Representations and Invariants of the Classical Groups by Roe Goodman and Nolan R. Wallach (1998 edition)

Revised July 15, 1999

p.17, after exercise 10. INSERT THE FOLLOWING EXERCISES:

11. Assume that (ρ, V) is an irreducible regular representation of the linear algebraic group G. Fix $v^* \in V^*$ with $v^* \neq 0$. For $v \in V$ let $\varphi_v \in \operatorname{Aff}(G)$ be the representative function $\varphi_v(g) = \langle v^*, \rho(g)v \rangle$. Let $E = \{\varphi_v : v \in V\}$ and let $T : V \to E$ be the map $Tv = \varphi_v$. Prove that T is a bijective linear map and that $T\rho(g) = R(g)T$ for all $g \in G$, where R(g)f(x) = f(xg) for $f \in \operatorname{Aff}(G)$. Thus every irreducible regular representation of G is equivalent to a subrepresentation of $(R, \operatorname{Aff}(G))$.

12. Let N be the group of matrices

$$\left[\begin{array}{cc} 1 & z \\ 0 & 1 \end{array}\right], \quad z \in \mathbb{C}$$

and let Γ be the subgroup of N consisting of the matrices with $z \in \mathbb{Z}$ an integer. Prove that Γ is Zariski-dense in N.

13. Define a multiplication μ on $\mathbb{C}^{\times} \times \mathbb{C}$ by $\mu([x_1, x_2], [y_1, y_2]) = [x_1y_1, x_2 + x_1y_2]$.

(a) Prove that μ satisfies the group axioms and that the inversion map is regular.

(b) Let $S = (\mathbb{C}^{\times} \times \mathbb{C}, \mu)$ be the linear algebraic group with $\operatorname{Aff}(S) = \mathbb{C}[x_1, x_1^{-1}, x_2]$ and multiplication μ . Let $R(y)f(x) = f(\mu(x, y))$ be the right translation representation of S on $\operatorname{Aff}(S)$. Let $V \subset \operatorname{Aff}(S)$ be the space spanned by the functions x_1 and x_2 . Show that V is invariant under R(y), for $y \in S$.

(c) Let $\rho(y) = R(y)|_V$ for $y \in S$. Calculate the matrix of $\rho(y)$ relative to the basis $\{x_1, x_2\}$ of V. Prove that $\rho : S \to \operatorname{GL}(2, \mathbb{C})$ is injective, and that $S \cong \rho(S)$ as an algebraic group.

p.34, after exercise 8. INSERT THE FOLLOWING EXERCISES:

9. Let $\mathcal{A} = \{a \in M_n(\mathbb{C}) : x_{ij}(a) = 0 \text{ for all } i > j\}.$

- (a) Show that \mathcal{A} is a subalgebra of $M_n(\mathbb{C})$ (relative to the usual matrix product).
- (b) Let G be the group of invertible elements in \mathcal{A} . Use exercise 6. to find Lie(G).

10. Let G and H be connected linear algebraic groups. Suppose $\phi : G \to H$ is a surjective regular homomorphism such that $\operatorname{Ker}(\phi)$ is finite. Prove that $d\phi : \operatorname{Lie}(G) \to \operatorname{Lie}(H)$ is an isomorphism. (*Hint:* Prove that $\dim G = \dim H$.)

11. Let G be a linear algebraic group. Let Int be the representation of G on $\operatorname{Aff}(G)$ given by $\operatorname{Int}(g)f(x) = f(g^{-1}xg)$ for $f \in \operatorname{Aff}(G)$ (thus $\operatorname{Int}(g) = L(g)R(g)$). Assume that H is a Zariski closed normal subgroup of G.

(a) Let $f \in \mathcal{I}_H$. Prove that there is a finite-dimensional subspace $V \subset \mathcal{I}_H$ so that $f \in V$ and $\operatorname{Int}(g)V \subset V$.

(b) Set $\mathfrak{g} = \text{Lie}(G)$ and $\mathfrak{h} = \text{Lie}(H)$. Prove that $\text{Ad}(G)\mathfrak{h} \subset \mathfrak{h}$. (*Hint:* Use (a) to show that $R(g)X_AR(g)^{-1}\mathcal{I}_H \subset \mathcal{I}_H$ for all $A \in \mathfrak{h}$ and all $g \in G$.)

(c) Prove that $[\mathfrak{g}, \mathfrak{h}] \subset \mathfrak{h}$, and hence \mathfrak{h} is an ideal in \mathfrak{g} . (*Hint:* By (b), \mathfrak{h} is an Ad(G)-invariant subspace of \mathfrak{g} .)

p.49, l.4 (Exercise #1) REPLACE:

1. Check the assertion in (1.4.2) above.

BY:

1. Define a real form Sp(p,q) of $\text{Sp}(p+q,\mathbb{C})$ analogous to the real form U(p,q) of $\text{GL}(p+q,\mathbb{C})$.

p.84, after exercise 6. INSERT THE FOLLOWING EXERCISE:

7. Let G be a connected linear algebraic group and let $\operatorname{Ad} : G \to \operatorname{GL}(\mathfrak{g})$ be the adjoint representation of G. Let $N = \operatorname{Ker}(\operatorname{Ad})$. The group G/N is called the *adjoint group* of G.

(a) Suppose \mathfrak{g} is a simple Lie algebra. Prove that N is finite.

(b) Suppose $G = SL(n, \mathbb{C})$, so that $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C})$. Find N in this case. The group G/N is denoted by $PSL(n, \mathbb{C})$ (the projective linear group).

p.109, after exercise 5. INSERT THE FOLLOWING EXERCISES:

6. Let $G = SL(3, \mathbb{C})$, H the diagonal matrices in G, and let $V = \mathbb{C}^3 \otimes \mathbb{C}^3$.

(a) Find the weights of H on V. Express the weights in terms of $\varepsilon_1, \varepsilon_2, \varepsilon_3$ and for each weight determine its multiplicity. Verify that the weight multiplicities are invariant under the Weyl group W of G.

(b) Verify that each Weyl group orbit in the set of weights of V contains exactly one dominant weight. Find the *extreme* dominant weights β (those such that $\beta + \alpha$ is not a weight, for any positive root α).

(c) Write the weights of V in terms of the fundamental weights $\{\varpi_1, \varpi_2\}$ and plot the set of weights in the \mathfrak{h}^* plane, as in Figure 2.5. Indicate multiplicities and W-orbits in the plot.

(d) V decomposes into G-invariant subspaces $V = V_+ \oplus V_-$, where V_+ consists of the symmetric 2-tensors, and V_- is the skew-symmetric 2-tensors. Determine the weights and multiplicities of V_{\pm} and verify that the weight multiplicities are invariant under W.

7. Let $G = \operatorname{Sp}(\mathbb{C}^4, \Omega)$, where $\Omega = \begin{bmatrix} 0 & s_0 \\ -s_0 & 0 \end{bmatrix}$ and s_0 has antidiagonal 1 as usual. Let H be the diagonal matrices in G, and let $V = \bigwedge^2 \mathbb{C}^4$. (a) Find all the weights of H on V. Express the weights in terms of $\varepsilon_1, \varepsilon_2$ and for each weight determine its multiplicity (note that $\varepsilon_3 = -\varepsilon_2$ and $\varepsilon_4 = -\varepsilon_1$ as elements of \mathfrak{h}^*). Verify that the weight multiplicities are invariant under the Weyl group W of G.

(b) Verify that each Weyl group orbit in the set of weights of V contains exactly one dominant weight. Find the *extreme* dominant weights β (those such that $\beta + \alpha$ is not a weight, for any positive root α).

(c) Write the weights of V in terms of the fundamental weights $\{\varpi_1, \varpi_2\}$ and plot the set of weights in the \mathfrak{h}^* plane, as in Figure 2.6. Indicate multiplicities and W orbits in the plot.

p.198, Exercises 4.3.3 REPLACE EXERCISE 1 BY

1. Let $V = \mathbb{C}^n$ and $G = \operatorname{GL}(n, \mathbb{C})$. For $v \in V$ and $v^* \in V^*$, let $T(v \otimes v^*) = vv^* \in M_n$. This defines the canonical isomorphism $u \mapsto T(u)$ between $V \otimes V^*$ and M_n . Let $T_k = T^{\otimes k}$ be the canonical isomorphism $(V \otimes V^*)^{\otimes k} \to (M_n)^{\otimes k}$. Let $g \in G$ act on $x \in M_n$ by $g \cdot x = gxg^{-1}$.

(a) Show that T_k intertwines the action of G on $(V \otimes V^*)^{\otimes k}$ and $(M_n)^{\otimes k}$.

(b) Let $\sigma \in \mathfrak{S}_k$ be a cyclic permutation $m_1 \to m_2 \to \cdots \to m_k \to m_{k+1} = m_1$. Let $C_{\sigma} : (V \otimes V^*)^{\otimes k} \to \mathbb{C}$ be the *G*-invariant contraction

$$C_{\sigma}(v_1 \otimes v_1^* \otimes \cdots \otimes v_k \otimes v_k^*) = \prod_{j=1}^k \langle v_{m_j}^*, v_{m_{j+1}} \rangle$$

Set $X_j = T(v_j \otimes v_j^*)$. Prove that

$$C_{\sigma}(v_1 \otimes v_1^* \otimes \cdots \otimes v_k \otimes v_k^*) = \operatorname{tr}(X_{m_1} X_{m_2} \cdots X_{m_k}).$$

(*Hint*: Note that for $X \in M_n$, one has $T(v^* \otimes Xv) = XT(v^* \otimes v)$ and $tr(T(v^* \otimes v)) = v^*v$.)

(c) Let $\sigma \in \mathfrak{S}_k$ be a product of disjoint cyclic permutations c_1, \ldots, c_r , where c_i is the cycle $m_{1,i} \to m_{2,i} \to \cdots \to m_{p_i,i} \to m_{1,i}$. Let $C_{\sigma} : (V \otimes V^*)^{\otimes k} \to \mathbb{C}$ be the *G*-invariant contraction

$$C_{\sigma}(v_1 \otimes v_1^* \otimes \cdots \otimes v_k \otimes v_k^*) = \prod_{i=1}^r \prod_{j=1}^{p_i} \langle v_{m_{j,i}}^*, v_{m_{j+1,i}} \rangle$$

Set $X_j = T(v_j \otimes v_j^*)$. Prove that

$$C_{\sigma}(v_1 \otimes v_1^* \otimes \cdots \otimes v_k \otimes v_k^*) = \prod_{i=1}^{\prime} \operatorname{tr}(X_{m_{1,i}} X_{m_{2,i}} \cdots X_{m_{p_i,i}}).$$

p.198, Exercises 4.3.3 INSERT AFTER EXERCISE #3:

4. Let $G = \operatorname{GL}(n\mathbb{C})$

(a) Use Exercise #1 to find a basis for the *G*-invariant linear functionals on $M_n^{\otimes 2}$ (assume $n \geq 2$).

(b) Prove that there are no nonzero skew-symmetric G invariant bilinear forms on M_n . (*Hint:* Use the result in (a) and the projection from $(M_n)^{\otimes 2}$ onto $(M_n)^{\wedge 2}$.)

5. Let $G = \operatorname{GL}(n\mathbb{C})$

(a) Find a spanning set for the G-invariant linear functionals on $M_n^{\otimes 3}$.

(b) Define $\omega(X_1, X_2, X_3) = tr([X_1, X_2]X_3)$ for $X_i \in M_n$. Prove that ω is skew-symmetric and G invariant.

(c) Prove that ω is the unique *G* invariant skew-symmetric linear functional on $M_n^{\otimes 3}$, up to a scalar multiple. (*Hint:* Use the result in (a) and the projection from $(M_n)^{\otimes 3}$ onto $(M_n)^{\wedge 3}$.)

6. Let G = O(V, B), where B is a symmetric bilinear form on V (assume dim $V \ge 3$). Let $\{e_i\}$ be a basis for V such that $B(e_i, e_j) = \delta_{ij}$.

(a) Let $R \in (V^{\otimes 4})^G$. Show that there are constants $a, b, c \in \mathbb{C}$ so that

$$R = \sum_{i,j,k,l} \left\{ a\delta_{ij}\delta_{kl} + b\delta_{ik}\delta_{jl} + c\delta_{il}\delta_{jk} \right\} e_i \otimes e_j \otimes e_k \otimes e_l$$

(*Hint:* Determine all the two-partitions of $\{1, 2, 3, 4\}$).

(b) Use (a) to find a basis for the space $[S^2(V) \otimes S^2(V)]^G$. (*Hint:* Symmetrize relative to tensor positions 1, 2 and positions 3, 4.)

(c) Use (b) to show that dim $\operatorname{End}_G(S^2(V)) = 2$ and that $S^2(V)$ decomposes into the sum of two inequivalent irreducible G modules. (*Hint:* $S^2(V) \cong S^2(V)^*$ as G modules.)

(d) Find the dimensions of the irreducible modules in (c). (*Hint*: There is an obvious irreducible submodule in $S^2(V)$.)

7. Let G = O(V, B) as in the previous exercise.

(a) Use part (a) of the previous exercise to find a basis for the space $\left[\bigwedge^2 V \otimes \bigwedge^2 V\right]^G$. (*Hint:* Skew-symmetrize relative to tensor positions 1, 2 and positions 3, 4.)

(b) Use (a) to show that dim $\operatorname{End}_G(\bigwedge^2 V) = 1$ and hence $\bigwedge^2 V$ is irreducible under G. (*Hint:* $\bigwedge^2 V \cong \bigwedge^2 V^*$ as G modules.)

8. Let $G = \text{Sp}(V, \Omega)$, where Ω is a nonsingular skew form on V (assume dim $V \ge 4$ is even). Let $\{f_i\}$ and $\{f^j\}$ be bases for V such that $\Omega(f_i, f^j) = \delta_{ij}$.

(a) Show that $(V^{\otimes 4})^G$ is spanned by the tensors

$$\sum_{i,j} f_i \otimes f^i \otimes f_j \otimes f^j, \quad \sum_{i,j} f_i \otimes f_j \otimes f^i \otimes f^j, \quad \sum_{i,j} f_i \otimes f_j \otimes f^j \otimes f^i.$$

(b) Use (a) to find a basis for the space $\left[\bigwedge^2 V \otimes \bigwedge^2 V\right]^G$. (*Hint:* Skew-symmetrize relative to tensor positions 1, 2 and positions 3, 4.)

(c) Use (b) to show that dim $\operatorname{End}_G(\bigwedge^2 V) = 2$ and that $\bigwedge^2 V$ decomposes into the sum of two inequivalent irreducible G modules. (*Hint:* $\bigwedge^2 V \cong \bigwedge^2 V^*$ as a G-module.) (d) Find the dimensions of the irreducible modules in (c). (*Hint:* There is an obvious irreducible submodule in $\bigwedge^2 V$.)

9. Let $G = \text{Sp}(V, \Omega)$ as in the previous exercise.

(a) Use part (a) of the previous exercise to find a basis for the space $[S^2(V) \otimes S^2(V)]^G$. (*Hint:* Symmetrize relative to tensor positions 1, 2 and positions 3, 4.)

(b) Use (a) to show that dim $\operatorname{End}_G(S^2(V)) = 1$ and hence $S^2(V)$ is irreducible under *G.* (*Hint:* $S^2(V) \cong S^2(V)^*$ as a *G*-module.)

INSERT AFTER LINE 5 ON P. 226 (BEFORE 4.6 NOTES)

4.5.8 Exercises

1. Let $G = \operatorname{GL}(k, \mathbb{C})$ and $V = M_{k,p}(\mathbb{C}) \oplus M_{k,q}(\mathbb{C})$. Let $g \in G$ act on V by $g \cdot [x \quad y] = [gx \quad (g^t)^{-1}y]$ for $x \in M_{k,p}(\mathbb{C})$ and $y \in M_{k,q}(\mathbb{C})$. Note that the columns x_i of x transform as vectors in \mathbb{C}^n and the columns y_i of y transform as covectors in $(\mathbb{C}^n)^*$

(a) Let \mathfrak{p}_{-} be the subspace of $\mathbb{D}(V)$ spanned by the operators of multiplication by $(x_i)^t \cdot y_j$ for $1 \leq i \leq p, 1 \leq j \leq q$. Let \mathfrak{p}_+ be the subspace of $\mathbb{D}(V)$ spanned by the operators $\Delta_{ij} = \sum_{r=1}^k \frac{\partial}{\partial x_{ri}} \frac{\partial}{\partial y_{rj}}$ for $1 \leq i \leq p, 1 \leq j \leq q$. Prove that $\mathfrak{p}_{\pm} \subset \mathbb{D}(V)^G$.

(b) Let \mathfrak{k} be the subspace of $\mathbb{D}(V)$ spanned by the operators $E_{ij}^{(x)} + \frac{k}{2}\delta_{ij}$ (with $1 \leq i, j \leq p$) and $E_{ij}^{(y)} + \frac{k}{2}\delta_{ij}$ (with $1 \leq i, j \leq q$), where $E_{ij}^{(x)}$ is defined by equation (4.5.27) and $E_{ij}^{(y)}$ is similarly defined with x_{ij} replaced by y_{ij} . Prove that $\mathfrak{k} \subset \mathbb{D}(V)^G$.

(c) Prove the commutation relations $[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k}, [\mathfrak{k}, \mathfrak{p}_{\pm}] = \mathfrak{p}_{\pm}, [\mathfrak{p}_{-}, \mathfrak{p}_{+}] \subset \mathfrak{k}.$

(d) Set $\mathfrak{g}' = \mathfrak{p}_- + \mathfrak{k} + \mathfrak{p}_+$. Prove that \mathfrak{g}' is isomorphic to $\mathfrak{gl}(p+q,\mathbb{C})$, and that $\mathfrak{k} \cong \mathfrak{gl}(p,\mathbb{C}) \oplus \mathfrak{gl}(q,\mathbb{C})$.

(e) Prove that $\mathbb{D}(V)^G$ is generated by \mathfrak{g}' . (HINT: Use Theorem 4.2.1 and note that there are four possibilities for contractions to obtain *G*-invariant polynomials on $V \oplus$ V^* : (1) vector and covector in V; (2) vector and covector in V^* ; (3) vector from V and covector from V^* ; (4) covector from V and vector from V^* . Show that the contractions of types (1) and (2) furnish symbols for \mathfrak{p}_{\pm} , and that contractions of type (3) and (4) furnish symbols for \mathfrak{k} . Now apply Theorem 4.5.16.)

p.248, after exercise 11. INSERT THE FOLLOWING EXERCISES:

12. Let $\mathfrak{g} = \mathfrak{sl}(3, \mathbb{C})$. Fix the positive roots $\Phi^+ = \{\varepsilon_1 - \varepsilon_2, \varepsilon_2 - \varepsilon_3, \varepsilon_1 - \varepsilon_3\}$ as usual. Let $\pi = \mathrm{ad}$ be the adjoint representation on \mathfrak{g} .

(a) Express the highest weight λ of π in terms of the fundamental weights ϖ_1 and ϖ_2 . What is the highest weight vector?

(b) Find all $\beta \in P_{++}(\mathfrak{g})$ of the form $\beta = \lambda - \gamma$, where $\gamma \in Q_+(\mathfrak{g})$. (Here $P_{++}(\mathfrak{g})$ are the dominant weights, and $Q_+(\mathfrak{g})$ are the sums of positive roots.) Verify that for every such β , the corresponding weight space $\mathfrak{g}_{\beta} \neq 0$.

(c) Find the orbit $W \cdot \beta$ of each weight β in (b), where W is the Weyl group of \mathfrak{g} . Verify that the union of these orbits is the set of weights of π .

(d) Plot the set of weights of π as points in the \mathfrak{h}^* plane. Observe that this set is in the convex hull of the orbit $W \cdot \lambda$ of the highest weight.

13. Let $\mathfrak{g} = \mathfrak{sp}(2, \mathbb{C})$. Fix the positive roots $\Phi^+ = \{\varepsilon_1 - \varepsilon_2, \varepsilon_1 + \varepsilon_2, 2\varepsilon_1, 2\varepsilon_2\}$ as usual. Let $\pi = \mathrm{ad}$ be the adjoint representation on \mathfrak{g} . Carry out parts (a), (b), (c), (d) of the previous exercise in this case.

14. Let $\mathfrak{g} = \mathfrak{sp}(2, \mathbb{C})$. Suppose (π, V) is the irreducible representation of \mathfrak{g} with highest weight $\rho = \varpi_1 + \varpi_2$ (the smallest regular dominant weight).

(a) Show that there is exactly one $\beta \in P_{++}(\mathfrak{g})$ of the form $\beta = \rho - \gamma$, where $0 \neq \gamma \in Q_+(\mathfrak{g})$. Show that $V_\beta \neq 0$ and find a *spanning set* for it. (*Hint*: Use the representation theory of $\mathfrak{sl}(2, \mathbb{C})$ and the action of $U(\mathfrak{g})$ on the highest weight vector.)

(b) Find the orbits $W \cdot \rho$ and $W \cdot \beta$, where W is the Weyl group of \mathfrak{g} .

(c) Plot the weights of π in the \mathfrak{h}^* plane. Observe that all the weights are contained in the convex hull of the orbit $W \cdot \rho$ of the highest weight.

(d) The Weyl dimension formula implies that dim $V = 2^{|\Phi^+|} = 16$. Use this result to determine the dimension of the weight space V_β in (a).

15. Let $G = \operatorname{Sp}(\mathbb{C}^4, \Omega)$. Let $\{e_{\pm 1}, e_{\pm 2}\}$ be a basis for \mathbb{C}^4 so that $\Omega(e_1, e_{-1}) = \Omega(e_2, e_{-2}) = 1$ and $\Omega(e_i, e_j) = 0$ otherwise. Here $e_{\pm i}$ has weight $\varepsilon_{\pm i}$. Consider the representation ρ of G on $\bigwedge^2 \mathbb{C}^4$.

(a) Find the weights and a basis of weight vectors for ρ . Express the weights in terms of the basis ε_1 , ε_2 and verify that the set of weights is invariant under the Weyl group of G.

(b) Set $X = \iota(e_{-1})\iota(e_1) + \iota(e_{-2})\iota(e_2)$, where $\iota(x)$ is the graded derivation of $\bigwedge \mathbb{C}^4$ such that $\iota(x)y = \Omega(x,y)$ for $x, y \in \mathbb{C}^4$. Show that

$$X(u \wedge v) = \sum_{p=1}^{2} \begin{vmatrix} \Omega(e_p, u) & \Omega(e_{-p}, u) \\ \Omega(e_p, v) & \Omega(e_{-p}, v) \end{vmatrix}$$

for $u, v \in \mathbb{C}^4$.

(c) Let $\mathcal{H}^2 = \operatorname{Ker}(X) \subset \bigwedge^2 \mathbb{C}^4$ (this is an irreducible *G* module with highest weight ϖ_2). Use the formula in (b) to find a basis for \mathcal{H}^2 . (*Hint:* \mathcal{H}^2 is the sum of weight spaces.)

p.279, Exercises 6.1.4 REPLACE EXERCISE #4 BY:

4. Let V be a complex vector space with a symmetric bilinear form β . Let $\{e_1, \ldots, e_n\}$ be a basis for V such that $\beta(e_i, e_j) = \delta_{ij}$.

(a) Show that if i, j, k are distinct, then

$$e_i e_j e_k = e_j e_k e_i = e_k e_i e_j,$$

where the product is in the Clifford algebra for (V, β) .

(b) Show that if $A = [a_{ij}]$ is a symmetric $n \times n$ matrix, then

$$\sum_{i,j=1}^{n} a_{ij} e_i e_j = \frac{1}{2} \operatorname{tr}(A)$$

(product in the Clifford algebra for (V, β)).

(c) Show that if $A = [a_{ij}]$ is a skew-symmetric $n \times n$ matrix, then

$$\sum_{i,j=1}^{n} a_{ij} e_i e_j = 2 \sum_{1 \le i < j \le n} a_{ij} e_i e_j$$

(product in the Clifford algebra for (V, β)).

(d) Let $R_{iikl} \in \mathbb{C}$ for $1 \leq i, j, k, l \leq n$ be such that

- (i) $R_{ijkl} = R_{klij}$,
- (ii) $R_{jikl} = -R_{ijkl}$,
- (iii) $R_{ijkl} + R_{kijl} + R_{jkil} = 0.$

Show that $\sum R_{ijkl}e_ie_je_ke_l = (1/2) \sum R_{ijji}$, where the multiplication of the e_i is in the Clifford algebra for (V, β) . (*Hint*: Use part (a) to show that for each l, the sum over distinct triples i, j, k is zero. Then use the anticommutation relations to show that the sum with i = j is also zero. Finally, use part (b) to simplify the remaining sum.)

(e) Let \mathfrak{g} be a Lie algebra and B a symmetric non-degenerate bilinear form on \mathfrak{g} such that B([x, y], z) = -B(y, [x, z]). Let e_1, \dots, e_n be an orthonormal basis of \mathfrak{g} relative to B. Show that $R_{ijkl} = B([e_i, e_j], [e_k, e_l])$ satisfies (i), (ii), and (iii) of part (d).

p.290, after exercise 4. INSERT THE FOLLOWING EXERCISE:

5. Let $V = \mathbb{C}^n$ with nondegenerate bilinear form β . Let $\mathcal{C} = \text{Cliff}(V, \beta)$ and identify V with $\gamma(V) \subset \mathcal{C}$ by the canonical map γ . Let α be the automorphism of \mathcal{C} such that $\alpha(v) = -v$ for $v \in V$, let τ be the antiautomorphism of \mathcal{C} such that $\tau(v) = v$ for $v \in V$, and let $x \mapsto x^*$ be the antiautomorphism $\alpha \circ \tau$ of \mathcal{C} . Define the *norm function* $\Delta : \mathcal{C} \to \mathcal{C}$ by $\Delta(x) = x^*x$. Let $\mathcal{L} = \{x \in \mathcal{C} : \Delta(x) \in \mathbb{C}\}.$

(a) Show that $\lambda + v \in \mathcal{L}$ for all $\lambda \in \mathbb{C}$ and $v \in V$.

(b) Show that if $x, y \in \mathcal{L}$ and $\lambda \in \mathbb{C}$ then $\lambda x \in \mathcal{L}$ and

$$\Delta(xy) = \Delta(x)\Delta(y), \quad \Delta(\tau(x)) = \Delta(\alpha(x)) = \Delta(x^*) = \Delta(x).$$

Hence $xy \in \mathcal{L}$ and \mathcal{L} is invariant under τ and α . Prove that $x \in \mathcal{L}$ is invertible if and only if $\Delta(x) \neq 0$. In this case $x^{-1} = \Delta(x)^{-1}x^*$ and $\Delta(x^{-1}) = 1/\Delta(x)$.

(c) Let $\Gamma(V,\beta) \subset \mathcal{L}$ be the set of all products $w_1 \cdots w_k$, where $w_j \in \mathbb{C} + V$ and $\Delta(w_j) \neq 0$ for all $1 \leq j \leq k$ (k arbitrary). Prove that $\Gamma(V,\beta)$ is a group (under multiplication) that is stable under α and τ .

(d) Prove that if $g \in \Gamma(V,\beta)$ then $\alpha(g)(\mathbb{C}+V)g^* = \mathbb{C}+V$. $(\Gamma(V,\beta)$ is called the *Clifford group*; note that it contains $\operatorname{Pin}(V,\beta)$.)

p.499, after exercise 4. INSERT THE FOLLOWING EXERCISES:

5. Let $G = \mathrm{SL}(2, \mathbb{C})$ act on \mathbb{C}^2 by left multiplication as usual. This gives an action on $\mathbb{P}^1(\mathbb{C})$. Let $H = \{\mathrm{diag}[z, z^{-1}] : z \in \mathbb{C}^{\times}\}$ be the diagonal subgroup, let N be the subgroup of upper-triangular unipotent matrices $\begin{bmatrix} 1 & z \\ 0 & 1 \end{bmatrix}$, $z \in \mathbb{C}$, and let B = HNbe the upper triangular subgroup.

(a) Show that G acts transitively on $\mathbb{P}(\mathbb{C})$. Find a point whose stabilizer is B.

(b) Show that H has one open dense orbit and two closed orbits on $\mathbb{P}(\mathbb{C})$. Show that N has one open dense orbit and one closed orbit on $\mathbb{P}(\mathbb{C})$.

(c) Identify $\mathbb{P}(\mathbb{C})$ with the two-sphere \mathbf{S}^2 by stereographic projection and give geometric descriptions of the orbits in (b).

6. (Same notation as previous exercise) Let G act on $\mathfrak{g} = \{x \in M_2(\mathbb{C}) : \operatorname{tr}(x) = 0\}$ by the adjoint representation $\operatorname{Ad}(g)x = gxg^{-1}$. For $\mu \in \mathbb{C}$ define $X_{\mu} = \{x \in \mathfrak{g} : \operatorname{tr}(x^2) = 2\mu\}$. Use the Jordan canonical form to prove the following.

(a) If $\mu \neq 0$ then X_{μ} is a G orbit and $X_{\mu} \cong G/H$ as a G-space.

(b) If $\mu = 0$ then $X_0 = \{0\} \cup Y$ is the union of two G orbits, where Y is the orbit of $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Show that $Y \cong G/\{\pm 1\}N$ and that Y is not closed in \mathfrak{g} .

7. (Same notation as previous exercise) Let $Z = \mathbb{P}(\mathfrak{g}) \cong \mathbb{P}^2(\mathbb{C})$ be the projective space of \mathfrak{g} , and let $\pi : \mathfrak{g} \to Z$ be the canonical mapping.

(a) Show that G has two orbits on Z, namely $Z_1 = \pi(X_1)$ and $Z_0 = \pi(Y)$.

(b) Find subgroups L_1 and L_0 of G so that $Z_i \cong G/L_i$ as a G space. (*Hint:* Be careful; from the previous problem you know that $H \subset L_1$ and $N \subset L_0$, but these inclusions are proper.)

(c) Prove (without calculation) that one orbit must be closed in Z and one orbit must be dense in Z. Then calculate dim Z_i and identify the closed orbit. Find equations defining the closed orbit.

8. Let $X = \mathbb{C}^2 \setminus \{0\}$ with its structure as a quasiprojective algebraic set. Then $X = X_1 \cup X_2$, where $X_1 = \mathbb{C}^{\times} \times \mathbb{C}$ and $X_2 = \mathbb{C} \times \mathbb{C}^{\times}$ are affine open subsets. Also $f \in \mathcal{O}(X)$ (the ring of regular functions on X) if and only if $f|_{X_i} \in \operatorname{Aff}(X_i)$ for i = 1, 2. (a) Prove that $\mathcal{O}(X) = \mathbb{C}[x_1, x_2]$, where x_i are the coordinate functions on \mathbb{C}^2 . (*Hint:* Let $f \in \mathcal{O}(X)$). Write $f|_{X_1}$ as a polynomial in x_1, x_1^{-1}, x_2 and write $f|_{X_2}$ as a polynomial in x_1, x_2, x_2^{-1} . Then compare these expressions on $X_1 \cap X_2$.)

(b) Prove that X is not a projective algebraic set. (*Hint:* Consider $\mathcal{O}(X)$.)

(c) Prove that X is not an affine algebraic set. (*Hint:* By (a) there is a homomorphism $f \mapsto f(0)$ of $\mathcal{O}(X)$.)

(d) Let $G = SL(2, \mathbb{C})$ and N the upper-triangular unipotent matrices in G. Prove that $G/N \cong \mathbb{C}^2 \setminus \{0\}$, with G acting as usual on \mathbb{C}^2 . (*Hint:* Find a vector in \mathbb{C}^2 whose stabilizer is N.)

9. Let $G = \mathrm{SL}(2, \mathbb{C}) \times \mathrm{SL}(2, \mathbb{C})$. Let ρ be the representation of G on $\mathbb{M}_2 = M_2(\mathbb{C})$ given by $\rho(g, h)z = gzh^t$. Let $\pi : \mathbb{C}^2 \times \mathbb{C}^2 \to \mathbb{M}_2$ by $\pi(x, y) = xy^t$. Identify \mathbb{P}^3 with $\mathbb{P}(\mathbb{M}_2)$ and let $\tilde{\pi} : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3$ be the map induced by π (the standard imbedding of $\mathbb{P}^m \times \mathbb{P}^n$ in \mathbb{P}^{mn+m+n}).

(a) Show that the image of $\tilde{\pi}$ is $\{[z] : z \in \mathbb{M}_2 \setminus \{0\} \text{ and } \det(z) = 0\}.$

(b) Let G act on $\mathbb{P}^1 \times \mathbb{P}^1$ by the natural action on $\mathbb{C}^2 \times \mathbb{C}^2$ and let G act on \mathbb{P}^3 by the representation ρ on \mathbb{M}_2 . Show that $\tilde{\pi}$ intertwines the G actions.

(c) Show that G has two orbits on \mathbb{P}^3 and describe the closed orbit.

10. (Notation as in previous exercise) Consider the subspaces $V_1 = \mathbb{C}E_{11} + \mathbb{C}E_{12}$ and $V_2 = \mathbb{C}E_{11} + \mathbb{C}E_{21}$ of \mathbb{M}_2 , where E_{ij} are the usual elementary matrices.

(a) Show that V_i are totally isotropic for the bilinear form B.

(b) Let $B_i = \{g \in G : \rho(g)V_i = V_i\}$ for i = 1, 2. Describe B_1, B_2 and $B = B_1 \cap B_2$ in matrix form.

(c) Show that $B = H \cdot N$ where H is a maximal torus in G and N is a connected unipotent normal subgroup of B.

11. Let $X = \{x \in M_{4 \times 2}(\mathbb{C}) : \operatorname{rank}(x) = 2\}$. For $J = (i_1, i_2)$ with $1 \le i_1 < i_2 \le 4$ let $X_J = \{x \in X : \xi_J(x) \ne 0\}$, where

$$\xi_J(x) = \det \begin{bmatrix} x_{i_11} & x_{i_12} \\ x_{i_21} & x_{i_22} \end{bmatrix}$$

is the Plücker coordinate corresponding to J.

(a) Let $A_{\{1,2\}} = \{x \in X : x_{ij} = \delta_{ij} \text{ for } 1 \leq i, j \leq 2\}$. Calculate the restrictions of the Plücker coordinates to $A_{\{1,2\}}$.

(b) Let $GL(2, \mathbb{C})$ act by right multiplication on X. Show that $X_{\{1,2\}}$ is invariant under $GL(2, \mathbb{C})$ and $A_{\{1,2\}}$ is a cross-section for the $GL(2, \mathbb{C})$ orbits.

(c) Let $\pi : X \to \operatorname{Grass}_2(\mathbb{C}^4)$ map x to its orbit under $\operatorname{GL}(2,\mathbb{C})$. Let $\operatorname{GL}(4,\mathbb{C})$ act by left multiplication on X and hence also on $\operatorname{Grass}_2(\mathbb{C}^4)$. Show that this action is transitive and calculate the stabilizer of $\pi([e_1 \ e_2])$, where e_i are the standard basis vectors for \mathbb{C}^4 .

p.506, l.-14 and -13 Replace exercise 6 by the following:

6. Let $G = \operatorname{GL}(n, \mathbb{C})$, B the upper-triangular subgroup of G, and H the diagonal subgroup of G. Suppose $P \subset G$ is a closed subgroup such that $B \subset P$.

(a) Prove that Lie(P) is of the form

$$\mathfrak{b} + \sum_{\alpha \in S} \mathfrak{g}_{-\alpha} \qquad \qquad (*)$$

where $\mathfrak{b} = \text{Lie}(B)$ and $S \subset \Phi^+$ (the positive roots of \mathfrak{g}). (*Hint*: Lie(P) is invariant under Ad(H).)

(b) Let $S \subset \Phi^+$ be any subset and let $\{\alpha_1, \ldots, \alpha_l\}$ be the simple roots in Φ^+ . Prove that the subspace defined by (*) is a Lie algebra if and only if S satisfies the properties

(P1) If $\alpha, \beta \in S$ and $\alpha + \beta \in \Phi^+$, then $\alpha + \beta \in S$.

(P2) If $\beta \in S$ and $\beta - \alpha_i \in \Phi^+$ then $\beta - \alpha_i \in S$.

(*Hint*: \mathfrak{b} is generated by \mathfrak{h} and $\{\mathfrak{g}_{\alpha_i} : i = 1, \ldots, l\}$.)

(c) Determine all subsets S of Φ^+ that satisfy (P1) and (P2). (*Hint:* Write the roots in terms of simple roots.)

(c) Let R be any subset of the simple roots, and define S_R to be all the positive roots β so that no elements of R occur in β . Show that S_R satisfies **(P1)** and **(P2)**. Conversely, if S satisfies **(P1)** and **(P2)**, let R be the set of simple roots that do not occur in any $\beta \in S$. Prove that $S = S_R$.

(d) Let $G = GL(n, \mathbb{C})$. Use (c) to determine all subsets S of Φ^+ that satisfy (P1) and (P2). (*Hint:* Use Exercise 2.3.5 #2 (a).)

(e) For each subset S found in (d), show that there is a closed subgroup $P \supset B$ with Lie(P) given by (*). (*Hint:* Show that S corresponds to a partition of n and consider the corresponding block decomposition of G.)

p.506, after exercise 6. INSERT THE FOLLOWING EXERCISE:

7. Let $G = GL(n, \mathbb{C})$, $H = D_n$ the diagonal matrices in G, N the upper-triangular unipotent matrices, and B = HN. Let X be the space of all flags in \mathbb{C}^n .

(a) Suppose $x = \{V_1 \subset V_2 \subset \cdots \subset V_n\}$ is a flag that is invariant under H. Prove that there is a permutation $\sigma \in \mathfrak{S}_n$ so that

$$V_i = \operatorname{Span}\{e_{\sigma(1)}, \dots, e_{\sigma(i)}\} \text{ for } i = 1, \dots, n.$$

(*Hint:* H is reductive and its action on \mathbb{C}^n is multiplicity-free.)

(b) Suppose the flag x in (a) is also invariant under N. Prove that $\sigma(i) = i$ for all i. (*Hint:* Use induction on i.)

(c) Prove that if $g \in G$ and $gBg^{-1} = B$, then $g \in B$. (*Hint:* By (a) and (b), B has exactly one fixed point on X = G/B.)

p.532, l.15 to l. 19 REPLACE:

1. Let L be a reductive group, and set $G = L \times L$. Let $K = \{(g,g) : g \in L\}$ be the diagonal embedding of L in G. Show that (G, K) is a spherical pair. (HINT: The irreducible representations of G are of the form $\pi = \sigma \widehat{\otimes} \mu$, where σ and μ are irreducible representations of L. Use Schur's Lemma to show that the K-spherical representations of G are the representations $\pi = \sigma \widehat{\otimes} \sigma^*$.)

BY:

1. Use the criterion of Theorem 12.2.1 to show that the following spaces are multiplicity free:

(a)
$$G = GL(n) \times GL(k), X = M_{n,k}(\mathbb{C}), (g, h) \cdot x = gxh^{-1}$$
. (HINT: Lemma B.2.8.)
(b) $G = GL(n), X = SM_n(\mathbb{C}), g \cdot x = gxg^t$. (HINT: Lemma B.2.9.)
(c) $G = GL(n), X = AM_n(\mathbb{C}), g \cdot x = gxg^t$. (HINT: Lemma B.2.10.)