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et us imagine that Lewis Carroll stopped con-
densing determinants long enough to write a
third Alice book called Alice Through Looking
Glass After Looking Glass. The book opens
with Alice in her chamber in front of several
looking glasses. She enters one of them and
discovers that she is in a new virtual cham-
ber that looks almost like her own. On closer
examination she discovers that she is now left-
handed and her books are all written back-
wards. There are also virtual mirrors in this
chamber. Stepping through one of them, she
continues her trip through many virtual cham-
bers until, to her great relief, she suddenly finds
herself back in her own real chamber. Eager to
have new adventures, Alice wonders how many
different ways the mirrors could be arranged
so that she could have other trips through the
looking glasses.
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Alice's Kaleidoscope Problem:

e Kaleidoscope: Arrangement of n mirror hy-
perplanes in R"

e Kaleidoscope Condition: Reflections in the
mirrors generate a finite group of orthogonal
matrices (finite number of images)

Solution (Classification of Finite Reflection Groups):

e Infinite number of 2-dimensional kaleidoscopes
(«—— Regular Polygons)

e [ hree types of 3-dimensional kaleidoscopes
(«—— Platonic solids)

e Finite number of n-dimensional kaleidoscopes
when n > 3 («—— root systems in R")



Dihedral Kaleidoscopes (Brewster, 1819):
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Reflections in the two mirrors generate virtual
mirrors, chambers, and objects



Mirror in Euclidean space R":
(n — 1)-dimensional subspace M C R"
unit vector o« 1. M (root vector for Mirror)

Reflection matrix: Ro =1 — 2ad/

nyv=1 "V if v L M
ar \% if ve M
R2 =1, detRs= —1 (reverses orientation)

R!, = Ry (symmetric and orthogonal matrix)

Examples:

a=1[10], B=][cos8 sin6]
1 O

cos26 sin 260
—sin260 cos?26

cCos20 sin 26
sin260 — cos?26

RaRg = ] (Rotation by 260)
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Theorem 1 Take two mirrors in R? that pass
through O and have root vectors o and 3. Let
0 < mw/2 be the dihedral angle between the mir-
rors and C' the closed acute cone between the
mirrors (the fundamental chamber).

(i) The group G of matrices
I, R, Rﬁ, RaR/B, RﬁRa, RO‘R[SRO" ..

is finite <— 0 = w/m for some integer m > 2.
In this case G is the dihedral group I>(m).

(ii) The images g - C for g € G (the virtual
chambers) have disjoint interiors and fill up
R2. Furthermore, if ¢C = C then g = 1.
Hence the chambers (fundamental and virtual)
correspond uniquely to the elements of G and
|G| = 2m.

(iii) As an abstract group G is generated by
a= R, and b = Rﬁ with all relations generated
by a2 = b2 = (ab)™ = 1.



Example: § = /4, a = Ra, b = Rg
Relations a® = b2 = (ab)* =1, |I5(4)| =8

Chambers «—— 1, a,b, ab, ba, aba, bab, abab

mirror b
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Comments on proof of Theorem 1
(i) because RyRg is rotation by 27 /m.
(ii) by geometry

(iii) At most 2m distinct words

1,a,b,ab, ba,aba, bab, abab, ...

can be formed. All correspond to distinct or-
thogonal matrices.

m = 4: baba = abab because (abab)? = 1.
Reflect abaF' through mirror b to get ababF'.

even/odd number of reflections preserves/reverses
orientation

Longest word abab +—— —C opposite fundamen-

tal chamber.
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Kaleidoscopes in Three Dimensions
Three mirrors in R3 through 0

C = fundamental chamber (acute dihedral an-
gles w/p, m/q, w/r at walls )

Canassume 2 <p<qg<rand qg> 2

G = group generated by reflections in walls C.

mirror a

mirror b

mirror ¢

N




If p=q = 2, then one mirror is perpendicular
to the other two mirrors

Same as two mirrors in two dimensions and
one mirror in the remaining dimension.

G is product of the dihedral group for the two
mirrors and +1 for one mirror.

So can assume g > 2.
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Theorem 2 Let G be the group generated by
reflections in the walls of C.

(i) Suppose that the orbit G - x is finite for
some point x inside C. Then p,q,r are positive
integers that satisfy

1 1 1
2<p<gq<r, —4+-4+-=->1. (1)
p q T

(ii) The integer solutions to (1) with g > 2 are
(2,3,3), (2,3,4), and (2,3,5).

(iii) Let (p,q,7) be one of the triples in (ii) and
let C be a chamber (3-sided cone) in R3 with
the corresponding dihedral angles. The images
g-C for g € G (the virtual chambers) have
disjoint interiors and fill up R3. Furthermore,
if gC = C then g = I. Hence the chambers
(fundamental and virtual) correspond uniquely
to the elements of G and G is finite.



Proof of (i): Take the group H C G generated
by reflections in a pair of walls of C.

|H - x| < co == dihedral angle = 7/m
Hence p, g, and r are integers.

Now take a triangular cross-section 1" of C.
Each Angle of T' < Dihedral Angle of C

(at least one <)

Sum(Angles of T') < Sum(Dihedral Angles)

Solutions to (1): Must have p =2, ¢ = 3, and
r < 5 because

1 1 1
stats=5+t,+,=5+



For each admissible triple (p,q,r) construct

e Regular polyhedron (tetrahedron, cube, icosa-
hedron) centered at O.

e Triangulation of the faces of the polyhedron
by congruent triangles

e Cone C from O through one of the triangles
with dihedral angles «/p, ©/q, ©/r.

mirror b

— mirrorc

mirror a
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Verify that each reflection in a wall of C per-
mutes the vertices of this polyhedron.

Hence G permutes the vertices of the polyhe-
dron, so GG is finite since there are three linearly
independent vertices

Also, GG permutes the triangles, so G permutes
the chambers.
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Correspondence between g € G and (virtual)
chamber g - C"

Write g = R{R>--- R, (R; reflection in some
wall of the fundamental chamber.

reduced word <— k minimum.
Set length(g) = k.

Geometric Meaning: length(g) is the minimal
number of mirrors (real and virtual) that must
be crossed in order to go from the fundamental
chamber C' to the virtual chamber g - C.

Example: length(g) = 1 < g is reflection in
wall of C' <= ¢ - C shares a wall with C.

{g-C = C} <= {length(g) =0} «<—= {g =1}
Hence g is uniquely determined by the chamber

g-C.
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Finite Reflection Groups in Three Dimensions:

ANGLES POLYHEDRON GROUP # MIRRORS | # CHAMBERS
7/2-7/3-x/3 | TETRAHEDRON Sy 6 24
/2 -7/3-7m/4 CUBE Sy x {£1,41,+1} 9 48
7/2-m/3-7/5| ICOSAHEDRON As x {£1} 15 120
Mirrors:

{ Virtual Mirrors } U{ Real Mirror Walls of C'}

# Chambers = |G|

In 2 dimensions:

#(chambers)

#(mirrors)
In 3 dimensions:

#(chambers)

#(mirrors)

4
16/3
8

=2

tetrahedron

cube

icosahedron
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Kaleidoscopes in R"

Mirror «—— pair of unit root vectors +«
® = root vectors for finite set of Mirrors
Call ® a Root System if it satisfies

Kaleidoscope Condition: For every «,8 € P,
the reflected vector R.(3 € .

Examples: & = all roots (for real and virtual
mirrors) of a Kaleidoscope in R2 or R3.

#(roots) = 2 - #(real and virtual mirrors)

May assume: @ spans R"™ (v L @ is fixed by
all the reflections).
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Theorem 3 If$ is a root system, then it con-
tains a subset A = {a1,...,an} of simple roots
such that

(i) A is a basis for R".
(II) Ozz'-OszO for i #= 3
(iii) If B8 € ® then the expression of B in terms

of the basis A has coefficients that are all of
the same sign.

Fundamental Chamber (simplicial cone):
C={veR"|lq;-v>0fori=1,...,n}
M; = mirror for «;, R; = reflection in M,

0;; = dihedral angle(M;,M;) = = (pij = 2)
Pij

Kaleidoscope Condition (pairs of mirrors) ==
pij € {2,3,4,...} and (R;R;)Pi =1
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Coxeter Graph of a Root System

e vertices «—— simple roots ay,...,an

e edge between vertex ¢ and vertex j if p;; > 2
e label the edge with p;; if p;; > 3

Coxeter graphs for Kaleidoscopes in R3:

4 3
Oo——0—0 Oo—0C—>0 Oo—0—~-=0

Define the Coxeter Matrix of the root system:

A = [a; - aj] (matrix of inner products). Since

Ay =1, Ajj=—cos(n/pi;) (G F3),

A is determined by the Coxeter graph, without
reference to the root system.
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Theorem 4 The Coxeter matrix of a root sys-
tem is positive definite.

Proof: It is the matrix of inner products of a
basis for R™

Example. Show that a kaleidoscope with di-
hedral angles n/2, w/3, and w/p can only exist
if p < 5. The Coxeter matrix of the mirror
configuration is

1 —1/2 0 |
A=|-1/2 1 —c|, c=cos(n/p).
0 —c 1
{A positive def.} <= {principal minors > 0}
1 —1/2] 3
det [ —1/2 1 ] =7

det(A) = 3 — 2 (positive < p < 6)
4
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Classification Problem: Determine all Coxeter
graphs whose matrix is positive definite.

Monotonicity Property: Every subgraph (with
smaller labels) has a positive definite matrix.

Strategy: Construct Coxeter graphs that are
semi-definite by adding mirror across face of
C. These graphs can’'t occur as subgraphs:

O O O O
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Existence Problem: Construct a root system
for each positive-definite graph.

(G = Reflection group for root system is finite

All relations in G generated by
R? = (R;R;)Pi = 1
(Proved by H.S.M. Coxeter - 1934)

3 Families of Classical Groups: all (signed,
evenly signed) permutations for every N > 4

5 Exceptional Groups: Fg, Hy, Eg, E7, Eg
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Finite Reflection Groups in RY for N > 4 with

connected Coxeter Graph:

N # GROUPS | # MIRRORS # CHAMBERS
10, 12, 16 5-41, 23.4! 2%.4!
4 5 24 2-6-8-12
60 2-12-20-30
5 3 15, 20, 25 6-5, 2*.5! 2°.5!
; . 21, 30, 36 7-6!, 2°-6!, 26.6!
36 2-5-6-8-9-12
. A 28, 42, 49 8.7, 27.71 26.71
63 2-6-8-10-12-14-18
o A 36, 56, 64 9-8!, 27.8! 28.8!
120 .8-12-14-18-20-24- 30
N(N +1)/2 (N +1)-N!
N >38 3 N(N —1) 2N-1. NI
N? 2N . NI

The Fourth Dimension is the most interesting!
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Number of mirrors: N walls of C 4 virtual
mirrors (reflections of these walls)

Chamber g-C «—— g

Number of chambers = order of G

(# Chambers)/(# Mirrors) for Ag, Dg, Basg:
10,080, 46,080, and 80,640.

Ratio for Eg almost six million.

Order(G) = product of degrees of the basic G-
invariant polynomials in N variables (elemen-
tary symmetric functions when G = Sy41)

Coxeter element: R1Ry--- Ry (product of sim-
ple reflections)

Longest cycle when G = Sy 41.
Order is the Coxeter number.

Eigenvalues give degrees of basic invariants
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Construction of 3-D Kaleidoscopes

“These groups can be made vividly compre-
hensible by using actual mirrors for the gen-
erating reflections. It is found that a candle
makes an excellent object to reflect. By hing-
ing two vertical mirrors at an angle w/k we
easily see 2k candle flames, in accordance with
the group [k]. To illustrate the groups [k1, ko],
we hold a third mirror in the appropriate posi-
tions.” (H.S.M. Coxeter)

60°, 45° or 36° dihedral angle

BAcCK oOF

MIRROR 3

S 60° dihedral angle

MIRROR 1

90° dihedral angle
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Notation: [k] - dihedral group I>(k) of order
2k

[k1, ko] - group for regular polyhedron with faces
of kq edges, vertices of ko, edges.

The actual construction of 3-dimensional kalei-
doscopes (‘holding a third mirror in the ap-
propriate position’) is not easy, however, com-
pared to making a traditional cylindrical kalei-
doscope.

Coxeter: ‘a very accurate icosahedral kaleido-
scope was made by in Minneapolis (by Litton
Industries) for a film project that was never
completed because the expected financial sup-
port was withdrawn.’ (sequel to Coxeter’'s 1966
film Dihedral Kaleidoscopes?)

Recent U.S. Patents for 3-dim. kaleidoscopes:
J. Sandoval and J. Bracho (1995), F. Altman
(1997) None manufactured?
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Kaleidoscope for Platonic Solid P:
e Truncate the cone C near vertex

e Reflected Image of truncation triangle is

S = convex hull(PU P")
(P’ = dual solid)
e Circular pattern disc over triangle
e Pattern on the disc appears on each face of
S by the multiple reflections in the mirrors, and

moves when disc rotates.

e Shows a continuous transition between P and
P’
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Mirror Dimensions for 3-Dimensional Kaleido-
scopes (r, z — scaling parameters)

Type As B Hj
a+ B+ 180° 135° 90°
L 2| gL | g —
V2 V3B V2 Vot2
2 r Li
d Vs 2 oy/o+2

Mirrors for Tetrahedral (Type Az) Kaleidoscope

F

edge b

Mirror 3

edge ¢

Mirror 2

edge a

Mirror 1

edge ¢
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r = radius of the image S in kaleidoscope (free
parameter)

z = length of longer leg of front right triangle
«, [, v - vertex angles of the three cones
¢ = (1 ++/5)/2 - the golden mean

y = the length of short leg of back right tri-
angle

z = <L+ta?rJ1a) tan~

Choose L =8y. Then z = (4 -+ %) r
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Mirrors for Octahedral (Type B3) Kaleidoscope:

Mirror 3 Mirror 2

Mirror 1

edge ¢
K L A
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Mirrors for Icosahedral (Type Hz) Kaleidoscope:

Mirror 3

edge ¢

Mirror 1

- edge ¢
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