −εn−j+1 − · · · − εn and γ = ε1 + · · ·+ εk−j

(here γ = 0 if j = k). Furthermore gj(zs) = −gj(z), with s ∈ G as in (a).

Proof. Essentially the same as the proof of Lemma 10.2. Note that in this case the unipotent radical N
of B is generated by the transformations

z 7→ [xa y ], z 7→ [x y + xb ],

with a upper-triangular unipotent and bt = −b. �

Corollary 10.6. Let m = [m1, . . . ,mr ] ∈ Nr
++, where r = min{l, n}. Assume m has depth d and set

λ = [m, 0, . . . , 0 ] ∈ Nl
++. Define ϕm = fm1−m2

1 · · · fmd−1−md

d−1 fmd

d (when m = 0 set ϕ0 = 1).

(a) ϕm is a G-harmonic polynomial, homogeneous of degree |m|. Furthermore, ϕm is a Bn × B
eigenfunction of weight (α, λ), where

α = [ 0, . . . , 0︸ ︷︷ ︸
n−d

, −md , . . . ,−m1 ].

(when m = 0 take α = 0). Set ϕs
m(z) = ϕm(zs). Then ϕs

m = ϕm when d < l.
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(b) Let n > l. If d < l and n − k + d ≥ 0 define ψm = ϕm gk−d/fd (when m = 0 set ψ0 = gk). Then
ψm is a G-harmonic polynomial, homogeneous of degree |m| + k − 2d. Furthermore ψm is a Bn × B
eigenfunction of weight (β, λ), where

β = [ 0, . . . , 0︸ ︷︷ ︸
n−k+d

, −1, · · · ,−1︸ ︷︷ ︸
k−2d

, −md, . . . ,−m1 ]

(when m = 0 take β = [ 0, . . . , 0︸ ︷︷ ︸
n−k

, −1, · · · ,−1︸ ︷︷ ︸
k

]). Set ψs
m(z) = ψm(zs). Then ψs

m = −ψm.

Proof. This follows from Lemma 10.5 by the same arguments as in the proof of Corollary 10.3. �

To prove Theorem 10.4, assume first that n ≥ k. By Corollary 10.6 the functions ϕm are defined for
all m ∈ Nl

++. If m has depth l then the right G-translates of ϕm span an irreducible subspace of type
(m, 0). If m has depth less than l then ψm is also defined. In this case the right G-translates of ϕm

span a G-irreducible subspace of type (m, 1), whereas the right G-translates of ψm span an irreducible
subspace of type (m,−1). Thus we get all irreducible representations of G in H, as asserted in part (a)
of the theorem.

The argument when n < k proceeds as in the proof of Theorem 10.1 by lifting harmonic Bn × B
eigenfunctions from Mn×k to Mk×k. Note that ϕm is defined for all m of depth d ≤ min{n, l}, whereas
ψm is only defined when n > l and k − n ≤ d < l. We omit the details. �

10.3. Examples of Harmonic Decompositions. 1. Assume n ≤ l and k = 2l + 1 or 2l, so that we
are in case (c) of Theorem 10.1 or cases (c) and (d) of Theorem 10.4. The restrictions to SO(k) of the
representations in Σ are the class n representations of SO(k)–those that have a vector fixed under the
subgroup SO(k − n). This follows from the branching law (see [16, §8.1]). In this case the harmonic
polynomials on Mn×k decompose under GL(n)× SO(k) as

(10.7) H ∼=
⊕

λ∈Nn
++

Eλˇ⊗ Vλ

Here λˇ= [−mn, . . . ,−m1] and Vλ is the irreducible SO(k) module with highest weight λ (when n = l,
k = 2l is even and ml 6= 0, then Vλ is the sum of the irreducible representations with highest weights λ
and s ·λ). For n = 1, (10.7) is the classical spherical harmonic decomposition and gives the decomposition
of polynomials restricted to the sphere SO(k)/SO(k − 1). For n > 1 (10.7) gives the decomposition of
polynomials restricted to the Stiefel manifold SO(k)/SO(k − n). This decomposition was obtained by
Gelbart [12] and Ton-That [32] before Kashiwara and Vergne [22] worked out the general case that we
have presented here.

2. Now assume l < n < k, so that we are in case (b) of Theorems 10.1 and 10.4. The decomposition of
the harmonics in this case was obtained by Strichartz [29]. For example, let n = 2 and k = 3. Then we
have the decomposition

H =
{ ⊕

m≥0

E [0,−m] ⊗ V [m]
}
⊕

{ ⊕

m≥1

E [−1,−m] ⊗ V [m]
}

of the harmonic polynomials on M2×3. Here V [m] denotes the irreducible SO(3) representation with
highest weight mε1. The B2×B harmonic eigenfunction ϕ(m)(z) = xm

2 generates the summand E [0,−m]⊗
V [m]. The B2×B harmonic eigenfunction ψ(m)(z) = xm−1

2 (x1t2−x2t1) generates the summand E [−1,−m]⊗
V [m]. Here we write

z =
[
x1 y1 t1
x2 y2 t2

]
.

3. Let n = 3 and k = 3 so that we are in case (a) of Theorem 10.1. Then we have the decomposition

H =
{ ⊕

m≥0

E [0,0,−m] ⊗ V [m]
}
⊕

{
E [−1,−1,−1] ⊗ V [0]

}
⊕

{ ⊕

m≥1

E [0,−1,−m] ⊗ V [m]
}

of the harmonic polynomials on M3×3 as a module for GL(3)×SO(3). The B3×B harmonic eigenfunction
ϕ(m)(z) = xm

3 generates the summand E [0,0,−m] ⊗ V [m]. The B3 × B harmonic eigenfunction ψ(m)(z) =
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xm−1
3 (x2t3 − x3t2) generates the summand E [0,−1,−m] ⊗ V [m]. Here we write

z =



x1 y1 t1
x2 y2 t2
x3 y3 t3


 .

For m = 0 the function ψ(0)(z) = det z generates the one-dimensional summand E [−1,−1,−1] ⊗ V [0].
Let C(m) denote the one-dimension representation g 7→ (det g)m of GL(3). Let $1 = [1, 0, 0] and

$2 = [1, 1, 0]. Then the GL(3) representations occurring in H are C(−1),

E [0,0,−m] ∼= C(−m) ⊗ Em$2

for all m ≥ 0, and
E [0,−1,−m] ∼= C(−m) ⊗ E$1+(m−1)$2

for all m ≥ 1.

Lecture 11. Symplectic Group and Oscillator Representation

We now turn to the functional-analytic aspects of the harmonic duality decomposition in Theorem
9.2 (recall Example 4 in Section 2.3). If we replace the complex group G by its compact real form
G0 = G ∩ U(V ) then the finite-dimensional representations Fσ remain irreducible under G0 and the
action of G0 is unitary relative to the Fischer inner product.

We would like to have a similar picture for the dual representations Eλ (where λ = τ(σ) + δ). At the
Lie algebra level it is clear that to obtain a unitary representation, we should take the real form g′0 of g′

that acts by skew-hermitian operators relative to the Fischer inner product. The analytic problem is to
construct a unitary representation of an associated real Lie group G′

0 on the completion of P(V ), and to
describe its action on the Hilbert space completions of the infinite-dimensional spaces Eλ.

We will construct G′
0 as a subgroup of the metaplectic group Mp(nk,R) (the two-sheeted cover of the

real symplectic group Sp(nk,R)). The associated unitary representation will be the restriction toG′
0 of the

oscillator representation of the metaplectic group. This representation already appears in the harmonic
decomposition as a Lie algebra representation by elements of degree 2 in the Weyl algebra. However,
when we try to exponentiate it to a unitary group representation, we encounter the conflict between the
particle and the wave description of quantum mechanics; the representation has a simple description (the
holomorphic model) relative to the maximal compact subgroupK0

∼= U(n) of Sp(n,R), and another simple
description (the real-wave model) relative to the maximal parabolic subgroup P ∼= GL(n,R) n SMn(R)
of Sp(n,R). In both descriptions K0 ∩ P ∼= O(n) acts geometrically, but some of the remaining group
elements act in a more subtle way. Thus it will be necessary to consider two matrix forms of the real
symplectic group and the intertwining operator (the Bargmann-Segal transform) that relates the two
versions of the oscillator representation.

11.1. Real Symplectic Group. Let Sp(n,C) be the subgroup of GL(2n,C) that preserves the skew-
form

Ω(x, y) =
n∑

i=1

(xiyn+i − xn+iyi)

on C2n. Thus g ∈ Sp(n,C) if and only if gtJng = Jn, where gt denotes matrix transpose and Jn is the
matrix

Jn =
[

0 In
−In 0

]
.

We can also describe Sp(n,C) as the fixed-point group of the involution τ : g 7→ Jn(gt)−1J−1
n on

GL(2n,C).
The Lie algebra sp(n,C) of Sp(n,C) consists of all X ∈ M2n such that JnX + XtJn = 0. These

matrices have block form

X =
[
A B
C −At

]
with A ∈Mn and B,C ∈ SMn.

Here we use the notation Mn for the n×n complex matrices and SMn for the n×n symmetric complex
matrices.
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The real symplectic group Sp(n,R) = Sp(n,C) ∩GL(2n,R). Its Lie algebra sp(n,R) consists of all the
real matrices in sp(n,C).

Maximal Compact Subgroup. A fundamental technique for studying a unitary representation of a real
reductive group such as Sp(n,R) is to restrict the representation to a maximal compact subgroup, under
which the representation space decomposes as the (Hilbert-space) direct sum of multiples of irreducible
(finite-dimensional) subspaces. The real orthogonal group O(k) ⊂ U(k) is the subgroup of real unitary
matrices. Since Sp(n,C) and Sp(n,R) are invariant under the map g 7→ g∗, the groups

Sp(n) = Sp(n,C) ∩ U(2n) and Sp(n,R) ∩ U(2n) = Sp(n,R) ∩O(2n)

are maximal compact subgroups of Sp(n,C) and Sp(n,R), respectively (see [24, Proposition 1.2]). The
subgroup of diagonal matrices in Sp(n) is a maximal torus in Sp(n). However, the subgroup of diagonal
matrices in Sp(n,R) ∩ O(2n) is finite and is not a maximal torus in Sp(n,R). Hence it is convenient to
replace Sp(n,R) by an isomorphic real form G0 so that the diagonal matrices in G0 ∩ U(2n) comprise a
maximal (compact) torus in G0.

Define

In,n =
[
In 0
0 −In

]

and let σ be the conjugation (conjugate-holomorphic involution) σ(g) = In,n(g∗)−1In,n on GL(2n,C).
The fixed-point set of σ is the real form U(n, n) of GL(2n,C). Set

Kn = In,nJn =
[

0 In
In 0

]
.

Then J−1
n In,n = Kn, so it follows that στ = τσ. Hence σ leaves Sp(n,C) invariant and its restriction

to Sp(n,C) defines a conjugation of Sp(n,C) which we continue to denote as σ. If g ∈ Sp(n,C) then
σ(g) = στ(g) = KnḡKn. In terms of the n× n block decomposition, σ acts by

σ

[
A B
C D

]
=

[
D̄ C̄
B̄ Ā

]
.

Define G0 = {g ∈ Sp(n,C) : σ(g) = g}. Then G0 is a real form of Sp(n,C). Its Lie algebra g0 = Lie(G0)
consists of all matrices X ∈ sp(n,C) such that σ(X) = X . In terms of the block decomposition, g0

consists of the matrices

(11.1) X =
[
A B
B̄ Ā

]
, A∗ = −A, B = Bt.

Lemma 11.1. The subgroup K0 = G0 ∩U(2n) is a maximal compact subgroup of G0 and consists of all
matrices [

A 0
0 Ā

]
, with A ∈ U(n).

Hence K0
∼= U(n) and the subgroup of diagonal matrices in K0 is a maximal compact torus of G0.

Proof. Since σ(g∗) = σ(g)∗ for g ∈ GL(2n,C), the group G0 is invariant under g 7→ g∗. Hence K0 is a
maximal compact subgroup of G0. Write g ∈ GL(2n,C) as

g =
[
A B
C D

]
with A,B,C,D ∈Mn.

Then g ∈ U(n, n) if and only if g∗In,ng = In,n. This condition can be written as

(11.2) A∗A− C∗C = In, B∗B −D∗D = −In, A∗B − C∗D = 0.

On the other hand, g ∈ U(2n) if and only if g∗g = I2n. This condition can be written as

(11.3) A∗A+ C∗C = In, B∗B +D∗D = In, A∗B + C∗D = 0.

If g ∈ U(2n) ∩ U(n, n) then from (11.2) and (11.3) we have C∗C = 0 and B∗B = 0. Hence B = 0 and
C = 0, so A∗A = In and D∗D = In. Thus U(2n) ∩ U(n, n) = U(n) × U(n). But if g ∈ Sp(n,C) is in
block-diagonal form, then

g =
[
A 0
0 (At)−1

]
, with A ∈ GL(n,C).



MULTIPLICITY-FREE SPACES AND SCHUR-WEYL-HOWE DUALITY 45

Hence g ∈ K0 if and only if A ∈ U(n). �
Define an involution θ on Sp(n,C) by

θ(g) = In,ngIn,n

(note that θ is an inner automorphism of Sp(n,C)). If g ∈ G0 then (gt)−1 = JngJ
−1
n and ḡ = KngKn.

Hence (g∗)−1 = JnḡJ
−1
n = JnKngKnJ

−1
n . Since JnKn = In,n, it follows that

θ(g) = (g∗)−1 for g ∈ G0.

Thus the maximal compact subgroup K0 is the fixed-point set of θ in G0. Its complexification is

K = {g ∈ Sp(n,C) : θ(g) = g}.

Note that if g ∈ GL(2n,C), then θ(g) = g if and only if

g =
[
a 0
0 d

]
, a, d ∈ GL(n,C).

If g ∈ K, then in this block decomposition d = (at)−1. Hence K ∼= GL(n,C) via the homomorphism

a 7→
[
a 0
0 (at)−1

]
.

The complexification of the Lie algebra k0 of K0 is the Lie algebra k ∼= gl(n,C) of K.
The involution θ gives a decomposition of sp(n,C). The +1 eigenspace of θ on sp(n,C) is k, whereas

the −1 eigenspace is

p =
{[

0 B
C 0

]
: B,C ∈ SMn

}
.

We have sp(n,C) = k⊕ p with commutation relations

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k.

The center of k is spanned by In,n and k = CIn,n ⊕ [k, k], with the derived algebra [k, k] ∼= sl(n,C). The
±1 eigenspaces of adIn,n on p are

p+ =
{[

0 B
0 0

]
: B ∈ SMn

}
, p− =

{[
0 0
C 0

]
: C ∈ SMn

}
.

These subspaces are invariant under k and have the commutation relations

[p+, p+] = 0, [p−, p−] = 0, [p+, p−] ⊂ k.

Thus there is a triangular decomposition

sp(n,C) = p− ⊕ k⊕ p+

(as we already noted in Lecture 8). The conjugation σ interchanges p+ and p−, since

σ

([
0 B
0 0

])
=

[
0 0
B̄ 0

]

for B ∈ SMn.
We can describe these decompositions in terms of root spaces as follows (see [16, §2.3.1]). The com-

plexification T of T0 is a maximal (algebraic) torus in Sp(n,C) and has Lie algebra

t = {X = diag[x1, . . . , xn,−x1, . . . ,−xn] : xj ∈ C}.

The set of roots Φ = Φ(g, t) of t on g is ±εi ± εj for 1 ≤ i, j ≤ n, where εi(X) = xi for X ∈ t as above.
We have Φ = Φc ∪ Φn, where

Φc = {±(εi − εj) : 1 ≤ i < j ≤ n}
is the set of compact roots (the roots of t on k) and

Φn = {±(εi + εj) : 1 ≤ i ≤ j ≤ n}

is the set of noncompact roots (the roots of t on p).
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Take the set of positive roots Φ+ to be εi ± εj for 1 ≤ i ≤ j ≤ n, and let Φ+
c (respectively Φ+

n ) be the
positive compact (respectively noncompact) roots. Then

k = t +
∑

α∈Φc

gα p± =
∑

β∈Φ+
n

g±β

The simple roots in Φ+ are α1, . . . , αn, where

αi = εi − εi+1 for i = 1, . . . , n− 1 and αn = 2εn.

The unique simple non-compact root is the long root αn, and the highest root is γ = 2ε1 (it is noncom-
pact). Let ρ be one-half the sum of the positive roots. Then

(11.4) ρ = nε1 + (n− 1)ε2 + · · ·+ εn.

Cayley Transform. We now show that the group G0 = Sp(n,C)∩U(n, n) is conjugate to Sp(n,R) within
Sp(n,C). To understand this in terms of the adjoint representation of sp(n,C), consider first the case
n = 1 (recall that Sp(1,C) = SL(2,C)). Set

k =
[

0 i
−i 0

]
, x =

1
2

[
1 −i
−i −1

]
, y =

1
2

[
1 i
i −1

]
.

where i is a fixed choice of
√
−1. Then [k,x] = 2x, [k,y] = −2y, [x,y] = k, so {x,y,k} is a TDS

(three-dimensional simple) triple. Furthermore, the one-parameter subgroup

t 7→ exp(itk) =
[

cos t − sin t
sin t cos t

]
, t ∈ R,

is a maximal compact torus in SL(2,R). Let

h =
[

1 0
0 −1

]
, e =

[
0 1
0 0

]
, f =

[
0 0
1 0

]

be the standard TDS in sl(2,C). We can conjugate {x,y,k} to {e, f ,h} as follows: Since x + y = h, we
have

(ad(y − x))(k) = 2h, (ad(y − x))(h) = −2k,

and so
et ad(y−x)k = (cos 2t)h + (sin 2t)k, for t ∈ C.

Setting t = π/4, we obtain
e(π/4)ad(y−x)k = h.

Since (y − x)2 = −I , we have

exp[t(y − x)] = (cos t)I + (sin t)(y − x), for t ∈ C.

Define

c = exp[
π

4
(y − x)] =

1√
2

[
1 i
i 1

]
.

Then c(ik)c−1 = ih. Thus c conjugates the compact torus in SL(2,R) generated by ik to the compact
torus in G0 generated by ih:

c
[

cos t − sin t
sin t cos t

]
c−1 =

[
eit 0
0 e−it

]
, t ∈ R,

The automorphism g 7→ cgc−1 is called the Cayley transform.
A similar construction works in Sp(n,C) (and for other real semisimple Lie groups). Set

c =
1√
2

[
In iIn
iIn In

]
.

Then c ∈ Sp(n) and c−1 = c̄.

Lemma 11.2. Let G0 = U(n, n) ∩ Sp(n,C). Then c−1G0c = Sp(n,R).
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Proof. Since G0 is closed under g 7→ g∗ it has a polar decomposition G0 = K0 exp(p0). We already have
shown that K0

∼= U(n), hence K0 is connected. Thus G0 is also connected. So it will suffice to show that

Ad(c)−1g0 = sp(n,R).

Let X ∈ g0 be given by (11.1). Then one calculates that

c−1Xc =
1
2

[
(A+ Ā) + i(B − B̄) i(A− Ā) + (B + B̄)
i(Ā−A) + (B + B̄) (A+ Ā)− i(B − B̄)

]

Set u = 1
2 (A+ Ā)+ i

2 (B− B̄), v = i
2 (A− Ā)+ 1

2 (B+ B̄), and w = i
2 (Ā−A)+ 1

2 (B+ B̄). Since Ā = −At

and B = Bt, we have
u = ū, v = v̄ = vt, w = w̄ = wt.

Also 1
2 (A+ Ā)− i

2 (B − B̄) = −ut. Hence

c−1Xc =
[
u v
w −ut

]
∈ sp(n,R).

Since g0 and sp(n,R) are real forms of sp(n,C), they have the same real dimension. Hence the map
X 7→ c−1Xc is a real Lie algebra isomorphism from g0 to sp(n,R). �

Maximal Parabolic Subgroup. Let P be the subgroup of Sp(n,R) consisting of the matrices
[
A B
0 (At)−1

]
, A ∈ GL(n,R), B ∈ SMn(R),

where SMn(R) denotes the real n×n symmetric matrices. The group P is a maximal parabolic subgroup
of Sp(n,R). It has the structure of a semidirect product MN , where M consists of the block-diagonal
matrices [

A 0
0 (At)−1

]
, A ∈ GL(n,R)

and N consists of the matrices [
In B
0 In

]
, B ∈ SMn(R).

Thus as Lie groups M ∼= GL(n,R) and N ∼= SMn(R) (an abelian group). The group K0 ∩ P consists of
all matrices [

A 0
0 A

]
, A ∈ O(n)

where O(n) = {g ∈ GL(n,R) : gtg = In} is the usual real orthogonal group. Define N− = N t. Thus
N− is the group of matrices [

In 0
C In

]
, C ∈ SMn(R).

Then P− = MN− is the opposite parabolic subgroup to P and P ∩ P− = M . Note that

Jn

[
In B
0 In

]
J−1

n =
[

In 0
−B In

]
and Jn

[
A 0
0 (At)−1

]
J−1

n =
[

(At)−1 0
0 A

]
.

Thus P− = JnPJ
−1
n is conjugate to P in Sp(n,R).

Let

g =
[
A B
C D

]

be in Sp(n,R). If detA 6= 0, then D = (At)−1 +CB (this follows from gtJng = Jn). Hence we can factor
g as

g =
[
In 0
C In

] [
A B
0 (At)−1

]
∈ N−MN.

Thus the subset N−MN is open and dense in Sp(n,R). This shows that a continuous representation π
of Sp(n,R) is uniquely determined by its restriction to the subgroup P together with the single operator
π(Jn).
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11.2. Holomorphic (coherent-state) Model for Oscillator Representation. We write H2(Cn) =
H2(Cn, e−||z||2dλ(z)) for the Hilbert-space completion of P(Cn) relative to the Fischer inner product
introduced in Lecture 9. The elements of this space are naturally identified with holomorphic functions
f on Cn such that ∫

Cn

|f(z)|2 e−||z||2dλ(z) <∞.

For each w ∈ Cn the function Kw(z) = e〈z|w〉 is in H2(Cn) and plays the role of reproducing kernel for
this space:

f(w) = 〈f | Kw〉 for f ∈ H2(Cn)
(see [7, Prop. XI.1.1]).

Define the annihilation operators Aj and creation operators A†
j by

Ajf(z) =
∂

∂zj
f(z), A†

jf(z) = zjf(z) for f ∈ P(Cn).

These operators satisfy the commutation relations [Ai, A
†
j ] = δijI . The are mutually adjoint relative to

the Fischer inner product:

(11.5) 〈Ajϕ | ψ〉 = 〈ϕ | A†
jψ〉

for ϕ, ψ ∈ P(Cn). The operators {A1, . . . , An, A
†
1, . . . , A

†
n} generate the Weyl algebra PD(Cn).

Define a representation $ of sp(n,C) on P(Cn) as follows. For b ∈ SMn let Qb(z) = ztbz be the
quadratic form on Cn defined by b. Let

X =
[

0 b
0 0

]
∈ p+, Y =

[
0 0
c 0

]
∈ p−,

where b, c ∈ SMn. Define operators $(X) and $(Y ) on P(Cn) by

$(X)f(z) =
1
2i
∂(Qb)f(z), $(Y )f(z) =

1
2i
Qc(z)f(z)

where i =
√
−1 (recall the map Q 7→ ∂(Q) from P(Cn) to constant-coefficient differential operators on

P(Cn) that was introduced in the proof of Theorem 9.2). We calculate that

[$(X), $(Y )] = −
∑

j,k

(bc)kj zj
∂

∂zk
−

1
2
tr(bc).

Let H =
[
h 0
0 −ht

]
∈ k, where h ∈Mn. Define the operator $(H) by

$(H) = −
∑

j,k

hkjzj
∂

∂zk
− 1

2
tr(h)

Since [X,Y ] =
[
bc 0
0 −cb

]
, we see that [$(X), $(Y )] = $([X,Y ]). One calculates that

[$(H), $(X)] = $([H,X ]), [$(H), $(Y )] = $([H,Y ])

(note that H 7→ $(H) is the standard representation of k ∼= gl(n,C) on P(Cn) tensored with the one-
dimensional representation H 7→ − 1

2 tr(h)). Thus $ is a representation of sp(n,C) on P(Cn) (this is the
representation of g′ = sp(n,C) in Theorem 8.5 for the case G = O(1,C)).

We can write the representation $ in terms of the annihilation and creation operators as

$(X) =
1
2i

∑

j,k

bjkAjAk, $(Y ) =
1
2i

∑

j,k

cjkA
†
jA

†
k

$(H) = − 1
2

∑

j,k

hjk(AjA
†
k +A†

kAj)

for X,Y,H as above. Now take Y = σ(X), where σ is the conjugation defining the real form g0 of
sp(n,C). Then cjk = b̄jk, so from (11.5) we see that

(11.6) 〈$(X)ϕ | ψ〉 = −〈ϕ | $(σ(X))ψ〉
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for all X ∈ p+ and ϕ, ψ ∈ P(Cn). Since σ(p±) = p∓ and p+, p− generate sp(n,C), it follows that relation
(11.6) holds for all X ∈ sp(n,C). Since g0 is the fixed-point set of σ, we conclude that

〈$(Z)ϕ | ψ〉 = −〈ϕ | $(Z)ψ〉 for Z ∈ g0.

One says that $ is a unitarizable representation of g0.
By the Cartan decomposition G0 = K0 exp(p0) the group K0 is a topological retract of G0. Since k0

has a one-dimensional center, it follows that G0 has an m-sheeted covering group for every integer m.
Let γ : Mp(n,R) → G0 be the two-sheeted covering and let K̃0 = γ−1(K0). Then K̃0 is a two-sheeted
covering of U(n). If k̃ ∈ K̃0 and z ∈ Cn we set k̃ · z = uz, where

γ(k̃) =
[
u 0
0 ū

]
with u ∈ U(n).

The function χ : k̃ 7→ det(u)−1/2 is a (single-valued) character of K̃0.

Theorem 11.3. There is a unitary representation $ of Mp(n,R) on H2(Cn) whose differential is the
representation $ of g0. If k̃ ∈ K̃0 then

$(k̃)f(z) = χ(k̃)f(k̃−1 · z) for f ∈ H2(Cn).

Proof. Let

H0 =
[
iIn 0
0 −iIn

]
∈ k0.

Take the basis for $(sp(n,C)) to be the operators AiAj and A†
iA

†
j for 1 ≤ i ≤ j ≤ n and 1

2 (A†
iAj +AjA

†
i )

for 1 ≤ i, j ≤ n. Define the seminorms ρk on P(Cn) in terms of this basis and the norm ||ϕ|| as in Section
11.5.

Lemma 11.4. The inequality

(11.7) ρ1(ϕ) ≤ ||ϕ||+ ||$(H0)ϕ||
holds for all ϕ ∈ P(Cn).

Proof of Lemma 11.4 : Let ϕ =
∑

α cαz
α. Since $(iH0) acts on zα by |α|+ n

2 , we have

||$(H0)ϕ||2 =
∑

α

(
|α|+

n

2

)2

α! |cα|2.

We calculate that

||AiAjϕ||2 =





∑
α(αiαj)α! |cα|2 if i 6= j,

∑
α αi(αi − 1)α! |cα|2 if i = j.

Likewise,

||A†
iA

†
jϕ||

2 =





∑
α(αi + 1)(αj + 1)α! |cα|2 if i 6= j,

∑
α(αi + 1)(αi + 2)α! |cα|2 if i = j.

Finally,

||1
2
(A†

iAj +AjA
†
i )ϕ||

2 =





∑
α(αi + 1)αj α! |cα|2 if i 6= j,

∑
α

(
αi + 1

2

)2
α! |cα|2 if i = j.

The estimate (11.7) now follows from these formulas and the inequality 2ab ≤ (a+ b)2. �

Proof of Theorem 11.3: From Lemma 11.4 and Corollary 11.9 we obtain a unitary representation $
of the universal covering group of Sp(n,R) whose differential is the representation $. Now H0 spans
the center of k0 and exp(2πH0) = I in Sp(n,C). Since the one-parameter unitary group $(exp(tH0))
acts by eit(k+n/2) on Pk(Cn), we have $(exp(4πH0)) = I . Hence the representation $ descends to a
single-valued representation of Mp(n,R). �

We will call $ the oscillator representation of Sp(n,R). We write $(n) if the dependence on n is not
evident from the context. An explicit formula for $(g) as an integral operator was obtained by Bargmann
(see [8, Theorem 4.37]).
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11.3. Bargmann-Segal Transform. To obtain a realization of the oscillator representation in which the
action of the maximal parabolic subgroup P of Sp(n,R) is easily described, we use another representation
of the creation and annihilation operators. Let S(Rn) denote the Schwartz space of rapidly-decreasing
smooth functions on Rn. Define creation and annihilation operators

a†j =
1√
2

(
− ∂

∂xj
+ xj

)
, aj =

1√
2

(
∂

∂xj
+ xj

)

on S(Rn) for 1 ≤ j ≤ n. These operators satisfy the commutation relations [ai, a
†
j ] = δijI and they are

mutually adjoint relative to the L2(Rn, dλ(x)) inner product. They leave invariant the space P(Rn) of
(complex-valued) polynomial functions on Rn and act irreducibly on this space.

Following [2] and [28], we construct a unitary operator

B : L2(Rn, dλ(x)) → H2(Cn, e−||z||2dλ(z))

that intertwines aj with Aj and a†j with A†
j . Since the space L2(Rn) (respectively H2(Cn)) is the n-fold

Hilbert-space tensor product of the space L2(R) (respectively H2(C)), it suffices to do the calculation for
the case n = 1.

Because H2 has a reproducing kernel, any such operator B will be given as

Bf(z) =
∫ ∞

−∞
B(z, x)f(x) dx.

To intertwine the two pairs of creation-annihilation operators, the kernel B(z, x) must be a holomorphic
function of z and smooth function of x that satisfies

∂

∂z
B(z, x) =

1√
2

(
− ∂

∂x
+ x

)
B(z, x)

zB(z, x) =
1√
2

(
∂

∂x
+ x

)
B(z, x)

These equations imply that
∂B

∂z
= (
√

2x− z)B and
∂B

∂x
= (
√

2z − x)B.

The solution is easily found to be

B(x, z) = C exp
{√

2xz − 1
2
(x2 + z2)

}

with C a constant. It remains to verify that the operator defined by this kernel is unitary (with appropriate
choice of C). For this, take p ∈ P(R) and the normalized Gaussian (ground state)

ϕ0(x) =
1√
π

exp
(
−1

2
x2

)

(note that a1ϕ0 = 0). Then

B(pϕ0)(z) =
C√
π

∫ ∞

−∞
p(x) exp

{
−x2 +

√
2xz − 1

2
z2

}
dx.

Completing the square in the exponential and using the translation-invariance of the measure dx, we
obtain

B(pϕ0)(z) =
C√
π

∫ ∞

−∞
p

(
x+

z√
2

)
e−x2

dx.

The right side of this equation is obviously a polynomial of the same degree as p, so it follows that B is a
bijection from P(R)ϕ0 onto P(C). Furthermore Bϕ0(z) = C. Since ϕ0 has L2-norm 1 and the constant
function 1 has H2-norm 1, we conclude that C = 1.

To complete the proof that B is a unitary operator, we observe that P(R)ϕ0 is the cyclic space
generated by ϕ0 under the action of the operators a1 and a†1. Likewise P(C) is the cyclic space generated
by the constant function 1 under the action of the operators A1 and A†

1. The creation-annihilation
operators act irreducibly on these spaces. Since B∗ intertwines the pair {a1, a

†
1} with {A1, A

†
1}, it follows

that B∗B commutes with a1 and a†1 on P(R)ϕ0, while BB∗ commutes with A1 and A†
1 on P(C). Thus
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B∗B and BB∗ are both multiples of the identity by Lemma 2.1. Since we have normalized the kernel
B(x, z) so that B carries the unit vector ϕ0 to the unit vector 1, it follows that B is unitary in the case
n = 1. This implies that B is unitary for any n as remarked above.

For any integer n ≥ 1 and polynomial p ∈ P(Rn), define

(11.8) B(ϕ0p)(z) = π−n/2

∫

Rn

p

(
x+

z√
2

)
e−xtx dλ(x)

for z ∈ Cn, where ϕ0(x) = π−n/2 exp
(
− 1

2x
tx

)
for x ∈ Rn. Notice that if g ∈ O(n) then ϕ0(gx) = ϕ0(x).

Thus if we set fg(x) = f(g−1x), then B(fg) = B(f)g for f = ϕ0p and g ∈ O(n). We have proved the
following.

Theorem 11.5 (Bargmann-Segal Transform). The operator B maps the space P(Rn)ϕ0 onto P(Cn)
bijectively. It extends to a unitary operator from L2(Rn; dx) onto H2(Cn). If f ∈ S(Rn) then

Bf(z) =
∫

Rn

f(x) exp
{√

2xtz − 1
2
(xtx+ ztz)

}
dλ(x).

Furthermore, B intertwines the representations f 7→ fg of O(n) on L2(Rn; dx) and on H2(Cn). Also
BajB

−1 = Aj and Ba†jB
−1 = A†

j on P(Cn).

Remark. Since B is unitary, B−1 = B∗ is an integral operator on H2(Cn) with kernel B(z, x) = B(z̄, x).

11.4. Real (oscillatory-wave) Model for Oscillator Representation. We now use the Bargmann-
Segal transform to obtain the real-wave (Schrödinger) model of the oscillator representation.

Let γ : Mp(n,R) → Sp(n,R) be the covering homomorphism and let c ∈ Sp(n) be the Cayley
transform. We define a unitary representation π of Mp(n,R) on L2(Rn) by

(11.9) π(g) = B−1$(cgc−1)B

(here cgc−1 ∈ Mp(n,R) is the element such that γ(cgc−1) = cγ(g)c−1). For f ∈ S(Rn) let Ff be the
Fourier transform

F(f)(x) =
(

1
π

)n/2 ∫

Rn

eixtyf(y) dy.

Theorem 11.6. The action of π(g) on f ∈ S(Rn) is as follows:

(1) If γ(g) =
[
A 0
0 (At)−1

]
with A ∈ GL(n,R) then π(g)f(x) = (detA)−1/2f(A−1x).

(2) If γ(g) =
[

1 0
b 1

]
with b ∈ SMn(R) then π(g)f(x) = e−(i/2)xtbx f(x).

(3) If γ(g) =
[

1 b
0 1

]
with b ∈ SMn(R) then F(π(g)f)(x) = e(i/2)xtbxFf(x).

These formulas uniquely determine π.

Proof. For X ∈ sp(n,R) write dπ(X) = B$(Ad(c)X)B−1 for the Lie algebra representation correspond-
ing to π. Here the operator dπ(X) acts on S(Rn).

(1): Let X =
[
h 0
0 −h

]
with h = diag[h1, . . . , hn] and hj ∈ R. Then Ad(c)X =

[
0 −ih
ih 0

]
. Hence

the formulas of Section 11.2 give

$(Ad(c)X) = − 1
2

n∑

j=1

hj

{
(Aj)2 − (A†

j)
2
}

= − 1
2

n∑

j=1

hj(Aj +A†
j)(Aj −A†

j) −
1
2
tr(h).

Now B−1AjB = aj and B−1A†
jB = a†j . Also we have

(11.10) (aj + a†j)f(x) =
√

2xjf(x), (aj − a†j)f(x) =
√

2
∂f

∂xj
(x)
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for f ∈ S(Rn). Thus we obtain

dπ(X) = −
n∑

j=1

hjxj
∂

∂xj
− 1

2
tr(h).

This shows that (1) is true for A = exph (in this case detA > 0 and there is no need to pass to the
metaplectic group). If A ∈ O(n) then (1) holds for g, since B intertwines the action of O(n) on L2(Rn)
and H2(Cn) (note that γ(g) is in the maximal compact subgroup K0 of G0, so $(g) is described in
Theorem 11.3). By the polar decomposition,

GL(n,R) = O(n)(exp a)O(n),

where a is the subspace of real diagonal matrices. Hence (1) holds for all A ∈ GL(n,R).

(2): Let X =
[

0 0
b 0

]
with b ∈ SMn(R). Then Ad(c)X = 1

2

[
ib b
b −ib

]
. Hence the formulas of Section

11.2 give

$(Ad(c)X) =
1
4i

n∑

j,k=1

bjk

{
AjAk + A†

jA
†
k +AjA

†
k +A†

kAj

}

=
1
4i

n∑

j,k=1

bjk(Aj +A†
j)(Ak +A†

k).

Now applying the Bargmann-Segal transform and using (11.10), we obtain

dπ(X)f(x) =
1
2i

{ n∑

j,k=1

bjkxjxk

}
f(x).

This proves (2).

(3): Let X =
[

0 b
0 0

]
with b ∈ SMn(R). Then Ad(c)X = 1

2

[
−ib b
b ib

]
. Thus

$(Ad(c)X) =
1
4i

n∑

j,k=1

bjk

{
AjAk + A†

jA
†
k −AjA

†
k −A

†
kAj

}

=
1
4i

n∑

j,k=1

bjk(Aj −A†
j)(Ak −A†

k).

Applying the Bargmann-Segal transform and using (11.10) again, we obtain

dπ(X)f(x) =
1
2i

{ n∑

j,k=1

bjk
∂

∂xj

∂

∂xk

}
f(x)

for f ∈ S(Rn). Since F(∂2/∂xj∂xk)F−1 is the operator of multiplication by −xjxk, this proves (3).
Formulas (1), (2), and (3) uniquely determine π since N−MN is dense in Sp(n,R). �

11.5. Analytic Vectors. Here we present refinements of some results of Nelson [27] concerning expo-
nentiation of Lie algebra representations, following the approach in [14]. Suppose g0 is a real finite-
dimensional Lie algebra, represented as skew-Hermitian (unbounded) operators on a complex inner prod-
uct space V (not assumed complete). Let g be the complexification of g0. Then X 7→ X∗ (the Hermitian
adjoint of X relative to the inner product on V) is a conjugate-linear anti-automorphism of g such that
X∗ = −X for X ∈ g0.

Fix a basis {X1, . . . , Xd} for g. Define seminorms ρn on V by setting ρ0(v) = ||v|| and

ρn(v) = max
i1,...,in

||Xi1 · · ·Xinv||

for n = 1, 2, . . .. Here i1, . . . , in run over 1, 2, . . . , d and ||u|| denotes the norm of u ∈ V . Let V be the
Hilbert-space completion of V relative to the norm ||v|| and let V∞ be the completion of V relative to the
family of seminorms {ρn}. Then the representation of g on V extends continuously to a representation
on V∞. The seminorm ρn(v) is also defined for v ∈ V∞.
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One says that v ∈ V∞ is an analytic vector for g if there is an r > 0 such that

(11.11)
∞∑

n=0

rn

n!
ρn(v) <∞.

Let V ω
r ⊂ V∞ be the subspace for which (11.11) holds. The space V ω =

⋃
r>0 V

ω
r of analytic vectors for

g is invariant under g.

Theorem 11.7 (Nelson). Suppose there exists an r > 0 so that V ω
r is dense in V . Then the representation

of g0 integrates to a strongly continuous unitary representation on V of the simply-connected Lie group
G̃0 with Lie algebra g0.

Proof. (Sketch) Define a norm on g by ||
∑d

i=1 ciXi|| =
∑d

i=1 |ci|. If X ∈ g then

||Xnv|| ≤ ||X ||nρn(v).

Hence the operator eX is defined from V ω
r to V by the exponential series provided ||X || < r. The

map expX 7→ eX defines a local representation of the complex Lie group germ corresponding to g
(the rearrangement of the exponential series needed for the Campbell-Hausdorff formula is justified by
convergence of (11.11); see [3] or [18]). The operator eX is unitary for X ∈ g0, since X is skew-Hermitian,
and the local representation extends to a strongly continuous unitary representation of G̃0 on W . �

Suppose there is an element H0 ∈ g such that

(11.12) ρ1(v) ≤ ||v||+ ||H0v|| for all v ∈ V .
Let A = max1≤i≤d ||[H0, Xi]|| (the norm of adH0 on g). Note that A = 0 if and only if H0 is in the center
of g, and this case is of no interest here. So we assume A > 0.

Theorem 11.8. Every analytic vector for H0 is an analytic vector for g. More precisely, if

(11.13)
∞∑

n=0

sn

n!
||Hn

0 v|| <∞, for some s > 0,

then v ∈ V ω
r for all r < min{A−1, A−1(1− e−As)}.

Remark. If s can be arbitrarily large in (11.13) (one says that v is an entire vector for H0 in this case),
then v ∈ V ω

r for all r < A−1. Note that this upper bound for r is controlled by the non-commutativity
of g and it is finite if A 6= 0. In general v is not an entire vector for g (see [15] for more precise results
along this line).

Proof. Let Yj be any of the basis elements Xi. Then the a priori estimate (11.12) implies that

||Ym+1Ym · · ·Y1v|| ≤ ||Ym · · ·Y1v||+ ||H0Ym · · ·Y1v||
for all v ∈ V∞. Now

H0Ym · · ·Y1 = Ym · · ·Y1H0 +
m∑

k=1

Ym · · ·Yk−1[H0, Yk]Yk+1 · · ·Y1,

and by definition of ρm and the constant A we have ||Ym · · · [H0, Yk] · · ·Y1v|| ≤ Aρm(v). Hence

||Ym+1 · · ·Y1v|| ≤ ||Ym · · ·Y1H0v||+ (1 +mA)ρm(v)
≤ ρm(H0v) + (1 +mA)ρm(v).

Since this holds for any choice of Y1, . . . , Ym+1, it implies

(11.14) ρm+1(v) ≤ ρm(H0v) + (1 +mA)ρm(v) for all v ∈ V .
Now fix v ∈ V∞ and set am,n = ρm(Hn

0 v). Replacing v by Hn
0 v in (11.14), we see that the sequence

{am,n} satisfies the recursive inequalities

am+1,n ≤ am,n+1 + (1 +mA)am,n.

To estimate the rate of growth of am,n, we introduce the majorant sequence bm,n defined by b0,n = a0,n

for all n and
bm+1,n = bm,n+1 + (1 +mA)bm,n for all m ≥ 0, n ≥ 0.

Clearly am,n ≤ bm,n for all m,n.
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Consider the generating function

ϕ(x, y) =
∞∑

m=0

∞∑

n=0

xm

m!
yn

n!
bm,n.

The recursion for bm,n implies that (as a formal series)

(1−Ax) ∂
∂x
ϕ(x, y) =

∂

∂y
ϕ(x, y) + ϕ(x, y).

We assume that the series f(y) = ϕ(0, y) converges for y = s. The Cauchy problem for this analytic
first-order p.d.e. is easily solved by the method of characteristics, and one obtains

ϕ(x, y) = (1−Ax)−1/Af(y −A−1 log(1−Ax)).
(the analytic solution must agree with the formal solution since the line x = 0 is non-characteristic).
Setting y = 0, we see that the series for ϕ(x, 0) converges absolutely for |x| ≤ r provided

r < min{A−1, A−1(1− e−As)}.
Since am,0 ≤ bm,0 this proves the theorem. �

Corollary 11.9. Suppose H0 ∈ g and V has an (algebraic) basis consisting of eigenvectors for H0. Then
V ⊂ V ω

r for all r < A−1 and hence V ω
r is dense in V for all r < A−1. Thus the representation of g0

integrates to a strongly continuous unitary representation of G̃0 on V .

Proof. If H0v = λv, then the left side of (11.13) is es|λ|, and hence is finite for all s > 0. By the remark
after Theorem (11.8) this implies that (11.11) holds for all r < A−1. Now apply Theorem 11.7 �

Lecture 12. Dual Pair Sp(n,R)–O(k)

The oscillator representation has many applications to analysis and physics (see [8] and [20], for exam-
ple). Here we apply it in the context of unitary representation theory and highest weight representations
(see [6] for more on this point). To determine which of the representations that occur in the decompo-
sition of the oscillator representation are square-integrable, we apply Harish-Chandra’s criterion to the
explicit formula for the θ-correspondence that we calculated in Theorems 10.1 and 10.4. In particular,
we show that all the square-integrable highest-weight representations of Sp(n,R) occur in the duality
correspondence with O(2n) (this was first proved by Gelbart [11]).

12.1. Decomposition of H2(Mn×k) under Mp(n,R) × O(k). Let G = O(k,C) = {g ∈ GL(k,C) :
ggt = I } and let G′ = Sp(n,C) ⊂ GL(2n,C) be the symplectic group relative to the skew-form with
matrix Jn as in Section 11.1. Define a skew form Ω on M2n×k by

Ω(w, z) = tr(wtJnz) for w, z ∈M2n×k .

Then Ω is nondegenerate. We embed G′ ×G into Sp(M2n×k,Ω) as follows. Let g ∈ G and h ∈ G′. Then

Ω(hwg, hzg) = tr(wt(htJnh)zggt) = Ω(w, z)

since ggt = I and htJnh = Jn. Hence we have an injective regular homomorphism L × R : G′ × G →
Sp(M2n×k,Ω) given by

R(g)z = zg−1, L(h)z = hz for g ∈ G, h ∈ G′, z ∈M2n×k .

We identify M2n×k with C2nk by the map

z = [z1, . . . , zk] 7→ z̃ =




z1

...
zk


 ∈ C2nk

where zj ∈ C2n is the jth column of z. It is easy to check that

Ω(z, w) = z̃tJnkw̃,

so Sp(M2n×k,Ω) becomes Sp(nk,C) under this identification. Thus we will view z either as a 2n × k
matrix or a vector in C2nk, whichever is more convenient for the calculation at hand.
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Define a hermitian form on M2n×k by

(z, w) = tr(w∗In,nz),

where In,n is the matrix in Section 11.1. We have (z, w) = w̃∗Ink,nk z̃, so when z ∈ M2n×k is identified
with z̃ ∈ C2nk, the form (z, w) becomes the one used in Lecture 11 to define the group U(nk, nk). Thus
we will denote the isometry group of this form as U(nk, nk). If g ∈ U(n, n) then

(gz, gw) = tr(w∗g∗In,ngz) = (z, w)

since g∗In,ng = In,n. Thus the left multiplication homomorphism L : GL(2n,C) → GL(M2n×k) carries
U(n, n) into U(nk, nk). If h ∈ U(k) then

(zh, wh) = tr(w∗In,nzhh
∗) = (z, w).

Furthermore, [
x
y

]
h =

[
xh
yh

]
.

Hence the right multiplication homomorphism R : GL(k,C)→ GL(M2n×k) carries U(k) into the maximal
compact subgroup U(nk)× U(nk) of U(nk, nk).

Let G0 = G ∩ U(k) = O(k) be the compact real form of G, and let G′
0 = G′ ∩ U(n, n) ∼= Sp(n,R)

be the real form of Sp(n,C) as in Section 11.1. Let K0 = G′
0 ∩ U(2n) ∼= U(n) be the maximal compact

subgroup of G′
0. Then the embedding L×R : Sp(n,C)×O(k,C)→ Sp(nk,C) gives an embedding of the

real forms
G′

0 ×G0 −→ Sp(nk,C) ∩ U(nk, nk) ∼= Sp(nk,R)

and carries the maximal compact subgroup K0 × G0 into the maximal compact subgroup Sp(nk,C) ∩

(U(nk)×U(nk)) of Sp(nk,C) ∩U(nk, nk). If u ∈ U(n) and k0 =
[
u 0
0 ū

]
is the corresponding element

of K0, then the pair (k0, g) ∈ K0 ×G0 acts on M2n×k by

(12.1) L(k0)R(g)
[
x
y

]
=

[
uxgt

ūygt

]
.

We now calculate the restriction of the oscillator representation $(nk) to L(K0)×R(G0) in the holo-
morphic model on P(V ), where V = Mn×k. Let (k0, g) ∈ K0 × G0. From (12.1) and Theorem 11.3 we
see that

(12.2) $(nk)(L(k0)R(g))f(x) = (detu)−k/2(det g)n/2f(u−1xg) for f ∈ P(V )

(note that the determinant of the map x 7→ u−1xg is (det u)−k(det g)n). If k and n are both even, formula
(12.2) defines a representation of K0 ×G0. For the general case, let K̃0 ⊂ Mp(n,R) be the two-sheeted
cover of K0 and let G̃0 be the lift of R(G0) to Mp(nk,R). Then (12.2) gives a single-valued unitary
representation of K̃0 × G̃0. In the following we shall simply drop the factor (det g)n/2 from (12.2) to
make the representation single-valued on G0. However, the factor (detu)−k/2 is essential for extending
the representation from K̃0 to Mp(n,R). Let δ denote the differential of this character of K̃0.

Let g′0 be the Lie algebra of G′
0, The complexification of g′0 is g′ = sp(n,C). We now calculate the

action of $(nk)(L(g′)). Let X =
[

0 b
0 0

]
and Y =

[
0 0
c 0

]
with b, c ∈ SMn. Then

L(X) =
[

0 L(b)
0 0

]
, L(Y ) =

[
0 0

L(c) 0

]
,

(where L(b)x = bx for x ∈Mn×k). The quadratic form on V associated with L(b) is

QL(b)(x) = xtbx =
∑

i,j

bij

{ n∑

p=1

xipxjp

}
.

Hence

$(nk)(L(X))f(x) =
1
2

∑

i,j

bij

{ n∑

p=1

∂2

∂xip∂xjp

}
,
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and $(nk)(L(Y )) is the operator of multiplication by − 1
2QL(c). Since p± generate g′, these operators

determine $(nk)(g′). From Theorem 8.5 we conclude that the algebra PD(V )G is generated by $(nk)(g′).
We recall some notation that was introduced earlier. LetH denote the space ofG-harmonic polynomials

on Mn×k and let Σ ⊂ Ĝ be the spectrum of G on H. Let the map

τ : Σ→ Λ ⊂ Zn
++

be as in Theorems 10.1 and 10.4. Let Fσ ⊂ H be an irreducible G-module in the class σ. Let Eτ(σ)+δ ⊂ H
be the irreducible finite-dimensional K̃-module with highest weight τ(σ) + δ, as in Theorem 9.2.

Let V = Mn×k. Consider the unitary representation of Mp(n,R)×O(k) on H2(V ), where Mp(n,R) acts
by the restriction of the oscillator representation$(nk) and O(k) acts geometrically by right multiplication
on V . For σ ∈ Σ let Eτ(σ)+δ be the closure in H2(V ) of the g′-irreducible subspace P(V )G · Eτ(σ)+δ.

Theorem 12.1. The spaces Eτ(σ)+δ, for σ ∈ Σ, are irreducible and mutually inequivalent unitary repre-
sentations of Mp(n,R). Furthermore, H2(V ) decomposes as a multiplicity-free Hilbert space orthogonal
sum

(12.3) H2(V ) =
⊕

σ∈Σ

Eτ(σ)+δ ⊗Fσ

under the action of Mp(n,R)×O(k).

Remark. When k is even the character u 7→ (detu)−k/2 occuring in the oscillator representation is
well-defined on U(n) and Eτ(σ)+δ gives an irreducible unitary representation of Sp(n,R).

Proof. The key point is the following density result:

(∗) Suppose E ⊂ H2(V ) is a closed subspace that is invariant under Mp(n,R). Set E0 = E∩P(V ). Then
E0 is dense in E and is invariant under g′.

To prove this, let f(x) =
∑

α cαx
α be in H2(V ) and set

fq(x) =
∑

|α|≤q

cαx
α for q = 0, 1, 2, . . ..

Then fq ∈ P(V ) and it is clear from (9.1) that ||f − fq || → 0 as q →∞. Now take

H0 =
[
iIn 0
0 −iIn

]
∈ k0,

as in the proof of Theorem 11.3. Since

exp(tH0) =
[
eitIn 0

0 e−itIn

]
∈ K0,

we see from (12.2) that $(nk)(H0) acts by −i(j + k
2 ) on Pj(V ). Hence if we define

(12.4) Pq =
q∑

j=0

1
4π

∫ 4π

0

eit(j+k/2)$(nk)(exp tH0) dt,

then Pq is a bounded operator on H2(V ) and Pqf = fq for q = 0, 1, 2, . . .. Since E is closed and invariant
under Mp(n,R), we know that E is invariant under the one-parameter unitary group t 7→ $(nk)(exp tH0).
Hence PqE ⊂ E for q = 0, 1, 2, . . .. This shows that E0 = P(V ) ∩E is dense in E.

To prove that E0 is invariant under g′, take ϕ ∈ E0 and ψ ∈ E⊥. If X ∈ g′0, then

(12.5) 〈$(nk)(exp tX)ϕ | ψ〉 = 0 for all t ∈ R,

since E is invariant under Mp(n,R). But since ϕ ∈ P(V ), the left side of (12.5) is an analytic function
of t for |t| near zero by Corollary 11.9. Taking the derivative in t and setting t = 0, we conclude that

〈$(nk)(X)ϕ | ψ〉 = 0 for all ψ ∈ E⊥.

Hence $(nk)(X)ϕ ∈ E, completing the proof of (∗).
To prove the theorem, first observe that if E ⊂ Eτ(σ)+δ is a proper closed subspace that is invariant

under Mp(n,R), then by (∗) the space E0 is invariant under g′. Hence E0 = 0 by the irreducibility of
Eτ(σ)+δ. But E0 is dense in E, so E = 0, showing that Eτ(σ)+δ is irreducible.
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If σ, σ′ ∈ Σ and T is a bounded Mp(n,R) intertwining operator from Eτ(σ)+δ to Eτ(σ′)+δ , then T

commutes with the projection operators Pq in (12.4). Hence T maps Eτ(σ)+δ to Eτ(σ′)+δ. Since the
functions in P(V ) are analytic vectors for Mp(n,R), we conclude (as in the proof of (12.5)) that T
intertwines the g′ actions. Hence σ = σ′ by Theorem 9.2. The orthogonality of the decomposition also
follows from Theorem 9.2. �

12.2. Square-integrable Representations of Sp(n,R). The irreducible unitary representations of
G̃0 = Mp(n,R) that occur in Theorem 12.1 are called highest-weight representations. Some of them also
appear as discrete summands in the decomposition of the left regular representation of G̃0 on L2(G̃0)
(these representations are called square-integrable). We now apply Harish-Chandra’s criterion [17] to
determine which of the representations Eτ(σ)+δ are square-integrable. It is convenient to give separate
statements of the result depending on the parity of k.

Theorem 12.2. (notation of Theorem 10.1) Let k = 2l + 1 be odd. Let σ ∈ Σ.

(a) If n > l + 1 then Eτ(σ)+δ is never square-integrable.

(b) If n = l + 1 then Eτ(σ)+δ is square-integrable if and only if σ = (λ,−1) ∈ Ĝ−1 and depth(λ) = l.

(c) If n ≤ l then Eτ(σ)+δ is square-integrable for all σ ∈ Σ.

Proof. The general condition on the highest weight λ for square-integrability is

(12.6) 〈λ+ ρ, γˇ〉 < 0,

where ρ is the one-half the sum of the positive roots and γˇ is the coroot to the highest noncompact root
γ. For sp(n,R) we have ρ = [n, n− 1, . . . , 2, 1] and γ = 2ε1, so γˇ = ε1 (see Section 11.1). We must check
this condition when λ = τ(σ) + δ, with δ = [−k/2, . . . ,−k/2].

Let τ(σ)1 denote the first coordinate of τ(σ). Then 〈λ + ρ, γˇ〉 = τ(σ)1 − k/2 + n. Since k = 2l + 1,
the Harish-Chandra condition (12.6) is

(12.7) τ(σ)1 < l + 1− n.

Case (a): n > l + 1. The formulas for τ(σ) in Theorem 10.1 show that τ(σ)1 is either 0 or −1 in this
case. But l − n+ 1 ≤ −1, so (12.7) is never satisfied.

Case (b): n = l + 1. Now the right side of (12.7) is zero. The formulas for τ(σ) show that τ(σ)1 < 0 if
and only if σ = (λ,−1) ∈ Ĝ−1 with d = l.

Case (c): n ≤ l. Now the right side of (12.7) is positive. The formulas for τ(σ) show that τ(σ)1 ≤ 0 for
all σ ∈ Σ, so (12.7) is always satisfied. �

Theorem 12.3. (notation of Theorem 10.4) Let k = 2l be even. Let σ ∈ Σ.

(a) If n > l then Eτ(σ)+δ is never square-integrable.

(b) If n = l then Eτ(σ)+δ is square-integrable if and only if σ = (λ, 0) ∈ Ĝ0 and depth(λ) = l.

(c) If n < l then Eτ(σ)+δ is square-integrable for all σ ∈ Σ.

Proof. When k = 2l the Harish-Chandra condition (12.6) becomes

(12.8) τ(σ)1 < l − n.

Case (a): n > l. The formulas for τ(σ) in Theorem 10.4 show that τ(σ)1 is either 0 or −1 in this case.
But l − n ≤ −1, so (12.8) is never satisfied.

Case (b): n = l. Now the right side of (12.8) is zero. The formulas for τ(σ) show that τ(σ)1 < 0 if and
only if σ = (λ, 0) ∈ Ĝ0 and depth(λ) = l.

Case (c): n < l. Now the right side of (12.8) is positive. The formulas for τ(σ) show that τ(σ)1 ≤ 0 for
all σ ∈ Σ, so (12.8) is always satisfied. �
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Examples.
1. Assume k is even. Then the oscillator representation $(nk) is single-valued on Sp(n,R). If k ≥ 2n
then we see from the formula for the θ-correspondence that every GL(n,C)-highest weight λ that satisfies
the Harish-Chandra inequality is of the form τ(σ) + δ, for some σ ∈ Σ. Thus every highest-weight
discrete-series representation of Sp(n,R) occurs in the reduction of $(nk) in this case.

2. Let σ be the trivial representation of O(k) (denoted by π(0,1) in Sections 10.1 and 10.2). Then
σ ∈ Σ for all n ≥ 1 and τ(σ) = 0, by Theorems 10.1 and 10.4. The representation, call it π+, of
Mp(n,R) that corresponds to σ is square integrable if and only if 2n < k. It occurs with multiplicity
one in H2(Mn×k), and has highest weight δ = [−k/2, . . . ,−k/2]. This weight parameterizes the one-
dimensional representation g 7→ det(g)−k/2 of the maximal compact subgroup of Mp(n,R). Since Fσ

consists of the constant functions, the space H2
+ := Eδ of π+ is the completion (in the Fischer norm) of

the space P(Mn×k)G, where G = O(k,C).

3. Let σ be the representation g 7→ det(g) of O(k) (denoted by π(0,−1) in Sections 10.1 and 10.2). Then
σ ∈ Σ if and only if n ≥ k. In this case

τ(σ) = [ 0, . . . , 0︸ ︷︷ ︸
n−k

, −1, . . . ,−1︸ ︷︷ ︸
k

]

by Theorems 10.1 and 10.4. The representation, call it π−, of Mp(n,R) that corresponds to σ is never
square integrable. It occurs with multiplicity one in H2(Mn×k) when n ≥ k, and it has highest weight

λ = [−k/2, . . . ,−k/2︸ ︷︷ ︸
n

] + [ 0, . . . , 0︸ ︷︷ ︸
n−k

, −1, . . . ,−1︸ ︷︷ ︸
k

].

This is the highest weight of the representation (det)−k/2⊗
∧k(Cn)∗ of the maximal compact subgroup of

Mp(n,R). In this case Fσ = Cgk, where gk(z) is the determinant of the bottom k× k block of z ∈Mn×k

when we take the orthogonal group G = O(Ck, ω) as in Lecture 10. Thus the space H2
− := Eλ of π− is

the completion (in the Fischer norm) of the space (P(Mn×k)G gk)⊗
∧k(Cn)∗. Note that for fixed n, one

obtains a distinguished set of n irreducible unitary highest-weight representations of Mp(n,R) this way
by taking k = 1, . . . , n.

4. By the harmonic duality theorem, (H2
±, π

±) are the only irreducible Mp(n,R) modules that occur
with multiplicity one in H2(Mn×k). More details and other models for the representations Eτ(σ)+δ can
be found in [6].

Final Remarks. In Schur-Weyl duality we took tensor powers of the representation of GL(n,C) on Cn

(the representation of smallest dimension) to obtain all the irreducible finite-dimensional polynomial
representations of GL(n,C). The two irreducible components π± of the oscillator representation on
H2(Cn) are the smallest unitary highest-weight representations of Mp(n,R) in the sense of Gelfand-
Kirillov dimension (see [31]). As we already noted in Section 11.3 the representation on H2(Mn×k) is the
k-fold tensor product of this representation:

(12.9) H2(Mn×k) =
⊗k

H2(Cn) (Hilbert-space tensor product).

Thus the action of the group O(k) on the right-side of (12.9) is another instance of a hidden symmetry.j

Lecture 13. Brauer Algebra and Tensor Harmonics

In this final lecture we use duality to decompose the space of k-tensors under the action of the or-
thogonal or symplectic group G. This was first done by Brauer [4], who determined the generators and
relations of the G-centralizer algebra. The complication here is that this algebra is not a group algebra
(as was the case when G = GL(n,C)). However, just as in the case of Howe duality, there is an analog
of the harmonic duality of Lecture 9 in this situation. The centralizer algebra contains C[Sk] as a sub-
algebra, and there is a subspace of harmonic tensors (in Weyl’s terminology completely traceless) which
decomposes in a multiplicity-free way under the jointly commuting actions of G and Sk. The full space

jThe unitary representations that occur in the decomposition of this tensor product are the mathematical analog of the
elementary particles, some familiar and some exotic, that physicists create by high-energy collisions of the basic particles.
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of k-tensors then decomposes as the sum of spaces of partially harmonic tensors (see [16, §10.3], [9], and
[10] for details).

13.1. Centralizer Algebra and Brauer Diagrams. Let G be the full isometry group of a nondegener-
ate bilinear form ω on a finite-dimensional complex vector space V . We assume ω to be either symmetric
or skew-symmetric. For f ∈ V ∗ define f [ ∈ V by

ω(f [, v) = 〈f, v〉 for all v ∈ V .

The map f 7→ f [ is then a G-isomorphism between V ∗ and V . Define a G-module isomorphism T :
V ∗⊗2k → End(V ⊗k) by

(13.1) T (f1 ⊗ · · · ⊗ f2k)u = ω(f [
2 ⊗ f [

4 ⊗ · · · ⊗ f [
2k, u) f

[
1 ⊗ f [

3 ⊗ · · · ⊗ f [
2k−1

for fi ∈ V ∗ and u ∈ V ⊗k. Here we have extended ω to a bilinear form on V ⊗k by

ω(u1 ⊗ · · · ⊗ uk, v1 ⊗ · · · ⊗ vk) =
k∏

i=1

ω(ui, vi) for ui, vi ∈ V .

Theorem 13.1. Let Ξk be the set of two-partitions of {1, . . . , 2k}. For ξ ∈ Ξk let λξ ∈ (V ∗⊗2k)G be the
corresponding complete contraction. Then

EndG(V ⊗k) = Span{T (λξ) : ξ ∈ Ξk}.

Proof. Since T is a G-module isomorphism this is a immediate consequence of Corollary 7.5. �
Theorem 13.1 only gives a spanning set for the centralizer algebra EndG(V ⊗k) as a vector space. To

describe the multiplicative structure of this algebra it is convenient to introduce a graphic presentation
of the set of two-partitions. We display the set {1, 2, . . . , 2k} as an array of two rows of k labeled dots,
with the dots in the top row labeled 1, 3, . . . , 2k − 1 from left to right, and the dots in the bottom row
labeled 2, 4, . . . , 2k. Consider the set Xk of all (unoriented) graphs whose vertices are the two rows of
dots, and such that each dot is connected with exactly one other dot by an edge. (A dot in the top row
can be connected either with another dot in the top row or with a dot in the bottom row.) An example
with k = 5 is shown in Figure 1. We call an element of Xk a Brauer diagram.k Thus we can identify the

x1 =
• • • • •

• • • • •......................
......................
......................
...............

...................................
..................................

..................................
.........................

................

...............

...............

..............................
...................................................................................................................

.............................................................................................................................................................................................
..

Figure 1. A Brauer Diagram.

set Ξk of two-partitions with Xk; if ξ ∈ Ξk corresponds to the Brauer diagram x ∈ Xk, we shall write λx

for the complete contraction λξ.
The group S2k acts transitively on Xk by permuting the dots according to their labels. If x ∈ Xk and

s ∈ S2k then s ·x is the graph obtained by permuting the dots by s and maintaining the edge connections
(dot s(i) is connected to dot s(j) in s · x if and only if dot i is connected to dot j in x). Clearly

(13.2) σ∗
2k(s)λx = λs·x for s ∈ S2k and x ∈ Xk.

Here σk denotes the representation of Sk on V ⊗k, as in Lecture 3, and σ∗
2k is the contragredient repre-

sentation on V ∗⊗2k. Let x0 be the graph with each dot in the top row connected with the dot below it
(see Figure 2 for the case k = 5). Then the Brauer diagram x1 in Figure 1 is s · x0 where s ∈ S10 is the
cyclic permutation (2594).

Let τ : Sk → S2k be defined by τ(s)(2j− 1) = 2s(j)− 1 and τ(s)(2j) = 2j for j = 1, . . . , k. If s ∈ Sk,
then τ(s) acts on a Brauer diagram by permuting the top row of dots according to s while leaving each
dot in the bottom row fixed. Clearly τ is an injective homomorphism, and from (13.1) and (13.2) we see
that

(13.3) σk(s)T (λx) = T (λτ(s)·x) for s ∈ Sk and x ∈ Xk.

kKerov [23] uses the term chip because of the analogy with an integrated circuit chip, where the top row of dots are the
input ports and the bottom row of dots the output ports. For a development of Kerov’s approach, see [9] and [10].
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x0 =
• • • • •

• • • • •................
...............
...............
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...........

................

...............

...............

...........
1
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6

7

8

9

10

Figure 2. Basic Diagram with Labeled Dots.

For the basic diagram x0 we have τ(s) · x0 = x0 if and only if s is the identity, so the permutations in
Sk correspond to the diagrams in the orbit τ(Sk) · x0 (these diagrams are just the two-line notation for
a permutation). Hence by (13.3) the operators in EndG(V ⊗k) associated with the orbit of x0 come from
the natural action of Sk on V ⊗k. In particular, the basic diagram x0 corresponding to the G-invariant
tensor ω⊗k gives the identity operator on V ⊗k.

The complete set of τ(Sk) orbits on Xk can be described as follows. For x ∈ Xk let r be the number
of edges in the diagram of x that connect a dot in the top row with another dot in the top row (call such
an edge a top bar). The bottom row of x also must have r such edges (call them bottom bars), and we call
x an r-bar diagram. All diagrams in the τ(Sk)-orbit of x also have r top bars, and there is a unique z in
this orbit with all its edges either horizontal or vertical (that is, if z is considered as a two-partition of 2k,
then every odd-even pair {2i− 1, 2j} that occurs in z has i = j). We will call such a Brauer diagram (or
two-partition) normalized. The normalized diagrams give a set of representatives for the τ(Sk) orbits on
Xk. For example, when k = 3 and r = 1 then there are three orbits of 1-bar diagrams, with normalized
representatives indicated in Figure 3. These orbits correspond to the two-partitions

z1 = {{1, 2}, {3, 5}, {4, 6}}, z2 = {{1, 5}, {2, 6}, {3, 4}}, z3 = {{1, 3}, {2, 4}, {5, 6}}.

z1 =
• • •

•••

...............

...............

................

...........

.........................................................

.........................................................
z2 =

• • •

•••

...............

...............

................

...........

.....................................................................................................................................
.

...................
...................................................................................................................

z3 =
• • •

•••

.........................................................

.........................................................

...............

...............

................

...........

Figure 3. Normalized 1-Bar Brauer Diagrams (k = 3).

If z is a normalized Brauer diagram, then for every top bar in z joining the dots numbered 2i− 1 and
2j − 1 there is a corresponding bottom bar joining the dots numbered 2i and 2j. We will say that z
contains an (i, j)-bar in this case (with the convention that i < j). For example, the normalized diagram
in the orbit τ(S5)x1 (with x1 from Figure 1) is shown in Figure 4; it contains a (2, 5)-bar.

• • • • •

• • • • •................
...............
...............
...........

................

...............

...............

...........

................

...............

...............

..............................
............................................................................................................................................................................

.............................................................................................................................................................................................
..

Figure 4. Normalized Brauer Diagram with (2, 5)-Bar.

13.2. Generators for the Centralizer Algebra. A normalized Brauer diagram determines an element
of the algebra EndG(V ⊗k) by Theorem 13.1. For example, the diagram shown in Figure 5 contains a
single (1, 2)-bar corresponding to the tensor σ∗

2k(23)ω⊗k, where (23) is the transposition 2 ↔ 3. Since
σ∗

2k(23)ω⊗k = (σ∗
4(23)ω⊗2)⊗ ω⊗(k−2), we have

T (σ∗
2k(23)ω⊗k) v1 ⊗ v2 ⊗ u =

{ ∑

p2

ω(v1, fp2)ω(v2, fp2)
} ∑

p1

fp1 ⊗ fp1 ⊗ u

= ω(v1, v2) θ ⊗ u
for v1, v2 ∈ V and u ∈ V ⊗(k−2). Here {fp} and {fp} are bases for V with ω(fp, f

q) = δpq , and

θ =
∑

p

fp ⊗ fp ∈ (V ⊗ V )G
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is the tensor dual to ω. Thus this 1-bar diagram gives an operator τ12 = T (σ2k(23)θk) which is the
composition

V ⊗k C12−→ V ⊗(k−2) D12−→ V ⊗k,

with C12(v1 ⊗ v2 ⊗ u) = ω(v1, v2)u a contraction operator (contract the first and second tensor positions
by ω) and D12(u) = θ ⊗ u an expansion operator (multiply on the left by θ). These operators obviously
intertwine the actions of G on V ⊗k and V ⊗(k−2).

• • • •

••••
· · ·

•

•

.........................................................

.........................................................

................

...............

...............

...........

................

...............

...............

...........

................

...............

...............

...........

Figure 5. Brauer Diagram for τ12 = D12C12.

In general, for any pair 1 ≤ i < j ≤ k we define the ij-contraction operator Cij : V ⊗k → V ⊗(k−2) by

Cij(v1 ⊗ · · · ⊗ vk) = ω(vi, vj) v1 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ v̂j ⊗ · · · ⊗ vk

(omit vi and vj in tensor product) and the ij-expansion operator Dij : V ⊗(k−2) → V ⊗k by

Dij(v1 ⊗ · · · ⊗ vk−2) =
n∑

p=1

v1 ⊗ · · · ⊗ fp︸︷︷︸
ith

⊗ · · · ⊗ fp

︸︷︷︸
jth

⊗ · · · ⊗ vk−2.

These operators intertwine the action of G and are mutually adjoint, relative to the invariant form ω on
V ⊗k:

(13.4) ω(Ciju, w) = ω(u, Dijw) for u ∈ V ⊗k, w ∈ V ⊗(k−2).

Set τij = DijCij ∈ EndG(V ⊗k). If u = v1 ⊗ · · · ⊗ vk with vi ∈ V , then

(13.5) τij(u) = ω(vi, vj)
n∑

p=1

v1 ⊗ · · · ⊗ fp︸︷︷︸
ith

⊗ · · · ⊗ fp

︸︷︷︸
jth

⊗ · · · ⊗ vk .

The contraction and expansion operators satisfy the symmetry properties

(13.6) Cij = εCji, Dij = εDji ,

since
∑

p fp ⊗ fp = ε
∑

p f
p ⊗ fp. Hence τij = τji, so the operator τij only depends on the set {i, j}.

Let Zk,r ⊂ Xk be the set of normalized r-bar Brauer diagrams, and set

Zk =
[k/2]⋃

r=0

Zk,r .

Lemma 13.2. Suppose that z ∈ Zk,r is a normalized r-bar Brauer diagram with bars {i1, j1}, . . . , {ir, jr}.
Then

(13.7) τipjpτiqjq = τiqjq τipjp for p 6= q.

Thus the operator τz = τi1j1 · · · τirjr only depends on z and not on the enumeration of the bars in z.
Furthermore, τz = T (λz).

Proof. The commutativity relation (13.7) is clear since τij only operates on the ith and jth tensor
positions. �

Proposition 13.3. The algebra EndG(V ⊗k) is spanned by the set of operators σk(s)τz with s ∈ Sk and
z ∈ Zk. Furthermore, if dimV ≥ 2k then this set of operators is linearly independent.

Proof. Since Zk gives a cross-section for the τ(Sk) orbits on Xk, the first statement follows from Theorem
13.1, Lemma 13.2, and the intertwining relation (13.3). The proof of linear independence when dimV ≥
2k is straightforward (see [16, Corollary 10.1.4]). �
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13.3. Relations in the Centralizer Algebra. We next determine the algebraic relations among the
operators in Proposition 13.3.

Lemma 13.4. Let n = dimV and set ε = 1 if ω is symmetric and ε = −1 if ω is skew. The operators
τij (where 1 ≤ i, j ≤ k and i 6= j) satisfy the following relations, where (il) denotes the transposition of i
and l:
(1) τij = τji and τ2

ij = n τij (4) σk(s)τijσk(s)−1 = τs(i),s(j) for all s ∈ Sk

(2) τijτlm = τlmτij for distinct i, j, l,m (5) σk(ij)τij = ετij

(3) τijτjl = σk(il)τjl for distinct i, j, l

Proof. The contraction and expansion operators satisfy

(13.8) CijDij = nI,

which follows from
∑n

p=1 ω(fp, f
p) = n. This implies property (1). Property (2) was already checked in

Lemma 13.2. To verify (3), note that

τijτjl(v1 ⊗ · · · ⊗ vk) = ω(vj , vl)
∑

p,q

ω(vi, fp)upq ,

where upq = v1 ⊗ · · · ⊗ fq︸︷︷︸
ith

⊗ · · · ⊗ fq

︸︷︷︸
jth

⊗ · · · ⊗ fp

︸︷︷︸
lth

⊗ · · · ⊗ vk. But

∑

p

ω(vi, fp)upq = εv1 ⊗ · · · ⊗ fq︸︷︷︸
ith

⊗ · · · ⊗ fq

︸︷︷︸
jth

⊗ · · · ⊗ vi︸︷︷︸
lth

⊗ · · · ⊗ vk,

which gives (3). Relations (4) and (5) are simple calculations from the definition of τij . �
Define the Brauer Algebra Bk(ε, n) with parameters k, ε, n to be the associative algebra generated by

Sk and elements {τij : 1 ≤ i < j ≤ k} subject to the relations (1)–(5) in Lemma 13.4; here n can be
any complex number and ε = ±1. From these relations it is clear that Bk(ε, n) is finite-dimensional. If
T is the subalgebra generated by {τij}, then T is an ideal and we have the decomposition

(13.9) Bk(ε, n) = C[Sk]⊕ T .
From Proposition 13.3 and Lemma 13.4 we see that there is a surjective algebra homomorphism

Bk(ε, n) −→ EndG(V ⊗k) (n = dimV )

with ε = ±1 determined as in Lemma 13.4 (5). The two algebras are isomorphic if n ≥ 2k. In any case,
the centralizer algebra EndG(V ⊗k) is the quotient of the associated Brauer algebra by a two-sided ideal,
so the representations of the centralizer algebra can be viewed as representations of the Brauer algebra.l
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Figure 6. Brauer Diagram for sr.

We can describe the multiplication in Bk(ε, n) and the relations in Lemma 13.4 in terms of concate-
nation of Brauer diagrams. Let sr ∈ Sk be the transposition r ↔ r + 1. It corresponds to the Brauer
diagram shown in Figure 6. Let zr = τr,r+1 be the operator corresponding to the normalized Brauer
diagram with a single (r, r + 1) bar, as in Figure 7. Since Sk is generated by s1, . . . , sk−1, we see from
Proposition 13.3 and property (3) in Lemma 13.4 that the algebra Bk(εn) is generated by the operators
s1, . . . , sk−1 and z1, . . . , zk−1. If x, y are Brauer diagrams, then their product xy in the Brauer algebra
is obtained by placing the x above y and joining the lower row of dots in x to the upper row of dots in
y. When x, y correspond to elements of Sk (no bars) this procedure obviously gives the multiplication
in Sk. When x or y have bars, we remove the closed loops from the concatenated graph using relation
(1) in Lemma 13.4.

lSee [9] and [10] for recent work on the representation theory of the Brauer algebra and citations of earlier work.
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Figure 7. Brauer Diagram for zr.

The general recipe for transforming the concatenated Brauer diagrams of x and y into a scalar multiple
of the Brauer diagram for xy is as follows:

(1): Delete each closed loop in the concatenated diagram and multiply by a scalar factor of nr if
there are r such loops.

(2): Multiply by a factor of ε for every path in the concatenated diagram that begins and ends on
the top row of x or on bottom row of y.

For example, if x = σ(236)τ35τ46 and y = σ(46)τ12τ34τ56, then xy is obtained as shown in Figure 8 (see
[16, §10.1.2 and Exercises 10.1.3] for further details and examples).
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Figure 8. The Relation (σ(236)τ35τ46) · (σ(46)τ12τ34τ56) = εn σ(23) τ12τ34τ56.

13.4. Harmonic Tensors. Let k ≥ 2. A tensor u ∈ V ⊗k is called ω-harmonicm if it is annihilated by
all the contraction operators Cij . Denote by

H(V ⊗k, ω) =
⋂

1≤i<j≤k Ker(Cij)

the space of all ω-harmonic k-tensors. We will simply call these tensors harmonic and write H(V ⊗k, ω) =
H(V ⊗k) when ω is clear from the context.

Example. Assume ω is symmetric and let v ∈ V . Then Cijv
⊗k = ω(v, v)v⊗(k−2). Thus the symmetric

tensor v⊗k is harmonic if and only if v is an isotropic vector for ω. This is the same as the polynomial
function ξ 7→ 〈ξ, x〉k on V ∗ being harmonic relative to the Laplace operator defined by ω. On the other
hand, every skew-symmetric tensor is harmonic when ω is symmetric.

Theorem 13.5 (Harmonic Tensor Duality). The space H(V ⊗k) is invariant under Sk ×G and decom-
poses as

(13.10) H(V ⊗k) ∼=
⊕

λ∈Λ

Eλ ⊗ Uλ

Here Λ ⊂ Par(k), Eλ is the irreducible Sk-module corresponding to the partition λ by Schur-Weyl duality,
and Uλ is an irreducible G-module. Furthermore, the modules Uλ are all distinct.

Proof. Since Cijτij = CijDijCij = nCij , we have Ker(Cij) = Ker(τij). Hence u is harmonic if and only
if τiju = 0 for 1 ≤ i < j ≤ k. Since τij commutes with ρk(G), we see that H(V ⊗k) is invariant under
G. Proposition 13.3 and Lemma 13.4 imply that H(V ⊗k) is invariant under Bk(ε, n) and the action of
Bk(ε, n) on H(V ⊗k) reduces to the action of Sk. Now apply Theorem 1.4. �

mWeyl uses the term traceless; we prefer the term harmonic because when ω is symmetric the contraction operators Cij

act as Laplacians on the symmetric tensors.
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13.5. Decomposition of Harmonic Tensors for Sp(V ). We now determine the set Λ of partitions
of k occurring in Theorem 13.5 and the corresponding irreducible representations Uλ when G is the
symplectic group.n We take V = Cn with n = 2l and the bilinear form

ω(x, y) =
l∑

i=1

xiyn+1−i − yixn+1−i

(so the standard basis vectors ei are ω-isotropic and e1 is paired with en, e2 is paired with en−1, and so
forth). Let G = Sp(V, ω) and let H be the diagonal matrices in G. Then H is a maximal torus whose
elements are of the form

(13.11) h = diag[x1, . . . , xl, x
−1
l , . . . , x−1

1 ], xi ∈ C×

Following the notation in Lecture 10, we let Dn be the diagonal matrices, Bn the upper-triangular
matrices, and Nn the upper-triangular unipotent matrices in GL(V ). With our choice of ω the group
B = G ∩ Bn is a Borel subgroup of G and N = G ∩Nn is its unipotent radical. The weight lattice of H
is identified with Zl, where λ = [m1, . . . ,ml] gives the character

h 7→ xm1
1 · · ·xml

l

when h is given by (13.11). The Weyl group W of G acts by all permutations and sign changes of the
coordinations of λ. The set of B-dominant weights is thus identified with Nl

++ (see [16, §2.5]).
For λ ∈ Nl

++ let (πλ, Uλ) be the irreducible representation of G with highest weight λ. If |λ| = k then
we view λ as a partition of k with at most l parts. Let Eλ = (V ⊗k)Nn(λ) be the corresponding irreducible
representation of Sk on the space of GL(n,C) highest weight vectors of weight λ, as in Theorem 3.8.

Theorem 13.6. Let λ ∈ Par(k, n). Then Eλ ⊂ H(V ⊗k) if and only if λ has at most l parts. Furthermore,
the space of ω-harmonic k-tensors has isotypic decomposition

(13.12) H(V ⊗k) ∼=
⊕

λ∈Par(k,l)

Eλ ⊗ Uλ.

under Sk × Sp(V, ω). Thus all the irreducible representations of Sp(V, ω) occur in the decomposition of
the harmonic k-tensors, for k = 1, 2, . . ..

The general form of decomposition (13.12) follows from Theorem 13.5. To determine the spectrum
Λ of Sp(V, ω) on the harmonic tensors, we will compare the spaces of B eigenvectors in V ⊗k with the
spaces Eλ. If µ = [m1, . . . ,mn] ∈ Zn is a weight of Dn, then we denote by µ̄ the restriction of µ to H .
From (13.11)

(13.13) µ̄ = [m1 −mn,m2 −mn−1, . . . ,ml −ml+1].

Hence if µ ∈ Nn
++ is a Bn-dominant weight, then µ̄ is a B-dominant weight. We introduce the notation

W k(λ) = (V ⊗k)N (λ), for λ ∈ Nl
++.

Since N ⊂ Nn, we have Eµ ⊂W k(µ̄).

Proposition 13.7. There are the following dichotomies:

(1) Assume λ ∈ Nl
++. Then either W k(λ) ∩H(V ⊗k) = 0 or else W k(λ) ⊂ H(V ⊗k).

(2) Assume µ ∈ Par(k, n). Then either Eµ ∩ H(V ⊗k) = 0 or else Eµ = W k(µ̄).

Proof. (1): By Theorems 3.7 and 13.1 we know that W k(λ) is an irreducible module for Bk(ε, n). Since
W k(λ) ∩ H(V ⊗k) is a Bk(ε, n)-invariant subspace of W k(λ), it must be 0 or W k(λ).

(2): Assume Eµ∩H(V ⊗k) 6= 0. Since Eµ ⊂W k(µ̄), it follows by (1) thatW k(µ̄) ⊂ H(V ⊗k). Furthermore,
W k(µ̄) is irreducible under Sk. Indeed, it is irreducible under Bk(ε, n) by (1), and on the harmonic tensors
the action of Bk(ε, n) is the same as the action of Sk. By Theorem 3.8 it follows that W k(µ̄) = Eµ. �

Proposition 13.8. Let µ ∈ Par(k, n). Then Eµ ⊂ H(V ⊗k) if and only if µ has at most l parts.

nSimilar methods work for the orthogonal groups but the details are considerable more intricate–see [16, §10.2] for a full
treatment.
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Proof. Let µ = [m1, . . . ,mn]. Define uµ = u⊗c1
1 ⊗ · · · ⊗ u⊗cn

n as in Theorem 3.8, where up = e1 ∧ · · · ∧ ep

and cj = mj −mj+1 (with mn+1 = 0). Then uµ ∈ Eµ and the depth of µ is the largest integer d such
that cd 6= 0.

We first verify that up is harmonic if and only if p ≤ l. To see this, take any pair i, j with 1 ≤ i < j ≤ p.
If p ≤ l, then Cijup = 0 since ω(ei, ej) = 0. Conversely, if p > l then

Cl,l+1up = e1 ∧ . . . ∧ el−1 ∧ el+2 ∧ . . . ∧ ep 6= 0,

since ω(el, el+1) = 1. So up is not harmonic in this case.
Thus to finish the proof of the proposition, we may assume that µ has at most l parts. Let 1 ≤ p ≤ q ≤ l.

We now show that
Cij(up ⊗ uq) = 0 for all 1 ≤ i ≤ p < j ≤ p+ q.

Set v = up ⊗ uq. In terms of the basis {eI}, v is obtained by a double alternation:

v =
1
p!q!

∑

s∈Sp

∑

t∈Sq

sgn(s) sgn(t) es(1) ⊗ · · · ⊗ es(p) ⊗ et(1) ⊗ · · · ⊗ et(q).

The contraction operator Cij removes es(i) and et(j−p) from each term of the sum and multiplies the
resulting (p+ q− 2)-tensor by ω(es(i), et(j−p)). But s(i) + t(j − p) ≤ p+ q ≤ n, while ω(ea, eb) = 0 unless
a+ b = n+ 1. Hence Ci,j(v) = 0. �

We now complete the proof of Theorem 13.6. By Propositions 13.7 and 13.8, it will suffice to prove
the following:

(∗) If λ ∈ Nl
++ is such that 0 6= W k(λ) ⊂ H(V ⊗k), then |λ| = k.

To establish (∗), take a nonzero tensor u ∈W k(λ) and decompose u under the action of Dn as

u =
∑

µ

uµ, where µ ∈ Par(k, n) and uµ ∈ V ⊗k(µ).

Fix some µ = [m1, . . . ,mn] such that uµ 6= 0. Then µ̄ = λ and from (13.13) we see that

|λ| =
l∑

i=1

(mi −mn+1−i) = k − 2r, where r =
n∑

i=l+1

mi .

Thus λ ∈ Par(k − 2r, l) so from Theorem 3.8 we know that 0 6= Eλ ⊂ V ⊗(k−2r). Suppose for the sake of
contradiction that r > 0. Since the expansion operator D12 is injective and intertwines the action of G
on tensors, we have

0 6= (D12)rEλ ⊂W k(λ).

Since C12D12 = nI , this implies that

C12(D12)rEλ = (D12)r−1Eλ 6= 0.

But we have assumed that W k(λ) in contained in the harmonic tensors, a contradiction. Thus r = 0 and
(∗) is proved. �

Examples. 1. Assume k ≤ l and take λ = [1, . . . , 1] ∈ Par(k). Then Eλ is the sgn representation of Sk

and Uλ is the kth fundamental representation of Sp(V, ω). From Theorem 13.6 we know that Uλ is the
sgn-isotypic component for Sk in H(V ⊗k). Hence

Uλ = H(V ⊗k) ∩
∧k

V = Hskew(V ⊗k)

is the space of harmonic skew k-tensors.

2. Let k = 2 and assume l ≥ 2. Then the two partitions of 2 give the trivial and sgn representations of
Sk, respectively. Because the form ω is skew-symmetric, every symmetric tensor is harmonic. Hence by
Theorem 13.6 we have

H(V ⊗2) = S2(V )⊕Hskew(V ).

The summands are the irreducible representations of G with highest weights 2ε1 and ε1 + ε2.
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