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Chapter 1

Complex Inner Product Spaces

1.1 Complex Numbers

Introductory linear algebra courses consider vector spaces of column vectors and matrices (or func-

tions) with real entries (or real values). For Fourier and Wavelet analysis it is more natural in some

situations to use vector spaces with complex numbers as scalars. We begin with a brief description

of the field C of complex numbers.

Definition 1.1.1. A complex number z is a pair (x, y) of real numbers, denoted by z = x+ y i (in

engineering texts usually denoted by z = x+ y j ). We call x the real part of z and y the imaginary

part of z. Complex numbers are added by adding the real and imaginary parts separately, just as if

they were vectors in R2. Multiplication is defined by

(a+ b i )(x+ y i ) = (ax− by) + (by + ax) i

for a, b, x, y ∈ R. In particular, i 2 = −1 and a(x + y i ) = ax+ ay i is the same as multiplying a

vector in R2 by a real scalar. �

We denote the set of all complex numbers by C. It is clear from the definition that addition and

multiplication of complex numbers is commutative: (a + b i )(x+ y i ) = (x + y i )(a+ b i ). The

distributive law u(v+w) = uv+uw is also obvious. An easy but slightly tedious calculation shows

that multiplication of complex numbers is associative:

u(vw) = (uv)w for u, v, w ∈ C. (1.1)

(This property can be deduced from the associativity of matrix multiplication–see the exercises).

For a complex number c = a + i b we define the complex conjugate c̄ = a − b i and the modulus

|c| by

|c| =
√
c̄c =

√
a2 + b2.

Note that if c 6= 0 then |c| > 0 and (|c|−2c̄)c = 1. Hence every nonzero complex number c has a

multiplicative inverse

c−1 = |c|−2c̄ =

(
a

a2 + b2

)
−
(

b

a2 + b2

)
i

1
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It is easy to check that zw = z̄w̄ for every z, w ∈ C. Hence

|zw| = |z| |w| and |zn| = |z|n for all integers n if z 6= 0.

We view the set R of real numbers as a subset of C by identifying x ∈ R with the complex

number x + 0 i . The algebraic operations in C just defined then reduce to the usual algebraic

operation on real numbers under this identification.

As an algebraic system, the set of complex numbers satisfies the axioms of a field (relative

to addition and multiplication), just like the real numbers. There is no order relation a < b for

complex numbers, unlike the case of the real numbers. However, there is a polar decomposition of

the complex number z = x+ y i :

z = reθ i = r cos(θ) + r sin(θ) i , where r = |z| and θ = arctan(y/x). (1.2)

This is just the formula for polar coordinates in R2 written in terms of complex numbers. We call θ
the argument of z. Since e(θ+2πm) i = eθ i for any integer m, the argument of z is only determined

up to the addition of integer multiples of 2π. In particular, for any θ ∈ R, we have |eθ i | = 1 and

the complex number w = eθ i is a point on the unit circle in R2.

The complex exponential function in equation (1.2) can be defined directly in terms of its Taylor

series centered at zero:

et = 1 + t+
t2

2!
+ · · ·+ tn

n!
+ · · ·

(here t can be any complex number). Since |tn/n!| = |t|n/n!, it follows from the ratio test that the

partial sums of this series converge absolutely and uniformly in every disc |t| ≤ R for any value

of R. Here convergence of a sequence of complex numbers means convergence of the real and

imaginary parts of the sequence. The exponential function satisfies the law of exponents

es+t = eset for all s, t ∈ C

(this is easy to verify from the binomial formula and rearrangement of the exponential series).

For any positive integerN the complex numberw = e−2π i /N = cos(2π/N )− i sin(2π/N ) has

absolute value one and satisfies wN = 1 (since (e−2π i /N)N = e2π i = 1 by the law of exponents).

The number w is a primitiveN th root of unity, since every otherN th root of 1 is of the form wk for

some integer k.

See the appendix to Calculus by James Stewart for a more details about complex numbers.

1.2 Real and Complex Vector Spaces

Now that we have enlarged the field of scalars from R to C, we can carry out all the constructions

of linear algebra using complex numbers. We define Cn to be the set of all column vectors

z =




z1
z2
...

zn




where z1, . . . , zn ∈ C.
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We add complex column vectors and multiply column vectors by complex scalars in terms of their

components, just as in the real case, but now using addition and multiplication of complex numbers.

More generally, a complex vector space V is a set of vectors with an addition operation and

multiplication by complex scalars, satisfying the same commutative, associative, and distributive

properties as in the real case (see Leon, page 129).

Example 1.2.1. We denote by Mm×n(C) the set of m × n matrices whose entries are complex

numbers. We add matrices of the same size and multiply matrices by complex scalars just as in

the case of real matrices. This makes Mm×n(C) into a complex vector space. We define matrix

multiplication as in the real case, but using the formula for multiplying complex numbers. Since

multiplication of complex numbers is associative, it follows that matrix multiplication is also asso-

ciative: A(BC) = (AB)C when A, B, and C are complex matrices of compatible sizes. �

Example 1.2.2. Let V be the collection of all complex-valued functions defined on a set X . We

make V into a vector space by pointwise operations:

(f + g)(x) = f(x) + g(x), (αf)(x) = αf(x) for f, g ∈ V , α ∈ C, and x ∈ X .

These operations on V satisfy the vector space axioms (see Leon, page 130). In particular, when

X = {1, 2, . . . , n} we can identify V with Cn by viewing the components of a column vector as a

function on X . �

All the definitions and results of linear algebra, such as subspace, linear independence, basis,

dimension, linear transformation, null space, range, and rank, apply to complex vector spaces

with no modification except the use of complex scalars. This is true because the proofs of these

results only use the vector space axioms and fact that the scalars satisfy the field axioms (see Leon,

Chapters 3 and 4). Note, however, that if we view Rn as the subset of real column vectors in Cn,

then Rn is not a subspace of Cn, since i Rn is not contained in Rn.

If V andW are finite-dimensional complex vector spaces and T : V // W is a complex linear

transformation, then T can be represented by a matrix with complex entries, relative to choices of

bases for V and W . Composition of linear transformations then corresponds to multiplication of

the matrices for the transformations, just as in the real case (see Leon, Chapter 4.2).

1.3 Linear Transformations and Matrices

Let V and W be vector spaces with scalars F (real or complex numbers). Let L : V // W be a

function. We say that L is a linear transformation if

L(α1v1 + α2v2) = α1Lv1 + α2Lv2

for all vectors v1 and v2 in V and all scalars α2 and α2.

1.4 Inner Products and Unitary Transformations

The formula defining the usual inner product and norm on Rn (see Leon, Section 5.4) needs to be

modified when we define an inner product on Cn. For a nonzero real number x we always have
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x2 > 0. But this is not true for complex numbers, since i 2 = −1. The way around this difficulty

is to use the fact that z̄z > 0 if z is a nonzero complex number. Thus we define the standard inner

product on Cn to be

〈u, v〉 =
n∑

k=1

ukv̄k for u, v ∈ Cn.

Just as in the real case we can write the inner product in terms of matrix multiplication of a row

vector (1×n matrix) and a column vector (n×1 matrix). For this we define the Hermitian transpose

vH = v̄T. Likewise, if A is an m × n matrix, we write AH = ĀT. (Note that in MATLAB all

matrices are automatically assumed to have complex entries, and A’ gives the Hermitian transpose

of a matrix A.) Then we can express

〈u, v〉 = vH u for u, v ∈ Cn.

With this definition we have

〈u,u〉 =
n∑

k=1

|uk|2 = uH u,

which is positive (unless u = 0, when it is zero). Thus we can define the norm ||u|| =
√
〈u,u〉

which measures the total size of a vector with complex components.

Definition 1.4.1. Let V be a complex vector space. An inner product on V is a complex-valued

function 〈u, v〉 defined for all u, v ∈ V that satisfies the following conditions:

(Positivity) 〈u,u〉 ≥ 0 with equality if and only if u = 0.

(Conjugate Symmetry) 〈u, v〉 = 〈v,u〉.

(Linearity) 〈αu+ βv,w〉 = α〈u,w〉+ β〈v,w〉 for all u, v,w ∈ V and complex numbers α and

β.

�

When V = Cn then the standard inner product defined above satisfies these conditions. Here is

another important example.

Example 1.4.2. Consider the complex vector space V of all complex-valued continuous functions

on a finite interval [a, b]. Let w(x) be any continuous function on [a, b] that is strictly positive. (For

example, w(x) = (1 + x2)p for some fixed real number p.) Given two functions f and g in V ,

define

〈f, g〉 =

∫ b

a
f(x)g(x)w(x)dx. (1.3)

To verify that this is an inner product, note that f(x)f(x) ≥ 0, so we have 〈f, f〉 ≥ 0. If 〈f, f〉 = 0

then the same argument as in Leon, Section 5.4 (p. 261) shows that f(x) = 0 for all a ≤ x ≤ b.
The conjugate symmetry and linearity are obvious. �
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Let V be a complex vector space with a fixed inner product. The norm associated with an inner

product is ||u|| =
√
〈u,u〉, just as in the case of Cn. Two vectors u and v are called orthogonal if

〈u, v〉 = 0, and we write u ⊥ v. For orthogonal vectors we have the Pythagorean Law (complex

version):

||u + v||2 = ||u||2 + ||v||2 when u ⊥ v

with the same proof as in the real case (see Leon, page 262). For any pair of vectors u, v with

v 6= 0, the vector projection of u onto v is given by

p =
〈u, v〉
〈v, v〉v

just as in the real case. Since (u− p) ⊥ p and u = (u− p) + p, the Pythagorean Law gives

||u||2 = ||u− p||2 + ||p||2.

Using this equation we obtain the Cauchy-Schwarz inequality

|〈u, v〉| ≤ ||u|| ||v|| (1.4)

by the same argument as in Leon, page 265. From the Cauchy-Schwarz inequality we obtain the

triangle inequality

||u + v|| ≤ ||u||+ ||v|| for all vectors u, v ∈ V .

(see Leon, page 266).

Definition 1.4.3. A set of nonzero vectors v1, v2, . . . , in an inner product space V is called orthog-

onal if vj ⊥ vk for all j 6= k. If the set is orthogonal and each vector satisfies ||vj|| = 1 then the

set is called orthonormal. �

An orthonormal set of vectors is always linearly independent (see Leon, page 270). Assume

that {u1, . . . ,un} is a finite orthonormal set. Let U be the subspace of V spanned by this set of

vectors. Then dimU = n and {u1, . . . ,un} is an orthonormal basis for W . Every vector u ∈ W
can be expressed in terms of this basis as

u = c1u1 + · · ·+ cnun, where cj = 〈w,uj〉.

(The formula for the coefficient cj follows by taking the inner product of u with uj and using

orthonormality.) Then

||u||2 = |c1|2 + · · ·+ |cn|2 (Parseval’s Formula)

If v = d1u1 + · · ·+ dnun is another vector in U , then

〈u, v〉 = c1d̄1 + · · ·+ cnd̄n

(see Leon, page 272). For any vector v ∈ V we define

Pv = 〈v,u1〉u1 + · · ·+ 〈v,un〉un.
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Then Pv ∈ U , since it is a linear combination of the vectors uk. Furthermore, v − Pv ⊥ U since

〈v − Pv,uj〉 = 〈v,uj〉 −
n∑

k=1

〈v,uk〉〈uk,uj〉

= 〈v,uj〉 − 〈v,uj〉〈uj,uj〉 = 0

by orthogonality and the fact that ||uj|| = 1. We call Pv the orthogonal projection of v onto the

subspace U . By the Pythagorean Law,

||v||2 = ||Pv||2 + ||v − Pv||2 (1.5)

This implies that Pv is the vector in U that is closest to v (see Leon, Theorem 5.5.8).

Example 1.4.4 (Fourier Series). Let V be the complex vector space of piecewise continuous complex-

valued functions f(x) on the interval 0 ≤ x ≤ 2π. Define an inner product on V by

〈f, g〉 =
1

2π

∫ 2π

0
f(x)g(x)dx.

The functions φn(x) = e i nx for n ∈ Z (the set of all integers) are in V , and they are an orthonormal

set of functions. To see this, let k 6= n and calculate

〈φn, φk〉 =
1

2π

∫ 2π

0
e i (n−k)x dx =

e i (n−k)x

2π i (n− k)

∣∣∣∣∣

x=2π

x=0

= 0

because e2mπ i = 1 for all integers m. Thus φn ⊥ φk. Furthermore, since e0 = 1, we have

〈φn, φn〉 =
1

2π

∫ 2π

0
1 dx = 1

Thus ||φn|| = 1 and {φk : k ∈ Z} is an orthonormal set in V .

If f ∈ V then the complex numbers

ck = 〈f, φk〉 =
1

2π

∫ 2π

0
f(x)e− i kx dx (1.6)

are called the Fourier coefficients of f . It is an important result of Fourier analysis that f can be

represented by its Fourier series:

f =
∑

k∈Z

ck φk (1.7)

This is analogous to the representation of a vector in Cn in terms of an orthonormal basis for Cn

(since ck = 〈f, φk〉). Furthermore, the infinite series version of Parseval’s formula is valid:

1

2π

∫ 2π

0
|f(x)|2 dx =

∑

k∈Z

|ck|2 (1.8)

In particular, the infinite series on the right side of (1.8) converges. (The convergence properties

of the series (1.7) and the proof of (1.8) require results from advanced calculus that will not be

discussed in this course).
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Let T Pn be the linear span of the set of functions {φk(x) : |k| ≤ n}. If f(x) ∈ T Pn then

ck = 0 for |k| > n and the right side of (1.7) is a trigonometric polynomial

f(x) =
∑

−n≤k≤n

ck φk(x)

When f(x) is real-valued its Fourier coefficients ck have the property

ck = c−k,

since φk(x) = φ−k(x). For example, the formulas

sin(nx) =
1

2 i
enx i − 1

2 i
e−nx i , cos(nx) =

1

2
enx i +

1

2
e−nx i

show that the real-valued functions fn(x) = sin(nx) and gn(x) = cos(nx) are in T Pn and have

Fourier series

fn(x) =
1

2 i
φn(x)− 1

2 i
φ−n(x) , gn(x) =

1

2
φn(x) +

1

2
φ−n(x) (1.9)

For any function f ∈ V and positive integer n, the trigonometric polynomial

ψn(x) =
∑

−n≤k≤n

〈f, φk〉φk(x)

is the projection of f(x) onto the subspace T Pn, since {φk(x) : −n ≤ k ≤ n} is an orthonormal

basis for T Pn. The function ψn(x) gives the best approximation to f(x) (in the sense of the norm

|| · ||), since we minimize the norm ||f − ψ||, where ψ is a trigonometric polynomial in T Pn, by

taking ψ = ψn. �

Definition 1.4.5. An n×n matrixU is said to be a unitary matrix if the set {u1, . . . ,un} of columns

of U is orthonormal. �

The matrix U is unitary if and only if

〈Uv, Uw〉 = 〈v,w〉 for all v,w ∈ Cn. (1.10)

To prove this, use the linearity of the inner product in each variable to see that (1.10) is satisfied for

all vectors v,w if and only if it is satisfied when v = ej and w = ek (the standard basis vectors

for Cn). Since the jth column of U is Uej and the set {e1, . . . , en} is orthonormal, it follows that

(1.10) is equivalent to the statement that the columns of U are an orthonormal set.

An alternate characterization of unitary matrices is that UHU = I , where UH denotes the

conjugate transpose matrix (the proof is the same as for real orthogonal matrices–see Leon, page

273). Hence a unitary matrix is invertible, with inverse U−1 = UH.

Now let V and W be finite-dimensional complex inner product spaces of the same dimension,

and let T be a linear transformation from V to W . We say that T is a unitary transformation if

〈Tu, Tv〉 = 〈u, v〉 for all vectors u, v ∈ V . (1.11)

Note that in equation (1.11) the inner product on the left is for the space W , while the inner product

on the right is for the space V . Taking u = v, we see that ||Tu|| = ||u|| for all u. Hence the null

space of T is 0. Since V and W have the same dimension, T is represented by a square matrix

(relative to a choice of bases for V and W ). This matrix has no null space, so it is invertible. Thus

every unitary transformation is invertible.
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Example 1.4.6. Let V = W = Cn, and let the linear transformation T have matrix

U = [u1, . . . ,un]

relative to the standard basis e1, . . . , en of Cn (where ej has 1 in the jth entry and zero elsewhere).

Since the standard basis is orthonormal, we see from (1.11) that T is a unitary transformation if and

only if U is a unitary matrix. �

Example 1.4.7. Let V = T P2 be the space of trigonometric polynomials of degree at most 2 with

the inner product (1.3). Then the set of functions {φ−2, φ−1, φ0, φ1, φ2} is an orthonormal basis

for V . If f ∈ V , define

Tf =




c−2

c−1

c0
c1
c2




(1.12)

where ck are the Fourier coefficients of f(x) defined by equation (1.6). Notice that there is no vari-

able x displayed in formula (1.12); Tf is a vector in C5 with five numerical components, whereas

the continuous function f(x) is considered as a vector in the space V .

Since the Fourier coefficients depend linearly on f , it is clear that T is a linear transformation

from V to C5. The basis function φk(x) for T P2 is tranformed by T into the standard basis vector

e3+k for k = −2, . . . , 2, hence T is unitary. From equation (1.9) we see that the functions f2(x) =
sin(2x) and g2(x) = cos(2x) have transforms

Tf2 =
1

2 i




−1

0
0

0
1



, T g2 =

1

2




1

0
0

0
1




Since T is unitary, it follows that

1

2π

∫ 2π

0
sin(2x) cos(2x) dx = 〈f2, g2〉 = 〈Tf2, T g2〉 = 0

1

2π

∫ 2π

0
sin2(2x) dx = 〈f2, f2〉 = 〈Tf2, T f2〉 =

1

2

The two integrals on the left can be evaluated by double-angle formulas, of course, but this is not

necessary because we already know that T is unitary. �

1.5 Exercises

1. Given a complex number z = x+ i y, let T (z) =

[
x −y
y x

]
.

(a) Show that for any complex numbers z and w, the following matrix equalities hold:

T (z +w) = T (z) + T (w) and T (zw) = T (z)T (w)
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(matrix addition and multiplication on the right sides of the equalities). Since matrix multi-

plication is associative, it follows that multiplication of complex numbers is also associative.

(b) Express T (z̄) and |z|2 in terms of the matrix T (z).

2. Consider the set H of all complex 2× 2 matrices of the form A =

[
w −z̄
z w̄

]
, where w and

z are arbitrary complex numbers.

(a) Show that the sum and the product of two matrices in H are again in H, and any real

multiple of a matrix in H is in H.

(b) From (a) it follows that H is a real vector space. Find a basis for it. (HINT: Consider the

special cases where one of z or w is either 1 or i , and the other is zero.)

(c) Which matrices in H are invertible? (HINT: Calculate detA.)

(d) If a matrix in H is invertible, is the inverse matrix also in H?

(e) Is AB = BA for all A,B ∈ H? (HINT: Calculate the products of the basis matrices from

(b).)

3. Let R =

[
0 −1

1 0

]
. Find unit vectors u, v ∈ C2 such that Ru = i u and Rv = − i v.

Prove that u ⊥ v and construct a unitary matrix U such that UHRU =

[
i 0
0 − i

]
.

4. Let V = C[−1, 1] (the continuous real-valued functions on the interval −1 ≤ x ≤ 1). Let U
be the set of all functions f ∈ V such that f(−1) = 2f(1). True or False: U is a subspace.

Justify your answer.

5. LetP3 be the space of all polynomials of degree less than 3. Let f1(x) = x+2, f2(x) = x+3,

and f3(x) = x2 + x.

(a) True or False: {f1, f2, f3} spans P3. Justify your answer.

(b) True or False: {f1, f2, f3} is a linearly independent set. Justify your answer.

6. Let P4 be the space of all polynomials of degree less than 4. Let V be the subspace of P4

consisting of all polynomials f(x) such that f(0) = 0 and f(1) = 0. Give a basis for V .

Justify your answer by showing that your basis set satisfies the two conditions needed for a

basis. (HINT: Every function in V is divisible by x(x− 1).)

7. Let P2 be the space of all polynomials of degree less than 2 and P3 the space of all polyno-

mials of degree less than 3. Let L be the linear transformation from P2 to P3 given by

Lf(x) = 2f ′(x) + (3x+ 4)f(x).

Calculate the action of L on the ordered basis {x, 1} for P2 in terms of the ordered basis

{x2, x, 1} for P3. Use this to find the matrix A for L relative to these ordered bases.
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8. Consider the complex vector space C2 with the standard inner product 〈u, v〉 = vHu. Let

u =

[
2

3 + 4 i

]
and v =

[
5 i

1 + i

]
. Calculate 〈u, v〉.

9. Consider the vector space C[0, 1] of continuous real-valued functions f(x) on 0 ≤ x ≤ 1,

with inner product

〈f, g〉 =

∫ 1

0
f(x)g(x) dx.

Let f(x) = x2 and g(x) = x.

(a) Calculate 〈f, g〉.

(b) Calculate ||f || and ||g||.

(c) Illustrate the Cauchy-Schwarz inequality with the functions f and g.

(d) Calculate the vector projection p of f onto g.

(e) Verify that the function p you found satisfies (f − p) ⊥ g.

10. Consider the vector space V = C[0, 1] of continuous real-valued functions f(x) on 0 ≤ x ≤
1, with inner product

〈f, g〉 =

∫ 1

0
f(x)g(x) dx.

Let U be the subspace of V with basis {u1, u2}, where u1(x) = 1 and u2(x) =
√

3(2x− 1).

(a) Show that {u1, u2} is an orthonormal set of functions.

(b) Let f(x) = x2. Calculate the projection p(x) of f(x) onto U .

(c) Let f(x) = x2 as in (b). Suppose u(x) is any function in U . What choice of u gives the

minimum value for ||f − u||?



Chapter 2

Discrete Fourier Transform

2.1 Finite Fourier Transform

We shall call a piecewise continuous complex-valued function s(t) of the real variable t an analog

signal (think of t as time and s(t) as measuring the intensity of a sound). We assume that s(t) is of

finite duration, so that is zero outside some interval a ≤ t ≤ b. We shift and rescale the variable

t to make a = 0 and b = 2π. Next, we choose integers m < n and replace s(t) by the best

approximation to s(t) by trigonometric polynomials with frequencies in the range m ≤ k < n:

q(t) =
∑

m≤k<n

cke
i kt

The Fourier coefficients ck are obtained by integration:

ck =
1

2π

∫ 2π

0
s(t)e− i kt dt

The mean square approximation error is

||s− q||2 =
1

2π

∫ 2π

0
|s(t) − q(t)|2 dt =

∑

k<m

|ck|2 +
∑

k≥n

|ck|2 (2.1)

by Parseval’s equality (1.8). The right side of (2.1) is the tail of a convergent series, so q(t) will be

a good approximation to s(t) (on average) if the frequency band m ≤ k < n is chosen sufficiently

wide.

For a given signal s(t) we fix a frequency band m ≤ k < n so that the approximation error

(2.1) is small. Let N = n −m. We replace the functions s(t) and q(t) by

f(t) = e− imts(t) and p(t) = e− i mtq(t)

This frequency shift doesn’t change the approximation error (2.1), since |e− i mt| = 1. Since

e− imte i kt = e i (k−m)t, the trigonometric polynomial p(t) has frequencies 0 ≤ k < N :

p(t) =
∑

0≤k<N

dk e i kt

11
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Here the Fourier coefficients are

dk =
1

2π

∫ 2π

0
f(t)e− i kt dt (2.2)

In signal processing applications there is no formula for f(t), so the integrals (2.2) must be

approximated using some numerical method. The simplest way to do this is to convert f into

a digital signal y ∈ CN by sampling f at the N equal-spaced t values tj = 2πj/N , for j =
0, 1, . . . , N − 1:

y =




y[0]
y[1]

...

y[N − 1]




where y[j] = f(tj) for j = 0, 1, . . . , N − 1. (2.3)

Here we are following the notation in Ripples for the value y[k] of the digital signal y at discrete

time k (note that the indexing of the components in y is different than the usual MATLAB indexing,

which would go from 1 to N ). We call N the sampling rate; the choice of this sampling rate is

determined by the number of Fourier coefficients that we need to get a good representation of the

signal (more coefficients require a higher sampling rate). With this choice we have

∆t = tj − tj−1 = 2π/N,
∆t

2π
=

1

N
.

Hence we can approximate the integral (2.2) by the Riemann sum

dk ≈ 1

N

N−1∑

j=0

f(tj) e− i ktj =
1

N

N−1∑

j=0

y[j]w−jk (2.4)

where w = e2π i /N = cos(2π/N ) + i sin(2π/N ) is a primitive N th root of unity.

Definition 2.1.1 (Fourier Matrix). Let FN be the N × N matrix with (j, k) entry w−(j−1)(k−1),

where w = e2π i /N . The entries in the first column of FN are all 1. The second column consists

of the powers of w−1 from 0 to N − 1, the third column consists of the powers of w−2 from 0 to

N − 1, and so on. Since FN is symmetric, the same description applies to the rows. �

For example, since e2π i/2 = −1 the 2 × 2 Fourier matrix is

F2 =

[
1 1
1 −1

]
. (2.5)

For N = 4 we have w = e2π i /4 = i and w−1 = − i . Hence the 4 × 4 Fourier matrix is

F4 =




1 1 1 1

1 − i (− i )2 (− i )3

1 (− i )2 ( i )4 (− i )6

1 (− i )3 (− i )6 (− i )9




=




1 1 1 1
1 − i −1 i
1 −1 1 −1

1 i −1 − i


 . (2.6)

Let d ∈ CN be the vector with components d0, d1, . . . , dN−1 given by (2.4). Then

d =
1

N
FNy (2.7)
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Theorem 2.1.2. The matrix (1/
√
N)FN is unitary. Hence the matrix (1/N )FN has inverse FN ,

and the digital signal vector y can be reconstructed from the sampled Fourier coefficient vector d

by y = FNd.

Proof. To simplify the notation we label the columns of FN from 0 to N − 1. The kth column of

FN is then

hk =
[

1 w−k w−2k · · · w−(N−1)k
]T

Hence the inner product of the jth and kth columns of FN is

〈hj,hk〉 = hH
k hj = 1 +wk−j + w2(k−j) + · · ·+ w(N−1)(k−j) (2.8)

since w = w−1. For j = k this gives 〈hj,hj〉 = N . Now suppose j 6= k and write u = wk−j .

Then the right side of (2.8) is a finite geometric series in powers of u:

1 + u + u2 + · · ·+ uN−1 =
1 − uN

1 − u
.

(Note that u 6= 1 because 0 < |j − k| < N and wp = 1 only when p is an integer multiple of N .)

But uN = wN(j−k) = 1, so we conclude that 〈hj,hk〉 = 0 for j 6= k. These orthogonality relations

can be written in matrix form as

FN

(
FN

)H
= NIN , (2.9)

where IN is theN ×N identity matrix. Since FN is symmetric, we have
(
FN

)H
= FN . Hence the

matrix (1/N )FN has inverse FN , as claimed. Equation (2.9) can be rewritten as

(1/
√
N )FN (1/

√
N)FN = IN

which shows that (1/
√
N)FN is a unitary matrix. �

Corollary 2.1.3.

(a) Let {e1, . . . , eN} be the standard basis for CN . Set uj = (1/
√
N )FNej . Then {u1, . . . ,uN}

is an orthonormal basis for CN , called the Fourier basis.

(b) Let y ∈ CN and set d = (1/N )FNy. Then 1
N ||y||2 = ||d||2.

Proof. (a): Note that uj is the jth column of the unitary matrix (1/
√
N )FN .

(b): Since
√
Nd = (1/

√
N)FNy and (1/

√
N )FN is a unitary matrix, the vectors

√
Nd and y

have the same norm. �

Example 2.1.4. Suppose N = 4. The Fourier basis for C4 is

u1 =
1

2




1
1

1
1


 , u2 =

1

2




1
− i

−1
i


 , u3 =

1

2




1
−1

1
−1


 , u4 =

1

2




1
i

−1
− i


 .
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If we think of the standard basis ej as a sampled version of a signal, then the signal is localized in

time, since only one component of ej is nonzero. By contrast, all the entries in uj are nonzero, so

the Fourier matrix removes the time localization.

Let y = [ 1, 2, −1, 0 ]T . Then

d =
1

4
F4y =

1

4




1 1 1 1
1 − i −1 i

1 −1 1 −1
1 i −1 − i







1
2

−1
0


 =




1/2
(1 − i )/2

−1/2
(1 + i )/2


 .

In this case 1
4 ||y||2 = 1

4 [1 + 22 + (−1)2] = 2/3 and

||d||2 =
1

4
[12 + (1− i )(1 + i ) + (−1)2 + (1 + i )(1− i )] = 2/3,

as predicted by Corollary 2.1.3. �

2.2 Discrete Periodic Signals and Convolution

Consider a finite digital signal y withN values, say y[0], y[1], . . . , y[N−1]. In the previous section

we viewed y as a column vector

y =




y[0]
y[1]

...

y[N − 1]



∈ CN . (2.10)

We will also think of digital signals as functions. A basic operation in signal processing is to take

a moving average of the signal. For example, we can replace each value y[j] by the average of the

values y[j − 1] and y[j + 1]. This gives a new signal z with

z[j] =
1

2
(y[j − 1] + y[j + 1]). (2.11)

There is a bug in formula (2.11), however. To calculate z[0] or z[N − 1] we need the values y[−1]

and y[N ], which aren’t available. We will solve this problem by using the periodic extension of y:

y[j + kN ] = y[j] for j = 0, 1, . . . , N − 1 and all integers k (2.12)

Thus we set y[−1] = y[N − 1] and y[N ] = y[0], since −1 = N − 1 + N and N = 0 + N . In

terms of modular arithmetic, we have y[m] = y[j] when m ≡ j (mod N ). Now formula (2.11) is

well-defined. It can be written in a more cumbersome case-by-case way as

z[0] =
1

2
(y[N − 1] + y[1]), z[N − 1] =

1

2
(y[N − 2] + y[0]),

and

z[j] =
1

2
(y[j − 1] + y[j + 1]) for j = 1, . . . , N − 2.
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For example, if y = [ 1, 2, −1, 0 ]T as in Example 2.1.4, then

z[0] = (0 + 2)/2, z[1] = (1 − 1)/2, z[2] = (2 + 0)/2, z[3] = (−1 + 1)/2.

Define the shift operator S on periodic signals y of period N by

Sy[j] = y[j − 1] for j = 0, 1, . . . , N − 1.

Here Sy[0] = y[N − 1], since y is periodic. It is clear from the definition that S is linear and

invertible:

S−1y[j] = y[j + 1].

We can write formula (2.11) as

z =
1

2
(S + S−1)y. (2.13)

It follows that formula (2.11) has satisfies the following:

(linearity) The output signal z depends linearly on the input signal y.

(shift invariance) If the input signal y is replaced by Sy, then the output signal z is also replaced

by Sz.

We now show that every shift-invariant linear transformation C can be expressed as a linear

combination of powers of the shift operator S. We first observe that the property of shift-invariance

for C is the same as

CS = SC. (Shift Invariance)

In particular, any linear combination of powers of S is shift invariant. To prove the converse, we

identify the periodic signals of periodN with CN by (2.10). ThenS becomes a linear transformation

of CN . We calculate its matrix relative to the standard basis of CN as follows: Suppose the signal

y corresponds to the standard basis vector ek. Then y[j] = 1 if j + 1 = k, and otherwise y[j] = 0
(note the index shift by one). Since Sy[j] = y[j−1], we see that Sy[j] = 1 if j = k and Sy[j] = 0

if j 6= k. This shows that

Sek = ek+1 for k = 1, 2, . . . , N

(for this formula to be valid we must label the basis vectors circularly modulo N : eN+1 = e1,

eN+2 = e2 and so on). We see that S acts as a circular permutation of the standard basis vectors.

Example 2.2.1. Suppose N = 3. Then Se1 = e2, Se2 = e3, and Se3 = e1, so the matrix of the

shift operator S relative to the standard basis for C3 is

S =




0 0 1
1 0 0

0 1 0


 .

Notice that S2e1 = e3, S2e2 = e1, and S2e3 = e2. Also S3 = I . Thus

S−1 = S2 =




0 1 0
0 0 1
1 0 0


 = ST .

We have S−1 = ST since {Se1, Se2, Se3} is an orthonormal basis for C3. �
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The general features of Example 2.2.1 are valid for the shift operator for any value of N .

Namely, SN = IN and S−1 = SN−1. The matrix of S relative to the standard basis for CN is

real and orthogonal, so in matrix form S−1 = ST .

Theorem 2.2.2. Let S be the shift operator, viewed as an N × N matrix relative to the standard

basis for CN . Suppose C is any shift-invariant linear transformation of N -periodic signals. View

C as an N × N matrix relative to the standard basis for CN and let the first column of C be

[c0, c1, . . . , cN−1]
T . Then

C = c0I + c1S + c2S
2 + · · ·+ cN−1S

N−1, (2.14)

where I denotes the N ×N identity matrix.

Proof. The first column of C is the vector Ce1, so this vector can be written in terms of the standard

basis as

Ce1 = c0e1 + c1e2 + · · ·+ cN−1eN . (2.15)

Now we calculate the columns Cek of C for k = 2, . . . , N . Since C is shift-invariant we have

Sk−1C = CSk−1. Thus if we multiply both sides of (2.15) by Sk−1 and use the propertySk−1e1 =
ek, we obtain

Cek = CSk−1e1

= Sk−1Ce1

= c0S
k−1e1 + c1S

k−1e2 + c2S
k−1e3 + · · ·+ cN−1S

k−1eN

= c0ek + c1Sek + c2S
2ek + · · ·+ cN−1S

N−1ek .

This shows that the kth column of the matrix C is the same as the kth column of the matrix c0I +
c1S + c2S

2 + · · ·+ cN−1S
N−1 for k = 1, . . . , N . Hence the two matrices are equal. �

Example 2.2.3. SupposeN = 3 and C = c0I + c1S+ c2S
2 is a 3× 3 shift-invariant matrix. From

Example 2.2.1 we have

C = c0




1 0 0

0 1 0
0 0 1


+ c1




0 0 1

1 0 0
0 1 0


+ c2




0 1 0

0 0 1
1 0 0


 =



c0 c2 c1
c1 c0 c2
c2 c1 c0


 .

Hence the successive columns of C are obtained by circular permutation of the first column. Matri-

ces of this form are called circulant matrices. For example, when N = 4 the averaging operation

from (2.11) is given by the circulant matrix

C =
1

2
(S + S−1) =

1

2




0 1 0 1

1 0 1 0
0 1 0 1

1 0 1 0


 .

�
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We now obtain the connection between shift-invariant linear transformations and the Fourier

matrix. Let FN = [ h0 h1 · · · hN−1 ] be the N ×N Fourier matrix with columns

hj =




1

w−j

w−2j

...

w−(N−1)j




, where w = e2π i/N .

Since S shifts the entries in hj down one place, with the last entry moved to the top, we have

Shj =




w−(N−1)j

1

w−j

...

w−(N−2)j




= wj




w−Nj

w−j

w−2j

...

w−(N−1)j




= wjhj .

Define a diagonal matrix with the N th roots of 1 on the diagonal:

DN =




1 0 0 · · · 0

0 w 0 · · · 0

0 0 w2 · · · 0
...

...
...

. . .
...

0 0 0 · · · wN−1




(2.16)

The calculation just made shows that

SFN =
[

h0 wh1 w2h2 · · · wN−1hN−1

]
= FNDN . (2.17)

By Theorem 2.1.2 the Fourier matrix is invertible. Hence multiplying (2.17) on the left by F−1
N , we

obtain

F−1
N SFN = DN . (2.18)

We can summarize these calculations as follows:

Theorem 2.2.4. The N ×N shift matrix S is diagonalized by the Fourier matrix FN . The columns

of FN are eigenvectors of S, and the eigenvalues of S are the N complex numbers wj for j =

0, 1, . . . , N − 1 (the N th roots of unity).

Combining the last two theorems gives us the main result of this section:

Theorem 2.2.5 (Diagonalization of Circulant Matrices). Suppose that C is a N ×N shift-invariant

(circulant) matrix. Write

C = c0I + c1S + c2S
2 + · · ·+ cN−1S

N−1
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and define the polynomial p(z) = c0 +c1z+c2z
2 + · · ·+cN−1z

N−1. Then hj is an eigenvector for

C, with eigenvalue p(wj), for j = 0, 1, . . . , N − 1. Hence C is diagonalized by the Fourier matrix:

F−1
N CFN = p(DN) =




p(1) 0 0 · · · 0

0 p(w) 0 · · · 0

0 0 p(w2) · · · 0
...

...
...

. . .
...

0 0 0 · · · p(wN−1)




(2.19)

Proof. Since (2.18) implies that F−1
N SkFN = Dk

N for all integers k, the matrix C satisfies the

corresponding equation:

F−1
N CFN = c0I + c1DN + c2D

2
N + · · ·+ cN−1D

N−1
N .

The right side of this equation is p(DN). �

Example 2.2.6. Consider the 4× 4 circulant matrix C = 1
2(S +S−1) = 1

2 (S+S3) from Example

2.2.3 (note that S−1 = S3 since S4 = I). Then p(z) = 1
2z + 1

2z
3. Since the fourth roots of 1 are

1, i ,−1,− i , the eigenvalues of C are

p(1) = 1, p( i ) = (1/2)( i + i 3) = 0,

p(−1) = (1/2)(−1 + (−1)3) = −1, p(− i ) = (1/2)(− i + (− i )3) = 0.

�

Now we return to the digital signal point of view. Let C be a linear shift-invariant operator on

signals periodic of period N . Then by Theorem 2.2.2 there are complex numbers c0, . . . , cN−1 so

that

C = c0I + c1S + c2S
2 + · · ·+ cN−1S

N−1.

If we apply C to a periodic signal y, then we get the signal

Cy[j] = c0y[j] + c1y[j − 1] + c2y[j − 2] + · · ·+ cN−1y[j −N + 1] (2.20)

for j = 0, 1, . . . , N − 1. This shows that Cy is a moving average of the original signal y, general-

izing the special case of (2.11). Define the function f [k] = ck for k = 0, 1, . . . , N−1. Then (2.20)

can be written as

Cy[j] =
N−1∑

k=0

f [k]y[j− k]. (2.21)

We call the function Cy the convolution (folding) of f and y and we write Cy = f ∗ y. An

alternate statement of Theorem 2.2.2 is the following:

(Linear Shift-Invariant Filters) Every linear transformation of N -periodic signals y that is shift

invariant is given by the convolution (moving average) operation y 7→ f ∗y for some function

f on the set {0, 1, . . . , N − 1} (the filter).



PERIODIC SIGNALS AND CONVOLUTION 19

We can now obtain the linear filter version of Theorem 2.2.5.

Definition 2.2.7 (Discrete Fourier Transform). If y is a periodic digital signal (of period N ), then

the Fourier transform of y is the function

ŷ[k] =
N−1∑

j=0

y[j]w−jk for k = 0, 1, . . . , N − 1,

where w = e2π i/N (note that the function ŷ is also periodic of period N ). Thus if y is viewed as a

column vector in CN , then ŷ is the column vector FNy. �

The filter f corresponding to the circulant matrix C in (2.14) is defined by f [k] = ck for

k = 0, 1, . . . , N − 1. The matrix-vector product Cy becomes the convolution f ∗ y in the signal-

processing picture. We can restate the result of Theorem 2.2.4 in terms of the Fourier transform and

convolution as follows:

Theorem 2.2.8 (Diagonalization of Convolution Operators). Let Cy = f ∗ y be the convolution

operator (2.21) on signals y that are periodic of periodN . Then the Fourier transform of Cy is the

pointwise product:

Ĉy[k] = f̂ [k] ŷ[k] for k = 0, 1, . . . , N − 1. (2.22)

Proof. The columns of the Fourier matrix are eigenvectors for the circulant matrix C, and the

eigenvalues are the scalars f̂ [k]. Thus when a vector is expressed in terms of the Fourier basis, C
acts on the kth component by multiplying by the eigenvalue f̂ [k].

We can give a direct proof of this result, without using Theorem 2.2.4, as follows. By definition

of the finite Fourier transform, we have

f̂ ∗ y[k] =
N−1∑

j=0

( f ∗ y)[j]w−jk =
N−1∑

j=0

N−1∑

l=0

f [j − l] y[l]w−jk

for k = 0, 1, . . . , N − 1. Making the substitutionm = j − l and using the periodicity of f and y

so that the range of summation is 0 ≤ m < N and 0 ≤ l < N , we obtain

f̂ ∗ y[k] =
N−1∑

m=0

N−1∑

l=0

f [m] y[l]w−(m+l)k =
N−1∑

m=0

f [m]w−mk
N−1∑

l=0

y[l]w−lk

= f̂ [k] ŷ[k]

This proves (2.22). �

Example 2.2.9. Consider the averaging operator (2.11) from the beginning of this Section:

Cy[j] =
1

2
(y[j − 1] + y[j + 1]),

where y is a periodic signal of length N . We can write this as Cy = f ∗ y, where

f [1] = 1/2, f [N − 1] = 1/2, and f [j] = 0 for j 6= 1, N − 1,

since C = (1/2)(S+S−1) as in Example 2.2.6. In this case the polynomial p(z) = (1/2)(z+z−1)

and f̂ [k] = (1/2)(wk + w−k). Thus

Ĉy[k] =
1

2
(wk + w−k)ŷ[k] for k = 0, 1, . . . , N − 1.

�
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2.3 Fast Fourier Transform

The effectiveness of the discrete Fourier transform (DFT) as a computational tool depends on a

remarkable fast algorithm for calculating the matrix-vector product Fnv when n = 2k is a power

of 2 (similar fast algorithms exist for every highly composite number n, such as n = 2k3m). The

Fast Fourier Transform (FFT) algorithm is based on the observation that the Fourier matrix F2n can

be written as product of a permutation matrix (which has no arithmetic computational cost) and a

2 × 2 block matrix, where the blocks are Fn or a diagonal matrix multiplyingFn.

Example 2.3.1. Consider n = 2. Recall that

F2 =

[
1 1
1 −1

]
, F4 =




1 1 1 1

1 − i −1 i
1 −1 1 −1

1 i −1 − i


 =

[
h0 h1 h2 h3

]
.

Let y ∈ C4. By the definition of matrix-vector multiplication we can write

F4y = y[0] h0 + y[1] h[1]+ y[2] h[2]+ y3 h[3]

as a linear combination of the columns of the Fourier matrix. Rearrange this sum according to the

even and odd indices:

y[0] h0 + y[2] h[2] =




1 1
1 −1

1 1
1 −1




[
y[0]

y[2]

]
, y[1] h[1]+ y3 h[3] =




1 1
− i i

−1 −1
i − i




[
y[1]

y[3]

]
.

(2.23)

Define

yeven =

[
y[0]

y[2]

]
, yodd =

[
y[1]

y[3]

]
, D̃2 =

[
1 0

0 − i

]
.

Then, using block multiplication of matrices, we can write the formulas (2.23) as

y[0] h0 + y[2] h[2] =

[
F2

F2

]
yeven , y[1] h[1]+ y3 h[3] =

[
D̃2F2

−D̃2F2

]
yodd .

The splitting of y into even/odd vectors of half length can be accomplished by the permuation matrix

P4 =
[

e1 e3 e2 e4

]
=




1 0 0 0

0 0 1 0
0 1 0 0

0 0 0 1


 , P4y =

[
yeven

yodd

]
.

The calculations above show that

F4y =

[
F2yeven + D̃2F2yodd

F2yeven − D̃2F2yodd

]
=

[
F2 D̃2F2

F2 −D̃2F2

]
P4y.
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Hence the 4 × 4 Fourier matrix F4 can be written in 2 × 2 block form:

F4 =

[
F2 D̃2F2

F2 −D̃2F2

]
P4.

�

The same splitting into even and odd components works for the DFT of a signal

y =
[

y[0] y[1] . . . y[2n− 2] y[2n− 1]
]T

of length 2n. Let

yeven =
[

y[0] y[2] . . . y[2n− 2]
]T
, yodd =

[
y[1] y[3] . . . y[2n− 1]

]T
.

Here we are using the terms even and odd because we view y as a function on {0, 1, . . . , 2n− 1};

the vector yeven contains components 1, 3, . . . , 2n − 1 of the vector y when we use the MATLAB

indexing convention. The splitting of y into yeven and yodd of half length is called downsampling;

it will play an important role in wavelet analysis in Chapters 3 and 4.

Write w = e2π i /2n = eπ i/n and z = w2 = e2π i/n. Then

F2ny[j] =
2n−1∑

k=0

w−jky[k]

(split into even-odd) =
n−1∑

k=0

w−j(2k)y[2k] +
n−1∑

k=0

w−j(2k+1)y[2k+ 1]

=
n−1∑

k=0

z−jkyeven[k] +w−j
n−1∑

k=0

z−jkyodd[k]

for j = 0, 1, 2, . . . , 2n− 1. This shows that

F2ny[j] = Fnyeven[j] + w−jFnyodd[j] for j = 0, 1, . . . , n− 1.

Since wn = −1 and zn = 1, we have w−(n+j) = −w−j and z−(n+j)k = z−jk . Furthermore, the

functions Fnyeven and Fnyodd are periodic of period n. Thus

F2ny[n+ j] = Fnyeven[j]−w−jFnyodd[j] for j = 0, 1, . . . , n− 1.

We can write these formulas in block-matrix form, just as in the case n = 2. Let

D̃n =




1 0 0 · · · 0

0 w−1 0 · · · 0

0 0 w−2 · · · 0
...

...
...

. . .
...

0 0 0 · · · w−(n−1)




(caution: wn = −1). (2.24)
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Note that the diagonal of D̃n only contains half of the 2nth roots of 1; it is not the same as the

matrix DN in equation (2.16) which has all N th roots of 1. Let P2n be the permutation matrix that

splits y into its even and odd components:

P2n =
[

e1 e3 . . . e2n−1 e2 e4 . . . e2n

]T
, P2ny =

[
yeven

yodd

]
.

Then, just as in the case n = 2, the equations for F2ny can be written as

F2ny =

[
Fnyeven + D̃nFnyodd

Fnyeven − D̃nFnyodd

]
=

[
Fn D̃nFn

Fn −D̃nFn

]
P2ny (2.25)

Note: Equation (2.25) is incorrectly stated on page 285 of Leon, where the factor P2n is on the

wrong side of the equation–for the case n = 2 that we considered above it happens that P4 =

PT
4 = P−1

4 , so the formula in Leon is correct in that case. For larger values of n the matrix P2n

is orthogonal but not symmetric, and hence P−1
2n = PT

2n 6= P2n. Also, the matrix Dm in Leon’s

formula should have jth diagonal entry ωj−1
2m rather than ωj−1

m (using Leon’s notation).

The Fast Fourier Transform algorithm calculates FN when N is a power of 2 by iterating for-

mula (2.25). For example, when N = 256 = 28 then (2.25) expresses F256y in terms of F128

applied to signals of length 128. To calculate these Fourier transforms, we use (2.25) again to

express F128 in terms of F64 applied to signals of length 64, and so on until we are down to F2.

To determine the computational cost of the FFT algorithm, let n = 2k, and define φ(k) be the

number of scalar multiplications needed to evaluate Fny for a signal of length n = 2k using the

FFT algorithm. When k = 1 then the entries in F2 are ±1, so no multiplications are needed (just

sign changes). Hence φ(1) = 0. If y is a signal of length 2n = 2k+1, then calculating F2ny using

(2.25) requires 2φ(k) multiplications to obtain Fnyeven and Fnyodd, followed by 2k multiplications

to obtain D̃nFnyodd. We are using the fact that D̃n is a diagonal matrix, so it only requires n
multiplications to calculate D̃nb for any vector b. The matrix P2n just sorts the entries of y; no

arithmetic is needed to calculate P2ny. Thus

φ(k + 1) = 2φ(k) + 2k (2.26)

We can calculate φ(k) recursively from (2.26), starting with φ(1) = 0:

φ(2) = 2φ(1) + 2 = 2, φ(3) = 2φ(2) + 22 = 2 · 22, φ(4) = 2φ(3) + 23 = 3 · 23

This suggests that

φ(k) = (k − 1)2k−1 for all positive integers k = 1, 2, 3, . . .. (2.27)

This formula, which we have just shown true for k = 2, 3, and 4, is easily verified by induction:

assuming it true for k and using (2.26), we get

φ(k + 1) = 2(k − 1)2k−1 + 2k = k2k − 2k + 2k = k2k,

so the formula is true for k + 1.

To appreciate the consequences of (2.27), note that direct evaluation of Fny as a matrix-vector

product requires n2 = 22k scalar multiplications (n for each of the n components of y). Take
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k = 10 and n = 210 = 1024. Then direct evaluation of Fny as a matrix-vector product requires

n2 = 220 = 1, 048, 576 multiplications, whereas evaluation using the FFT only requires 9 · 29 =

4608 multiplications. This is a speedup by a factor of

220

9 · 29
= 228.

If we go to longer signals, such as n = 220 = 1, 048, 576, then the speedup is by a factor of

240

19 · 219
= 110, 376

(more than one hundred thousand times faster). The same sort of counting of the number of scalar

addition operations needed in the FFT shows a similar dramatic improvement over calculations us-

ing the standard matrix-vector product. Without the FFT algorithm digital signal processing would

be impractical.

2.4 Exercises

1. Let N be a positive integer and set w = e2π i/N . View the columns of the Fourier matrix FN

as the functions h0, . . . ,hN−1 defined by hk[j] = w−jk (note that with this definition hk is

automatically periodic of period N .) Verify directly that each function hk is an eigenfunction

for the shift operatorS, and determine the eigenvalue. Recall thatS acts on a periodic function

f by S f [j] = f [j − 1].

2. Let C be the linear shift-invariant transformation Cy[j] = y[j − 1]− 2y[j] + y[j + 1] for y

a function periodic of period N .

(a) Find the function f such that Cy = f ∗y. (HINT: Write C in terms of the shift operator.)

(b) Find the Fourier transform of the function f in (a).

(c) Suppose N = 4 and y corresponds to the vector y = [2 3 1 5]T ∈ C4. Calculate the

vectors corresponding to Cy and Ĉy.

3. Let S =




0 0 1

1 0 0
0 1 0


 be the matrix for the shift operator relative to the standard basis for

C3. Suppose the matrix C =




4 ∗ ∗
7 ∗ ∗
5 ∗ ∗


 satisfies CS = SC.

(a) Write C as a polynomial in S. Use this to fill in the missing entries in C:

C =




4

7

5
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(b) View vectors in C3 as periodic functions y on the integers: y[j] = y[j+3] for all integers

j. Let T be the linear transformation on such functions corrsponding to the matrix C above.

Give explicit formulas (in terms of y[0], y[1], and y[2]) for Ty[j] for j = 0, 1, 2.

(c) Let F be the 3 × 3 Fourier matrix, and let w = e2π i /3. Let C be the matrix in part (a).

Find complex numbers λ0, λ1, and λ2 so that F−1CF =



λ0 0 0

0 λ1 0
0 0 λ2


 .

Express your answer in terms of w and w2 (no complex arithmetic is needed).

4. Let n = 2k. Define ψ(k) to be the number of scalar additions (or subtractions) needed to

calculate Fnc by the Fast Fourier Transform (FFT) algorithm. Note that the product of a row

vector and a column vector, each with n components, needs n− 1 additions.

(a) Show that ψ(1) = 2 and that ψ(k+ 1) = 2ψ(k) + 2(2k − 1).

(b) Use the recursion in (a) to calculate ψ(k) for k = 2, 3, 4.

(c) Prove by induction that ψ(k) ≤ k2k for all positive integers k.

(d) Use the result in the notes and (c) to show that the total number of arithmetic opera-

tions (multiplications and additions) required for the FFT on vectors of size 2k is less than

(3/2)k2k.



Chapter 3

Finite Wavelet Transforms

3.1 Prediction and Update Transforms

Example 3.1.1. Consider the following digital signal s3[n] with 23 nonzero values (see Table 2.1

in Ripples):

n : 0 1 2 3 4 5 6 7

s3[n] : 56 40 8 24 48 48 40 16

There are two features of the signal that we want to analyze:

1. The overall trend of the signal. Notice that s3[4] = s3[5], so there is no change in the signal

when n goes from 4 to 5. Thus the value of s3 at n = 4 is a good predictor of the value at

n = 5.

2. The detail in the signal. Notice the big change in the signal when n goes from 6 to 7. The

fluctuations in the signal can be measured by the error when we predict the signal values for

odd n based on the values for even n.

To carry out this analysis we split the signal into two half-length signals

(s3)even[n] = s3[2n] and (s3)odd[n] = s3[2n+ 1]

by taking every other value of s3 (this is also called downsampling). We then calculate the level-two

trend:

s2[n] =
1

2

{
(s3)even[n] + (s3)odd[n]

}

(the average of the values of s3 at 2n and 2n+ 1) and the level-two detail:

d2[n] = (s3)even[n]− s2[n]

(the difference between the value of s3 at 2n and the average of s3 at 2n and 2n+ 1). These signals

of length 22 are given in the table below:

n : 0 1 2 3 n : 0 1 2 3

(s3)even[n] : 56 8 48 40 (s3)odd[n] : 40 24 48 16

s2[n] : 48 16 48 28 d2[n] : 8 -8 0 12

25
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Notice the value d2[2] = 0 corresponding to s3[4] = s3[5] and the large value d2[3] corresponding

to the big change between s3[5] and s3[7].

We can repeat this analysis on the trend vector s2: Define the level-one trend:

s1[n] =
1

2

{
(s2)even[n] + (s2)odd[n]

}

and the level-one detail:

d1[n] = (s2)even[n] − s1[n].

These signals of length 21 are given in the table below:

n : 0 1 n : 0 1

(s2)even[n] : 48 48 (s2)odd[n] : 16 28

s1[n] : 32 38 d1[n] : 16 10

Finally, we repeat this analysis on the trend vector s1: Define the level-zero trend:

s0[n] =
1

2

{
(s1)even[n] + (s1)odd[n]

}

and the level-zero detail:

d0[n] = (s1)even[n] − s0[n].

These signals of length 20 are given in the table below:

n : 0 n : 0

(s1)even[n] : 32 (s1)odd[n] : 38

s0[n] : 35 d0[n] : -3

We can assemble this three-level decomposition into the following multiresolution analysis of the

original signal:

s0 d0 d1 d2

35 -3 16 10 8 -8 0 12

(see Ripples, Table 2.1). We shall explain the utility of this decomposition in Section 3.2. �

In the multiresolution analysis in Example 3.1.1 the first entry s0[0] is the average of the original

signal:

35 = (56 + 40 + 8 + 24 + 48 + 48 + 40 + 16)/8.

This is easy to check:

s0[0] =
1

2

1∑

n=0

s1[n] =
1

4

3∑

n=0

s2[n] =
1

8

7∑

n=0

s3[n].

We now introduce some linear algebra to understand the rest of this decomposition and its purpose.

Suppose x is a real-valued signal of length N = 2k with values x[0], x[1], . . . , x[N − 1]. We

identify x with the N × 1 column vector with these components (notice that we are indexing the

components from 0 toN −1, whereas in MATLAB the indexing would go from 1 toN ). Following



PREDICTION AND UPDATE 27

the same pattern as for the fast Fourier transform, we split (downsample) x into even and odd signals

of length N/2:

xeven[n] = x[2n] and xodd[n] = x[2n+ 1] for n = 0, 1, . . . , N/2− 1

These formulas define a linear transformation that we denote by split :

split x =

[
xeven

xodd

]

When we make x into a column vector the transformation split is given by the permutation matrix

PN in Section 2.3. We define merge to be the inverse permutation matrix (the transpose of split ):

merge

[
xeven

xodd

]
= x

Define the trend vector s and detail vector d of x just as in Example 3.1.1 by

s =
1

2

(
xeven + xodd

)
and d = xeven − s

(notice that s and d are vectors with N/2 components). Let Ta be the linear transformation on RN

given by

Tax =

[
s

d

]

(the subscript a is for analysis). We can rewrite the formulas for s and d as

2d = xeven − xodd and s = xeven − d

Hence we can factor Ta as a product of split and the following elementary linear transformations

(where I denotes the N/2×N/2 identity matrix):

[
xeven

−2d

]
=

[
xeven

xodd − xeven

]
=

[
I 0

−I I

][
xeven

xodd

]
(Prediction)

[
s

−2d

]
=

[
xeven − d

−2d

]
=

[
I 1

2I

0 I

][
xeven

−2d

]
(Update)

[
s

d

]
=

[
s

1
2 (2d)

]
=

[
I 0
0 1

2I

] [
s

2d

]
(Normalization)

We define N ×N matrices P , U , and D (in 2× 2 block form) by

P =

[
I 0

−I I

]
, U =

[
I 1

2I

0 I

]
, and D =

[
I 0

0 −1
2I

]
.

Then

Tax = DUP split x
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(notice the order of multiplication of the factors). Thus we have factored Ta as the product of

elementary matrices (the matrices for elementary row operations) to obtain a lifting block (see Fig.

3.1 in Ripples). The important point about elementary matrices is that they are invertible and the

inverses are also elementary matrices:

P−1 =

[
I 0
I I

]
, U−1 =

[
I −1

2I
0 I

]
, and D−1 =

[
I 0
0 −2I

]
.

Hence the factorization shows that Ta is invertible with inverse

T−1
a = merge P−1U−1D−1.

(see Fig. 3.4 in Ripples). We call the inverse matrix the synthesis matrix and write Ts = T−1
a . For

any signal x of length N , we set y = Tax. Then we can reconstruct x from y by x = Tsy.

Example 3.1.2. Using block multiplication of matrices, we calculate

Ta = DUP split =
1

2

[
I I
I −I

]
split

and

Ts = merge P−1U−1D−1 = merge

[
I I

I −I

]

For example, if N = 4, then

Ta =
1

2




1 0 1 0

0 1 0 1
1 0 −1 0

0 1 0 −1







1 0 0 0

0 0 1 0
0 1 0 0

0 0 0 1


 =

1

2




1 1 0 0

0 0 1 1
1 −1 0 0

0 0 1 −1




and

Ts =




1 0 0 0
0 0 1 0

0 1 0 0
0 0 0 1







1 0 1 0
0 1 0 1

1 0 −1 0
0 1 0 −1


 =




1 0 1 0
1 0 −1 0

0 1 0 1
0 1 0 −1




The calculation of s1 and d1 from s2 in Example 3.1.1 can then be obtained as the matrix-vector

product

[
s1

d1

]
= Tas2 =

1

2




1 1 0 0
0 0 1 1
1 −1 0 0

0 0 1 −1







48
16
48

28


 =




32
38
16

10




In the opposite direction, we can obtain s2 from s1 and d1 by

s2 = Ts

[
s1

d1

]
=




1 0 1 0
1 0 −1 0

0 1 0 1
0 1 0 −1







32
38

16
10


 =




48
16

48
28
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The matrices Ta and Ts are called the one-scale Haar analysis and synthesis matrices (named

after the Hungarian mathematician A. Haar). There is an important pattern to observe in these

matrices: rows 2 and 4 of Ta are obtained from rows 1 and 3 by shifting to the right by two

positions. Likewise, columns 2 and 4 of Ts are obtained from columns 1 and 3 by shifting down

by two positions. We will study this pattern in more detail later in connection with other wavelet

transforms. Notice also that 2TT
a = Ts, and hence

(
√

2Ta)(
√

2Ta)T = TsTa = I.

Hence the normalized Haar transform
√

2Ta is an orthogonal matrix. �

3.2 Multiple Scale Wavelet Transforms

In Example 3.1.1 we took a signal s3 of length 23 and transformed it into a trend s2 and a detail d2,

each of half the length. We then repeated this operation on the trend portion. We can describe this

algorithm in terms of the analysis matrices Ta introduced in Section 3.1, as follows:

Write T
(k)
a for the 2k × 2k Haar analysis matrix:

T(k)
a =

1

2

[
I(k−1) I(k−1)

I(k−1) −I(k−1)

]
split .

Here we use the notation I(p) for the identity matrix of size 2p × 2p. The calculations in Example

3.1.1 can be written in block-matrix form as

[
s2

d2

]
= T(3)

a s3,




s1

d1

d2


 =

[
T

(2)
a 0

0 I(2)

] [
s2

d2

]
,




s0

d0

d1

d2


 =




T
(1)
a 0 0

0 I(1) 0

0 0 I(2)







s1

d1

d2


 .

In these formulas 0 denotes matrices of zeros of the appropriate sizes. We can describe the three-

scale analysis transformation by the following diagram (see also Fig. 3.7 in Ripples):

−→ s0

s1−→ T
(1)
a

s2−→ T
(2)
a −→ d0

x −→ T
(3)
a → d1

→ d2

We can combine the transformations to obtain the multiresolution analysis of s3 in matrix form:



s0

d0

d1

d2


 = W(3)

a s3, where W(3)
a =




T
(1)
a 0 0

0 I(1) 0

0 0 I(2)



[

T
(2)
a 0

0 I(2)

]
T(3)

a (3.1)
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(in equation (3.1) the matrix blocks are of different sizes, so the matrix multiplication cannot be

simplified while still in block form). We call W
(3)
a the three-scale Haar wavelet analysis matrix

(see equation (5.2) in Ripples for the explicit form of this matrix).

The three-scale Haar wavelet synthesis matrix W
(3)
s is the inverse of the three-scale analysis

matrix. Since the one-scale synthesis matrices are the inverses of the one-scale analysis matrices,

the factorization (3.1) implies that

W(3)
s




s0

d0

d1

d2


 = s3, where W(3)

s
= T(3)

s

[
T

(2)
s 0

0 I(2)

] 


T
(1)
s 0 0

0 I(1) 0

0 0 I(2)


 (3.2)

(see equation (5.1) in Ripples for the explicit form of this matrix). We can describe the three-scale

synthesis transformation by the following diagram (see also Fig. 3.8 in Ripples):

s0 −→
T

(1)
s

s1−→
d0 −→ T

(2)
s

s2−→
d1 → T

(3)
s −→ x

d2 →

The matrix W
(3)
s = [h0 · · · h7] has the following special structure:

h0 =




1

1
1

1
1

1
1

1




, h1 =




1

1
1

1
−1

−1
−1

−1




, h2 =




1

1
−1

−1
0

0
0

0




, h4 =




1

−1
0

0
0

0
0

0




,

and

h3 = S4h1, h5 = S2h4, h6 = S4h4, h7 = S6h4,

where S is the 8 × 8 shift matrix (we are enumerating the columns by 0 to 7, just as we did for

the Fourier matrix). The vector h0 describes a signal that is constantly 1 (the DC component). The

vector h1 describes a signal that is 1 for four time units, then switches sign and is −1 for four time

units (slow AC component). The vector h2 describes a signal that is 1 for two time units, switches

sign and is −1 for two time units, and then is zero (faster AC component). The vector h4 describes a

signal that is 1 for one time unit, switches sign and is −1 for one time unit, and then is zero (fastest

AC component). The other vectors are shifts of these vectors by an even number of positions (see

Fig. 5.1 in Ripples).

To obtain the multiresolution representation of the original signal, recall that the product of a

matrix A and a vector b is the linear combination of the columns of A with coefficients the entries
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of b. Thus

s3 = W(3)
s




s0

d0

d1

d2




= s0[0]h0 + d0[0]h1 +
{
d1[0]h2 + d1[1]h3

}

+
{
d2[0]h4 + d2[1]h5 + d2[2]h6 + d2[3]h7

}
.

In this formula we build up the signal by taking the overall average s0[0]h0, then adding the slow

fluctuation term d0[0]h1, followed by the faster and shorter fluctuations
{
d1[0]h2 + d1[1]h3

}
, and

finally the fastest and shortest fluctuations
{
d2[0]h4+d2[1]h5+d2[2]h6+d2[3]h7

}
. For the signal

in Example 3.1.1 the multiresolution representation is thus

s3 = 35h0 − 3h1 +
{
16h2 + 10h3

}
+
{
8h4 − 8h5 + 0h6 + 12h7

}
(3.3)

(see Table 2.1 in Ripples).

One of the main applications of the multiresolution representation is compression. We choose

a threshold ε, and set to zero all coefficients in the multiresolution representation whose absolute

value is less than ε. For example, if we apply this procedure with ε = 4 to (3.3), we get the modified

signal

y = 35h0 +
{
16h2 + 10h3

}
+
{
8h4 − 8h5 + 12h7

}

(see Fig. 2.1 and Table 2.2 of Ripples). Notice that the graphs of the modified signal and the

original signal are almost the same. To measure the relative difference between the two graphs, we

use the ratios of the energies (the square of the norms):

relative compression error =
||s3 − y||2
||s3||2

For compression with ε = 4 every entry in y happens to differ from the corresponding entry in s3

by ±3, so the relative compression error is

32 + 32 + 32 + 32 + 32 + 32 + 32 + 32

562 + 402 + 82 + 242 + 482 + 482 + 402 + 162
= 0.0061 = 0.6%

If we apply this procedure with ε = 9 to (3.3), we get the we get the modified signal

z = 35h0 + 16h2 + 10h3 + 12h7.

(see Fig. 2.2 and Table 2.3 of Ripples). Now the graphs of the modified signal and the original

signal have the same general shape, but differ in details. The relative compression error is

52 + 112 + 112 + 52 + 32 + 32 + 32 + 32

562 + 402 + 82 + 242 + 482 + 482 + 402 + 162
= 0.028 = 2.8%.

This is about five times larger than the compression error with ε = 4. On the other hand, the signal

z only has four nonzero coefficients in its multiresolution representation, so we have compressed

the original signal by a ratio of 2 : 1 while still retaining its essential features.
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3.3 Discrete Wavelet Transform via Lifting

The general approach to discrete wavelet transforms that we are using is to split a signal of even

length N into even and odd parts, apply successive prediction and update linear transformations to

the two parts of the signal, and finally apply a normalization; this procedure is called lifting (see

Ripples, Section 3.2).

CDF(2,2) Transform

In our first example of a discrete Wavelet transform of a signal x (the Haar Transform–Example

3.1.1), we predicted the value x[2n+ 1] by the previous value x[2n]. Now we modify this scheme

and predict x[2n+1] to be the average of the neighboring values x[2n] and x[2n+2]. The deviation

d from the predicted value is thus

d[n] = x[2n+ 1] − 1

2

(
x[2n] + x[2n+ 2]

)
= xodd[n] − 1

2

(
xeven[n] + xeven[n+ 1]

)

(see Fig. 3.3 in Ripples). Notice that if x[n] = an + b is a linear function of n, then the deviation

d is zero.

There is a problem with the formula for d, however. The signal values are x[0], x[1], . . .,

x[N − 1], and to calculate the last deviation d[N/2] we need the value x[N ]. We shall avoid this

problem by extending the signal x to be periodic of period N :

x[k +N ] = x[k] for all integers k.

(There are other solutions to this problem that are discussed in Ch. 10 of Ripples). Let S be the

N/2 × N/2 shift operator. Then xeven[n + 1] =
(
S−1xeven

)
[n]. Hence the formula for d can be

written in vector form as

d = xodd −
1

2

(
xeven + S−1xeven

)
(3.4)

Since xeven and xodd are periodic of period N/2, so is d:

d[k +N/2] = d[k] for all integers k.

Define the prediction transformation by P

[
xeven

xodd

]
=

[
xeven

d

]
. From formula (3.4) we can

write the matrix for P in block form as

P =

[
I 0

−1
2 (I + S−1) I

]

where I is the N/2×N/2 identity matrix.

As the next step in the lifting procedure, we use the detail vector d to update xeven and obtain

the trend vector s:

s[n] = xeven[n] +
1

4

(
d[n] + d[n− 1]).

The choice of the constant 1
4 makes s and x have the same average value:

2

N

N/2−1∑

n=0

s[n] =
1

N

N−1∑

n=0

x[n]



DISCRETE WAVELET TRANSFORM 33

(for a proof of this, see Ripples, p. 18). The formula for s can be written in vector form as

s = xeven +
1

4

(
d + Sd

)
(3.5)

Since xeven and d are periodic of period N/2, so is s:

s[k+N/2] = s[k] for all integers k.

Define the update transformation by U

[
xeven

d

]
=

[
s

d

]
. From formula (3.5) we can write the

matrix for U in block form as

U =

[
I 1

4(I + S)
0 I

]

where I is the N/2×N/2 identity matrix.

The final step in the lifting process is a normalization D

[
s

d

]
=

[ √
2s

(1/
√

2)d

]
. Thus D is

given by the diagonal matrix

D =

[ √
2I 0

0 (1/
√

2)I

]
.

The one-scale CDF(2,2) analysis transform is the product of these transformations:

Ta = DUP split . (3.6)

Example 3.3.1 (CDF(2,2) Analysis Transform). Suppose N = 4. In this case S = S−1 and

I + S−1 =

[
1 1

1 1

]
. Hence

P =




1 0 0 0

0 1 0 0

− 1
2 −1

2 1 0

− 1
2 −1

2 0 1


 and U =




1 0 1
4

1
4

0 1 1
4

1
4

0 0 1 0
0 0 0 1


 .

Thus we find (with the aid of MATLAB) that

Ta =




√
2 0 0 0

0
√

2 0 0

0 0 1√
2

0

0 0 0 1√
2







1 0 1
4

1
4

0 1 1
4

1
4

0 0 1 0

0 0 0 1







1 0 0 0
0 1 0 0

− 1
2 −1

2 1 0

− 1
2 −1

2 0 1


 split

=
1

2
√

2




3 1 −1 1

−1 1 3 1
−1 2 −1 0

−1 0 −1 2


 =




u0

u1

v0

v1


 .

The rows of Ta are related as follows:
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1. The row u1 is obtained by shifting the previous row u0 to the right two positions (and using

periodic wraparound).

2. The row v1 is obtained by shifting the previous row v0 to the right two positions (and using

periodic wraparound).

We already saw this pattern in the Haar transform, and we will show in Section 3.4 that it holds for

all one-scale wavelet analysis matrices. �

As in the case of the Haar transform, it is easy to construct the inverse (synthesis) transform Ts

by inverting the prediction, update, and normalization transforms:

P−1 =

[
I 0

1
2 (I + S−1) I

]
, U−1 =

[
I −1

4 (I + S)
0 I

]
, D−1 =

[
(1/

√
2)I 0

0
√

2I

]
,

Hence we obtain the one-scale CDF(2,2) synthesis transform as

Ts = merge P−1U−1D−1. (3.7)

Example 3.3.2 (CDF(2,2) Synthesis Transform). Suppose N = 4. Then we calculate (with the aid

of MATLAB) that

Ts = merge




1 0 0 0
0 1 0 0
1
2

1
2 1 0

1
2

1
2 0 1







1 0 −1
4 −1

4

0 1 −1
4 −1

4
0 0 1 0
0 0 0 1







1√
2

0 0 0

0 1√
2

0 0

0 0
√

2 0

0 0 0
√

2




=

√
2

4




2 0 −1 −1

1 1 3 −1
0 2 −1 −1

1 1 −1 3


 =

[
ũ0 ũ1 ṽ0 ṽ1

]

The columns of Ts are related as follows:

1. The column ũ1 is obtained by shifting ũ0 down two positions (and using periodic wraparound).

2. The column ṽ1 is obtained by shifting ṽ0 down two positions (and using periodic wraparound).

We already saw this pattern in the Haar transform; we will show in Section 3.4 that it holds for all

one-scale wavelet synthesis matrices. �

The CDF(2,2) discrete wavelet transform that we have just constructed is part of a family of

transforms called the Cohen-Daubechies-Feauveau wavelets (in the Uvi-Wave implementation they

are called w-spline wavelets); see Section 3.6 of Ripples for more examples of these transforms.

The analysis matrices for these transforms are not orthogonal, unlike the case of the (normalized)

Haar transform, so the columns of the synthesis matrix are quite different from the rows of the

analysis matrix. However, this family of transforms is very easy to create (the matrices have simple

rational coefficents related to the binomial coefficients), and these transforms have many desirable

properties relating to smoothness and feature detection.
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Daubechies 4 Transform

Our next example of a wavelet transform is orthogonal and is one of an infinite family of orthogonal

wavelet transforms. 1

After splitting the signal x of even length N ≥ 4 into xeven and xodd, we perform an update

operation to define the first trend s(1) (see Ripples formula 3.18):

s(1)[n] = x[2n] +
√

3x[2n+ 1] = xeven[n] +
√

3xodd[n]. (3.8)

Define the first update transformation by U1

[
xeven

xodd

]
=

[
s(1)

xodd

]
. From formula (3.8) we can

write the matrix for U1 in block form as

U1 =

[
I

√
3I

0 I

]

where I is the N/2 ×N/2 identity matrix. Next, we predict xodd[n] using two adjacent values of

s(1):

prediction of xodd[n] =
1

4

{√
3s(1)[n] + (

√
3 − 2)s(1)[n− 1]

}
,

where s(1) is extended to be periodic of period N/2. The difference between the prediction and the

actual value is the (unnormalized) detail d(1) (see Ripples formula 3.19):

d(1) = xodd −
1

4

{√
3s(1) + (

√
3 − 2)Ss(1)

}
. (3.9)

We have written this equation in vector form; S is theN/2×N/2 shift matrix. Define the prediction

transformation by P

[
s(1)

xodd

]
=

[
s(1)

d(1)

]
. From formula (3.9) we can write the matrix for P in

block form as

P =

[
I 0

−
√

3
4 I −

√
3−2
4 S I

]
.

As the next step in the lifting procedure, we use the detail vector d(1) to update the first trend

s(1) and obtain the second trend s(2) (see Ripples formula 3.20):

s(2)[n] = s(1)[n] − d(1)[n+ 1].

The formula for s(2) can be written in vector form as

s(2) = s(1) − S−1d(1). (3.10)

Define the second update transformation by U2

[
s(1)

d(1)

]
=

[
s(2)

d(1)

]
. From formula (3.10) we can

write the matrix for U2 in block form as

U2 =

[
I −S−1

0 I

]
.

1This family of transforms was created by Ingrid Daubechies, who was a mathematics professor at Rutgers in the

early 1990’s and is now a professor at Princeton.
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The final step in the lifting process is a normalization

[
s

d

]
= D

[
s(2)

d(1)

]
, where D is the

diagonal matrix

D =




√
3−1√
2
I 0

0
√

3+1√
2
I


 .

Note that
√

3−1√
2

·
√

3+1√
2

= 1, so detD = 1. The one-scale Daub4 analysis transform is defined to

be the product of these transformations:

Ta = DU2PU1 split .

The complicated numerical coefficients in the Daub4 transform are required to obtain the fol-

lowing result:

Theorem 3.3.3. The Daub4 wavelet analysis matrix is orthogonal.

Proof. We calculate (using N/2×N/2 blocks) that

DU2PU1 =




√
3−1√
2
I 0

0
√

3+1√
2
I



[
I −S−1

0 I

] [
I 0

−
√

3
4 I −

√
3−2
4 S I

][
I

√
3I

0 I

]

=
1

4
√

2

[
(aI + cS−1) (bI + dS−1)

−(bI + dS) (aI + cS)

]
, (3.11)

where a = 1 +
√

3, b = 3 +
√

3, c = 3−
√

3, and d = 1−
√

3. Thus

TaT
T
a = (DU2PU1) split split

T
(DU2PU1)

T

=
1

32

[
(aI + cS−1) (bI + dS−1)

−(bI + dS) (aI + cS)

][
(aI + cS−1) −(bI + dS)

(bI + dS−1) (aI + cS)

]
,

since the permutation matrix split is orthogonal. Carrying out the block multiplication, we find

that

TaT
T
a =

1

32

[
αI + β(S + S−1) 0

0 αI + β(S + S−1)

]
,

where α = a2 + b2 + c2 + d2 and β = ac+ bd. An easy calculation shows that α = 32 and β = 0.

Hence TaT
T
a is the identity matrix. �

Example 3.3.4. When N = 4 then from (3.11) we find that the Daub4 analysis matrix is

Ta =
1

4
√

2




a c b d

c a d b
−b −d a c

−d −b c a


 split =

1

4
√

2




a b c d

c d a b
−b a −d c

−d c −b a




(since right multiplication by split interchanges columns 2 and 3). Note that the second row is

obtained from the first row by shifting right two places (with wraparound). The same relation holds

between the third and fourth rows. Also, the third row is obtained from the second row by reversing
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the entries and inserting alternating signs; this procedure on vectors of even length automatically

produces a pair of orthogonal vectors.

Since the Daub4 analysis matrix is orthogonal, the synthesis matrix is the transpose:

Ts =
1

4
√

2




a c −b −d
b d a c

c a −d −b
d b c a




The columns of Ts have the same pattern as the rows of Ta. �

3.4 Wavelet Bases

A general one-scale periodic wavelet analysis transform matrix (implemented through the lifting

procedure) is of the form

Ta = D · (product of updates and predictions) · split . (3.12)

If Ta is of size N × N with N even, then the update and prediction transformations are matrices

in unit block-triangular form. The nonzero off-diagonal blocks are linear combinations of (positive

and negative) powers of the N/2 × N/2 shift matrix S (see the examples of CDF transforms on

page 24 of Ripples). Recall from Section 2.2 that a polynomial p(S) in the shift matrix S is called

a circulant matrix. Hence the update matrices U and the prediction matrices P are in N/2 ×N/2

block form

U =

[
I C1

0 I

]
, P =

[
I 0
C2 I

]
,

where C1 = p1(S) and C2 = p2(S) are circulant matrices. The normalization matrix is D =[
αI 0

0 βI

]
with αβ 6= 0 (there can be several update and prediction matrices).

The factored form (3.12) shows that Ta is an invertible matrix. Products and sums of circulant

matrices are still circulant matrices, so the product of the update, prediction, and normalization

transforms has the block form

Ta =

[
C11 C12

C21 C22

]
split , where Cij = pij(S) is a N/2×N/2 circulant matrix. (3.13)

Likewise, the inverse (synthesis) matrix has the block form

Ts = merge

[
C̃11 C̃12

C̃21 C̃22

]
, where C̃ij = p̃ij(S) is a N/2×N/2 circulant matrix. (3.14)

Example 3.4.1. For the Daub4 analysis transform, we found in (3.11) that

C11 = a + cS−1, C12 = b+ dS−1, C21 = −b− dS, C22 = a+ cS,

where

a = 1+
√

3
4
√

2
, b = 3+

√
3

4
√

2
, c = 3−

√
3

4
√

2
, and d = 1−

√
3

4
√

2
.
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Since this transform is orthogonal, the inverse matrix is the transpose. Thus C̃ij = (Cji)
T in this

case.

For the CDF(2,2) analysis transform we have

Ta =

[ √
2I 0

0 (1/
√

2)I

]
.

[
I 1

4 (I + S)

0 I

] [
I 0

−1
2 (I + S−1) I

]
split

=
1

4
√

2

[
−S−1 + 6I − S 2I + 2S

−2I − 2S−1 4I

]
split .

For the CDF(2,2) synthesis transform we have

Ts = merge

[
I 0

1
2 (I + S−1) I

][
I −1

4(I + S)
0 I

] [
(1/

√
2)I 0

0
√

2I

]
.

=
1

4
√

2
merge

[
4I −2I − 2S

2I + 2S−1 −S−1 + 6I − S

]

�

We return to a general wavelet transform of real N -periodic signals, where N = 2m is even.

Let Ta be a one-scale wavelet analysis matrix given by a formula of the type (3.12). Write Ta in

terms of its rows as

Ta =




u0
...

um−1

v0
...

vm−1




=

[
U

V

]
,

where uj , vj are 1×N row vectors and U, V are m×N matrices. Let Ts be the inverse synthesis

matrix. We write Ts in terms of its columns as

Ts =
[

ũ0 . . . ũm−1 ṽ0 . . . ṽm−1

]
=
[

Ũ Ṽ
]
,

where ũj , ṽj are N ×1 column vectors and Ũ, Ṽ are N ×m matrices. The matrix inverse property

TaTs = I can be expressed as the biorthogonality relations

uj ũk = δ[j − k], ujṽk = 0,

vjũk = 0, vjṽk = δ[j − k],

for j, k = 0, 1, . . . , m− 1, where δ[n] = 1 if n = 0 and δ[n] = 0 if n 6= 0. These relations are the

same as the matrix equations

UŨ = I, UṼ = 0,

VŨ = 0, VṼ = I,

where I is them×m identity matrix. When Ta is an orthogonal matrix (as for the Haar or Daub4

transforms) we have Ũ = UT and Ṽ = VT. In general, these matrices are all different.
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We now show that the matrix Ta is completely determined by the row vectors u0 and v0.

Likewise, the matrix Ts is completely determined by the column vectors ũ0 and ṽ0. (We have

already seen this pattern in the Haar, CDF(2,2) and Daub4 transforms.)

Theorem 3.4.2. Let SN be the N ×N shift matrix (N = 2m). Then for k = 1, . . . , m− 1

uk = u0(SN)−2k (shift components of u0 to right 2k positions with wraparound),

vk = v0(SN)−2k (shift components of v0 to right 2k positions with wraparound).

Likewise,

ũk = (SN)2kũ0 (shift components of ũ0 down 2k positions with wraparound),

ṽk = (SN)2kṽ0 (shift components of ṽ0 down 2k positions with wraparound).

Proof. The key point is the relation between shifting and splitting (or merging). Let x ∈ RN .

Shifting the components of x down by two positions (with wraparound) is the same as shifting the

even and odd parts of x down by one position (with wraparound). Thus

split (SN )2x =

[
Sxeven

Sxodd

]
,

where S is the m×m shift matrix. We can write this relation in matrix terms as

split (SN)2 =

[
S 0
0 S

]
split . (3.15)

Now we write Ta as in (3.13) and use (3.15) to calculate

Ta(SN)2 =

[
C11 C12

C21 C22

]
split (SN)2 =

[
C11 C12

C21 C22

] [
S 0
0 S

]
split .

=

[
C11S C12S
C21S C22S

]
split =

[
S 0
0 S

] [
C11 C12

C21 C22

]
split .

Here we have used the fundamental property CijS = SCij of a circulant matrix. Thus

Ta(SN )2 =

[
S 0

0 S

]
Ta (3.16)

Now write Ta in terms of the matrices U, V and apply the last equation:

[
U

V

]
(SN)2 =

[
S 0

0 S

][
U

V

]

Carrying out the block multiplication on each side of this equation, we see that

[
U(SN)2

V(SN)2

]
=

[
SU

SV

]
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Hence

SU = U(SN)2 and SV = V(SN)2.

(Remember that U and V are of size m × N , so all the matrix products in these equations are

defined.) Since left multiplication by S shifts the rows of U and V down one position, we obtain




um−1

u0
...

um−2




=




u0(SN)2

u1(SN)2

...

um−1(SN)2




and




vm−1

v0
...

vm−2




=




v0(SN)2

v1(SN)2

...

vm−1(SN)2



. (3.17)

Matching up the rows in equations (3.17) and multiplying each row on the right by (SN)−2, we see

that

u1 = u0(SN)−2, u2 = u1(SN)−2 = u0(SN)−4, . . .

v1 = v0(SN)−2, v2 = v1(SN )−2 = v0(SN)−4, . . .

Multiplying a row vector u on the right by (SN)−2 shifts the components of u to the right two

positions (with periodic wraparound). This proves that the rows of Ta follow the pattern asserted

by Theorem 3.4.2.

The proof for the inverse matrix Ts follows the same pattern. Taking inverses in (3.16), we

obtain the relation

(SN)−2Ts = Ts

[
S−1 0

0 S−1

]
.

Writing Ts in block form, we obtain

(SN)−2
[

Ũ Ṽ
]

=
[

Ũ Ṽ
] [ S−1 0

0 S−1

]

Carrying out the block multiplication on each side of this equation, we see that

[
(SN)−2Ũ (SN )−2Ṽ

]
=
[

ŨS−1 ṼS−1
]

Hence

(SN)−2Ũ = ŨS−1 and (SN)−2Ṽ = ṼS−1

Since right multiplication by S−1 shifts the columns of Ũ and Ṽ to the right one position, we find

that

[
(SN)−2 ũ0 (SN)−2 ũ1 · · · (SN)−2 ũm−1

]
=

[
ũm−1 ũ0 · · · ũm−2

]

[
(SN)−2 ṽ0 (SN)−2 ṽ1 · · · (SN)−2 ṽm−1

]
=

[
ṽm−1 ṽ0 · · · ṽm−2

]
.

Matching up columns in these equations and multiplying on the left by (SN)2, we obtain

ũ1 = (SN)2 ũ0, ũ2 = (SN)2 ũ1 = (SN )4 ũ0, . . .

ṽ1 = (SN)2 ṽ0, ṽ2 = (SN)2 ṽ1 = (SN)4 ṽ0, . . .
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This proves that the columns of Ts follow the pattern asserted by Theorem 3.4.2. �

Given x ∈ RN , we define the one-scale trend vector s and detail vector d in Rm using the

analysis matrix Ta: [
s

d

]
= Tax =

[
Ux

Vx

]

From Theorem 3.4.2 these vectors have components that are products of the even shifts of the row

vectors u0 and v0 with the column vector x:

s =
[

u0x u0S
2x · · · u0S

2m−2x
]T

and d =
[

v0x v0S
2x · · · v0S

2m−2x
]T
.

We can then reconstruct x from s and d by the synthesis matrix:

x = Ts

[
s

d

]
=
[

Ũ Ṽ
] [ s

d

]
= Ũs + Ṽd. (3.18)

Define the trend subspace to be the column space of Ũ and the detail subspace to be the column

space of Ṽ. Then

Ũs = (u0x) ũ0 + (u0S
2x)S2ũ0 + · · ·+ (u0S

2m−2x)S2m−2ũ0 (3.19)

is in the trend subspace and

Ṽd = (v0x)ṽ0 + (v0S
2x)S2ṽ0 + · · ·+ (v0S

2m−2x)S2m−2ṽ0 (3.20)

is in the detail subspace. Decomposition (3.18) expresses RN as the direct sum of the trend and

detail subspaces.

Example 3.4.3. Consider the CDF(2,2) transform withN = 4. From Examples 3.3.1 and 3.3.2 we

have

Ta =
1

2
√

2




3 1 −1 1

−1 1 3 1
−1 2 −1 0

−1 0 −1 2


 and Ts =

1

2
√

2




2 0 −1 −1

1 1 3 −1
0 2 −1 −1

1 1 −1 3




Then the trend subspace is the span of the vectors




2
1
0

1


 ,




0
1
2

1


; the detail subspace is the span

of the vectors




−1

3
−1

−1


 ,




−1

−1
−1

3


. Suppose x =




0

1
2

3


 (linearly increasing entries). Then s =

1
2
√

2

[
2

10

]
and d = 1

2
√

2

[
0

4

]
. We can decompose x = Ũs + Ṽ d (sum of trend and detail),

where

Ũs =
2

8




2
1

0
1


+

10

8




0
1

2
1


 =




0.5
1.5

2.5
1.5


 , Ṽ d =

4

8




−1
−1

−1
3


 =




−0.5
−0.5

−0.5
1.5


 .
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Recall that we constructed the CDF(2,2) transform so that the trend would be an exact fit to linear

signals. In this example we see the effect of periodic wraparound: the trend component Ũs linearly

increases (just like the signal x) until the last entry, which then goes down because of periodicity.

The detail component Ṽ d is small but not zero. �

3.5 Two-dimensional Wavelet Transforms

Images as Matrices

A two-dimensional black and white image can be digitized as a matrix X of sizeM×N by imposing

a rectangular grid with M horizontal strips and N vertical strips on the image. Each rectangle in

the grid is called a pixel (picture element) and is given a numerical value (grayscale) corresponding

to the average darkness or brightness of the image in the pixel. With eight bit encoding the numbers

range from 0 to 255 with 0 for black and 255 for white. The origin of coordinates is placed at the

upper left-hand corner of the image and the vertical axis points down. Thus the entry X[i, j] in X

encodes the average grayscale level of the pixel that is i units down and j units to the right of the

upper left-hand corner of the image (this system of coordinates agrees with the usual labeling of

matrix entries).

For example, we can digitize the image

� � � �

� � � �

� � � �

� � � �

by the matrix X =




0 240 0 0
0 0 240 240
0 240 0 240

0 240 240 0


 .

(We are making the white squares slightly gray by encoding them using 240 instead of 255.) We

shall only consider the case M = N in the following.

One-scale 2D Wavelet Transform

Let X be an N × N matrix that encodes a grayscale image (assume N is even). Let Wa be the

N×N one-scale analysis matrix for a wavelet transform (such as Haar, CDF(2,2), or Daub4). The

transform of X is defined to be

Y = WaXWT
a .

There are three ways to describe Y:

1. Write X =
[

x1 · · · xN

]
in terms of its columns and set

Z = WaX =
[

Wax1 · · · WaxN

]
.

The columns of Z are the wavelet transforms of the columns of X, and Y = ZWT
a

=

(WaZ
T)T. Thus the rows of Y are the wavelet transforms of the rows of Z.

2. Write XT =
[

x̃1 · · · x̃N

]
in terms of its columns (these are the rows of X) and set

Z̃ = XWT
a = (WaX

T)T =
[

Wax̃1 · · · Wax̃N

]T
.
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The rows of Z̃ are the wavelet transforms of the rows of X, and Y = WaZ̃. Thus the columns

of Y are the wavelet transforms of the columns of Z̃.

3. Write Wa =

[
U

V

]
, where U consists of the N/2 trend rows and V consists of the N/2

detail rows (see Theorem 3.4.2). Then

Y =

[
U

V

]
X
[

UT VT
]

=

[
UXUT UXVT

VXUT VXVT

]
=

[
Yss Ysd

Yds Ydd

]
. (3.21)

Example 3.5.1. Take Wa = 1
2

[
1 1
1 −1

]
to be the (unnormalized) 2 × 2 Haar transform matrix

and X =

[
a b
c d

]
. Then

Y =
1

4

[
1 1
1 −1

] [
a b
c d

] [
1 1
1 −1

]
=

1

4

[
(a+ b+ c+ d) (a− b+ c− d)
(a− c+ b− d) (a− b− c+ d)

]

Thus we see that

Yss =
1

4
(a+ b+ c+ d) (overall average)

Ysd =
1

4
[(a− b) + (c− d)] (average of column-to-column differences)

Yds =
1

4
[(a− c) + (b− d)] (average of row-to-row differences)

Ydd =
1

4
[(a− b)− (c− d)] (column difference of row differences)

�

Let Ws = W−1
a

be the one-scale synthesis matrix for the wavelet transform. Then the original

matrix X can be reconstructed from the transform Y:

X = WsWaXWT
a WT

s = WsYWT
s

Write Ws =
[
Ũ Ṽ

]
in terms of the trend and detail columns (as in Theorem 3.4.2). and use the

block decomposition of Y in (3.21). Then

X =
[
Ũ Ṽ

] [ Yss Ysd

Yds Ydd

] [
ŨT

Ṽ T

]

= ŨYssŨ
T + ŨYsdṼ

T + ṼYdsŨ
T + ṼYddṼ

T (3.22)

We call (3.22) the multiresolution decomposition of X. Descriptions 1. and 2. above of Y show

that the four matrices in the decomposition (3.22) carry the following information about the image

encoded by X:

Xss = ŨYssŨ
T column and row trend (overall features of image)

Xsd = ŨYsdṼ
T column trend and row detail (vertical edges of image)

Xds = ṼYdsŨ
T column detail and row trend (horizontal edges of image)

Xdd = ṼYddṼ
T column and row detail (diagonal edges of image)
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(see Figures 6.3 and 6.4 in Ripples).

Example 3.5.2. Take Wa in Example 3.5.1. Then Ws =

[
1 1
1 −1

]
, and so Ũ =

[
1
1

]
and

Ṽ =

[
1

−1

]
. Suppose X =

[
14 2
4 0

]
. Then

Y =
1

4

[
1 1
1 −1

] [
14 2
4 0

][
1 1
1 −1

]
=

[
5 4
3 2

]
.

The multiresolution decomposition of X is

[
14 2
4 0

]
= 5ŨŨT + 4ŨṼT + 3ṼŨT + 2ṼṼT

= 5

[
1 1

1 1

]
+ 4

[
1 −1

1 −1

]
+ 3

[
1 1

−1 −1

]
+ 2

[
1 −1

−1 1

]

= Xss + Xsd + Xds + Xdd.

If we represent a matrix entry 1 by a white box and a matrix entry −1 by a black box, then this last

equation can be displayed as

X = 5
� �

� �
+ 4

� �

� �
+ 3

� �

� �
+ 2

� �

� �

The coefficient 5 is the average of the four entries in X, and it multiplies the matrix with all entries

white. The other three matrices detect the pattern of vertical, horizontal, and diagonal detail in X.

�

Example 3.5.3. For a slightly more complicated example, take Wa to be the (unnormalized) 4× 4

Haar transform matrix and take X to be the matrix at the beginning of this section:

Wa =
1

2




1 1 0 0
0 0 1 1

1 −1 0 0
0 0 1 −1


 , X =




0 240 0 0
0 0 240 240

0 240 0 240
0 240 240 0


 .

Then we calculate (with the aid of MATLAB) that

Y = WaXWT
a =




60 120 −60 0

120 120 −120 0
60 −120 −60 0
0 0 0 −120


 .

Hence the four submatrices of Y are

Yss =

[
60 120
120 120

]
, Ysd =

[
−60 0
−120 0

]
, Yds =

[
60 −120
0 0

]
, Ydd =

[
−60 0
0 −120

]
.
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The synthesis matrix is

Ws =




1 0 1 0
1 0 −1 0

0 1 0 1
0 1 0 −1


 and so Ũ =




1 0
1 0

0 1
0 1


 , Ṽ =




1 0
−1 0

0 1
0 −1


 .

The multiresolution decomposition (calculated with the aid of MATLAB) is

X = Ũ

[
60 120
120 120

]
ŨT + Ũ

[
−60 0
−120 0

]
ṼT

+ Ṽ

[
60 −120

0 0

]
ŨT + Ṽ

[
−60 0

0 −120

]
ṼT

= Xss + Xsd + Xds + Xdd,

where the components are

Xss =




60 60 120 120
60 60 120 120

120 120 120 120
120 120 120 120


 , Xsd =




−60 −60 0 0
−60 −60 0 0

−120 −120 0 0
−120 −120 0 0




Xds =




60 60 −120 −120

−60 −60 120 120
0 0 0 0
0 0 0 0


 , Xdd =




−60 60 0 0

60 −60 0 0
0 0 −120 120
0 0 120 −120




Comparing these four matrices with the original image, we see that Xss gives the overall pattern

(darker in the upper-left portion, lighter elsewhere), Xsd emphasizes the vertical edges, Xds em-

phasizes the horizontal edges, and Xdd emphasizes the diagonal features. �

Multi-scale 2D Wavelet Transform

The multiscale 2D wavelet tranform is obtained by the same pyramid algorithm used for one-

dimensional signals: the three submatrices containing detail information are saved, and the pure

trend submatrix is subjected to further wavelet transforms.

Let the image matrix X be of size N ×N , where nowN is a multiple of 4, and let

Y(1) =




Y
(1)
ss Y

(1)
sd

Y
(1)
ds

Y
(1)
dd




be the one-scale transform of X. Let W
(2)
a be the N/2×N/2 wavelet analysis matrix and write

W(2)
a

Y(1)
ss

(W(2)
a

)T =




Y
(2)
ss Y

(2)
sd

Y
(2)
ds

Y
(2)
dd


 ,
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where each block matrix is of size N/4 ×N/4. The two-scale transform Y(2) of X is obtained by

replacing the block Y
(1)
ss in Y(1) by this block matrix form of W

(2)
a Y

(1)
ss (W

(2)
a )T:

Y(2) =







Y
(2)
ss Y

(2)
sd

Y
(2)
ds

Y
(2)
dd


 Y

(1)
sd

Y
(1)
ds

Y
(1)
dd




(see Fig. 6.5 of Ripples). The inverse transformation begins with

Y(1)
ss = W(2)

s




Y
(2)
ss Y

(2)
sd

Y
(2)
ds

Y
(2)
dd


 (W(2)

s )T,

where W
(2)
s is the N/2 × N/2 synthesis matrix. Then X is reconstructed from the one-scale

transform Y(1) using theN×N synthesis matrix Ws as before. IfN/4 is even, then this procedure

can be continued by applying a 2D wavelet transform to Y
(2)
ss (see Figures 6.6 and 6.7 of Ripples).

Example 3.5.4. Take X as in Example 3.5.3. Then the Haar transform of the one-scale trend

submatrix Y
(1)
ss is

1

4

[
1 1

1 −1

] [
60 120

120 120

] [
1 1

1 −1

]
=

[
105 −15

−15 −15

]
.

Hence the two-scale Haar transform of X is

Y(2) =




105 −15 −60 0
−15 −15 −120 0

60 −120 −60 0
0 0 0 −120


 .

�

3.6 Exercises

1. Let x be a real-valued function on {0, 1, 2, 3}. Extend x to be a periodic function on the

integers of period 4. Define a trend function s and a detail function d by the following lifting

step formulas for n = 0, 1:

d[n] = x[2n+ 1] − x[2n]− 2x[2n+ 2]

s[n] = x[2n] + d[n] + 3d[n− 1]

(a) Suppose x = [ 4, 7, 0, 3 ]. Calculate d[0], d[1], s[0], and s[1].
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(b) Let xeven =

[
x[0]
x[2]

]
and xodd =

[
x[1]
x[3]

]
. Identify s and d with column vectors in

R2 as usual. Let P be the prediction linear transformation: P

[
xeven

xodd

]
=

[
xeven

d

]
. Write

down the matrix for P . First give the matrix in 2 × 2 block form (using the shift matrix S),

and then give the 4 × 4 numerical matrix.

(c) Let U be the update linear transformation: U

[
xeven

d

]
=

[
s

d

]
.Write down the matrix

for U . First give the matrix in 2 × 2 block form (using the shift matrix S), and then give the

4× 4 numerical matrix.

2. Show that the coefficients in the Daub4 transform satisfy a+b+c+d = 8 and a+c = b+d

(see Example 3.3.4). Use this to calculate the transform Tax when x is the constant signal

[1 1 1 1]T. Find the trend vector s and the detail vector d. Check that ||x||2 = ||s||2 + ||d||2.

3. SupposeA,B, C,D are m×m circulant matrices that satisfy AD−BC = zI , where z 6= 0
is a complex number.

(a) Show that the 2m× 2m matrix

[
A B
C D

]
is invertible with inverse z−1

[
D −B
−C A

]
.

(b) Use the result from (a) to obtain the formula for the CDF(2,2) synthesis transform from

the analysis transform (see Example 3.4.1).

4. The CDF(3,1) wavelet transform of a vector x of length N (even) consists of the following

lifting steps (in the order given) with a final normalization:

First update U1: s(1)[n] = xeven[n] − 1

3
xodd[n− 1]

Prediction P : d(1)[n] = xodd[n] − 1

8
(9s(1)[n] + 3s(1)[n+ 1])

Second update U2: s(2)[n] = s(1)[n] +
4

9
d(1)[n]

(a) Draw a flow-chart for this transform (as in Ripples).

(b) Let U1 be the first update transformation: U1

[
xeven

xodd

]
=

[
s(1)

xodd

]
. Write down the

matrix for P in 2× 2 block form using the N/2×N/2 identity matrix I and shift matrix S.

(c) Let P be the prediction transformation: P

[
s(1)

xodd

]
=

[
s(1)

d(1)

]
. Write down the matrix

for P in 2× 2 block form using the N/2×N/2 identity matrix I and shift matrix S.

(d) Let U2 be the second update linear transformation: U2

[
s(1)

d(1)

]
=

[
s(2)

d(1)

]
.Write down

the matrix for U2 in 2 × 2 block form.

5. Consider the CDF(3,1) wavelet transform on R6.
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(a) The one-step analysis matrix Ta is

1

4
√

2




6 6 −1 0 0 −2

−3 3 −1 0 0 1




Fill in the missing entries.

(b) The one-step synthesis matrix Ts is

1

4
√

2




3 −6
3 6

1 2
0 0

0 0
1 −2




Fill in the missing entries.

6. The unnormalized 2 × 2 Haar analysis matrix is Wa =
1

2

[
1 1
1 −1

]
.

(a) Calculate the one-scale Haar wavelet transform Y of the matrix X =

[
2 4
0 8

]
.

(b) Calculate the multiresolution representation X = Xss + Xsd + Xds + Xdd.



Chapter 4

Wavelet Transforms by Two-channel

Filter Banks

4.1 Finite Signals and the z-Transform

Let x be a real-valued function on the integers Z. Assume that x has finite support: there are integers

p ≤ q so that x[n] = 0 when n < p or n > q. We call such a function a signal. If x 6= 0 and we

choose p, q so that x[p] 6= 0 and x[q] 6= 0, then we call the integer q− p+ 1 the length of the signal

(the zero signal has length 0).

Define δk (the unit impulse at k) by

δk[n] =

{
1 if n = k,

0 if n 6= k.

Every signal x can be written uniquely as a linear combination of unit impulses:

x =
∑

k∈Z

x[k]δk .

The set of all signals is a real vector space (infinite-dimensional) with a basis given by the unit

impulses.

Let x be a signal. We define the z-transform of x to be

X(z) =
∑

n∈Z

x[n] z−n where z ∈ C and z 6= 0.

Since x has finite support, there are only a finite number of nonzero terms in the sum, and X(z)
is a Laurent polynomial (finite linear combination of positive and negative powers of z). Suppose

x[n] = 0 for n < p and for n > q. Then we can write the z-transform of x as

X(z) = x[p] z−p + x[p+ 1] z−p−1 + · · ·+ x[q] z−q

(the sum has at most q − p+ 1 nonzero terms).

When z = e i ω has absolute value 1 (with ω real), then z−n = e− inω and

X(e iω) =
∑

n∈Z

x[n] e− i nω (finite Fourier series).

In signal-processing language ω is the frequency variable, whereas n is the discrete time variable.

49
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Example 4.1.1. Suppose the nonzero values of x are x[−1] = 2, x[0] = 3, and x[2] = 4. Then

x = 2δ−1 + 3δ0 + 4δ2,

and x is a signal of length 2 − (−1) + 1 = 4 (note that x[1] = 0). The z-transform of x is

X(z) = 2z + 3 + 4z−2. When z = e i ω then the z-transform becomes the finite Fourier series:

X(e iω) = 2e iω + 3 + 4e−2 i ω

�

The transformation from x to X(z) is linear: adding signals x and y or multiplying x by a

real number corresponds to the same operations on the z-transforms X(z) and Y (z). Every finite

Laurent polynomial with real coefficients is the z transform of a unique signal.

Given signals x and y, we define their inner product to be

〈x, y〉 =
∑

n∈Z

x[n] y[n]

(by the finite support condition, there are only finitely many nonzero terms in the sum).

Define the energy ||x||2 of x by

||x||2 = 〈x, x〉 =
∑

n∈Z

x[n]2.

The energy in x is expressed in terms of the z-transform by Parseval’s relation:

||x||2 =
1

2π

∫ 2π

0
|X(e iω)|2 dω (4.1)

This follows from equation (1.8) because the function f(ω) = X(e iω) has Fourier coefficients

x[−n]:
1

2π

∫ 2π

0
f(ω)e− inω dω =

∑

k

x[k]

{
1

2π

∫ 2π

0
e− i (k+n)ω dω

}
= x[−n]

(the integral in brackets is zero except when k + n = 0, and then it is 1).

Discrete Fourier Transform and z-Transform

Let x be a finite signal. Assume that p ≤ q are integers so that all the nonzero values of x[n]
occur for p ≤ n ≤ q, and that x[p] 6= 0, x[q] 6= 0. Thus x has length q − p + 1. Fix any integer

N ≥ q − p + 1. Then we define the N -periodic extension of x as follows: Every integer n can be

expressed uniquely as n = k +mN where p ≤ k < p+N and m ∈ Z. We define

xper,N [k +mN ] =

{
x[k] if p ≤ k ≤ q,

0 if q < k < p+N .

This definition makes sense because q < p+N (since q−p < N ). It is clear that xper,N [n+N ] =
xper,N [n] for all n ∈ Z.



Z TRANSFORM 51

We identify xper,N with the N -component column vector



xper,N [0]
xper,N [1]

...

xper,N [N − 1]




Notice that we have inserted zeros in the vector xper,N as needed to obtain a vector with N com-

ponents (this is called zero padding). The N -periodic signal has the same energy as the original

signal:

||xper,N ||2 = ||x||2

since both vectors have the same nonzero entries.

Theorem 4.1.2. The discrete Fourier transform of xper,N is obtained by sampling the z-transform

X(z) at the N th roots of unity (going counterclockwise around the unit circle):

x̂per,N [k] = X(wk) for k = 0, 1, . . . , N − 1, where w = e2π ik/N .

Proof. The discrete Fourier transform of an N -periodic function can be calculated by summing over

any set of representatives of the integers modulo N . If we use the set p ≤ n ≤ p + N and the

definition of xper,N , we obtain

x̂per,N [k] =
∑

p≤n<p+N

xper,N [n]w−nk

=
∑

p≤n≤q

x[n]w−nk = X(wk).

Notice that in the second sum we only need the values p ≤ n ≤ q since q < p + N and x[n] = 0
for q < n < p+N . �

Example 4.1.3. Suppose x is the function in Example 4.1.1. Then p = −1 and q = 2, so we can

make an N -periodic extension of x for any integer N ≥ 4. The 4-periodic extension has values

xper,4[0] = 3, xper,4[1] = 0, xper,4[2] = 4, xper,4[3] = −2

(the value at 3 is x[−1] since 3 = −1 + 4). Since e2π i/4 = i , we have

x̂per,4[k] = X( i k) for k = 0, 1, 2, 3

in this case. For this example X(z) = 2z + 3 + 4z−2; thus Theorem 4.1.2 shows that x̂per,4

corresponds to the column vector



X(1)

X( i )
X(−1)

X(− i )


 =




9

2 i + 3 − 4
−2 + 3 + 4

−2 i + 3 − 4


 =




9

−1 + 2 i
5

−1 − 2 i




We can also define a 5-periodic extension of x. In this case

xper,5[0] = 3, xper,5[1] = 0, xper,5[2] = 4, xper,5[3] = 0, xper,5[4] = −2,

since 3 ≡ −2 (mod 5) and 4 ≡ −1 (mod 5). Note that xper,5[3] 6= xper,4[3]. �
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Convolution

If x and y are finite signals, we define their convolution x ∗ y as the function

(x ∗ y)[n] =
∑

j+k=n

x[j]y[k].

The summation over the pairs (j, k) in this equation can be written in two forms:

(x ∗ y)[n] =
∑

k∈Z

x[n− k]y[k] =
∑

j∈Z

x[j]y[n− j].

The convolution product can be described in words as follows: take the function x[j]y[k] of the two

(discrete) variables (j, k) and add the values of this function at all integer points along the diagonal

line j+k = n. If |n| is sufficiently large, this diagonal line does not intersect the set of points where

x[j]y[k] 6= 0, and hence x ∗ y[n] = 0 in this case. Thus x ∗ y is a finite signal. From the definition

we see that x ∗ y = y ∗ x.

If x = δp and y = δq are unit impulses, then the function x[j]y[k] is zero except when j = p
and k = q. Hence we get

δp ∗ δq = δp+q (4.2)

in this case. In general, if x[j] = 0 for j < p or j > q then

(x ∗ y)[n] =
∑

p≤j≤q

x[j]y[n− j].

This shows that the value of x ∗ y at n depends on the values of y between n− p and n− q. There

is no wraparound in this formula, however, and it is not the same as the circular convolution of

periodic extensions of x and y defined in Section 2.2.

Example 4.1.4. Take x[n] = 1/3 for n = −1, 0, 1 and zero otherwise. Then

(x ∗ y)[n] =
1

3
(y[n− 1] + y[n] + y[n+ 1])

is a moving average. If y[n] = 0 for n < 0 and n > 7, for example, then (x∗y)[n] = 0 for n < −1

and n > 8. However (x ∗ y)[−1] 6= 0 and (x ∗ y)[8] 6= 0, in general, even though y[−1] = 0 and

y[8] = 0. Thus convolution with x spreads out the support of y. �

Here is one of the most important properties of convolution.

Theorem 4.1.5. Let x and y be functions on Z with finite support. Then the z-transform of x ∗y is

the pointwise productX(z)Y (z) of the z-transforms.

Proof. The definition of convolution can be written in terms of unit impulses as

x ∗ y =
∑

p,q

x[p]y[q]δp+q .

Since the z-transform of the unit impulse δp+q is z−p−q = z−pz−q , we see that the z-transform of

x ∗ y is ∑

p,q

x[p]y[q]z−p−q = X(z)Y (z).

�
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Shift Operator

We define the shift operator S applied to a function x on Z by

(Sx)[n] = x[n− 1] for n ∈ Z

(the minus sign appears in the formula so that the graph of Sx is obtained by shifting the graph of x

to the right one unit). From the definition of convolution we see that Sx = δ1 ∗ x. More generally,

for any integer k we have

Skx = δk ∗ x.

Hence the shift-invariant linear transformation
∑

k akS
k acts by convolution with the function∑

k akδk . This has the following important consequence:

Theorem 4.1.6. Let x be a signal. Then the z-transform of Sx is z−1X(z). More generally, the

z-transform of a linear combination
∑

k akS
kx of shifts of x is

(∑
k akz

−k
)
X(z).

Proof. The unit impulse at k obviously has z-transform z−k . Since

∑

k

akS
kx =

∑

k

akδk ∗ x,

the theorem follows from Theorem 4.1.5. �

Periodic Shift Operator

Now that we have used the symbol S to denote the shift operator on nonperiodic signals, we will

write SN to denote the shift operator on periodic functions of period N , to avoid confusion.

Suppose x is a signal such that x[n] = 0 when n < p or n > q. Fix N > q − p. Then it is easy

to check that

SNxper,N = (Sx)per,N . (4.3)

This follows from a basic property of modular arithmetic: if a ≡ b (mod N ), then a + 1 ≡ b+ 1

(mod N ). For example, the signal x = 3δ3 + 4δ4 + 5δ5 + 6δ6 has length 4. If we takeN = 4, then

xper,4 corresponds to the column vector u =
[

4 5 6 3
]T

(the positions of the components of

u are determined by reading the subscripts on the unit impulse functions modulo 4). The shifted

(nonperiodic) signal

Sx = 3δ4 + 4δ5 + 5δ6 + 6δ7

also has length 4 and (Sx)per,4 corresponds to the column vector
[

3 4 5 6
]T

= S4u (note

the wraparound).

Theorem 4.1.7. The discrete Fourier transform of SNxper,N is obtained by sampling z−1X(z) at

the N th roots of unity.

Proof. Set w = e2π i /N and y = Sx. From Theorem 4.1.2 we have

ŷper,N [k] = Y (wk) = w−kX(wk) = w−kx̂per,N [k].

Now apply (4.3). �
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4.2 Wavelet Transforms and Polyphase Matrices

We now construct some linear transformations on the vector space of signals that are fundamental

for digital signal processing and wavelet theory.

Downsampling and Upsampling

Let x be a signal. The downsampling by 2 of x is the signal

x2↓[n] = x[2n] for n ∈ Z.

This defines a linear transformation: 2 ↓ x = x2↓. We denote the z-transform of x2↓ by X2↓(z). It

is given by the formula

X2↓(z) =
∑

n

x[2n] z−n (4.4)

The upsampling by 2 of x is the signal

x2↑[n] =

{
x[m] if n = 2m is even,

0 if n is odd.

This defines a linear transformation: 2 ↑ x = x2↑. We denote the z-transform of x2↑ by X2↑(z). It

is given by the formulas

X2↑(z) =
∑

n

x[n] z−2n = X(z2). (4.5)

The signal x2↑ is a stretched version of x (with zeros interlaced); we recover x from x2↑ by down-

sampling:

2 ↓ 2 ↑ x = x.

Thus the transformation 2 ↓ is a left inverse to the transformation 2 ↑ . In the opposite order, we

have
(

2 ↑ 2 ↓ x
)

[n] =

{
x[n] if n is even

0 if n is odd.
(4.6)

Hence 2 ↑ 2 ↓ x is the projection of x onto the signals that are zero at all odd integers. If x[n] = 0

when n is even, then 2 ↑ 2 ↓ x = 0. Thus 2 ↓ is not a right inverse to 2 ↑ and neither 2 ↑
nor 2 ↓ are invertible linear transformations on the vector space of signals. (This is a significant

change from the finite-dimensional case of N -periodic signals).

Example 4.2.1. Suppose the nonzero values of x are x[−1] = 2, x[0] = 3, x[1] = 4, and x[2] = 1.

Then the nonzero values of x2↓ are x2↓[0] = 3 and x2↓[1] = 1. The z-transforms are

X(z) = 2z + 3 + 4z−1 + z−2 and X2↓(z) = 3 + z−1.

If we set y = x2↓, then the nonzero values of y2↑ are y2↑[0] = 3 and y2↑[2] = 1. Thus

Y2↑(z) = Y (z2) = 3 + z−2

(the even terms in X(z)). �
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Even-Odd Splitting

In performing a wavelet decomposition of a periodic function x on Z of even period N , the first

operation was to split x into xeven and xodd. We can do a similar splitting for a nonperiodic signal

x. Define

x0 = 2 ↓ x and x1 = 2 ↓ S−1x,

(the operator S−1 shifts x left by one unit). This splitting corresponds to the flow chart

2 ↓ −→ x0

↗
x

↘
S−1 → 2 ↓ → x1

We can reconstruct x from x0 and x1:

x = 2 ↑ x0 + S 2 ↑ x1. (4.7)

This relation corresponds to the flow chart

x0 −→ 2 ↑
↘

+ −→ x

↗
x1 → 2 ↑ → S

To prove (4.7), note from (4.6) that

2 ↑ x0[n] =

{
x[n] if n is even,

0 if n is odd.

Likewise,

(
S 2 ↑ x1

)
[n] =

(
2 ↑ x1

)
[n− 1] =

(
2 ↑ 2 ↓ S−1x

)
[n− 1] =

{
0 if n is even,

x[n] if n is odd,

since (S−1x)[n−1] = x[n]. Thus the two vectors on the right side of (4.7) fit together like a zipper

to give the values of x[n] for all n. From (4.7) we have the perfect reconstruction formula

x = 2 ↑ 2 ↓ x + S 2 ↑ 2 ↓ S−1x (4.8)

This formula corresponds to the lazy wavelet transform:

2 ↓ −→ x0 −→ 2 ↑
↗ ↘

x + −→ x

↘ ↗
S−1 → 2 ↓ → x1 → 2 ↑ → S
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The signal is split into even/odd parts that are immediately recombined without further transforma-

tion.

The z-transforms of x0 and x1 are given by

X0(z) =
∑

n

x[2n]z−n = X2↓(z)

X1(z) =
∑

n

x[2n+ 1]z−n = (zX(z))2↓

(see Fig. 7.1 in Ripples). Notice in the second formula that we multiply by z before downsampling.

We can express X0(z) and X1(z) directly in terms of X(z) by introducing the variable z1/2:

X0(z) =
1

2

{
X(z1/2) +X(−z1/2)

}
and X1(z) =

z1/2

2

{
X(z1/2)−X(−z1/2)

}
. (4.9)

The notation in (4.9) means that we substitute z1/2 in z-transform of x and simplify by the usual

algebraic rules for exponents:

(z1/2)n = zn/2 and (−z1/2)n = (−1)nzn/2.

To verify the correctness of (4.9), observe that the terms with n odd cancel in the formula forX0(z),

whereas the terms with n = 2m even contribute x[2m]z−m. Likewise, in the formula forX1(z) the

terms with n even cancel, whereas the terms with n = 2m+ 1 odd contribute

x[2m+ 1]z1/2z−m−1/2 = x[2m+ 1]z−m.

Thus (4.9) follows from these observations.

The z-transform version of equation (4.7) is

X(z) = X0(z)2↑ + z−1 (X1(z)2↑) = X0(z
2) + z−1X1(z

2) (4.10)

(see Fig. 7.2 in Ripples). Notice in this equation that we multiply by z−1 after upsampling.

Example 4.2.2. Suppose the nonzero values of x are x[−3] = 2, x[0] = 3, x[1] = 4, and x[2] = 1.

Then X(z) = 2z3 + 3 + 4z−1 + z−2 and we have

X0(z) = X(z)2↓ = 3 + z−1,

X1(z) = (zX(z))2↓ =
(
2z4 + 3z + 4 + z−1

)
2↓

= 2z2 + 4

(notice the shift of the exponents). We recover X(z) by (4.10):

X0(z
2) + z−1X1(z

2) = (3 + z−2) + z−1(2z4 + 4) = X(z).

�
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Lifting and the Polyphase Matrix

We return to the one-scale analysis and synthesis wavelet transformations. The formulas for analysis

and synthesis transforms (such as CDF(2,2) and Daub4) are all expressed in terms of the shift op-

erator S (but without the assumption of periodicity)—see Ripples, §3.6. The splitting of a periodic

signal of period N into even and odd signals of period N/2 is now replaced by the downsampling

of the signal x into the pair of signals x0 and x1 (this is called the polyphase decomposition of the

signal). Since S becomes the operator of multiplication by z−1 when we use z-transforms, it is easy

to calculate the prediction and update steps in terms of the z-transforms of X0(z) and X1(z).

Example 4.2.3 (CDF(2,2)). This transform consists of a prediction step, followed by an update and

a normalization:

[
y0

y1

]
=

[ √
2I 0

0 (1/
√

2)I

] [
I 1

4 (I + S)
0 I

] [
I 0

−1
2 (I + S−1) I

] [
x0

x1

]

Thus the CDF(2,2) analysis transform becomes a matrix multiplication

[
Y0(z)

Y1(z)

]
= Hp(z)

[
X0(z)

X1(z)

]
,

on the vector of z-transforms of the downsampled signal. Here the analysis polyphase matrix Hp(z)

is defined by

Hp(z) =

[ √
2 0

0 1/
√

2

] [
1 1

4 (1 + z−1)
0 1

] [
1 0

−1
2(1 + z) 1

]

=

√
2

8

[
(−z + 6 − z−1) (2 + 2z−1)

−(2 + 2z) 4

]
.

The inverse transform is obtained by inverting the individual lifting steps:

[
x0

x1

]
=

[
I 0

1
2 (I + S−1) I

][
I −1

4 (I + S)
0 I

] [
(1/

√
2)I 0

0 I

][
y0

y1

]

In terms of z-transforms, this transformation becomes

[
X0(z)

X1(z)

]
= Gp(z)

[
Y0(z)

Y1(z)

]
,

where the synthesis polyphase matrix Gp(z) is defined by

Gp(z) =

[
1 0

1
2(1 + z) 1

] [
1 −1

4 (1 + z−1)
0 1

][
1/

√
2 0

0
√

2

]

=

√
2

8

[
4 −(2 + 2z−1)

(2 + 2z) (−z + 6− z−1)

]
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Since Gp(z) is the inverse matrix to Hp(z), the formula for Gp(z) can be obtained directly from

the formula for Hp(z) using Cramer’s Rule:

[
a b

c d

]−1

=
1

δ

[
d −b
−c a

]
where δ = ad− bc. (4.11)

(the lifting-step factorization of Hp(z) shows that it has determinant one). We will use this formula

for the inverse of a 2 × 2 matrix several times. �

The general one-scale wavelet analysis and synthesis transforms are of the same form as the

CDF(2,2) transform (see the discussion on p. 67 of Ripples). The analysis polyphase matrix is a

product

Hp(z) =

[
κ 0

0 1/κ

] [
1 F1(z)

0 1

]
· · ·
[

1 0

Fk(z) 1

]
=

[
H00(z) H01(z)

H10(z) H11(z)

]
, (4.12)

where F1(z), . . . , Fk(z) and Hij(z) are Laurent polynomials and κ 6= 0 (there may be several

prediction and update factors). The signal x is downsampled into x0 and x1 and this pair of signals

is transformed into the pair y0 and y1, whose z-transforms are

[
Y0(z)

Y1(z)

]
= Hp(z)

[
X0(z)

X1(z)

]
.

This transformation is described by the flow chart

2 ↓ −→ X0(z) −→
↗

X(z)
↘

z → 2 ↓ → X1(z) −→

Hp(z)

−→ Y0(z)

−→ Y1(z)

Notice that the polyphase matrix acts on the z-transform of the signal after the signal has been split,

and the splitting involves a time shift in one channel.

The inverse transform is obtained using the synthesis polyphase matrix:

Gp(z) = Hp(z)
−1 =

[
1 0

−Fk(z) 1

]
· · ·
[

1 −F1(z)
0 1

][
1/κ 0
0 κ

]
.

The flow chart for the inverse transform is

Y0(z) −→

Y1(z) −→

Gp(z)

−→ X0(z) −→ 2 ↑
↘

+ −→ X(z)

↗
−→ X1(z) → 2 ↑ → z−1

Notice that the inverse polyphase matrix acts on the two z-transforms before they are upsampled,

shifted, and combined.
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We can calculate Gp(z) directly from the four Laurent polynomials in the matrix Hp(z) using

Cramer’s rule:

Gp(z) =

[
H11(z) −H01(z)

−H10(z) H00(z)

]
(4.13)

(note that the normalization matrix has been chosen to ensure detHp(z) = 1). The perfect recon-

struction (PR) property holds:

[
X0(z)

X1(z)

]
= Gp(z)

[
Y0(z)

Y1(z)

]
.

4.3 Filter Banks and Modulation Matrices

The definition of wavelet transforms using the lifting method and the polyphase matrix assures that

the PR property always holds, since each step of the lifting process (prediction, update, normaliza-

tion) uses an invertible elementary matrix. However, this approach doesn’t explain how the lifting

steps are chosen to obtain desirable properties in the wavelet transform, such as separation of trend

and detail. To understand this aspect, we need an alternate description of wavelet transforms using

ideas from signal processing (low-pass and high-pass filters).

FIR Filters

Let h be a fixed signal. The linear transformation T defined by

Tx = h ∗ x, for all signals x,

is called a finite impulse response filter (FIR filter). If we take x = δ0 (the unit impulse at 0), then

Tδ0[n] =
∑

k

h[n− k]δ0[k] = h[n]

by definition of δ0. Thus h is uniquely determined by T and is called the impulse response function

of the filter. Since h has finite support, it follows that Tx also has finite support for every signal

x. Write H(z) for the z-transform of h. Then the z-transform of Tx is H(z)X(z) by Theorem

4.1.5. Thus the action of the filter on the z-transform is to multiply by the functionH(z). Parseval’s

relation (4.1) gives

||Tx||2 =
1

2π

∫ 2π

0
|H(e iω)|2|X(e iω)|2 dω. (4.14)

This shows, for example, that if |H(e iω)| = 1 for 0 ≤ ω ≤ 2π, then ||Tx||2 = ||x||2 (thus T is

energy-preserving in this case).

Example 4.3.1. The transformation Sp, where S is the shift operator and p is an integer, is a FIR

filter, with h = δp:

(δp ∗ x)[n] =
∑

k

δp[k]x[n− k] = x[n− p] = (Spx)[n] (4.15)
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The z-transform of δp is z−p. Since |e ipω| = 1 for 0 ≤ ω ≤ 2π, we have ||δp ∗ x||2 = ||x||2 by

(4.14); this is obvious (without z-transforms) in this case since

||δp ∗ x||2 =
∑

n

|x[n− p]|2 =
∑

n

|x[n]|2 = ||x||2.

If T is any FIR filter with impulse response function h, then T is a linear combination of powers of

the shift operator:

T =
∑

p

h[p]Sp

(this follows from (4.15) because h =
∑

p h[p]δp). Thus FIR filters are the linear transformations

of nonperiodic signals that are analogous to N ×N circulant matrices acting on N -periodic signals

(see Theorem 2.2.2). �

Two-channel Filter Banks

A two-channel analysis filter uses two FIR filters with impulse responses h0 (low pass) and h1 (high

pass) to transform the input signal x into

Tax =

[
y0

y1

]
, where y0 = 2 ↓ h0 ∗ x and y1 = 2 ↓ h1 ∗ x. (4.16)

Since convolution and downsampling are linear processes, this gives a linear transformation Ta

whose output is the pair of signals y0, y1:

h0∗ −→ 2 ↓ −→ y0

↗
Ta : x

↘
h1∗ −→ 2 ↓ −→ y1

Thus the entire signal first passes through each filter separately and then the two filtered signals are

downsampled (see Fig. 7.4 in Ripples). By contrast, in the lifting procedure the operations are in

the opposite order and there is a shift on one branch.

Since the z-transform of h0 ∗ x is H0(z)X(z) and the z-transform of h1 ∗ x is H1(z)X(z), we

can use (4.9) to express the z-transforms of y0 and y1 as

Y0(z) =
1

2

{
H0(z

1/2)X(z1/2) +H0(−z1/2)X(−z1/2)
}
,

Y1(z) =
1

2

{
H1(z

1/2)X(z1/2) +H1(−z1/2)X(−z1/2)
}
.

Define the analysis modulation matrix

Hm(z) =

[
H0(z) H0(−z)
H1(z) H1(−z)

]
(4.17)
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(the entries in this matrix are Laurent polynomials). Then the formulas for Y0(z) and Y1(z) can be

combined into a single vector-matrix equation

2

[
Y0(z)

Y1(z)

]
= Hm(z1/2)

[
X(z1/2)

X(−z1/2)

]
. (4.18)

The term modulation is used to describe the matrix Hm(z) because replacing z by −z corresponds

to a half band frequency modulation (shift in frequency) ω → ω + π when z = e i ω. The entries

H0(−z) and H1(−z) in the second column of Hm(z) are frequency modulations by π of the entries

in the first column.

A two-channel synthesis filter uses two FIR filters with impulse responses g0 (low pass) and g1

(high pass) to transform a pair of input signals y0, y1 into

x̃ = Ts

[
y0

y1

]
= g0 ∗ ( 2 ↑ y0) + g1 ∗ ( 2 ↑ y1) (4.19)

Since upsampling and convolution are linear processes, this gives a linear transformation Ts whose

output we have denoted as x̃:

y0 −→ 2 ↑ −→ g0∗
↘

Ts : + −→ x̃

↗
y1 −→ 2 ↑ −→ g1∗

Thus each signal is first upsampled and then filtered (see Fig. 7.4 in Ripples). By contrast, for the

polyphase synthesis transform the operations are in the opposite order and there is a shift in one

branch.

Since the z-transform of 2 ↑ y0 is Y0(z
2) and the z-transform of 2 ↑ y1 is Y1(z

2), it follows

that the z-transform of x̃ is

X̃(z) = G0(z)Y0(z
2) +G1(z)Y1(z

2).

If we apply the analysis transform Ta to a signal x and then apply the synthesis transform Ts

to Tax, we obtain a signal x̃. We want to express the z-transform X̃(z) of the output in terms of

the z-transform X(z) of the input. We have just calculated that

X̃(z) = G0(z)Y0(z
2) +G1(z),

X̃(−z) = G0(−z)Y0(z
2) +G1(−z)Y1(z

2)

(since (−z)2 = z2). We can write this pair of equations in matrix form as

[
X̃(z)

X̃(−z)

]
= Gm(z)

[
Y0(z

2)

Y1(z
2)

]
,

where

Gm(z) =

[
G0(z) G1(z)
G0(−z) G1(−z)

]
(4.20)
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is called the synthesis modulation matrix. Notice that the entriesG0(−z) and G1(−z) in the second

row of Gm(z) are frequency modulations by π of the entries in the first row.

From (4.18) we know that

2

[
Y0(z

2)
Y1(z

2)

]
= Hm(z)

[
X(z)
X(−z)

]
.

Hence the z-transforms of the input x and output x̃ of a two-channel analysis-synthesis filter bank

are related by

2

[
X̃(z)

X̃(−z)

]
= Gm(z)Hm(z)

[
X(z)
X(−z)

]
. (4.21)

We say that the filter bank has the perfect reconstruction (PR) property if x = x̃ for all signals x.

Theorem 4.3.2. The perfect reconstruction property holds if and only if the modulation matrices

satisfy Gm(z)Hm(z) = 2I . In this case Hm(z)Gm(z) = 2I .

Proof. Suppose Gm(z)Hm(z) = 2I . Then it follows from (4.21) that PR holds. Also, since

Gm(z) = 2Hm(z)−1 (as a 2 × 2 matrix), we also have Hm(z)Gm(z) = 2I .

Conversely, if PR holds, take x = δ0. Then X(z) = 1 and (4.21) implies that

2

[
1

1

]
= Gm(z)Hm(z)

[
1

1

]
. (4.22)

Now take x = δ1. Then X(z) = z−1 and (4.21) implies that

2

[
z−1

−z−1

]
= Gm(z)Hm(z)

[
z−1

−z−1

]
.

Multiply this equation by z to obtain

2

[
1

−1

]
= Gm(z)Hm(z)

[
1

−1

]
. (4.23)

Adding and subtracting equations (4.22) and (4.23), we find that

Gm(z)Hm(z)

[
1
0

]
= 2

[
1
0

]
and Gm(z)Hm(z)

[
0
1

]
= 2

[
0
1

]

Hence Gm(z)Hm(z) = 2I . This shows that Hm(z) is an invertible matrix with inverse Gm(z).

Thus we also have Hm(z)Gm(z) = 2I . �

To obtain the main result on PR filter banks, we need the following algebraic lemma:

Lemma 4.3.3. Suppose g(z) and h(z) are Laurent polynomials such that g(z)h(z) = c (a nonzero

complex number). Then g(z) and h(z) are monomials.

Proof. We can write g(z) = cmz
m + · · ·+ cnz

n , where m ≤ n, cm 6= 0, and cn 6= 0. Likewise

h(z) = dpz
p + · · ·+ dqz

q where p ≤ q, dp 6= 0, and dq 6= 0. The product is

g(z)h(z) = cmdpz
m+p + · · ·+ cndqz

n+q .

By assumption the right side of this equation is a constant c. Hence m+ p = n + q = 0, m = n,

and p = q. Thus g(z) = cnz
n and h(z) = d−nz

−n, where cnd−n = c. �
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Theorem 4.3.4. Suppose h0 and h1 are FIR filters. These filters are the analysis part of a two-

channel FIR filter bank with perfect reconstruction if and only if the corresponding modulation

matrix Hm(z) satisfies

det Hm(z) = cz2k+1 (c 6= 0 a constant and k an integer). (4.24)

When (4.24) is satisfied then the synthesis filters g0 and g1 in the filter bank are uniquely determined

by the analysis filters:

G0(z) =
2

d(z)
H1(−z) and G1(z) = − 2

d(z)
H0(−z), (4.25)

where d(z) = detHm(z) = H0(z)H1(−z) −H0(−z)H1(z).

Proof. Suppose that there exist FIR filters g0 and g1 so that the synthesis filter bank with these filters

and the analysis filter bank with filters h0 and h1 give perfect reconstruction. Then the modulation

matrices satisfy Gm(z)Hm(z) = 2I by Theorem 4.3.2. Hence

det Gm(z) detHm(z) = det(2I) = 4.

Lemma 4.3.3 implies that d(z) = detHm(z) is a nonzero monomial. Since d(−z) = −d(z), it

must be a monomial of odd degree. Furthermore, Gm(z) = 2Hm(z)−1, so by Cramer’s rule

[
G0(z) G1(z)

G0(−z) G1(−z)

]
=

2

d(z)

[
H1(−z) −H0(−z)
−H1(z) H0(z)

]
(4.26)

Comparing entries in these matrices yields equations (4.25).

Conversely, if detHm(z) is a monomial, then we can define Laurent polynomials G0(z) and

G1(z) by (4.25). The synthesis modulation matrix is then given by (4.26) and the PR condition is

satisfied. �

Equations (4.25) show that the low pass synthesis filter g0 is obtained from the high pass analysis

filter h1 by the following operations:

• half-band frequency shift: when z = e iω then −z = e i (ω+π) (recall that for discrete signals

the frequency range is 0 ≤ ω ≤ 2π);

• time shift: multiplication of z-transforms by z−(2k+1) corresponds in the time domain to

applying the operator S−(2k+1);

• rescaling: multiplication by a constant.

The high pass synthesis filter g1 is obtained from the low pass analysis filter h0 in the same way.

Construction of PR Filter Banks

The terminology low pass and high pass for the filters in a filter bank describes their frequency

response. An ideal pair of filters h0 (low pass) and h1 (high pass) would have z-transforms that

satisfy

H0(e
iω) =

{
1 when 0 ≤ ω < L,

0 when L ≤ ω ≤ π,
and H1(e

iω) =

{
0 when 0 ≤ ω < L,

1 when L ≤ ω ≤ π.
(4.27)
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where L is the crossover frequency (0 < L < π) between the two filters. (Note that the real-valued

filter h has a Fourier transform satisfying H(e− i ω) = H(e iω); since the Fourier transform is

periodic of period 2π we only need to specify it in the range 0 ≤ ω ≤ π.) For such filters, the filtered

signal h0∗x only has low frequencies (|ω| < L), since its Fourier transformH0(e
iω)X(e iω) is zero

when L ≤ |ω| < π. Likewise, the filtered signal h1 ∗ x only has high frequencies (L ≤ |ω| ≤ π).

However, the filters described by (4.27) have an infinite number of nonzero coefficients, since

h0[n] =
1

2π

∫ L

−L
e i nω dω =

sin(nL)

nπ

and sin(nL) 6= 0 for infinitely many integers n (recall that 0 < L < π).

To obtain FIR filters we must allow some overlap between the low and high frequency bands;

the partial separation into high and low frequencies is made by requiring that

H0(z) = (1 + z)pϕ(z) and H1(z) = (1− z)qψ(z) (4.28)

for some positive integers p and q, where ϕ(z) and ψ(z) are Laurent polynomials with ϕ(−1) 6= 0

and ψ(1) 6= 0. This ensures that H0(z) vanishes at z = −1 (ω = π) to order p and H1(z) vanishes

at z = 1 (ω = 0) to order q. A large value of p means that H0(e
i ω) stays very close to zero when

ω is near π, while a large value of q means that H1(e
iω) stays very close to zero when ω is near

0. Thus h0 will be a low pass filter, and h1 will be a high pass filter. We can describe this low

frequency/high frequency separation property in terms of the modulation matrix:

Hm(1) is a diagonal matrix ⇐⇒ H0(−1) = 0 and H1(1) = 0

To obtain a two-channel PR filter bank, the Laurent polynomialsϕ(z) and ψ(z) must be chosen

so that (4.24) holds. Write

Q(z) = H0(z)H1(−z) = (1 + z)p+qϕ(z)ψ(−z).

Then Q(z)−Q(−z) is twice the sum of the odd-degree terms in Q(z); thus the PR condition (4.24)

is the same as

Q(z) contains exactly one term of odd degree. (4.29)

Example 4.3.5. Take ϕ(z) = ψ(z) = 1 and p = q = 1. Then H0(z) = 1 + z and H1(z) = 1 − z;

thusQ(z) = (1+ z)2 = 1+2z+ z2 in this case. Hence condition (4.29) is satisfied, and h0, h1 are

the analysis filters for a PR filter bank. Up to a normalizing factor, this is the Haar transform (see

Example 4.5.2). Graphs of |H0(e
i ω)| and |H1(e

iω)| are shown in Ripples, Fig. 7.5. �

Example 4.3.6. Take ϕ(z) = ψ(z) = 1 and p+ q > 2. In this case

Q(z) = (1 + z)p+q = 1 + (p+ q)z + · · ·+ (p+ q)zp+q−1 + zp+q.

If p + q is even, then (p + q)zp+q−1 has odd degree, whereas if p + q is odd, then zp+q has odd

degree. So when p + q > 2 the polynomial Q(z) has two or more terms of odd degree. Hence

condition (4.29) is not satisfied, and h0, h1 cannot be the analysis filters for a PR filter bank. �
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Example 4.3.7. We modify Example 4.3.6 by taking ϕ(z) = 1 + bz + cz2, ψ(z) = 1, and p = 2,

q = 2, where b and c are real parameters to be determined. Then H0(z) = (1 + z)2(1 + bz + cz2)

and H1(z) = (1− z)2; thus

Q(z) = (1 + z)4(1 + bz + cz2) = (1 + 4z + 6z2 + 4z3 + z4)(1 + bz + cz2).

The terms of odd degree in Q(z) are

(4c+ b)z5 + (4 + 6b+ 4c)z3 + (4 + b)z.

So if we take b = −4 and c = 1, then condition (4.29) is satisfied, and h0, h1 are the analysis filters

for a PR filter bank. We have

H0(z) = (1 + z)2(1− 4z + z2) = 1 − 2z − 6z2 − 2z3 + z4,

H1(z) = (1 − z)2 = 1 − 2z + z2.

After applying normalizing factors and multiplying H0(z) by z−2 (a time shift that preserves the

PR property), we obtain the analysis filters of the CDF(2,2) transform (see Example 4.5.3). Graphs

of |H0(e
i ω)| and |H1(e

iω)| are shown in Ripples, Fig. 7.7. �

4.4 Constructing PR Filter Banks

To construct a two-channel FIR filter bank with the PR property, it suffices to specify two of the

four filters. In Section 4.3 we used the low-pass and high-pass analysis filters h0, h1, and expressed

the PR condition as (4.29). We can also express the PR condition in terms of the low-pass analysis

and synthesis filters, as follows:

Theorem 4.4.1. Suppose h0 and g0 are FIR filters. These filters are the low-pass part of a two-

channel FIR filter bank with perfect reconstruction if and only if H0(−1) = 0, G0(−1) = 0, and

H0(z)G0(z) +H0(−z)G0(−z) = 2. (4.30)

Conversely, if condition (4.30) is satisfied, define FIR filters h1 and g1 by

H1(z) = zG0(−z) and G1(z) = z−1H0(−z). (4.31)

Then h1 and g1 are high-pass filters, and the set of filters h0,h1 (analysis) and g0, g1 (synthesis)

give a PR filter bank.

Proof. The left side of (4.30) is the upper left entry in the matrix Hm(z)Gm(z). If h0 and g0 are

low-pass filters for a PR filter bank, then Hm(z)Gm(z) = 2I , and hence (4.30) holds. Conversely,

assume condition (4.30) holds and define H1(z) and G1(z) by (4.31). Then H1(1) = G0(−1) = 0
and G1(1) = H0(−1) = 0, so h1 and g1 are high-pass FIR filters. We calculate

H0(z)H1(−z) −H0(−z)H1(z) = −z{H0(z)G0(z) +H0(−z)G0(−z)
}

= −2z.

Hence the filter bank has the PR property by Theorem 4.3.4. �
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Suppose that h0 and g0 are FIR low-pass filters. Since H0(−1) = 0 and G0(−1) = 0, we

can write H0(z) = (1 + z)pϕ(z) and G0(z) = (1 + z)qψ(z), where p, q are positive integers and

ϕ(z), ψ(z) are Laurent polynomials that do not vanish at z = −1. The PR condition (4.30) can be

expressed as

(1 + z)nf(z) + (1 − z)nf(−z) = 2, (4.32)

where n = p+ q and f(z) = ϕ(z)ψ(z) does not vanish at z = −1.

It will be useful to make a quadratic change of variable

y =
1

4

(− z + 2 − z−1) = (−4z)−1(1− z)2 (4.33)

(notice that y is unchanged when z is replaced by z−1). To understand the choice of this transfor-

mation, we observe that when z = e iω then

y =
1

4

(− e i ω + 2 − e− iω) =
(e i ω/2 − e− i ω/2

2i

)2
= sin2 ω

2

Thus 1 − y = cos2 ω
2 . The values z = 1 (ω = 0) and z = −1 (ω = π) correspond to y = 0 and

y = 1. Furthermore,

1− y =
1

4

(
z + 2 + z−1) = (4z)−1(1 + z)2. (4.34)

Thus the replacement of z by −z (frequency modulation by π) corresponds to replacing y by 1− y.

We now prove the following key algebraic result:

Proposition 4.4.2 (Bezout’s Theorem). For every integer n ≥ 1 there is a unique polynomialBn(y)
of degree n − 1 that satisfies

ynBn(1 − y) + (1 − y)nBn(y) = 1. (4.35)

It is given by

Bn(y) = 1 + ny +
n(n + 1)

1 · 2 y2 + · · ·+
(
n + k − 1

k

)
yk + · · ·+

(
2n − 1

n− 1

)
yn−1. (4.36)

Furthermore,Bn(y) > 0 for all y ≥ 0.

Proof. The uniqueness is easy: IfB(y) and B̃(y) are polynomials of degree n−1 that satisfy (4.35),

then C(y) = B(y) − B̃(y) satisfies

ynC(1 − y) + (1 − y)nC(y) = 0.

HenceC(y) = −yn {(1− y)−nC(1 − y)} vanishes to order n at y = 0. SinceC(y) is a polynomial

of degree n− 1, this order of vanishing is only possible if C(y) = 0.

The formula for Bn(y) (assuming existence) uses a similar argument: Multiply equation (4.35)

by (1− y)−n and regroup the terms:

(1 − y)−n −Bn(y) = ynD(y)
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where D(y) = (1 − y)−nBn(1− y). This equation shows that

(
d

dy

)k

Bn(y)

∣∣∣∣∣
y=0

=

(
d

dy

)k

(1− y)−n

∣∣∣∣∣
y=0

= n(n+ 1) · · · (n+ k − 1)

for k = 0, 1, . . . , n− 1. Hence the right side of (4.36) is the Taylor polynomial of Bn(y) of degree

n − 1 around y = 0. But Bn(y), having degree n − 1, is equal to this Taylor polynomial. Since

all the binomial coefficients in this polynomial are positive and the constant term is 1, we see from

(4.36) thatBn(y) > 0 for all y ≥ 0. We shall prove the existence ofBn(y) at the end of this section.

�

We now apply Bezout’s Theorem to construct the CDF(p,q) family of wavelet transforms, where

p and q are positive integers and p+ q = 2n is even. Using (4.33) and (4.34), we write the Bezout

equation (4.35) in terms of z as

(1 + z)2n(4z)−nBn

(
−z + 2 − z−1

4

)
+ (1− z)2n(−4z)−nBn

(
z + 2 + z−1

4

)
= 1.

Thus if we define

H0(z) =

√
2

2p
(1 + z)p (4.37)

G0(z) =

√
2

2q
(1 + z)qz−(p+q)/2B(p+q)/2

(
−z + 2 − z−1

4

)
(4.38)

then the low-pass filters h0 and g0 satisfy the conditions of Theorem 4.4.1 (the factors of
√

2 are

needed to change the right side of the Bezout equation from 1 to 2). Taking the high-pass filters to

have z transforms H1(z) = zG0(−z) and G1(z) = z−1H0(−z), as in (4.31), we obtain the filters

for the CDF(p,q) transform (see Example 4.5.3 for the CDF(2,2) filters). The parameters (p, q)
give the orders of vanishing of H0(z) and G0(z) at z = −1.

Remark. Both factors of
√

2 can be put on one of the CDF low-pass filters; when this is done all

the filter coefficients become rational numbers with denominators that are powers of 2 (bit shifts),

since the polynomialBn(y) has integer coefficients.

Example 4.4.3 (CDF(3,1) Transform). Take p = 3 and q = 1 in (4.37). Then (p+ q)/2 = 2 and

B2(y) = 1 + 2y. Since −z + 2 − z−1 = −z−1(z − 1)2, we have

B2

(
−z + 2 − z−1

4

)
= 1 − 1

2
z−1(z − 1)2 =

1

2

{
−z + 4 − z−1

}
.

Thus the low-pass filters have z transforms

H0(z) =

√
2

8
(z + 1)3 =

√
2

8

{
z3 + 3z2 + 3z + 1

}

G0(z) =

√
2

4
(z + 1)z−2

{
−z + 4 − z−1

}
=

√
2

4

{
− 1 + 3z−1 + 3z−2 − z−3

}
.
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The high-pass filters have z transforms

H1(z) = zG0(−z) =

√
2

4

{− z − 3 + 3z−1 + z−2}

G1(z) = z−1H0(−z) =

√
2

8

{
− z2 + 3z − 3 + z−1}.

Thus the filters all have length four and are the following linear combinations of unit impulses:

h0 =

√
2

8

(
δ−3 + 3δ−2 + 3δ−1 + δ0

)
h1 =

√
2

4

(
− δ−1 − 3δ0 + 3δ1 + δ2

)

g0 =

√
2

4

(− δ0 + 3δ1 + 3δ2 − δ3
)

g1 =

√
2

8

(− δ−2 + 3δ−1 − 3δ0 + δ1
)

�

Completion of proof of Bezout’s Theorem. To prove the existence of Bn(y) we only have to find

polynomials c(y) and d(y) of degree at most n− 1 that satisfy

c(y)yn + d(y)(1− y)n = 1. (4.39)

Once we have such polynomials, then B(y) = 1
2

(
c(1 − y) + d(y)

)
has degree at most n − 1 and

will satisfy (4.35).

The existence of c(y) and d(y) follows from the Euclidean division algorithm for polynomials.

It is convenient to express this algorithm in terms of upper triangular and lower triangular matrices

applied to the column vector

[
yn

(1− y)n

]
.

We illustrate the method with the case n = 2. First we choose a unit lower trangular matrix

(prediction step) to reduce the degree of the second component of the vector:

[
1 0

−1 1

][
y2

(1 − y)2

]
=

[
y2

1 − 2y

]
.

Next, we use a unit upper-triangular matrix (update step), chosen to reduce the degree of the first

component: [
1 1

2y
0 1

][
y2

1 − 2y

]
=

[
1
2y

1 − 2y

]
.

We repeat with a unit lower-triangular matrix (prediction step) chosen to lower the degree of the

second component: [
1 0

4 1

] [
1
2y

1− 2y

]
=

[
1
2y

1

]
.

We stop at this point, since the second component of the vector is now a constant. Combining these

transformations, we have

[
1 0
4 1

] [
1 1

2y
0 1

] [
1 0
−1 1

] [
y2

(1 − y)2

]
=

[
1
2y
1

]
.
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Write the product of the prediction and update matrices as

[
1 0

4 1

] [
1 1

2y

0 1

] [
1 0

−1 1

]
=

[
a(y) b(y)

c(y) d(y)

]
,

where the entries a(y), b(y), c(y), d(y) are polynomials of degree at most 1. Since

[
a(y) b(y)

c(y) d(y)

] [
y2

(1− y)2

]
=

[
1
2y

1

]
,

it follows that c(y)y2 + d(y)(1 − y)2 = 1, as needed. Notice that we only need the existence of

the polynomials c(y) and d(y) and the fact that they are of degree n − 1 = 1, but not any explicit

formula for them.

The general case follows the same pattern. Let f(y) and g(y) be polynomials of degrees m and

n. If m ≥ n, there is a polynomial h(y) of degree m − n so that f(y) − g(y)h(y) has degree less

than m− n (this is the Euclidean division algorithm). We can express this in matrix form as

[
1 0

−h(y) 1

] [
g(y)

f(y)

]
=

[
g(y)

f(y)− g(y)h(y)

]
.

If m ≤ n, we divide g(y) by f(y) and use a unit upper triangular matrix to replace the component

g(y) by g(y) − f(y)h(y). Starting with g(y) = yn and f(y) = (1 − y)n, we repeat this process

until we have transformed one component of the vector into a constant. Multiplying all the unit

upper/lower triangular matrices, we obtain a 2 × 2 matrix with determinant 1 and entries that are

polynomials of degree at most n, such that

[
a(y) b(y)

c(y) d(y)

] [
yn

(1 − y)n

]
=

[
ϕ(y)

α

]
,

where α is a constant and ϕ(y) is a polynomial of degree at least one. (We multiply by the rotation

matrix

[
0 −1
1 0

]
if necessary to ensure that α is the second component.) By Cramer’s rule,

[
d(y) −b(y)
−c(y) a(y)

][
ϕ(y)

α

]
=

[
yn

(1− y)n

]
.

Hence the polynomial d(y) has degree at most n − 1, since d(y)ϕ(y)− αb(y) = yn and b(y) has

degree at most n. Furthermore, we have the relation c(y)yn+d(y)(1−y)n = α, and hence c(y) also

has degree at most n− 1. The constant α cannot be zero: as we showed in the proof of uniqueness,

that would force d(y) = 0 (since the degree of d(y) is at most n− 1), and hence c(y) = 0. But then

the matrix [
a(y) b(y)
c(y) d(y)

]

would have determinant zero, which is a contradiction. Thus we can divide c(y) and d(y) by α to

obtain relation (4.39). �
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4.5 Comparison of Lifting and Filter Banks

A one-scale wavelet analysis transform can be implemented in two ways:

Lifting: The signal x is split by downsampling into x0 = 2 ↓ x and x1 = 2 ↓ S−1x. Then lifting

steps (predictions, updates, and a normalization) are applied to

[
x0

x1

]
to give an output

[
y0

y1

]
.

The z-transform of the output is

[
Y0(z)

Y1(z)

]
= Hp(z)

[
X0(z)

X1(z)

]
=

1

2
Hp(z)

[
X(z1/2) +X(−z1/2)

z1/2X(z1/2)− z1/2X(−z1/2)

]
,

where Hp(z) =

[
H00(z) H01(z)

H10(z) H11(z)

]
is the polyphase analysis matrix. Replacing z by z2 in these

equations, we get [
Y0(z

2)

Y1(z
2)

]
=

1

2
Hp(z

2)

[
1 1

z −z

] [
X(z)

X(−z)

]
. (4.40)

Two-channel Filter Bank: First the signal x is filtered by h0 and by h1. Then the two filtered

signals are downsampled to give the output

[
y0

y1

]
=

[
2 ↓ (h0 ∗ x)

2 ↓ (h1 ∗ x)

]
. The z-transform of the

output is [
Y0(z)
Y1(z)

]
=

1

2

[
H0(z

1/2)X(z1/2) +H0(−z1/2)X(−z1/2)

H1(z
1/2)X(z1/2) +H1(−z1/2)X(−z1/2)

]
.

Replacing z by z2 in this equation, we get the relation

[
Y0(z

2)

Y1(z
2)

]
=

1

2
Hm(z)

[
X(z)

X(−z)

]
, (4.41)

where Hm(z) is the modulation analysis matrix.

Theorem 4.5.1. Let Hp(z) be the polyphase matrix for a one-scale wavelet analysis transform

obtained by the lifting procedure. Define

Hm(z) = Hp(z
2)

[
1 1

z −z

]
. (4.42)

Then Hm(z) is the analysis modulation matrix for a two-channel filter bank with perfect recon-

struction. The analysis filters for this filter bank have z-transforms

H0(z) = H00(z
2) + zH01(z

2) and H1(z) = H10(z
2) + zH11(z

2). (4.43)

The synthesis filters have z-transforms

G0(z) = −(cz)−1
{
H10(z

2) − zH11(z
2)
}

and G1(z) = (cz)−1
{
H00(z

2)− zH01(z
2)
}
,

(4.44)

where c = det Hp(z
2) is a nonzero real constant.
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Proof. By definition

Hm(z) =

[
H00(z

2) + zH01(z
2) H00(z

2) − zH01(z
2)

H10(z
2) + zH11(z

2) H10(z
2) − zH11(z

2)

]
.

This is the analysis modulation matrix for the filters defined by equations (4.43). Its determinant is

−2z det Hp(z). But a polyphase matrix obtained by the lifting procedure is the product of upper and

lower triangular matrices of determinant 1 and a diagonal normalization matrix whose determinant

is a nonzero constant c. Now apply Theorem 4.3.4. �

Example 4.5.2 (Haar Transform). The (unnormalized) polyphase matrix of the Haar transform is

Hp(z) = 1
2

[
1 1
1 −1

]
. Hence the modulation matrix is

Hm(z) =
1

2

[
1 1

1 −1

][
1 1

z −z

]
=

1

2

[
1 + z 1 − z

1 − z 1 + z

]
.

Thus H0(z) = 1
2 (1 + z) and H1(z) = 1

2 (1 − z). These are the z-transforms of the filters h0 =
1
2 (δ0 + δ−1) and h1 = 1

2(δ0 − δ−1) that take averages and differences of adjacent signal values.

Since det Hp(z) = −1/2, equations (4.25) give

G0(z) = 2z−1H1(−z) = 1 + z−1 and G1(z) = −2z−1H0(−z) = 1 − z−1.

These are the z-transforms of the filters g0 = δ0 + δ1 and g1 = δ0 − δ1. �

Example 4.5.3 (CDF(2,2) Transform). The polyphase matrix of the CDF(2,2) transform is

Hp(z) =

√
2

8

[
(−z + 6− z−1) (2 + 2z−1)

−(2 + 2z) 4

]
.

(see Example 4.2.3). Hence the modulation matrix is

Hm(z) =

√
2

8

[
(−z2 + 6 − z−2) (2 + 2z−2)

−(2 + 2z2) 4

][
1 1

z −z

]

=

√
2

8

[
(−z2 + 2z + 6 + 2z−1 − z−2) (−z2 − 2z + 6 − 2z−1 − z−2)

(−2z2 + 4z − 2) (−2z2 − 4z − 2)

]
.

Thus the analysis filters have z-transforms H0(z) =
√

2
8 (−z2 +2z+6+2z−1− z−2) and H1(z) =√

2
8 (−2z2 + 4z − 2). These are the z-transforms of the filters

h0 =

√
2

8
(−δ−2 + 2δ−1 + 6δ0 + 2δ1 − δ2) and h1 =

√
2

8
(−2δ−2 + 4δ−1 − 2δ0).

From the factored form of Hp(z) in Example 4.2.3 we see that detHp(z) = 1. Hence equations

(4.25) give

G0(z) = −z−1H1(−z) =

√
2

8
(2z + 4 + 2z−1) and

G1(z) = z−1H0(−z) =

√
2

8
(−z − 2 + 6z−1 − 2z−2 − z−3).
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These are the z-transforms of the filters

g0 =

√
2

8
(2δ−1 + 4δ0 + 2δ1) and g1 =

√
2

8
(−δ−1 − 2δ0 + 6δ1 − 2δ2 − δ3).

�

The converse to Theorem 4.5.1 is also true: Given a two-channel filter bank with perfect re-

construction, we define the analysis polyphase matrix by (4.42). The PR condition that d(z) =
det Hm(z) be a nonzero monomial allows us to reduce to the case of a matrix with determinant

1. Then Hp(z) can be factored into a product of a diagonal matrix diag[c c−1] (for some constant

c 6= 0) and upper-triangular or lower-triangular matrices with 1 in the diagonal positions and zero

or a Laurent polynomial in the off-diagonal positions. Each of the factors corresponds to a lifting

step (prediction, update, or normalization).

Factoring the polyphase matrix is carried out by the familiar elementary row operation steps

(Gaussian elimination), but using arithmetic with Laurent polynomials instead of complex numbers,

as we already did in Section 4.4 for the proof of Proposition 4.4.2 (Bezout’s Theorem). There is a

significant complication: in carrying out row reduction of a matrix with real (or complex) entries,

we can divide a row by any nonzero element in the matrix. However, when the matrix has entries

that are Laurent polynomials, we can only divide by matrix elements that are pure monomials czm

with c 6= 0 (by Lemma 4.3.3 these are the only invertible Laurent polynomials). In other words, if

we define the degree of a nonzero Laurent polynomial

f(z) = apz
p + · · ·+ aqz

q (where p ≤ q, ap 6= 0, and aq 6= 0)

to be deg(f) = q − p, then 1/f(z) is a Laurent polynomial if and only if deg(f) = 0. The way

around this complication is to use the Euclidean division algorithm with remainder for Laurent

polynomials: when deg(f) ≥ deg(g) > 0, then we can write f(z) = g(z)h(z) + r(z), where

h(z) and r(z) are Laurent polynomials and deg(r) < deg(g). Repeated application of this division

algorithm allows us to reduce the degree of the remainder to zero, and then division by the remainder

is possible.

We illustrate the process with the following example (see Chapter 12 of Ripples for more details

and examples).

Example 4.5.4 (Factoring a Polyphase Matrix). Consider the filter bank with filters

H0(z) =
1

2
z2 + z +

1

2
=

1

2
(z + 1)2 and H1(z) = −3

4
+

1

2
z−1 +

1

4
z−2.

These filters satisfy the lowpass/highpass conditionsH0(−1) = 0 and H1(1) = 0. Furthermore,

H0(z)H1(−z) = −3

8
z2 − z − 3

4
− 1

8
z−2

has exactly one term of odd degree, so the PR condition is satisfied. By (4.43) we calculate that

polyphase matrix for this filter bank is

Hp(z) =

[
( 1
2z + 1

2 ) 1

(−3
4 + 1

4z
−1) 1

2z
−1

]
=


 H00(z) H01(z)

H10(z) H11(z)


 .
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The modulation matrix has determinantH0(z)H1(−z)−H0(−z)H1(z) = −2z, and the polyphase

matrix has determinant 1.

To factor this polyphase matrix, we use the row-reduction method (Gaussian elimination), as

implemented by elementary matrices.

We begin by dividing H10(z) by H00(z) (with remainder). This is done by a unit lower trian-

gular matrix multiplication:
[

1 0

3
2z

−1 1

] [
( 1
2z + 1

2 ) 1

(−3
4 + 1

4z
−1) 1

2z
−1

]
=

[
( 1
2z + 1

2) 1

z−1 2z−1

]
.

In the new matrix the element in the lower left position is now invertible (as a Laurent polynomial),

so we divide it into H00(z). This is done by an unit upper triangular matrix multiplication:

[
1 −1

2z
2

0 1

] [
( 1
2z + 1

2) 1

z−1 2z−1

]
=

[ 1
2 (−z + 1)

z−1 2z−1

]
.

Now both entries in the first column of the resulting matrix are invertible (as Laurent polynomials),

so we can make the lower left entry zero by another unit lower triangular matrix multiplication, just

as we would for a matrix of real numbers:
[

1 0

− 2z−1 1

] [ 1
2 (−z + 1)

z−1 2z−1

]
=

[ 1
2 (−z + 1)

0 2

]
.

Finally, we factor this upper triangular matrix as a diagonal matrix times a unit upper triangular

matrix: [ 1
2 (−z + 1)

0 2

]
=

[ 1
2 0

0 2

] [
1 (−2z + 2)

0 1

]
.

Thus the polyphase matrix factors as

Hp(z) =

[
1 0

− 3
2z

−1 1

] [
1 1

2z
2

0 1

] [
1 0

2z−1 1

] [ 1
2 0

0 2

] [
1 (−2z + 2)

0 1

]
(4.45)

Here we have moved the unit upper/lower triangular matrices to the right side of (4.45) using the

relations
[

1 f(z)

0 1

]−1

=

[
1 −f(z)

0 1

]
and

[
1 0

f(z) 1

]−1

=

[
1 0

−f(z) 1

]

(where f(z) is any Laurent polynomial). Finally, we can move the diagonal matrix D = diag[ 12 , 2]
in the factorization (4.45) to the left using the relations

D−1

[
1 f(z)
0 1

]
D =

[
1 4f(z)
0 1

]
and D−1

[
1 0

f(z) 1

]
D =

[
1 0

1
4f(z) 1

]
.

This gives the final factorization of the polyphase matrix:

Hp(z) =

[ 1
2 0

0 2

] [
1 0

− 3
8z

−1 1

] [
1 2z2

0 1

] [
1 0

1
2z

−1 1

] [
1 (−2z + 2)

0 1

]

= DP2U2P1U1.
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This factorization means that the filter bank can be implemented as follows. The signal x is split into

xeven[n] = x[2n] and xodd[n] = x[2n+1]. Then the pair of signals xeven and xodd are transformed

into the trend s and detail d by the following lifting steps:

(First Update) U1 : s(1)[n] = xeven[n] + 2xodd[n] − 2xodd[n+ 1]

(First Prediction) P1 : d(1)[n] =
1

2
s(1)[n− 1] + xodd[n]

(Second Update) U2 : s(2)[n] = s(1)[n] + 2d(1)[n+ 2]

(Second Prediction) P2 : d(2)[n] = −3

8
s(2)[n− 1] + d(1)[n]

(Normalization) D : s[n] =
1

2
s(2)[n], d[n] = 2d(2)[n]

(recall that the shift operator (Sy)[n] = y[n− 1] corresponds to multiplication by z−1). �

4.6 Trend-Detail Decomposition for PR Filter Banks

Assume we have a two-channel FIR filter bank with perfect reconstruction (PR). Let h0 (lowpass)

and h1 (highpass) be the analysis filters and let g0 and g1 be the corresponding synthesis filters.

(Recall that the PR property implies that the synthesis filters are uniquely determined by the analysis

filters.)

The analysis part of the filter bank takes an input signal x and passes it through the filters h0

and h1. Then the two filtered signals are downsampled to give the output

[
y0

y1

]
=

[
2 ↓ (h0 ∗ x)

2 ↓ (h1 ∗ x)

]
.

The synthesis part of the filter bank takes the pair of signals y0 and y1, upsamples each of them,

passes 2 ↑ y0 and 2 ↑ y1 through the synthesis filters, and then adds the result to give the output

x̃ = g0 ∗
(

2 ↑ y0

)
+ g1 ∗

(
2 ↑ y1

)

The signal processing, which is usually a nonlinear operation (such as setting small values to zero),

occurs between the analysis and synthesis stages, and an input x produces an output x̃:

h0∗ low−→ 2 ↓ −→
↗

x

↘
h1∗

high−→ 2 ↓ −→

Signal

Processing

Steps

−→ 2 ↑ −→ g0∗
↘

+ −→ x̃

↗
−→ 2 ↑ −→ g1∗

When the signal processing is absent, then x̃ = x and the PR property can be stated in the time

domain as

x = g0 ∗
(

2 ↑ 2 ↓ (h0 ∗ x)
)

︸ ︷︷ ︸
trend

+g1 ∗
(

2 ↑ 2 ↓ (h1 ∗ x)
)

︸ ︷︷ ︸
detail

= xs + xd (4.46)
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for all signals x. Here the trend part xs contains the low-frequency information in the signal,

whereas the detail part xd carries the high-frequency information. The analogous formula for peri-

odic signals is (3.18).

Since convolution can be viewed as forming a moving average, formula (4.46) expresses x as

a linear combination of shifts of the synthesis filters g0 and g1. To make this precise, we need a

formula for the linear transformations x 7→ xs and x 7→ xd.

If h is a FIR filter we write ȟ for the time-reversed filter:

ȟ[k] = h[−k] for k ∈ Z.

Then the z-transform of ȟ is H(z−1). Note that if z = e i ω then z−1 = e− i ω, so time reversal

corresponds to frequency reversal. Recall that the inner product of signals x and y is

〈x, y〉 =
∑

k

x[k] y[k]

Lemma 4.6.1. Suppose h and g are FIR filters. Then for every signal x

g ∗
(

2 ↑ 2 ↓ (h ∗ x)
)

=
∑

m

〈S2mȟ, x〉S2mg (4.47)

Here S is the right-shift operator and the coefficients 〈S2mȟ, x〉 are zero for |m| sufficiently large.

Proof. Recall that the linear transformation 2 ↑ 2 ↓ (downsampling followed by upsampling)

projects a signal y onto its even part:

2 ↑ 2 ↓ y[k] =

{
y[k] if k is even

0 if k is odd.

Hence

g ∗
(

2 ↑ 2 ↓ (h ∗ x)
)
[n] =

∑

m

g(n− 2m)(h ∗ x)[2m]

=
∑

m

{∑

k

h[2m− k]x[k]
}
(S2mg)[n]

=
∑

m

〈S2mȟ, x〉 (S2mg)[n] ,

which proves (4.47). Since x is a signal and h is a FIR filter, there is an integer N so that x[k] = 0
and h[k] = 0 for |k| > N . Hence

〈S2mȟ, x〉 =
∑

|k|≤N

h[2m− k]x[k].

Now take |m| > N and |k| ≤ N . Then |2m − k| ≥ 2|m| − |k| > 2N − N = N , and so

h[2m− k] = 0. Thus h[2m− k]x[k] = 0 and hence 〈S2mȟ, x〉 = 0. �

Applying Lemma 4.6.1 to equation (4.46) we obtain the generalization to nonperiodic signals

of the trend/detail decomposition for periodic signals (equations (3.19) and (3.20)) that was proved

in Section 3.4:
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Theorem 4.6.2. For the one-scale PR wavelet transform defined by the FIR analysis filters h0, h1

and synthesis filters g0, g1, the trend (low-frequency) component of a signal x is

xs =
∑

m

〈S2mȟ0, x〉S2mg0 (4.48)

and the detail (high-frequency) component of the signal x is

xd =
∑

m

〈S2mȟ1, x〉S2mg1. (4.49)

Every signal x has a decomposition x = xs + xd.

Example 4.6.3 (CDF(2,2) Transform). For the CDF(2,2) transform, the filters are

h0 =

√
2

8

(
− δ−2 + 2δ−1 + 6δ0 + 2δ1 − δ2

)
h1 =

√
2

8

(
− 2δ−2 + 4δ−1 − 2δ0

)

g0 =

√
2

8

(
2δ−1 + 4δ0 + 2δ1

)
g1 =

√
2

8

(
− δ−1 − 2δ0 + 6δ1 − 2δ2 − δ3

)

(see Example 4.5.3). The normalization factors
√

2/8 can be combined to give a single normal-

ization of 1/32 (binary shift) in the analysis filters, for example. Then all arithmetic on a rational

signal becomes rational.

As an example of the expansion in Theorem 4.6.2, take x = δ0. Then

〈S2mȟ0, δ0〉 = S2mȟ0[0] = ȟ[−2m] = h[2m].

Thus the trend component of δ0 is

∑

m

〈S2mȟ0, δ0〉S2mg0 =
∑

m

h0[2m] S2mg0 =
1

4
√

2

{
−S−2g0 + 6g0 − S2g0

}

=
1

16

(− δ−3 − 2δ−2 + 5δ−1 + 12δ0 + 5δ1− 2δ2 − δ3
)

Likewise, the detail component of δ0 is

∑

m

〈S2mȟ1, δ0〉S2mg1 =
∑

m

h1[2m] S2mg1 =
1

4
√

2

{
−2S−2g1 − 2g1

}

=
1

16

(
δ−3 + 2δ−2 − 5δ−1 + 4δ0 − 5δ1 + 2δ2 + δ3

)

It is clear that these two components add to δ0. The sum of the trend entries is 1, while the detail

component oscillates and the sum of its entries is 0 (see Figure 4.1, where we have drawn the

piecewise linear graphs that interpolate the values of the trend and detail at integer times). �

We now describe the trend-detail decomposition in Theorem 4.6.2 from the point of view of

linear algebra, generalizing the case of periodic signals treated in Section 3.4.

Theorem 4.6.4. For a PR filter bank, the set of all even-shifted filters {S2mg0, S
2ng1 : m, n ∈ Z}

is linearly independent. Hence the decomposition of a signal x into a trend xs in equation (4.48)

and a detail xd in equation (4.49) is unique.
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Figure 4.1: Trend and Detail for CDF(2,2) Decomposition of δ0

Proof. Suppose some finite linear combination of the even-shifted filters adds up to zero:

∑

m

cmS
2mg0 +

∑

n

dnS
2ng1 = 0.

Taking the z-transform of the left side of this equation, we obtain the relation

ϕ(z)G0(z) + ψ(z)G1(z) = 0,

where ϕ(z) =
∑

m cmz
−2m and ψ(z) =

∑
n dnz

−2n. Since the Laurent polynomials ϕ and ψ only

have even powers of z, they satisfyϕ(z) = ϕ(−z) and ψ(z) = ψ(−z). Hence we get another linear

relation

ϕ(z)G0(−z) + ψ(z)G1(−z) = 0.

These two relations can be written in matrix-vector form as

Gm(z)

[
ϕ(z)

ψ(z)

]
=

[
0

0

]
, (4.50)

where Gm(z) is the synthesis modulation matrix for the filter bank. From the PR property we know

that Gm(z) is an invertible matrix. Hence the only solution to equation (4.50) is ϕ(z) = 0, ψ(z) =

0. This means that all the coefficents cm = 0 and dn = 0, which proves linear independence. �

Corollary 4.6.5. The shifted synthesis filters satisfy the biorthogonality relations

〈S2mȟ0, S
2ng0〉 = δm,n 〈S2mȟ1, S

2ng0〉 = 0 (4.51)

〈S2mȟ0, S
2ng1〉 = 0 〈S2mȟ1, S

2ng1〉 = δm,n (4.52)

for all integersm, n (where δn,n = 1 and δm,n = 0 for m 6= n).

Proof. By Theorem 4.6.2 the signal x = S2ng0 has a trend-detail decomposition

S2ng0 =
∑

m

〈S2mȟ0, S
2ng0〉S2mg0 +

∑

m

〈S2mȟ1, S
2ng0〉S2mg1.
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But by Theorem 4.6.4 we know that this decomposition is unique. Hence all the coefficents on the

right side of this equation must be zero, except for the coefficient of S2ng0, which must be one.

This gives the biorthogonality relations (4.51). Now take the signal x = S2ng1 and apply the same

argument to get the the biorthogonality relations (4.52). �

Example 4.6.6 (CDF(2,2) Transform). For the CDF(2,2) transform in Example 4.6.3,

ȟ0 =

√
2

8

(− δ−2 + 2δ−1 + 6δ0 + 2δ1 − δ2
)
, ȟ1 =

√
2

8

(− 2δ0 + 4δ1 − 2δ2
)
,

g0 =

√
2

8

(
2δ−1 + 4δ0 + 2δ1

)
, g1 =

√
2

8

(
− δ−1 − 2δ0 + 6δ1 − 2δ2 − δ3

)

The biorthogonality relations (4.51) and (4.51) can be checked directly (with some tedious calcula-

tions) using the orthogonality of the unit impulses. For example, 〈S2mȟ0, g0〉 = 0 if |m| ≥ 2 since

the supports of S2mȟ0 and g0 are disjoint in this case. When there is overlapping of supports, then

cancellation produces biorthogonality:

〈ȟ0, g0〉 =
1

32
(2 · 2 + 4 · 6 + 2 · 2) = 1, 〈S±2ȟ0, g0〉 =

1

32
((−1) · 4 + 2 · 2) = 0,

〈ȟ1, g1〉 =
1

32
((−2) · (−2) + 4 · 6 + (−2) · (−2)) = 1,

〈ȟ0, g1〉 =
1

32
((−2) · (−1) + 2 · 6 + 6 · (−2) + 2 · (−1)) = 0,

〈ȟ1, g0〉 =
1

32
((−2) · 4 + 4 · 2) = 0.

4.7 Orthogonal Filter Banks

Assume we have a two-channel FIR filter bank with perfect reconstruction. Let h0 and h1 be

analysis filters and let g0 and g1 be the synthesis filters.

Definition 4.7.1. The filter bank is orthogonal if g0 = ȟ0 and g1 = ȟ1 (the synthesis filters are the

time-reversed analysis filters).

The term orthogonal is justified by Corollary 4.6.5, since the biorthogonality relations now become

orthogonality relations:

〈S2mg0, S
2ng0〉 = δm,n 〈S2mg1, S

2ng0〉 = 0 (4.53)

〈S2mg0, S
2ng1〉 = 0 〈S2mg1, S

2ng1〉 = δm,n (4.54)

In this case the one-scale wavelet decomposition is x = xs + xd with trend xs and detail xd given

by

xs =
∑

m∈Z

〈S2mg0, x〉S2mg0 and xd =
∑

m∈Z

〈S2mg1, x〉S2mg1.

Thus the set of vectors {S2mg0, S
2ng1 : m, n ∈ Z} is an orthonormal basis for the vector space of

signals. The trend component of the signal is orthogonal to the detail component, and the wavelet

transform is energy-preserving:

||x||2 = ||xs||2 + ||xd||2 =
∑

m∈Z

|〈S2mg0, x〉|2 +
∑

m∈Z

|〈S2mg1, x〉|2
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by Parseval’s relation for an orthonormal basis.

Theorem 4.7.2. A two-channel filter bank is orthogonal if and only if the analysis modulation

matrix Hm(z) satisfies

Hm(z)Hm(z−1)T = 2I. (4.55)

Proof. The definition (4.7.1) of orthogonality can be stated in terms of z transforms as

G0(z) = H0(z
−1) and G1(z) = H1(z

−1).

This means that the synthesis and analysis modulation matrices satisfy Gm(z) = Hm(z−1)T. By

Theorem 4.3.2 the PR property is equivalent to Hm(z)Gm(z) = 2I . Hence the filter bank is

orthogonal if and only if (4.55) holds. �

When z = e i ω with ω real, then z−1 = e− i ω = z (complex conjugate). Since the Laurent

polynomialsH0(z) and H1(z) have real coefficients, it follows that

H0(e
− i ω) = H0(e i ω) and H1(e

− iω) = H1(e i ω).

Thus Hm(z−1)T = Hm(z)
T

when z = e i ω. So condition (4.55) for an orthogonal filter bank

implies that the matrix (1/
√

2)Hm(e i ω) is unitary for all real ω. (The converse is also true and

easy to prove.)

Example 4.7.3 (Haar). For the Haar wavelet transform, the normalized analysis modulation matrix

is

Hm(z) =
1√
2

[
1 + z 1 − z
1 − z 1 + z

]
.

(see Example 4.5.2). In this case

Hm(z−1)T =
1√
2

[
1 + z−1 1 − z−1

1− z−1 1 + z−1

]
,

and we calculate that Hm(z)Hm(z−1)T = 2I . Thus the normalized Haar transform is orthogonal.

�

We now can prove that a two-channel FIR orthogonal filter bank is determined by the low pass

analysis filter (which must satisfy a single quadratic relation) and the time shift between the low

pass and high pass channel:

Theorem 4.7.4. Let h0 be a FIR filter with H0(−1) = 0.

(1) If h0 is the low pass analysis filter for an orthogonal PR filter bank then its z-transform

satisfies

H0(z)H0(z
−1) +H0(−z)H0(−z−1) = 2. (4.56)

(2) Conversely, if condition (4.56) is satisfied, let L = 2k+ 1 be an odd integer and let h1 be the

FIR filter with z-transform

H1(z) = zLH0(−z−1). (4.57)

Define g0 = ȟ0 and g1 = ȟ1. Then the two-channel FIR filter bank with analysis filters h0,

h1 and synthesis filters g0, g1 has the perfect reconstruction property and is orthogonal.
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Proof. For any filter bank with the PR property, the synthesis modulation matrix satisfies Gm(z) =
2Hm(z)−1. If the filter bank is orthogonal, then (4.55) implies that

Gm(z) = Hm(z−1)T.

Comparing matrix entries on each side of this equation, we see that G0(z) = H0(z
−1). Thus

equation (4.30 in Theorem 4.4.1 becomes equation (4.56), proving part (1).

For the converse, we take G0(z) = H0(z
−1) and d(z) = −2zL in Theorem 4.4.1; this gives

H1(z) = zLG0(−z) = zLH0(−z−1) and G1(z) = z−LH0(−z) = H1(z
−1)

The synthesis modulation matrix is thus Gm(z) = Hm(z−1)T, so the filter bank is orthogonal, by

Theorem 4.7.2. �

Construction of Orthogonal Filter Banks

Recall that if h is a nonzero signal, then the length of h is n − m + 1, where m is the smallest

integer such that h[m] 6= 0, and h[n] is the largest integer such that h[n] 6= 0.

Lemma 4.7.5. Let h0 be a FIR lowpass filter (H0(−1) = 0). If H0(z) satisfies (4.56) then h0 has

even length.

Proof. Since H0(−1) = 0, the length of h0 must be greater than one. Write H0(z) = amz
−m +

· · ·+ anz
−n, where am 6= 0, an 6= 0, and m < n. Then

H0(z)H0(z
−1) = amanz

m−n + · · ·+ amanz
n−m,

(−1)−m+nH0(−z)H0(−z−1) = amanz
m−n + · · ·+ amanz

n−m,

where the omitted terms on the right are linear combinations of zp with m − n < p < n −m. If

m−n were even, then (−1)m−n = 1 and adding these equations could not produce a constant. This

would violate equation (4.56). Hence m− n must be odd, and so m− n+ 1, which is the length of

h0, must be even. �

Suppose h0 is a low pass filter such that H0(z) satisfies (4.56) and is not a monomial. Then h0

has even length 2K ≥ 2. If H0(z) satisfies (4.56) then so does zqH0(z) and zqH0(z
−1) for any

integer q (multiplying by zq gives a time shift). Both of these filters vanish at z = −1 and hence are

low pass. So we may assume that

H0(z) = h0[0] + h0[1] z−1 + · · ·+ h0[2K − 1] z−2K+1 (4.58)

with h0[0] 6= 0 and h0[2K − 1] 6= 0. Set P (z) = H0(z)H0(z
−1) (the power spectral response

function for the filter). Since the filter h0 is real, its z-transform satisfies H0(z̄) = H0(z). Hence

P (e i ω) = H0(e
i ω)H0(e

− i ω) = |H0(e
i ω)|2.

Thus P (z) satisfies the following conditions:

symmetry: P (z) = P (z−1) and P (z) = cz−2K+1 + · · ·+ cz2K−1 with c 6= 0.
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positivity: P (e i ω) ≥ 0 for 0 ≤ ω ≤ π.

half-band: P (z) + P (−z) = 2 (the only even term in P (z) is the constant term 2).

low pass: P (−1) = 0.

We already know how to construct a Laurent polynomial that satisfies these four conditions: Let

BK(y) be the Bezout polynomial (4.36) of degree K − 1. Since the binomial coefficients in BK(y)
are all positive, we have BK(y) > 0 for all y ≥ 0. Now set

y =
1

4

(
− z + 2 − z−1)

(see equation (4.33)). When z = e iω then y = sin2 ω
2 ≥ 0. Thus the Laurent polynomial

P (z) = 2(1 − y)KBK(y) = 2(1 + z)2K(4z)−KBK

(
−z + 2 − z−1

4

)
(4.59)

(which we used to construct the CDF(p,q) filters in Section 4.4) satisfies the symmetry condition,

the positivity condition, and the low pass condition. The half-band condition (4.56) follows from

the Bezout equation (4.39); note that we have multipliedBK(y) by 2.

The second step is to factor P (z) = H0(z)H0(z
−1). The symmetry and positivity conditions

ensure that this can always be done, theoretically (the positivity condition implies that the roots z

with |z| = 1 have even multiplicity, whereas by the symmetry condition every root z with |z| 6= 1
is paired with the root z−1 outside the unit circle). However obtaining the factorization involves

finding all complex roots of P (z); this is a difficult numerical calculation when K is large since the

roots can occur in clusters.

After we have found H0(z), then we obtain the high pass filter by (4.57):

H1(z) = zLH0(−z−1),

where L can be any odd integer. Suppose H0(z) is given by (4.58). If we choose L = −2K + 1,

then

H1(z) = −h0[2K − 1] + h0[2K − 2] z−1 − · · · − h0[1]z−2K+2 + h0[0] z−2K+1. (4.60)

Thus h1 is obtained from h0 by reversing the nonzero coefficients and inserting alternating ±. For

example, if h0 = aδ0 + bδ1 + cδ2 + dδ3 has length four, then

h1 = −dδ0 + cδ1 − bδ2 + aδ3 (4.61)

Example 4.7.6 (Haar). Take K = 1 in (4.59). Since B1(y) = 1, we get

P (z) =
1

2
(1 + z)2z−1 =

1

2
(1 + z)(1 + z−1)

Thus P (z) = H0(z)H0(z
−1), where

H0(z) =
1√
2

(
1 + z

)

is the low pass filter for the normalized Haar transform. �
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Example 4.7.7 (Daub4). Take K = 2 in (4.59). Then

B2

(
−z + 2 − z−1

4

)
= 1 − 1

2
z−1(z − 1)2 =

1

2

{
−z + 4 − z−1

}
,

as in Example 4.4.3. Thus

P (z) =
1

16
(z + 2 + z−1)2(−z + 4− z−1).

The second step is to factor P (z). Let

H0(z) = (z + 2 + z−1)(αz2 + βz) = αz3 + (2α+ β)z2 + (α+ 2β)z + β.

Then H0 satisfies the low-pass conditionH0(−1) = 0. If we choose the coefficients α and β so that

16(αz2 + βz)(βz−1 + αz−2) = −z + 4 − z−1

then we will have the factorizationH0(z)H0(z
−1) = P (z). Since

(αz2 + βz)(βz−1 + αz−2) = αβz + α2 + β2 + αβz−1,

we obtain the pair of quadratic equations α2 + β2 = 1/4 and αβ = −1/16 for α and β (the four

points of intersection of a circle with the two branches of a hyperbola). It is easy to check that the

pair
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satisfies both equations.1 Then 2α+β = (3−
√

3)/(4
√

2) and α+ 2β = (3 +
√

3)/(4
√

2). Hence

4
√

2H0(z) = dz3 + cz2 + bz + a,

where a = 1 +
√

3, b = 3 +
√

3, c = 3 −
√

3, and d = 1 −
√

3. Now use equation (3.11) for the

polyphase matrix of the Daub4 transform:

Hp(z) =
1

4
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2

[
(a+ cz) (b+ dz)

−(b+ dz−1) (a+ cz−1)

]

(recall that the shift operator S becomes multiplication by z−1 on z-transforms). Hence by Theorem

4.5.1 the modulation matrix for the Daub4 analysis transform is

Hm(z) =
1
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(a+ cz2) (b+ dz2)

−(b+ dz−2) (a+ cz−2)

][
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z −z

]

=
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4
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[
(dz3 + cz2 + bz + a) ∗

(az − b+ cz−1 − dz−2) ∗

]

1By symmetry the other points of intersection are (−α,−β), (β, α), and (−β,−α).
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(where the second column is the modulation of the first column). Thus H0(z) is the z-transform of

the Daub4 low pass filter:

h0 =
1

4
√

2

(
dδ−3 + cδ−2 + bδ−1 + aδ0

)

of length 4 (Ripples, equation 7.76). The high pass filter is obtained by reversing the coefficients,

alternating the signs, and shifting, as in (4.61):

h1 =
1

4
√

2

(
aδ−1 − bδ0 + cδ1 − dδ2

)

�

4.8 Exercises

1. Let x and y be the signals that are the following linear combinations of unit impulses:

x = 3δ−1 + 2δ0 − 5δ1 + 4δ2, y = 7δ0 + 6δ1

(a) Express x2↓ and (x2↓)2↑ as linear combinations of unit impulses.

(b) Calculate the z-transforms X(z) and Y(z).

(c) Use the result of (b) to calculate the z-transform of the signal w = x ∗ y.

(d) Let yper,4 be the periodic extension of y of period 4. Use your calculation in (b) to

evaluate the discrete Fourier transform (DFT) ŷper,4[k] for k = 0, 1, 2, 3.

2. Consider the lazy wavelet transform in Section 4.2.

(a) Find the analysis and synthesis filters, the modulation matrix, and the polyphase matrix

for this transform.

(b) Do the filters for this transform satisfy the low pass and high pass conditions?

3. Let the FIR filters h0 and h1 have z-transforms

H0(z) = (1 + z)(1 + az) and H1(z) = (1− z)(1 + bz),

where a and b are constants. (Notice that a = 0 and b = 0 give the filters for the Haar

transform).

(a) Find all values of a and b so that detHm(z) is a nonzero monomial, where Hm(z) is the

modulation matrix for these filters.

(b) With H1(z) determined as in part (a), find the FIR synthesis filters g0 and g1 that go with

h0 and h1 to give a two-channel PR filter bank.
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4. Let the FIR filters h0 and h1 have z-transforms

H0(z) = (1 + z)3 and H1(z) = (1 − z)(1 + bz + cz2).

(a) Find the values of the constants b and c so that det Hm(z) is a nonzero monomial, where

Hm(z) is the modulation matrix for these filters.

(b) With H1(z) determined as in part (a), find the synthesis filters g0 and g1 that go with h0

and h1 to give a two-channel PR filter bank.

5. Factor

[
1 −3z

2z−1 −5

]
=

[
1 0

f(z) 1

] [
1 g(z)

0 1

]
with f(z), g(z) Laurent polynomials.

6. Consider a two-channel filter bank having FIR analysis filters h0 (lowpass) and h1 (highpass)

with z-transforms H0(z) and H1(z). Suppose the polyphase matrix Hp(z) for the analysis

filter bank is Hp(z) =

[
1 + z 2
1 − 3z 2

]
.

(a) Find H0(z) and H1(z) and show that the lowpass/highpass conditions H0(−1) = 0 and

H1(1) = 0 are satisfied.

(b) Show that the condition for PR satisfied and find the synthesis filters g0 and g1.

7. Consider a two-channel filter bank having FIR analysis filters h0 (lowpass) and h1 (highpass)

with z-transforms H0(z) and H1(z). Suppose the polyphase matrix Hp(z) for the analysis

filter bank is Hp(z) =

[
1 1 − z

1 + z 2 − z2

]
.

(a) FindH0(z) andH1(z) and determine whether the lowpass/highpass conditionsH0(−1) =

0 and H1(1) = 0 are satisfied.

(b) Is the condition for PR satisfied by these filters?

8. (a) Find the z-transforms of the low-pass filters for the CDF(3,1) transform (see Section 4.4).

(b) Find the polyphase matrix for the CDF(3,1) transform.

(c) Show that the formulas on page 24 of Ripples give a factorization of the polyphase matrix

in part (a) into lifting steps.

9. Let x = δ1. Follow the method of Example 4.6.6 to find the decomposition of x into a trend

s and detail d for the CDF(2,2) transform. (Notice that s and d are not obtained by shifting

the trend/detail vectors for δ0.)

10. Let x = δ0. Follow the method of Example 4.6.6 to find the decomposition of x into a trend

s and detail d for the CDF(3,1) transform (see Example 4.4.3 for the filters).


