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p.17, after exercise 10. Insert the following exercises:

11. Assume that (ρ, V ) is an irreducible regular representation of the linear algebraic
group G. Fix v∗ ∈ V ∗ with v∗ 6= 0. For v ∈ V let ϕv ∈ Aff(G) be the representative
function ϕv(g) = 〈v∗, ρ(g)v〉. Let E = {ϕv : v ∈ V } and let T : V → E be the
map Tv = ϕv. Prove that T is a bijective linear map and that Tρ(g) = R(g)T for
all g ∈ G, where R(g)f(x) = f(xg) for f ∈ Aff(G). Thus every irreducible regular
representation of G is equivalent to a subrepresentation of (R,Aff(G)).

12. Let N be the group of matrices[
1 z
0 1

]
, z ∈ C

and let Γ be the subgroup of N consisting of the matrices with z ∈ Z an integer.
Prove that Γ is Zariski-dense in N .

13. Define a multiplication µ on C× × C by µ([x1, x2], [y1, y2]) = [x1y1, x2 + x1y2].

(a) Prove that µ satisfies the group axioms and that the inversion map is regular.

(b) Let S = (C××C, µ) be the linear algebraic group with Aff(S) = C[x1, x
−1
1 , x2] and

multiplication µ. Let R(y)f(x) = f(µ(x, y)) be the right translation representation of
S on Aff(S). Let V ⊂ Aff(S) be the space spanned by the functions x1 and x2. Show
that V is invariant under R(y), for y ∈ S.

(c) Let ρ(y) = R(y)|V for y ∈ S. Calculate the matrix of ρ(y) relative to the basis
{x1, x2} of V . Prove that ρ : S → GL(2,C) is injective, and that S ∼= ρ(S) as an
algebraic group.

p.34, after exercise 8. Insert the following exercises:

9. Let A = {a ∈Mn(C) : xij(a) = 0 for all i > j}.
(a) Show that A is a subalgebra of Mn(C) (relative to the usual matrix product).

(b) Let G be the group of invertible elements in A. Use exercise 6. to find Lie(G).

10. Let G and H be connected linear algebraic groups. Suppose φ : G → H is a
surjective regular homomorphism such that Ker(φ) is finite. Prove that dφ : Lie(G)→
Lie(H) is an isomorphism. (Hint: Prove that dimG = dimH .)

11. Let G be a linear algebraic group. Let Int be the representation of G on Aff(G)
given by Int(g)f(x) = f(g−1xg) for f ∈ Aff(G) (thus Int(g) = L(g)R(g)). Assume
that H is a Zariski closed normal subgroup of G.
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(a) Let f ∈ IH . Prove that there is a finite-dimensional subspace V ⊂ IH so that
f ∈ V and Int(g)V ⊂ V .

(b) Set g = Lie(G) and h = Lie(H). Prove that Ad(G)h ⊂ h. (Hint: Use (a) to show
that R(g)XAR(g)−1IH ⊂ IH for all A ∈ h and all g ∈ G.)

(c) Prove that [g, h] ⊂ h, and hence h is an ideal in g. (Hint: By (b), h is an Ad(G)-
invariant subspace of g.)

p.49, l.4 (Exercise #1) replace:

1. Check the assertion in (1.4.2) above.

by:

1. Define a real form Sp(p, q) of Sp(p + q,C) analogous to the real form U(p, q) of
GL(p+ q,C).

p.84, after exercise 6. Insert the following exercise:

7. Let G be a connected linear algebraic group and let Ad : G→ GL(g) be the adjoint
representation of G. Let N = Ker(Ad). The group G/N is called the adjoint group
of G.

(a) Suppose g is a simple Lie algebra. Prove that N is finite.

(b) Suppose G = SL(n,C), so that g = sl(n,C). Find N in this case. The group G/N
is denoted by PSL(n,C) (the projective linear group).

p.109, after exercise 5. Insert the following exercises:

6. Let G = SL(3,C), H the diagonal matrices in G, and let V = C3 ⊗ C3.

(a) Find the weights of H on V . Express the weights in terms of ε1, ε2, ε3 and for each
weight determine its multiplicity. Verify that the weight multiplicities are invariant
under the Weyl group W of G.

(b) Verify that each Weyl group orbit in the set of weights of V contains exactly one
dominant weight. Find the extreme dominant weights β (those such that β + α is
not a weight, for any positive root α).

(c) Write the weights of V in terms of the fundamental weights {$1, $2} and plot the
set of weights in the h∗ plane, as in Figure 2.5. Indicate multiplicities and W -orbits
in the plot.

(d) V decomposes into G-invariant subspaces V = V+⊕ V−, where V+ consists of the
symmetric 2-tensors, and V− is the skew-symmetric 2-tensors. Determine the weights
and multiplicities of V± and verify that the weight multiplicities are invariant under
W .

7. Let G = Sp(C4,Ω), where Ω =

[
0 s0

−s0 0

]
and s0 has antidiagonal 1 as usual.

Let H be the diagonal matrices in G, and let V =
∧2 C4.
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(a) Find all the weights of H on V . Express the weights in terms of ε1, ε2 and for
each weight determine its multiplicity (note that ε3 = −ε2 and ε4 = −ε1 as elements
of h∗). Verify that the weight multiplicities are invariant under the Weyl group W of
G.

(b) Verify that each Weyl group orbit in the set of weights of V contains exactly one
dominant weight. Find the extreme dominant weights β (those such that β + α is
not a weight, for any positive root α).

(c) Write the weights of V in terms of the fundamental weights {$1, $2} and plot the
set of weights in the h∗ plane, as in Figure 2.6. Indicate multiplicities and W orbits
in the plot.

p.198, Exercises 4.3.3 replace Exercise 1 by

1. Let V = Cn and G = GL(n,C). For v ∈ V and v∗ ∈ V ∗, let T (v⊗ v∗) = vv∗ ∈Mn.
This defines the canonical isomorphism u 7→ T (u) between V ⊗ V ∗ and Mn. Let
Tk = T⊗k be the canonical isomorphism (V ⊗ V ∗)⊗k → (Mn)⊗k. Let g ∈ G act on
x ∈Mn by g · x = gxg−1.

(a) Show that Tk intertwines the action of G on (V ⊗ V ∗)⊗k and (Mn)⊗k.

(b) Let σ ∈ Sk be a cyclic permutation m1 → m2 → · · · → mk → mk+1 = m1. Let
Cσ : (V ⊗ V ∗)⊗k → C be the G-invariant contraction

Cσ(v1 ⊗ v∗1 ⊗ · · · ⊗ vk ⊗ v∗k) =
k∏
j=1

〈v∗mj , vmj+1〉

Set Xj = T (vj ⊗ v∗j ). Prove that

Cσ(v1 ⊗ v∗1 ⊗ · · · ⊗ vk ⊗ v∗k) = tr(Xm1Xm2 · · ·Xmk).

(Hint: Note that for X ∈Mn, one has T (v∗⊗Xv) = XT (v∗⊗v) and tr(T (v∗⊗v)) =
v∗v.)

(c) Let σ ∈ Sk be a product of disjoint cyclic permutations c1, . . . , cr, where ci is the
cycle m1,i → m2,i → · · · → mpi,i → m1,i. Let Cσ : (V ⊗V ∗)⊗k → C be the G-invariant
contraction

Cσ(v1 ⊗ v∗1 ⊗ · · · ⊗ vk ⊗ v∗k) =
r∏
i=1

pi∏
j=1

〈v∗mj,i , vmj+1,i〉

Set Xj = T (vj ⊗ v∗j ). Prove that

Cσ(v1 ⊗ v∗1 ⊗ · · · ⊗ vk ⊗ v∗k) =
r∏
i=1

tr(Xm1,iXm2,i · · ·Xmpi,i
).

p.198, Exercises 4.3.3 insert after exercise #3:

4. Let G = GL(nC)

(a) Use Exercise #1 to find a basis for the G-invariant linear functionals on M⊗2
n

(assume n ≥ 2).
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(b) Prove that there are no nonzero skew-symmetric G invariant bilinear forms on
Mn. (Hint: Use the result in (a) and the projection from (Mn)⊗2 onto (Mn)∧2.)

5. Let G = GL(nC)

(a) Find a spanning set for the G-invariant linear functionals on M⊗3
n .

(b) Define ω(X1, X2, X3) = tr([X1, X2]X3) for Xi ∈ Mn. Prove that ω is skew-
symmetric and G invariant.

(c) Prove that ω is the unique G invariant skew-symmetric linear functional on M⊗3
n ,

up to a scalar multiple. (Hint: Use the result in (a) and the projection from (Mn)⊗3

onto (Mn)∧3.)

6. Let G = O(V, B), where B is a symmetric bilinear form on V (assume dim V ≥ 3).
Let {ei} be a basis for V such that B(ei, ej) = δij .

(a) Let R ∈
(
V ⊗4

)G. Show that there are constants a, b, c ∈ C so that

R =
∑
i,j,k,l

{aδijδkl + bδikδjl + cδilδjk} ei ⊗ ej ⊗ ek ⊗ el

(Hint: Determine all the two-partitions of {1, 2, 3, 4}).

(b) Use (a) to find a basis for the space
[
S2(V )⊗ S2(V )

]G. (Hint: Symmetrize relative
to tensor positions 1, 2 and positions 3, 4.)

(c) Use (b) to show that dim EndG(S2(V )) = 2 and that S2(V ) decomposes into
the sum of two inequivalent irreducible G modules. (Hint: S2(V ) ∼= S2(V )∗ as G
modules.)

(d) Find the dimensions of the irreducible modules in (c). (Hint : There is an obvious
irreducible submodule in S2(V ).)

7. Let G = O(V, B) as in the previous exercise.

(a) Use part (a) of the previous exercise to find a basis for the space
[∧2 V ⊗ ∧2 V

]G
.

(Hint: Skew-symmetrize relative to tensor positions 1, 2 and positions 3, 4.)

(b) Use (a) to show that dim EndG(
∧2 V ) = 1 and hence

∧2 V is irreducible under G.
(Hint:

∧2 V ∼=
∧2 V ∗ as G modules.)

8. Let G = Sp(V,Ω), where Ω is a nonsingular skew form on V (assume dim V ≥ 4 is
even). Let {fi} and {f j} be bases for V such that Ω(fi, f j) = δij .

(a) Show that
(
V ⊗4

)G is spanned by the tensors∑
i,j

fi ⊗ f i ⊗ fj ⊗ f j,
∑
i,j

fi ⊗ fj ⊗ f i ⊗ f j,
∑
i,j

fi ⊗ fj ⊗ f j ⊗ f i.

(b) Use (a) to find a basis for the space
[∧2 V ⊗ ∧2 V

]G
. (Hint: Skew-symmetrize

relative to tensor positions 1, 2 and positions 3, 4.)



5

(c) Use (b) to show that dim EndG(
∧2 V ) = 2 and that

∧2 V decomposes into the
sum of two inequivalent irreducible G modules. (Hint:

∧2 V ∼=
∧2 V ∗ as a G-module.)

(d) Find the dimensions of the irreducible modules in (c). (Hint : There is an obvious
irreducible submodule in

∧2 V .)

9. Let G = Sp(V,Ω) as in the previous exercise.

(a) Use part (a) of the previous exercise to find a basis for the space
[
S2(V )⊗ S2(V )

]G.
(Hint: Symmetrize relative to tensor positions 1, 2 and positions 3, 4.)

(b) Use (a) to show that dim EndG(S2(V )) = 1 and hence S2(V ) is irreducible under
G. (Hint: S2(V ) ∼= S2(V )∗ as a G-module.)

Insert after line 5 on p. 226 (before 4.6 Notes)

4.5.8 Exercises

1. Let G = GL(k,C) and V = Mk,p(C)⊕Mk,q(C). Let g ∈ G act on V by g · [x y] =
[gx (gt)−1y] for x ∈ Mk,p(C) and y ∈ Mk,q(C). Note that the columns xi of x
transform as vectors in Cn and the columns yj of y transform as covectors in (Cn)∗

(a) Let p− be the subspace of D(V ) spanned by the operators of multiplication by
(xi)t · yj for 1 ≤ i ≤ p, 1 ≤ j ≤ q. Let p+ be the subspace of D(V ) spanned by the
operators ∆ij =

∑k
r=1

∂
∂xri

∂
∂yrj

for 1 ≤ i ≤ p, 1 ≤ j ≤ q. Prove that p± ⊂ D(V )G.

(b) Let k be the subspace of D(V ) spanned by the operators E(x)
ij + k

2δij (with 1 ≤
i, j ≤ p) and E(y)

ij + k
2 δij (with 1 ≤ i, j ≤ q), where E(x)

ij is defined by equation (4.5.27)

and E(y)
ij is similarly defined with xij replaced by yij . Prove that k ⊂ D(V )G.

(c) Prove the commutation relations [k, k] ⊂ k, [k, p±] = p±, [p−, p+] ⊂ k.

(d) Set g′ = p− + k + p+. Prove that g′ is isomorphic to gl(p + q,C), and that
k ∼= gl(p,C)⊕ gl(q,C).

(e) Prove that D(V )G is generated by g′. (Hint: Use Theorem 4.2.1 and note that
there are four possibilities for contractions to obtain G-invariant polynomials on V ⊕
V ∗: (1) vector and covector in V ; (2) vector and covector in V ∗; (3) vector from
V and covector from V ∗; (4) covector from V and vector from V ∗. Show that the
contractions of types (1) and (2) furnish symbols for p±, and that contractions of type
(3) and (4) furnish symbols for k. Now apply Theorem 4.5.16.)

p.248, after exercise 11. Insert the following exercises:

12. Let g = sl(3,C). Fix the positive roots Φ+ = {ε1 − ε2, ε2 − ε3, ε1 − ε3} as usual.
Let π = ad be the adjoint representation on g.

(a) Express the highest weight λ of π in terms of the fundamental weights $1 and
$2. What is the highest weight vector?

(b) Find all β ∈ P++(g) of the form β = λ − γ, where γ ∈ Q+(g). (Here P++(g)
are the dominant weights, and Q+(g) are the sums of positive roots.) Verify that for
every such β, the corresponding weight space gβ 6= 0.
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(c) Find the orbit W · β of each weight β in (b), where W is the Weyl group of g.
Verify that the union of these orbits is the set of weights of π.

(d) Plot the set of weights of π as points in the h∗ plane. Observe that this set is in
the convex hull of the orbit W · λ of the highest weight.

13. Let g = sp(2,C). Fix the positive roots Φ+ = {ε1 − ε2, ε1 + ε2, 2ε1, 2ε2} as usual.
Let π = ad be the adjoint representation on g. Carry out parts (a), (b), (c), (d) of
the previous exercise in this case.

14. Let g = sp(2,C). Suppose (π, V ) is the irreducible representation of g with highest
weight ρ = $1 +$2 (the smallest regular dominant weight).

(a) Show that there is exactly one β ∈ P++(g) of the form β = ρ− γ, where 0 6= γ ∈
Q+(g). Show that Vβ 6= 0 and find a spanning set for it. (Hint : Use the representation
theory of sl(2,C) and the action of U(g) on the highest weight vector.)

(b) Find the orbits W · ρ and W · β, where W is the Weyl group of g.

(c) Plot the weights of π in the h∗ plane. Observe that all the weights are contained
in the convex hull of the orbit W · ρ of the highest weight.

(d) The Weyl dimension formula implies that dimV = 2|Φ
+| = 16. Use this result to

determine the dimension of the weight space Vβ in (a).

15. Let G = Sp(C4,Ω). Let {e±1, e±2} be a basis for C4 so that Ω(e1, e−1) =
Ω(e2, e−2) = 1 and Ω(ei, ej) = 0 otherwise. Here e±i has weight ε±i. Consider
the representation ρ of G on

∧2 C4.

(a) Find the weights and a basis of weight vectors for ρ. Express the weights in terms
of the basis ε1, ε2 and verify that the set of weights is invariant under the Weyl group
of G.

(b) Set X = ι(e−1)ι(e1)+ ι(e−2)ι(e2), where ι(x) is the graded derivation of
∧
C4 such

that ι(x)y = Ω(x, y) for x, y ∈ C4. Show that

X(u∧ v) =
2∑
p=1

∣∣∣∣∣ Ω(ep, u) Ω(e−p, u)
Ω(ep, v) Ω(e−p, v)

∣∣∣∣∣
for u, v ∈ C4.

(c) Let H2 = Ker(X) ⊂ ∧2 C4 (this is an irreducible G module with highest weight
$2). Use the formula in (b) to find a basis for H2. (Hint: H2 is the sum of weight
spaces.)

p.279, Exercises 6.1.4 replace exercise #4 by:

4. Let V be a complex vector space with a symmetric bilinear form β. Let {e1, . . . , en}
be a basis for V such that β(ei, ej) = δij.

(a) Show that if i, j, k are distinct, then

eiejek = ejekei = ekeiej ,
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where the product is in the Clifford algebra for (V, β).

(b) Show that if A = [aij] is a symmetric n× n matrix, then
n∑

i,j=1

aij ei ej =
1
2

tr(A)

(product in the Clifford algebra for (V, β)).

(c) Show that if A = [aij] is a skew-symmetric n× n matrix, then
n∑

i,j=1

aij ei ej = 2
∑

1≤i<j≤n
aij ei ej

(product in the Clifford algebra for (V, β)).

(d) Let Rijkl ∈ C for 1 ≤ i, j, k, l ≤ n be such that

(i) Rijkl = Rklij,

(ii) Rjikl = −Rijkl,
(iii) Rijkl +Rkijl + Rjkil = 0.

Show that
∑
Rijkleiejekel = (1/2)

∑
Rijji , where the multiplication of the ei is in

the Clifford algebra for (V, β). (Hint : Use part (a) to show that for each l, the sum
over distinct triples i, j, k is zero. Then use the anticommutation relations to show
that the sum with i = j is also zero. Finally, use part (b) to simplify the remaining
sum.)

(e) Let g be a Lie algebra and B a symmetric non-degenerate bilinear form on g such
that B([x, y], z) = −B(y, [x, z]). Let e1, ..., en be an orthonormal basis of g relative to
B. Show that Rijkl = B([ei, ej], [ek, el]) satsifies (i), (ii), and (iii) of part (d).

p.290, after exercise 4. Insert the following exercise:

5. Let V = Cn with nondegenerate bilinear form β. Let C = Cliff(V, β) and identify
V with γ(V ) ⊂ C by the canonical map γ. Let α be the automorphism of C such
that α(v) = −v for v ∈ V , let τ be the antiautomorphism of C such that τ(v) = v for
v ∈ V , and let x 7→ x∗ be the antiautomorphism α ◦ τ of C. Define the norm function
∆ : C → C by ∆(x) = x∗x. Let L = {x ∈ C : ∆(x) ∈ C}.
(a) Show that λ+ v ∈ L for all λ ∈ C and v ∈ V .

(b) Show that if x, y ∈ L and λ ∈ C then λx ∈ L and

∆(xy) = ∆(x)∆(y), ∆(τ(x)) = ∆(α(x)) = ∆(x∗) = ∆(x).

Hence xy ∈ L and L is invariant under τ and α. Prove that x ∈ L is invertible if and
only if ∆(x) 6= 0. In this case x−1 = ∆(x)−1x∗ and ∆(x−1) = 1/∆(x).

(c) Let Γ(V, β) ⊂ L be the set of all products w1 · · ·wk, where wj ∈ C + V and
∆(wj) 6= 0 for all 1 ≤ j ≤ k (k arbitrary). Prove that Γ(V, β) is a group (under
multiplication) that is stable under α and τ .

(d) Prove that if g ∈ Γ(V, β) then α(g)(C + V )g∗ = C + V . (Γ(V, β) is called the
Clifford group; note that it contains Pin(V, β).)
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p.499, after exercise 4. Insert the following exercises:

5. Let G = SL(2,C) act on C2 by left multiplication as usual. This gives an action
on P1(C). Let H = {diag[z, z−1] : z ∈ C×} be the diagonal subgroup, let N be the

subgroup of upper-triangular unipotent matrices

[
1 z
0 1

]
, z ∈ C, and let B = HN

be the upper triangular subgroup.

(a) Show that G acts transitively on P(C). Find a point whose stabilizer is B.

(b) Show that H has one open dense orbit and two closed orbits on P(C). Show that
N has one open dense orbit and one closed orbit on P(C).

(c) Identify P(C) with the two-sphere S2 by stereographic projection and give geomet-
ric descriptions of the orbits in (b).

6. (Same notation as previous exercise) Let G act on g = {x ∈M2(C) : tr(x) = 0} by
the adjoint representation Ad(g)x = gxg−1. For µ ∈ C define Xµ = {x ∈ g : tr(x2) =
2µ}. Use the Jordan canonical form to prove the following.

(a) If µ 6= 0 then Xµ is a G orbit and Xµ
∼= G/H as a G-space.

(b) If µ = 0 then X0 = {0} ∪ Y is the union of two G orbits, where Y is the orbit of[
0 1
0 0

]
. Show that Y ∼= G/{±1}N and that Y is not closed in g.

7. (Same notation as previous exercise) Let Z = P(g) ∼= P2(C) be the projective space
of g, and let π : g→ Z be the canonical mapping.

(a) Show that G has two orbits on Z, namely Z1 = π(X1) and Z0 = π(Y ).

(b) Find subgroups L1 and L0 of G so that Zi ∼= G/Li as a G space. (Hint: Be
careful; from the previous problem you know that H ⊂ L1 and N ⊂ L0, but these
inclusions are proper.)

(c) Prove (without calculation) that one orbit must be closed in Z and one orbit must
be dense in Z. Then calculate dimZi and identify the closed orbit. Find equations
defining the closed orbit.

8. Let X = C2 \ {0} with its structure as a quasiprojective algebraic set. Then
X = X1 ∪ X2, where X1 = C× × C and X2 = C × C× are affine open subsets. Also
f ∈ O(X) (the ring of regular functions onX) if and only if f |Xi ∈ Aff(Xi) for i = 1, 2.

(a) Prove that O(X) = C[x1, x2], where xi are the coordinate functions on C2. (Hint:
Let f ∈ O(X). Write f |X1 as a polynomial in x1, x

−1
1 , x2 and write f |X2 as a polyno-

mial in x1, x2, x
−1
2 . Then compare these expressions on X1 ∩X2.)

(b) Prove that X is not a projective algebraic set. (Hint: Consider O(X).)

(c) Prove that X is not an affine algebraic set. (Hint: By (a) there is a homomorphism
f 7→ f(0) of O(X).)

(d) Let G = SL(2,C) and N the upper-triangular unipotent matrices in G. Prove
that G/N ∼= C2 \ {0}, with G acting as usual on C2. (Hint: Find a vector in C2 whose
stabilizer is N .)
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9. Let G = SL(2,C) × SL(2,C). Let ρ be the representation of G on M2 = M2(C)
given by ρ(g, h)z = gzht. Let π : C2 × C2 → M2 by π(x, y) = xyt. Identify P3 with
P(M2) and let π̃ : P1 × P1 → P3 be the map induced by π (the standard imbedding of
Pm × Pn in Pmn+m+n).

(a) Show that the image of π̃ is {[z] : z ∈ M2 \ {0} and det(z) = 0}.
(b) Let G act on P1× P1 by the natural action on C2 ×C2 and let G act on P3 by the
representation ρ on M2. Show that π̃ intertwines the G actions.

(c) Show that G has two orbits on P3 and describe the closed orbit.

10. (Notation as in previous exercise) Consider the subspaces V1 = CE11 +CE12 and
V2 = CE11 + CE21 of M2, where Eij are the usual elementary matrices.

(a) Show that Vi are totally isotropic for the bilinear form B.

(b) Let Bi = {g ∈ G : ρ(g)Vi = Vi} for i = 1, 2. Describe B1, B2 and B = B1 ∩B2 in
matrix form.

(c) Show that B = H · N where H is a maximal torus in G and N is a connected
unipotent normal subgroup of B.

11. Let X = {x ∈ M4×2(C) : rank(x) = 2}. For J = (i1, i2) with 1 ≤ i1 < i2 ≤ 4 let
XJ = {x ∈ X : ξJ(x) 6= 0}, where

ξJ(x) = det

[
xi11 xi12

xi21 xi22

]
is the Plücker coordinate corresponding to J.

(a) Let A{1,2} = {x ∈ X : xij = δij for 1 ≤ i, j ≤ 2}. Calculate the restrictions of the
Plücker coordinates to A{1,2}.

(b) Let GL(2,C) act by right multiplication on X . Show that X{1,2} is invariant under
GL(2,C) and A{1,2} is a cross-section for the GL(2,C) orbits.

(c) Let π : X → Grass2(C4) map x to its orbit under GL(2,C). Let GL(4,C) act
by left multiplication on X and hence also on Grass2(C4). Show that this action is
transitive and calculate the stabilizer of π([ e1 e2 ]), where ei are the standard basis
vectors for C4.

p.506, l.−14 and −13 Replace exercise 6 by the following:

6. Let G = GL(n,C), B the upper-triangular subgroup of G, and H the diagonal
subgroup of G. Suppose P ⊂ G is a closed subgroup such that B ⊂ P .

(a) Prove that Lie(P ) is of the form

b +
∑
α∈S

g−α (∗)

where b = Lie(B) and S ⊂ Φ+ (the positive roots of g). (Hint : Lie(P ) is invariant
under Ad(H).)

(b) Let S ⊂ Φ+ be any subset and let {α1, . . . , αl} be the simple roots in Φ+. Prove
that the subspace defined by (∗) is a Lie algebra if and only if S satisfies the properties
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(P1) If α, β ∈ S and α + β ∈ Φ+, then α+ β ∈ S.
(P2) If β ∈ S and β − αi ∈ Φ+ then β − αi ∈ S.

(Hint : b is generated by h and {gαi : i = 1, . . . , l}.)
(c) Determine all subsets S of Φ+ that satisfy (P1) and (P2). (Hint: Write the roots
in terms of simple roots.)

(c) Let R be any subset of the simple roots, and define SR to be all the positive
roots β so that no elements of R occur in β. Show that SR satisfies (P1) and (P2).
Conversely, if S satisfies (P1) and (P2), let R be the set of simple roots that do not
occur in any β ∈ S. Prove that S = SR.

(d) Let G = GL(n,C). Use (c) to determine all subsets S of Φ+ that satisfy (P1)
and (P2). (Hint: Use Exercise 2.3.5 #2 (a).)

(e) For each subset S found in (d), show that there is a closed subgroup P ⊃ B with
Lie(P ) given by (∗). (Hint: Show that S corresponds to a partition of n and consider
the corresponding block decomposition of G.)

p.506, after exercise 6. Insert the following exercise:

7. Let G = GL(n,C), H = Dn the diagonal matrices in G, N the upper-triangular
unipotent matrices, and B = HN . Let X be the space of all flags in Cn.

(a) Suppose x = {V1 ⊂ V2 ⊂ · · · ⊂ Vn} is a flag that is invariant under H . Prove that
there is a permutation σ ∈ Sn so that

Vi = Span{eσ(1), . . . , eσ(i)} for i = 1, . . . , n.

(Hint: H is reductive and its action on Cn is multiplicity-free.)

(b) Suppose the flag x in (a) is also invariant under N . Prove that σ(i) = i for all i.
(Hint: Use induction on i.)

(c) Prove that if g ∈ G and gBg−1 = B, then g ∈ B. (Hint: By (a) and (b), B has
exactly one fixed point on X = G/B.)

p.532, l.15 to l. 19 replace:

1. Let L be a reductive group, and set G = L × L. Let K = {(g, g) : g ∈ L} be
the diagonal embedding of L in G. Show that (G,K) is a spherical pair. (Hint:

The irreducible representations of G are of the form π = σ⊗̂µ, where σ and µ are
irreducible representations of L. Use Schur’s Lemma to show that the K-spherical
representations of G are the representations π = σ⊗̂σ∗.)
by:

1. Use the criterion of Theorem 12.2.1 to show that the following spaces are multi-
plicity free:

(a) G = GL(n)×GL(k), X = Mn,k(C), (g, h) · x = gxh−1. (Hint: Lemma B.2.8.)

(b) G = GL(n), X = SMn(C), g · x = gxgt. (Hint: Lemma B.2.9.)

(c) G = GL(n), X = AMn(C), g · x = gxgt. (Hint: Lemma B.2.10.)


