Integral Transforms

Roe Goodman

Introduction to Math at Rutgers

August 29, 2010

G – locally compact abelian topological group (written additively)

- G locally compact abelian topological group (written additively)
- G has a Haar measure (translation invariant)
- $L^2(G)$ square integrable complex valued functions on GInner product: $(\phi, \psi) = \int_G \phi(x) \overline{\psi(x)} \, \mathrm{d}x$

norm: $\|\phi\|_2 = \sqrt{(\phi, \phi)}$

G acts on $L^2(G)$ by translations: $T_y \phi(x) = \phi(x - y)$

G – locally compact abelian topological group (written additively)

G has a Haar measure (translation invariant)

 $L^2(G)$ – square integrable complex valued functions on GInner product: $(\phi, \psi) = \int_G \phi(x) \overline{\psi(x)} \, \mathrm{d}x$

norm: $\|\phi\|_2 = \sqrt{(\phi,\phi)}$

G acts on $L^2(G)$ by translations: $T_y \phi(x) = \phi(x - y)$

Definition

A linear transformation (operator) $C: L^2(G) \to L^2(G)$ is translation invariant if it commutes with $\{T_y\}_{y \in G}$.

G – locally compact abelian topological group (written additively)

G has a Haar measure (translation invariant)

 $L^2(G)$ – square integrable complex valued functions on GInner product: $(\phi, \psi) = \int_G \phi(x) \overline{\psi(x)} \, \mathrm{d}x$

norm: $\|\phi\|_2 = \sqrt{(\phi,\phi)}$

G acts on $L^2(G)$ by translations: $T_y \phi(x) = \phi(x - y)$

Definition

A linear transformation (operator) $C: L^2(G) \to L^2(G)$ is translation invariant if it commutes with $\{T_y\}_{y \in G}$.

Some Examples

- Translation: $C\phi = T_y \phi$ with $y \in G$
- Convolution: $C\phi(x) = \int_G f(y)\phi(x-y) \, dy$ with $f \in L^1(G)$ (weighted average of translates of ϕ)

G – locally compact abelian topological group (written additively)

G has a Haar measure (translation invariant)

L²(G) – square integrable complex valued functions on G Inner product: $(\phi, \psi) = \int_G \phi(x) \overline{\psi(x)} \, \mathrm{d}x$ norm: $\|\phi\|_2 = \sqrt{(\phi, \phi)}$

G acts on $L^2(G)$ by translations: $T_y \phi(x) = \phi(x - y)$

Definition

A linear transformation (operator) $C: L^2(G) \to L^2(G)$ is translation invariant if it commutes with $\{T_y\}_{y \in G}$.

Some Examples

- Translation: $C\phi = T_y \phi$ with $y \in G$
- Convolution: $C\phi(x) = \int_G f(y)\phi(x-y) \, dy$ with $f \in L^1(G)$ (weighted average of translates of ϕ)

Problem: Diagonalize all translation invariant operators

G – locally compact abelian topological group (written additively)

G has a Haar measure (translation invariant)

 $L^2(G)$ – square integrable complex valued functions on GInner product: $(\phi, \psi) = \int_G \phi(x) \overline{\psi(x)} \, \mathrm{d}x$

norm: $\|\phi\|_2 = \sqrt{(\phi,\phi)}$

G acts on $L^2(G)$ by translations: $T_y \phi(x) = \phi(x - y)$

Definition

A linear transformation (operator) $C: L^2(G) \to L^2(G)$ is translation invariant if it commutes with $\{T_y\}_{y \in G}$.

Some Examples

- Translation: $C\phi = T_y \phi$ with $y \in G$
- Convolution: $C\phi(x) = \int_G f(y)\phi(x-y) \, dy$ with $f \in L^1(G)$ (weighted average of translates of ϕ)

Problem: Diagonalize all translation invariant operators

Solution: Use characters of *G* and Fourier transform

Example 1 $G = \mathbb{Z}/n\mathbb{Z}$ (additive group of integers mod n) $L^2(G) = \{\phi : \mathbb{Z} \to \mathbb{C} : \phi(k+n) = \phi(k) \text{ for all } k \in \mathbb{Z}\}$ inner product $(\phi, \psi) = \frac{1}{n} \sum_{k=0}^{n-1} \phi(k) \overline{\psi(k)}$

Example 1
$$G = \mathbb{Z}/n\mathbb{Z}$$
 (additive group of integers mod n) $L^2(G) = \{\phi: \mathbb{Z} \to \mathbb{C}: \phi(k+n) = \phi(k) \text{ for all } k \in \mathbb{Z}\}$ inner product $(\phi, \psi) = \frac{1}{n} \sum_{k=0}^{n-1} \phi(k) \overline{\psi(k)}$ Characters $e_p(k) = w^{kp}$ for $k, p \in \mathbb{Z}$ $(w = e^{2\pi i/n}, w^n = 1)$

Example 1
$$G = \mathbb{Z}/n\mathbb{Z}$$
 (additive group of integers mod n) $L^2(G) = \{\phi: \mathbb{Z} \to \mathbb{C}: \phi(k+n) = \phi(k) \text{ for all } k \in \mathbb{Z}\}$ inner product $(\phi, \psi) = \frac{1}{n} \sum_{k=0}^{n-1} \phi(k) \overline{\psi(k)}$ Characters $e_n(k) = w^{kp}$ for $k, p \in \mathbb{Z}$ $(w = e^{2\pi i/n}, w^n = 1)$

Characters
$$e_p(x) = w \cdot 10^{-1} x, p \in \mathbb{Z}$$
 $(w = e^{-x}, w = 1)$

- $e_p(k+m) = e_p(k)e_p(m)$, $|e_p(k)| = 1$, $e_{p+n} = e_p$
- Eigenfunctions for translations $T_k e_p = w^{-kp} e_p$
- Orthogonality relations

$$(e_p, e_q) = \begin{cases} 1 & \text{if } p - q \equiv 0 \mod(n) \\ 0 & \text{else} \end{cases}$$

Example 1
$$G = \mathbb{Z}/n\mathbb{Z}$$
 (additive group of integers mod n) $L^2(G) = \{\phi : \mathbb{Z} \to \mathbb{C} : \phi(k+n) = \phi(k) \text{ for all } k \in \mathbb{Z}\}$

inner product
$$(\phi, \psi) = \frac{1}{n} \sum_{k=0}^{n-1} \phi(k) \overline{\psi(k)}$$

Characters
$$e_p(k) = w^{kp}$$
 for $k, p \in \mathbb{Z}$ $(w = e^{2\pi i/n}, w^n = 1)$

- $e_p(k+m) = e_p(k)e_p(m)$, $|e_p(k)| = 1$, $e_{p+n} = e_p$
- Eigenfunctions for translations $T_k e_p = w^{-kp} e_p$
- Orthogonality relations

$$(e_p, e_q) = \left\{ egin{array}{ll} 1 & ext{if } p-q \equiv 0 \mod (n) \ 0 & ext{else} \end{array}
ight.$$

Finite Fourier Transform
$$\widehat{\phi}(p) = (\phi, e_p)$$

Example 1
$$G = \mathbb{Z}/n\mathbb{Z}$$
 (additive group of integers mod n)

$$L^2(G) = \{\phi : \mathbb{Z} \to \mathbb{C} : \phi(k+n) = \phi(k) \text{ for all } k \in \mathbb{Z}\}$$

inner product
$$(\phi, \psi) = \frac{1}{n} \sum_{k=0}^{n-1} \phi(k) \overline{\psi(k)}$$

Characters
$$e_p(k) = w^{kp}$$
 for $k, p \in \mathbb{Z}$ $(w = e^{2\pi i/n}, w^n = 1)$

- $e_p(k+m) = e_p(k)e_p(m)$, $|e_p(k)| = 1$, $e_{p+n} = e_p$
- Eigenfunctions for translations $T_k e_p = w^{-kp} e_p$
- Orthogonality relations

$$(e_p, e_q) = \left\{ egin{array}{ll} 1 & ext{if } p-q \equiv 0 \mod (n) \\ 0 & ext{else} \end{array}
ight.$$

Finite Fourier Transform $\widehat{\phi}(p) = (\phi, e_p)$

- Diagonalization $\psi = T_k \phi \implies \widehat{\psi}(p) = w^{-kp} \widehat{\phi}(p)$
- Fourier inversion $\phi = \sum_{p=0}^{n-1} \widehat{\phi}(p)e_p$
- Plancherel formula $(\phi, \psi) = \sum_{p=0}^{n-1} \widehat{\phi}(p) \overline{\widehat{\psi}(p)}$

Diagonalization of Translation Invariant Operators

Theorem

Let $G = \mathbb{Z}/n\mathbb{Z}$. Let C be a translation invariant operator on $L^2(G)$. There is a function F on $\widehat{G} \cong \mathbb{Z}/n\mathbb{Z}$ such that (\star) $\widehat{C}\phi(p) = F(p)\widehat{\phi}(p)$ for all $\phi \in L^2(G)$ and $p \in \mathbb{Z}$. Conversely, every function F on $\mathbb{Z}/n\mathbb{Z}$ defines a translation invariant operator C on $L^2(G)$ by (\star) (C = convolution by f, where $\widehat{f} = F$).

Diagonalization of Translation Invariant Operators

Theorem

Let $G = \mathbb{Z}/n\mathbb{Z}$. Let C be a translation invariant operator on $L^2(G)$. There is a function F on $\widehat{G} \cong \mathbb{Z}/n\mathbb{Z}$ such that (\star) $\widehat{C}\phi(p) = F(p)\widehat{\phi}(p)$ for all $\phi \in L^2(G)$ and $p \in \mathbb{Z}$. Conversely, every function F on $\mathbb{Z}/n\mathbb{Z}$ defines a translation invariant operator C on $L^2(G)$ by (\star) (C = convolution by f, where $\widehat{f} = F$).

Proof.

Let $S=T_1$ (shift operator). Then S has n distinct eigenvalues $\lambda_p=w^{-p}$ for $p=0,\ldots,n-1$ with eigenvectors e_p . Since C commutes with S, the function Ce_p is an eigenvector for S with eigenvalue w^{-p} . Hence $Ce_p=F(p)e_p$ for some scalar $F(p)\in\mathbb{C}$. The Fourier inversion formula now implies (\star) .

General Version of Fourier Transform

G – locally compact abelian topological group (written additively)

$$\psi: \mathcal{G}
ightarrow \mathbb{T} = \{z \in \mathbb{C} \ : \ |z| = 1\}$$
 (continuous)

$$\psi(x+y) = \psi(x)\psi(y), \quad \psi(0) = 1$$

General Version of Fourier Transform

G – locally compact abelian topological group (written additively)

 \widehat{G} – all characters of G:

$$\psi: G \to \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\} \text{ (continuous)}$$

 $\psi(x+y) = \psi(x)\psi(y), \quad \psi(0) = 1$

• \widehat{G} is a locally compact abelian group under pointwise multiplication and uniform convergence on compacta topology.

General Version of Fourier Transform

G – locally compact abelian topological group (written additively)

$$\psi:G \to \mathbb{T} = \{z \in \mathbb{C}: |z|=1\}$$
 (continuous) $\psi(x+y) = \psi(x)\psi(y), \quad \psi(0)=1$

- \widehat{G} is a locally compact abelian group under pointwise multiplication and uniform convergence on compacta topology.
- $\widehat{(\widehat{G})} \cong G$ (natural isomorphism, as for vector space duality).

General Version of Fourier Transform

G – locally compact abelian topological group (written additively)

$$\psi:G \to \mathbb{T} = \{z \in \mathbb{C}: |z|=1\}$$
 (continuous) $\psi(x+y) = \psi(x)\psi(y), \quad \psi(0) = 1$

- \widehat{G} is a locally compact abelian group under pointwise multiplication and uniform convergence on compacta topology.
- $\widehat{(\widehat{G})} \cong G$ (natural isomorphism, as for vector space duality).
- Fourier transform takes $L^2(G)$ onto $L^2(\widehat{G})$ preserving norm.

General Version of Fourier Transform

G – locally compact abelian topological group (written additively)

$$\psi: G \to \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$$
 (continuous) $\psi(x+y) = \psi(x)\psi(y), \quad \psi(0) = 1$

- \widehat{G} is a locally compact abelian group under pointwise multiplication and uniform convergence on compacta topology.
- $\widehat{(\widehat{G})} \cong G$ (natural isomorphism, as for vector space duality).
- Fourier transform takes $L^2(G)$ onto $L^2(\widehat{G})$ preserving norm.
- Translation invariant operator C on $L^2(G)$ becomes multiplication by a function F on $L^2(\widehat{G})$.

General Version of Fourier Transform

G – locally compact abelian topological group (written additively)

 \widehat{G} – all characters of G:

$$\psi:G \to \mathbb{T} = \{z \in \mathbb{C}: |z|=1\}$$
 (continuous) $\psi(x+y) = \psi(x)\psi(y), \quad \psi(0) = 1$

- \widehat{G} is a locally compact abelian group under pointwise multiplication and uniform convergence on compacta topology.
- $\widehat{(\widehat{G})} \cong G$ (natural isomorphism, as for vector space duality).
- Fourier transform takes $L^2(G)$ onto $L^2(\widehat{G})$ preserving norm.
- Translation invariant operator C on $L^2(G)$ becomes multiplication by a function F on $L^2(\widehat{G})$.

Example

$$G = \mathbb{Z}/n\mathbb{Z}$$
 $\widehat{G} = \{e_p : p \in \mathbb{Z}/n\mathbb{Z}\} \cong G$
Choose basic character e_1 . Then $e_p(k) = e_1(pk)$


```
Example 2 G = \mathbb{R}/\mathbb{Z} (additive group of real numbers modulo 1) L^2(\mathbb{R}/\mathbb{Z}) \phi: \mathbb{R} \to \mathbb{C}, \ \phi(x+1) = \phi(x) (periodic, measurable) \int_0^1 |\phi(x)|^2 \, \mathrm{d}x < \infty (Lebesgue integral) Inner product (\phi, \psi) = \int_0^1 \phi(x) \overline{\psi(x)} \, \mathrm{d}x
```

Example 2
$$G = \mathbb{R}/\mathbb{Z}$$
 (additive group of real numbers modulo 1) $L^2(\mathbb{R}/\mathbb{Z})$ $\phi: \mathbb{R} \to \mathbb{C}, \ \phi(x+1) = \phi(x)$ (periodic, measurable) $\int_0^1 |\phi(x)|^2 \, \mathrm{d}x < \infty$ (Lebesgue integral) Inner product $(\phi, \psi) = \int_0^1 \phi(x) \overline{\psi(x)} \, \mathrm{d}x$ Characters $e_p(x) = \exp(2\pi \mathrm{i} px)$ for $p \in \mathbb{Z}$ and $x \in \mathbb{R}$

Example 2
$$G = \mathbb{R}/\mathbb{Z}$$
 (additive group of real numbers modulo 1) $L^2(\mathbb{R}/\mathbb{Z})$ $\phi: \mathbb{R} \to \mathbb{C}, \ \phi(x+1) = \phi(x)$ (periodic, measurable) $\int_0^1 |\phi(x)|^2 \, \mathrm{d}x < \infty$ (Lebesgue integral)

Inner product $(\phi, \psi) = \int_0^1 \phi(x) \overline{\psi(x)} dx$

Characters $e_p(x) = \exp(2\pi \mathrm{i} p x)$ for $p \in \mathbb{Z}$ and $x \in \mathbb{R}$

- $e_p(x+1) = e_p(x)$, $|e_p(x)| = 1$
- $e_p(x)e_q(x)=e_{p+q}(x)$, so $\widehat{G}\cong \mathbb{Z}$ under $e_p\leftrightarrow p$
- Orthogonality relations $(e_p,e_q)=\left\{egin{array}{ll} 1 & ext{if } p=q \\ 0 & ext{else} \end{array}
 ight.$

Example 2
$$G = \mathbb{R}/\mathbb{Z}$$
 (additive group of real numbers modulo 1) $L^2(\mathbb{R}/\mathbb{Z})$ $\phi: \mathbb{R} \to \mathbb{C}, \ \phi(x+1) = \phi(x)$ (periodic, measurable) $\int_0^1 |\phi(x)|^2 \, \mathrm{d}x < \infty$ (Lebesgue integral)

Inner product $(\phi, \psi) = \int_0^1 \phi(x) \overline{\psi(x)} dx$

Characters $e_p(x) = \exp(2\pi \mathrm{i} p x)$ for $p \in \mathbb{Z}$ and $x \in \mathbb{R}$

- $e_p(x+1) = e_p(x)$, $|e_p(x)| = 1$
- $e_p(x)e_q(x)=e_{p+q}(x)$, so $\widehat{G}\cong \mathbb{Z}$ under $e_p\leftrightarrow p$
- Orthogonality relations $(e_p,e_q)=\left\{egin{array}{ll} 1 & ext{if } p=q \\ 0 & ext{else} \end{array}
 ight.$

Fourier transform
$$\widehat{\phi}(p) = (\phi, e_p) = \int_0^1 \phi(x) \exp(-2\pi i px) dx$$

Example 2
$$G = \mathbb{R}/\mathbb{Z}$$
 (additive group of real numbers modulo 1) $L^2(\mathbb{R}/\mathbb{Z})$ $\phi: \mathbb{R} \to \mathbb{C}, \ \phi(x+1) = \phi(x)$ (periodic, measurable)
$$\int_0^1 |\phi(x)|^2 \, \mathrm{d}x < \infty \quad \text{(Lebesgue integral)}$$

Inner product $(\phi, \psi) = \int_0^1 \phi(x) \overline{\psi(x)} dx$

Characters $e_p(x) = \exp(2\pi \mathrm{i} p x)$ for $p \in \mathbb{Z}$ and $x \in \mathbb{R}$

- $e_p(x+1) = e_p(x)$, $|e_p(x)| = 1$
- $e_p(x)e_q(x)=e_{p+q}(x)$, so $\widehat{G}\cong \mathbb{Z}$ under $e_p\leftrightarrow p$
- Orthogonality relations $(e_p,e_q)=\left\{egin{array}{ll} 1 & ext{if } p=q \\ 0 & ext{else} \end{array}
 ight.$

Fourier transform
$$\widehat{\phi}(p) = (\phi, e_p) = \int_0^1 \phi(x) \exp(-2\pi i px) dx$$

- Diagonalization $\psi = T_y \phi \implies \widehat{\psi}(p) = e_p(-y)\widehat{\phi}(p)$
- Fourier inversion $\phi = \sum_{p \in \mathbb{Z}} \widehat{\phi}(p) e_p$ (L^2 convergence)
- Plancherel formula $(\phi, \psi) = \sum_{p \in \mathbb{Z}} \widehat{\phi}(p) \overline{\widehat{\psi}(p)}$

Linear operator C on $L^2(\mathbb{R}/\mathbb{Z})$ is bounded if $\|C\phi\|_2 \leq M\|\phi\|_2$ Same as: C is a continuous transformation w.r.t. $\|\phi\|_2$.

Linear operator C on $L^2(\mathbb{R}/\mathbb{Z})$ is bounded if $\|C\phi\|_2 \leq M\|\phi\|_2$ Same as: C is a continuous transformation w.r.t. $\|\phi\|_2$.

Theorem

Let C be a bounded translation invariant operator on $L^2(\mathbb{R}/\mathbb{Z})$.

Then there is a bounded function F on \mathbb{Z} such that (\star) $\widehat{C}\phi(p) = F(p)\widehat{\phi}(p)$ for all $\phi \in L^2(\mathbb{R}/\mathbb{Z})$.

Conversely, every bounded function F on \mathbb{Z} defines a bounded translation invariant operator C on $L^2(\mathbb{R}/\mathbb{Z})$ by (\star) .

Linear operator C on $L^2(\mathbb{R}/\mathbb{Z})$ is bounded if $\|C\phi\|_2 \leq M\|\phi\|_2$ Same as: C is a continuous transformation w.r.t. $\|\phi\|_2$.

Theorem

Let C be a bounded translation invariant operator on $L^2(\mathbb{R}/\mathbb{Z})$.

Then there is a bounded function F on \mathbb{Z} such that

$$(\star)$$
 $\widehat{C\phi}(p) = F(p)\widehat{\phi}(p)$ for all $\phi \in L^2(\mathbb{R}/\mathbb{Z})$.

Conversely, every bounded function F on \mathbb{Z} defines a bounded translation invariant operator C on $L^2(\mathbb{R}/\mathbb{Z})$ by (\star) .

Proof.

Let $S = T_y$, y irrational. Then S has distinct eigenvalues $\lambda_p = \exp(-2\pi \mathrm{i} y p)$ for $p \in \mathbb{Z}$ with eigenvectors e_p .

Linear operator C on $L^2(\mathbb{R}/\mathbb{Z})$ is bounded if $\|C\phi\|_2 \leq M\|\phi\|_2$ Same as: C is a continuous transformation w.r.t. $\|\phi\|_2$.

Theorem

Let C be a bounded translation invariant operator on $L^2(\mathbb{R}/\mathbb{Z})$.

Then there is a bounded function F on \mathbb{Z} such that

$$(\star)$$
 $\widehat{C\phi}(p) = F(p)\widehat{\phi}(p)$ for all $\phi \in L^2(\mathbb{R}/\mathbb{Z})$.

Conversely, every bounded function F on \mathbb{Z} defines a bounded translation invariant operator C on $L^2(\mathbb{R}/\mathbb{Z})$ by (\star) .

Proof.

Let $S = T_y$, y irrational. Then S has distinct eigenvalues $\lambda_p = \exp(-2\pi \mathrm{i} y p)$ for $p \in \mathbb{Z}$ with eigenvectors e_p . $CS = SC \Rightarrow Ce_p = F(p)e_p$ with $F(p) \in \mathbb{C}$. Then C bounded $\Rightarrow \|F\|_{\infty} := \sup_p |F(p)| < \infty$. Hence $C\phi = \sum_{p \in \mathbb{Z}} \widehat{\phi}(p) Ce_p = \sum_{p \in \mathbb{Z}} \widehat{\phi}(p) F(p) e_p$

 $C^{\infty}(\mathbb{R}/\mathbb{Z})=$ differentiable periodic functions on \mathbb{R}

$$C^{\infty}(\mathbb{R}/\mathbb{Z})=$$
 differentiable periodic functions on \mathbb{R} $D=rac{1}{2\pi\mathrm{i}}rac{d}{d\mathrm{x}}$ translation invariant operator on $C^{\infty}(\mathbb{R}/\mathbb{Z})$

• $De_p = pe_p$ for $p \in \mathbb{Z}$, so D is not bounded on $L^2(\mathbb{R}/\mathbb{Z})$

 $C^{\infty}(\mathbb{R}/\mathbb{Z})=$ differentiable periodic functions on \mathbb{R} $D=rac{1}{2\pi\mathrm{i}}rac{d}{d\mathrm{x}}$ translation invariant operator on $C^{\infty}(\mathbb{R}/\mathbb{Z})$

- $De_p = pe_p$ for $p \in \mathbb{Z}$, so D is not bounded on $L^2(\mathbb{R}/\mathbb{Z})$
- $(D\phi, \psi) = (\phi, D\psi)$ for $\phi, \psi \in C^{\infty}(\mathbb{R}/\mathbb{Z})$ (integrate by parts)
- $\widehat{D\phi}(p) = p\widehat{\phi}(p)$ for $\phi \in C^{\infty}(\mathbb{R}/\mathbb{Z})$
- $\phi \in C^{\infty}(\mathbb{R}/\mathbb{Z}) \iff \widehat{\phi}$ is rapidly decreasing: For every positive integer $r = \sup_{p \in \mathbb{Z}} |p^r \widehat{\phi}(p)| < \infty$

 $C^\infty(\mathbb{R}/\mathbb{Z})=$ differentiable periodic functions on \mathbb{R} $D=rac{1}{2\pi\mathrm{i}}rac{d}{d\mathrm{x}}$ translation invariant operator on $C^\infty(\mathbb{R}/\mathbb{Z})$

- $De_p = pe_p$ for $p \in \mathbb{Z}$, so D is not bounded on $L^2(\mathbb{R}/\mathbb{Z})$
- $(D\phi, \psi) = (\phi, D\psi)$ for $\phi, \psi \in C^{\infty}(\mathbb{R}/\mathbb{Z})$ (integrate by parts)
- $\widehat{D\phi}(p) = p\widehat{\phi}(p)$ for $\phi \in C^{\infty}(\mathbb{R}/\mathbb{Z})$
- $\phi \in C^{\infty}(\mathbb{R}/\mathbb{Z}) \iff \widehat{\phi}$ is rapidly decreasing: For every positive integer $r = \sup_{p \in \mathbb{Z}} |p^r \widehat{\phi}(p)| < \infty$

Theorem

Let C be a continuous translation invariant operator on $C^{\infty}(\mathbb{R}/\mathbb{Z})$. Then there is a function F on \mathbb{Z} of polynomial growth at ∞ such that

(*)
$$\widehat{C\phi}(p) = F(p)\widehat{\phi}(p)$$
 for all $\phi \in C^{\infty}(\mathbb{R}/\mathbb{Z})$.
Conversely, every such function F on \mathbb{Z} defines a continuous translation invariant operator C on $C^{\infty}(\mathbb{R}/\mathbb{Z})$ by (*).

Fourier Transform on \mathbb{R}

Example 3 $G = \mathbb{R}$ (additive group of real numbers) $L^2(\mathbb{R})$ $\phi: \mathbb{R} \to \mathbb{C}$, (measurable) $\int_{-\infty}^{\infty} |\phi(x)|^2 \, \mathrm{d}x < \infty$ Inner product $(\phi, \psi) = \int_{-\infty}^{\infty} \phi(x) \overline{\psi(x)} \, \mathrm{d}x$

Fourier Transform on \mathbb{R}

Example 3 $G=\mathbb{R}$ (additive group of real numbers) $L^2(\mathbb{R})$ $\phi:\mathbb{R}\to\mathbb{C}$, (measurable) $\int_{-\infty}^\infty |\phi(x)|^2\,\mathrm{d}x<\infty$ Inner product $(\phi,\psi)=\int_{-\infty}^\infty \phi(x)\overline{\psi(x)}\,\mathrm{d}x$ Characters $e_\xi(x)=\exp(2\pi\mathrm{i}x\xi)$ for $x,\xi\in\mathbb{R}$.

Fourier Transform on \mathbb{R}

Example 3
$$G = \mathbb{R}$$
 (additive group of real numbers) $L^2(\mathbb{R})$ $\phi: \mathbb{R} \to \mathbb{C}$, (measurable) $\int_{-\infty}^{\infty} |\phi(x)|^2 \, \mathrm{d}x < \infty$ Inner product $(\phi, \psi) = \int_{-\infty}^{\infty} \phi(x) \overline{\psi(x)} \, \mathrm{d}x$ Characters $e_{\mathcal{E}}(x) = \exp(2\pi \mathrm{i} x \xi)$ for $x, \xi \in \mathbb{R}$.

- Fix basic character e_1 . Then $e_{\xi}(x) = e_1(x\xi)$
- $e_{\xi}(x)e_{ au}(x)=e_{\xi+ au}(x)$, so $\widehat{\mathbb{R}}\cong\mathbb{R}$ under $e_{\xi}\leftrightarrow \xi$
- \mathbb{R} not compact $\Rightarrow e_{\xi} \notin L^2(\mathbb{R})$ (plane wave, frequency ξ)

Fourier Transform on \mathbb{R}

Example 3
$$G=\mathbb{R}$$
 (additive group of real numbers) $L^2(\mathbb{R})$ $\phi:\mathbb{R}\to\mathbb{C}$, (measurable) $\int_{-\infty}^\infty |\phi(x)|^2\,\mathrm{d}x<\infty$ Inner product $(\phi,\psi)=\int_{-\infty}^\infty \phi(x)\overline{\psi(x)}\,\mathrm{d}x$

Characters
$$e_{\xi}(x) = \exp(2\pi i x \xi)$$
 for $x, \xi \in \mathbb{R}$.

- Fix basic character e_1 . Then $e_{\xi}(x) = e_1(x\xi)$
- $e_{\xi}(x)e_{ au}(x)=e_{\xi+ au}(x)$, so $\widehat{\mathbb{R}}\cong\mathbb{R}$ under $e_{\xi}\leftrightarrow \xi$
- \mathbb{R} not compact $\Rightarrow e_{\xi} \notin L^2(\mathbb{R})$ (plane wave, frequency ξ)

Fourier transform For $\phi \in L^1(\mathbb{R})$ define

$$\widehat{\phi}(\xi) = \int_{-\infty}^{\infty} \phi(x) e_{-\xi}(x) dx$$
 (integral converges absolutely)

Fourier Transform on \mathbb{R}

Example 3
$$G=\mathbb{R}$$
 (additive group of real numbers) $L^2(\mathbb{R})$ $\phi:\mathbb{R}\to\mathbb{C}$, (measurable) $\int_{-\infty}^\infty |\phi(x)|^2\,\mathrm{d}x<\infty$ Inner product $(\phi,\psi)=\int_{-\infty}^\infty \phi(x)\overline{\psi(x)}\,\mathrm{d}x$

- Characters $e_{\xi}(x) = \exp(2\pi i x \xi)$ for $x, \xi \in \mathbb{R}$.
 - Fix basic character e_1 . Then $e_{\xi}(x) = e_1(x\xi)$
 - $e_{\xi}(x)e_{ au}(x)=e_{\xi+ au}(x)$, so $\widehat{\mathbb{R}}\cong\mathbb{R}$ under $e_{\xi}\leftrightarrow \xi$
 - \mathbb{R} not compact $\Rightarrow e_{\xi} \notin L^2(\mathbb{R})$ (plane wave, frequency ξ)

Fourier transform For $\phi \in L^1(\mathbb{R})$ define $\widehat{\phi}(\xi) = \int_{-\infty}^{\infty} \phi(x) e^{-\xi}(x) dx$ (integral converges absolutely)

- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$
- Fourier transform extends to isometry $L^2(\mathbb{R}) \to L^2(\widehat{\mathbb{R}})$
- Plancherel formula $(\phi, \psi) = \int_{-\infty}^{\infty} \widehat{\phi}(\xi) \widehat{\psi}(\xi) d\xi$
- Bounded translation invariant operator C on $L^2(\mathbb{R}) \longleftrightarrow$ multiplication by bounded measurable function F on $\widehat{\mathbb{R}}$

Tempered Fourier Analysis on $\mathbb R$

 $\mathbb{S}(\mathbb{R})=$ rapidly decreasing C^{∞} functions on \mathbb{R} : $\sup_{x\in\mathbb{R}}\left|x^{m}\left(\frac{d}{dx}\right)^{k}\phi(x)\right|<\infty$ for all positive integers m,k Example $\phi(x)=p(x)e^{-\pi x^{2}}$ with p(x) a polynomial Fourier transform of ϕ is $q(\xi)e^{-\pi \xi^{2}}$ with q a polynomial

Tempered Fourier Analysis on $\mathbb R$

$$S(\mathbb{R})=$$
 rapidly decreasing C^{∞} functions on \mathbb{R} : $\sup_{x\in\mathbb{R}}\left|x^m\left(\frac{d}{dx}\right)^k\phi(x)\right|<\infty$ for all positive integers m,k Example $\phi(x)=p(x)e^{-\pi x^2}$ with $p(x)$ a polynomial Fourier transform of ϕ is $q(\xi)e^{-\pi \xi^2}$ with q a polynomial

- $S(\mathbb{R})$ invariant under $D_x = \frac{1}{2\pi i} \frac{d}{dx}$, $M_x =$ multiplication by x
- $\widehat{D_x\phi} = M_\xi\widehat{\phi}$ for $\phi \in \mathbb{S}(G)$ (integrate by parts)
- $\widehat{M_{\mathsf{x}}\phi} = D_{\xi}\widehat{\phi}$ for $\phi \in \mathbb{S}(\mathsf{G})$ (differentiate under integral)
- $\phi \in \mathbb{S}(\mathbb{R}) \iff \widehat{\phi} \in \mathbb{S}(\mathbb{R})$

Tempered Fourier Analysis on $\mathbb R$

 $\mathbb{S}(\mathbb{R}) = \text{rapidly decreasing } C^{\infty} \text{ functions on } \mathbb{R}:$ $\sup_{x \in \mathbb{R}} \left| x^m \left(\frac{d}{dx} \right)^k \phi(x) \right| < \infty \text{ for all positive integers } m, k$

Example $\phi(x) = p(x)e^{-\pi x^2}$ with p(x) a polynomial Fourier transform of ϕ is $q(\xi)e^{-\pi \xi^2}$ with q a polynomial

- $S(\mathbb{R})$ invariant under $D_x = \frac{1}{2\pi i} \frac{d}{dx}$, $M_x =$ multiplication by x
- $\widehat{D_x \phi} = M_\xi \widehat{\phi}$ for $\phi \in \mathcal{S}(G)$ (integrate by parts)
- $\widehat{M_x\phi} = D_\xi\widehat{\phi}$ for $\phi \in \mathbb{S}(G)$ (differentiate under integral)
- $\phi \in \mathcal{S}(\mathbb{R}) \iff \widehat{\phi} \in \mathcal{S}(\mathbb{R})$

Theorem

Let C be a continuous translation invariant operator on $S(\mathbb{R})$.

Then there is a C^{∞} function F on \mathbb{R} with all derivatives of polynomial growth at ∞ such that

(*)
$$\widehat{C}\phi(\xi) = F(\xi)\widehat{\phi}(\xi)$$
 for all $\phi \in S(\mathbb{R})$.

Conversely, every such function F on \mathbb{R} defines a continuous translation invariant operator C on $S(\mathbb{R})$ by (\star) .

Fourier-Mellin Transform

 $\mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}$ – locally compact group under multiplication

- Invariant integral $\int_{-\infty}^{\infty} f(x) \frac{dx}{|x|}$
- Characters $e_{ au,\epsilon}(x) = \operatorname{sgn}(x)^{\epsilon}|x|^{\mathrm{i} au}$ with $au \in \mathbb{R}$ and $\epsilon = \pm 1$ $\widehat{\mathbb{R}^{ imes}} \cong \mathbb{R} imes (\mathbb{Z}/2\mathbb{Z})$

Fourier-Mellin Transform

 $\mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}$ – locally compact group under multiplication

- Invariant integral $\int_{-\infty}^{\infty} f(x) \frac{\mathrm{d}x}{|x|}$
- Characters $e_{ au,\epsilon}(x) = \operatorname{sgn}(x)^{\epsilon}|x|^{\mathrm{i} au}$ with $au \in \mathbb{R}$ and $\epsilon = \pm 1$ $\widehat{\mathbb{R}^{ imes}} \cong \mathbb{R} imes (\mathbb{Z}/2\mathbb{Z})$
- Fourier-Mellin transform $\widehat{f}(\tau,\epsilon) = \int_{-\infty}^{\infty} f(x)e_{-\tau,\epsilon}(x) \frac{\mathrm{d}x}{|x|}$ for $f \in L^1(\mathbb{R},\frac{\mathrm{d}x}{|x|})$
- Plancherel Formula

$$\int_{-\infty}^{\infty} f(x)\overline{g(x)} \, \frac{\mathrm{d}x}{|x|} = \sum_{\epsilon = \pm 1} \int_{-\infty}^{\infty} \widehat{f}(\tau, \epsilon) \overline{\widehat{g}(\tau, \epsilon)} \, \mathrm{d}\tau$$
 for $f, g \in L^2(\mathbb{R}, \frac{\mathrm{d}x}{|x|})$

Fourier-Mellin Transform

 $\mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}$ – locally compact group under multiplication

- Invariant integral $\int_{-\infty}^{\infty} f(x) \frac{\mathrm{d}x}{|x|}$
- Characters $e_{ au,\epsilon}(x) = \operatorname{sgn}(x)^{\epsilon}|x|^{\mathrm{i} au}$ with $au \in \mathbb{R}$ and $\epsilon = \pm 1$ $\widehat{\mathbb{R}^{ imes}} \cong \mathbb{R} imes (\mathbb{Z}/2\mathbb{Z})$
- Fourier-Mellin transform $\widehat{f}(\tau,\epsilon) = \int_{-\infty}^{\infty} f(x) e_{-\tau,\epsilon}(x) \frac{\mathrm{d}x}{|x|}$ for $f \in L^1(\mathbb{R}, \frac{\mathrm{d}x}{|x|})$
- Plancherel Formula

$$\int_{-\infty}^{\infty} f(x)\overline{g(x)} \frac{\mathrm{d}x}{|x|} = \sum_{\epsilon = \pm 1} \int_{-\infty}^{\infty} \widehat{f}(\tau, \epsilon) \overline{\widehat{g}(\tau, \epsilon)} \, \mathrm{d}\tau$$
 for $f, g \in L^2(\mathbb{R}, \frac{\mathrm{d}x}{|x|})$

Log Trick: Use group homomorphism $x \mapsto (\log |x|, \operatorname{sgn}(x))$ to turn Fourier-Mellin transform into Fourier transform on $\mathbb{R} \times (\mathbb{Z}/2\mathbb{Z})$.

 $\mathbb{Q}_p = \text{completion of } \mathbb{Q} \text{ relative to } p\text{-adic absolute value } (p \text{ prime})$ $|p^k r/s|_p = p^{-k} \text{ if } r, s \text{ integers relatively prime to } p$

- $\mathbb{Q}_p = \text{completion of } \mathbb{Q} \text{ relative to } p\text{-adic absolute value } (p \text{ prime})$ $|p^k r/s|_p = p^{-k} \text{ if } r, s \text{ integers relatively prime to } p$
 - locally compact totally disconnected field with metric $d(x,y) = |x-y|_p$, $|x+y|_p = \max\{|x|_p,|y|_p\}$

- $\mathbb{Q}_p = \text{completion of } \mathbb{Q} \text{ relative to } p\text{-adic absolute value } (p \text{ prime})$ $|p^k r/s|_p = p^{-k} \text{ if } r, s \text{ integers relatively prime to } p$
 - locally compact totally disconnected field with metric $d(x,y) = |x-y|_p$, $|x+y|_p = \max\{|x|_p,|y|_p\}$
 - p-adic expansion $x = \sum_{n=k}^{\infty} a_n p^n$ $a_n \in \{0, 1, \dots, p-1\}$ $|x|_p = p^{-k}$ with $k = \min\{n : a_n \neq 0\}$ if $x \neq 0$

- $\mathbb{Q}_p = \text{completion of } \mathbb{Q} \text{ relative to } p\text{-adic absolute value } (p \text{ prime})$ $|p^k r/s|_p = p^{-k} \text{ if } r, s \text{ integers relatively prime to } p$
 - locally compact totally disconnected field with metric $d(x, y) = |x y|_p$, $|x + y|_p = \max\{|x|_p, |y|_p\}$
 - p-adic expansion $x = \sum_{n=k}^{\infty} a_n p^n$ $a_n \in \{0, 1, \dots, p-1\}$ $|x|_p = p^{-k}$ with $k = \min\{n : a_n \neq 0\}$ if $x \neq 0$
 - ring of *p*-adic integers $\mathbb{Z}_p = \{|x|_p \leq 1\}$ (compact)

- $\mathbb{Q}_p = \text{completion of } \mathbb{Q} \text{ relative to } p\text{-adic absolute value } (p \text{ prime})$ $|p^k r/s|_p = p^{-k} \text{ if } r, s \text{ integers relatively prime to } p$
 - locally compact totally disconnected field with metric $d(x, y) = |x y|_p$, $|x + y|_p = \max\{|x|_p, |y|_p\}$
 - p-adic expansion $x = \sum_{n=k}^{\infty} a_n p^n$ $a_n \in \{0, 1, \dots, p-1\}$ $|x|_p = p^{-k}$ with $k = \min\{n : a_n \neq 0\}$ if $x \neq 0$
 - ring of *p*-adic integers $\mathbb{Z}_p = \{|x|_p \leq 1\}$ (compact)

Characters Let \mathbb{Q}_p^+ = additive group of \mathbb{Q}_p

• $e(x) = \exp(2\pi \mathrm{i} z)$ with $z = \sum_{n < 0} a_n p^n \in \mathbb{Q}$ $(x \in z + \mathbb{Z}_p)$

- $\mathbb{Q}_p = \text{completion of } \mathbb{Q} \text{ relative to } p\text{-adic absolute value } (p \text{ prime})$ $|p^k r/s|_p = p^{-k} \text{ if } r, s \text{ integers relatively prime to } p$
 - locally compact totally disconnected field with metric $d(x,y) = |x-y|_p$, $|x+y|_p = \max\{|x|_p,|y|_p\}$
 - p-adic expansion $x = \sum_{n=k}^{\infty} a_n p^n$ $a_n \in \{0, 1, \dots, p-1\}$ $|x|_p = p^{-k}$ with $k = \min\{n : a_n \neq 0\}$ if $x \neq 0$
 - ring of *p*-adic integers $\mathbb{Z}_p = \{|x|_p \leq 1\}$ (compact)

Characters Let \mathbb{Q}_p^+ = additive group of \mathbb{Q}_p

- $e(x) = \exp(2\pi \mathrm{i} z)$ with $z = \sum_{n < 0} a_n p^n \in \mathbb{Q}$ $(x \in z + \mathbb{Z}_p)$
- $\mathbb{Q}_p^+ \cong \widehat{\mathbb{Q}_p^+} = \{e_y\}_{y \in \mathbb{Q}_p}$ where $e_y(x) = e(xy)$ for $x, y \in \mathbb{Q}_p$

- $\mathbb{Q}_p = \text{completion of } \mathbb{Q} \text{ relative to } p\text{-adic absolute value } (p \text{ prime})$ $|p^k r/s|_p = p^{-k} \text{ if } r, s \text{ integers relatively prime to } p$
 - locally compact totally disconnected field with metric $d(x,y) = |x-y|_p$, $|x+y|_p = \max\{|x|_p,|y|_p\}$
 - p-adic expansion $x = \sum_{n=k}^{\infty} a_n p^n$ $a_n \in \{0, 1, \dots, p-1\}$ $|x|_p = p^{-k}$ with $k = \min\{n : a_n \neq 0\}$ if $x \neq 0$
 - ring of *p*-adic integers $\mathbb{Z}_p = \{|x|_p \le 1\}$ (compact)

Characters Let \mathbb{Q}_p^+ = additive group of \mathbb{Q}_p

- $e(x) = \exp(2\pi \mathrm{i} z)$ with $z = \sum_{n < 0} a_n p^n \in \mathbb{Q}$ $(x \in z + \mathbb{Z}_p)$
- $\mathbb{Q}_p^+ \cong \widehat{\mathbb{Q}_p^+} = \{e_y\}_{y \in \mathbb{Q}_p}$ where $e_y(x) = e(xy)$ for $x, y \in \mathbb{Q}_p$
- Fourier transform analogous to Fourier transform on $\mathbb{R}^+ = \mathbb{Q}_{\infty}^+$

- $\mathbb{Q}_p = \text{completion of } \mathbb{Q} \text{ relative to } p\text{-adic absolute value } (p \text{ prime})$ $|p^k r/s|_p = p^{-k} \text{ if } r, s \text{ integers relatively prime to } p$
 - locally compact totally disconnected field with metric $d(x,y) = |x-y|_p$, $|x+y|_p = \max\{|x|_p,|y|_p\}$
 - p-adic expansion $x = \sum_{n=k}^{\infty} a_n p^n$ $a_n \in \{0, 1, \dots, p-1\}$ $|x|_p = p^{-k}$ with $k = \min\{n : a_n \neq 0\}$ if $x \neq 0$
 - ring of *p*-adic integers $\mathbb{Z}_p = \{|x|_p \leq 1\}$ (compact)

Characters Let \mathbb{Q}_p^+ = additive group of \mathbb{Q}_p

- $e(x) = \exp(2\pi \mathrm{i} z)$ with $z = \sum_{n < 0} a_n p^n \in \mathbb{Q}$ $(x \in z + \mathbb{Z}_p)$
- $\mathbb{Q}_p^+ \cong \widehat{\mathbb{Q}_p^+} = \{e_y\}_{y \in \mathbb{Q}_p}$ where $e_y(x) = e(xy)$ for $x, y \in \mathbb{Q}_p$
- Fourier transform analogous to Fourier transform on $\mathbb{R}^+ = \mathbb{Q}_{\infty}^+$

Fourier-Mellin transform on \mathbb{Q}_p^{\times} more complicated than \mathbb{R}^{\times}

- $\mathbb{Q}_p = \text{completion of } \mathbb{Q} \text{ relative to } p\text{-adic absolute value } (p \text{ prime})$ $|p^k r/s|_p = p^{-k} \text{ if } r, s \text{ integers relatively prime to } p$
 - locally compact totally disconnected field with metric $d(x, y) = |x y|_p$, $|x + y|_p = \max\{|x|_p, |y|_p\}$
 - p-adic expansion $x = \sum_{n=k}^{\infty} a_n p^n$ $a_n \in \{0, 1, \dots, p-1\}$ $|x|_p = p^{-k}$ with $k = \min\{n : a_n \neq 0\}$ if $x \neq 0$
 - ring of *p*-adic integers $\mathbb{Z}_p = \{|x|_p \le 1\}$ (compact)

Characters Let \mathbb{Q}_p^+ = additive group of \mathbb{Q}_p

- $e(x) = \exp(2\pi \mathrm{i} z)$ with $z = \sum_{n < 0} a_n p^n \in \mathbb{Q}$ $(x \in z + \mathbb{Z}_p)$
- $\mathbb{Q}_p^+ \cong \widehat{\mathbb{Q}_p^+} = \{e_y\}_{y \in \mathbb{Q}_p}$ where $e_y(x) = e(xy)$ for $x, y \in \mathbb{Q}_p$
- Fourier transform analogous to Fourier transform on $\mathbb{R}^+ = \mathbb{Q}_{\infty}^+$

Fourier-Mellin transform on \mathbb{Q}_p^{\times} more complicated than \mathbb{R}^{\times} $\mathbb{Q}_p^{\times} \cong \{p^k\}_{k \in \mathbb{Z}} \times (\mathbb{Z}/(p-1)\mathbb{Z}) \times A \text{ with } A = \exp\{x : |x|_p < 1\}$

- $\mathbb{Q}_p = \text{completion of } \mathbb{Q} \text{ relative to } p\text{-adic absolute value } (p \text{ prime})$ $|p^k r/s|_p = p^{-k} \text{ if } r, s \text{ integers relatively prime to } p$
 - locally compact totally disconnected field with metric $d(x, y) = |x y|_p$, $|x + y|_p = \max\{|x|_p, |y|_p\}$
 - p-adic expansion $x = \sum_{n=k}^{\infty} a_n p^n$ $a_n \in \{0, 1, \dots, p-1\}$ $|x|_p = p^{-k}$ with $k = \min\{n : a_n \neq 0\}$ if $x \neq 0$
 - ring of *p*-adic integers $\mathbb{Z}_p = \{|x|_p \leq 1\}$ (compact)

Characters Let \mathbb{Q}_p^+ = additive group of \mathbb{Q}_p

- $e(x) = \exp(2\pi \mathrm{i} z)$ with $z = \sum_{n < 0} a_n p^n \in \mathbb{Q}$ $(x \in z + \mathbb{Z}_p)$
- $\mathbb{Q}_p^+ \cong \widehat{\mathbb{Q}_p^+} = \{e_y\}_{y \in \mathbb{Q}_p}$ where $e_y(x) = e(xy)$ for $x, y \in \mathbb{Q}_p$
- Fourier transform analogous to Fourier transform on $\mathbb{R}^+ = \mathbb{Q}_{\infty}^+$

Fourier-Mellin transform on \mathbb{Q}_p^{\times} more complicated than \mathbb{R}^{\times} $\mathbb{Q}_p^{\times} \cong \{p^k\}_{k \in \mathbb{Z}} \times (\mathbb{Z}/(p-1)\mathbb{Z}) \times A \text{ with } A = \exp\{x : |x|_p < 1\}$ $\widehat{\{p^k\}_{k \in \mathbb{Z}}} \cong \mathbb{R}/\mathbb{Z} \text{ (compact)} \quad \widehat{A} \cong \varprojlim_{k \in \mathbb{Z}} \mathbb{Z}/(p^k\mathbb{Z}) \text{ (countable)}$

G =Euclidean motion group on \mathbb{R}^n (translations and rotations)

G =Euclidean motion group on \mathbb{R}^n (translations and rotations)

$$\Delta = \partial^2/\partial x_1^2 + \cdots + \partial^2/\partial x_n^2$$
 Laplace operator on \mathbb{R}^n

Polynomials in Δ give all differential operators on \mathbb{R}^n invariant under G

 $G = \text{Euclidean motion group on } \mathbb{R}^n \text{ (translations and rotations)}$

$$\Delta = \partial^2/\partial x_1^2 + \cdots + \partial^2/\partial x_n^2$$
 Laplace operator on \mathbb{R}^n

Polynomials in Δ give all differential operators on \mathbb{R}^n invariant under G

Problem: Diagonalize action of Δ on $L^2(\mathbb{R}^n)$

G =Euclidean motion group on \mathbb{R}^n (translations and rotations)

$$\Delta = \partial^2/\partial x_1^2 + \cdots + \partial^2/\partial x_n^2$$
 Laplace operator on \mathbb{R}^n

Polynomials in Δ give all differential operators on \mathbb{R}^n invariant under G

Problem: Diagonalize action of Δ on $L^2(\mathbb{R}^n)$

Fourier Transform Method:

Use spherical coordinates on \mathbb{R}^n (singularity at 0) and expansion in spherical harmonics. On radial functions get Fourier-Bessel transform (integral transform with Bessel function kernel).

G =Euclidean motion group on \mathbb{R}^n (translations and rotations)

$$\Delta = \partial^2/\partial x_1^2 + \cdots + \partial^2/\partial x_n^2$$
 Laplace operator on \mathbb{R}^n

Polynomials in Δ give all differential operators on \mathbb{R}^n invariant under G

Problem: Diagonalize action of Δ on $L^2(\mathbb{R}^n)$

Fourier Transform Method:

Use spherical coordinates on \mathbb{R}^n (singularity at 0) and expansion in spherical harmonics. On radial functions get Fourier-Bessel transform (integral transform with Bessel function kernel).

Radon Transform Method:

Use integral transform that turns Δ into $(\partial/\partial p)^2$ on even functions of $p \in \mathbb{R}$ with parameter $\omega \in \mathbb{S}^{n-1}$ (no singularity). Then diagonalize by one-dimensional Fourier transform.

$$\mathbb{S}^{n-1} = \{x \in \mathbb{R}^n : x \cdot x = 1\} \text{ unit sphere}$$

$$x \cdot y = x_1 y_1 + \dots + x_n y_n \text{ inner product on } \mathbb{R}^n$$

```
\mathbb{S}^{n-1} = \{x \in \mathbb{R}^n : x \cdot x = 1\} unit sphere x \cdot y = x_1 y_1 + \dots + x_n y_n inner product on \mathbb{R}^n Hyperplane with oriented normal \omega \in \mathbb{S}^{n-1} and height p \in \mathbb{R}: H(\omega, p) = \{x \in \mathbb{R}^n : x \cdot \omega = p\}
```

```
\mathbb{S}^{n-1}=\{x\in\mathbb{R}^n:x\cdot x=1\} unit sphere x\cdot y=x_1y_1+\cdots+x_ny_n inner product on \mathbb{R}^n Hyperplane with oriented normal \omega\in\mathbb{S}^{n-1} and height p\in\mathbb{R}: H(\omega,p)=\{x\in\mathbb{R}^n:x\cdot\omega=p\} Write \xi=H(\omega,p)\cong\mathbb{R}^{n-1} \mathrm{d} m=(n-1)-dimensional Lebesgue measure on \xi
```

```
\mathbb{S}^{n-1} = \{x \in \mathbb{R}^n : x \cdot x = 1\} \text{ unit sphere } \\ x \cdot y = x_1 y_1 + \dots + x_n y_n \quad \text{inner product on } \mathbb{R}^n \\ \text{Hyperplane with oriented normal } \omega \in \mathbb{S}^{n-1} \text{ and height } p \in \mathbb{R} \text{:} \\ H(\omega,p) = \{x \in \mathbb{R}^n : x \cdot \omega = p\} \\ \text{Write } \xi = H(\omega,p) \cong \mathbb{R}^{n-1} \\ \text{d} m = (n-1)\text{-dimensional Lebesgue measure on } \xi \\ \mathbb{P}^n = \text{ set of all hyperplanes } \xi \text{ in } \mathbb{R}^n \text{ (smooth $n$-dim manifold)} \\ \text{two-sheeted covering } \mathbb{S}^{n-1} \times \mathbb{R} \to \mathbb{P}^n \text{ (no singularities)} \\ (\omega,p) \mapsto H(\omega,p) = H(-\omega,-p) \\ \end{cases}
```

$$\mathbb{S}^{n-1} = \{x \in \mathbb{R}^n : x \cdot x = 1\} \text{ unit sphere } \\ x \cdot y = x_1 y_1 + \dots + x_n y_n \quad \text{inner product on } \mathbb{R}^n \\ \text{Hyperplane with oriented normal } \omega \in \mathbb{S}^{n-1} \text{ and height } p \in \mathbb{R} \text{:} \\ H(\omega,p) = \{x \in \mathbb{R}^n : x \cdot \omega = p\} \\ \text{Write } \xi = H(\omega,p) \cong \mathbb{R}^{n-1} \\ \mathrm{d} m = (n-1) \text{-dimensional Lebesgue measure on } \xi \\ \mathbb{P}^n = \text{ set of all hyperplanes } \xi \text{ in } \mathbb{R}^n \text{ (smooth n-dim manifold)} \\ \text{two-sheeted covering } \mathbb{S}^{n-1} \times \mathbb{R} \to \mathbb{P}^n \text{ (no singularities)} \\ (\omega,p) \mapsto H(\omega,p) = H(-\omega,-p) \\ \text{Radon transform of } f \in \mathbb{S}(\mathbb{R}^n) \text{:} \\ F(\omega,p) = \int_{X\omega = n} f(x) \, \mathrm{d} m(x) \\ \end{cases}$$

$$\mathbb{S}^{n-1} = \{x \in \mathbb{R}^n : x \cdot x = 1\} \text{ unit sphere } \\ x \cdot y = x_1 y_1 + \dots + x_n y_n \quad \text{inner product on } \mathbb{R}^n \\ \text{Hyperplane with oriented normal } \omega \in \mathbb{S}^{n-1} \text{ and height } p \in \mathbb{R} \text{:} \\ H(\omega,p) = \{x \in \mathbb{R}^n : x \cdot \omega = p\} \\ \text{Write } \xi = H(\omega,p) \cong \mathbb{R}^{n-1} \\ \mathrm{d} m = (n-1)\text{-dimensional Lebesgue measure on } \xi \\ \mathbb{P}^n = \text{ set of all hyperplanes } \xi \text{ in } \mathbb{R}^n \text{ (smooth n-dim manifold)} \\ \text{two-sheeted covering } \mathbb{S}^{n-1} \times \mathbb{R} \to \mathbb{P}^n \text{ (no singularities)} \\ (\omega,p) \mapsto H(\omega,p) = H(-\omega,-p) \\ \text{Radon transform of } f \in \mathbb{S}(\mathbb{R}^n) \text{:} \\ F(\omega,p) = \int_{X \cap \mathbb{R}^n} f(x) \, \mathrm{d} m(x) \\ \end{cases}$$

- Integral converges since $f|_{H(\omega,p)}$ is rapidly decreasing
- $F(\xi) = F(\omega, p)$ defined on \mathbb{P}^n since $F(\omega, \xi) = F(-\omega, -\xi)$

$$\mathbb{S}^{n-1} = \{x \in \mathbb{R}^n : x \cdot x = 1\} \text{ unit sphere } \\ x \cdot y = x_1 y_1 + \dots + x_n y_n \quad \text{inner product on } \mathbb{R}^n \\ \text{Hyperplane with oriented normal } \omega \in \mathbb{S}^{n-1} \text{ and height } p \in \mathbb{R} \text{:} \\ H(\omega,p) = \{x \in \mathbb{R}^n : x \cdot \omega = p\} \\ \text{Write } \xi = H(\omega,p) \cong \mathbb{R}^{n-1} \\ \text{d} m = (n-1)\text{-dimensional Lebesgue measure on } \xi \\ \mathbb{P}^n = \text{ set of all hyperplanes } \xi \text{ in } \mathbb{R}^n \text{ (smooth n-dim manifold)} \\ \text{two-sheeted covering } \mathbb{S}^{n-1} \times \mathbb{R} \to \mathbb{P}^n \text{ (no singularities)} \\ (\omega,p) \mapsto H(\omega,p) = H(-\omega,-p) \\ \text{Radon transform of } f \in \mathbb{S}(\mathbb{R}^n) \text{:} \\ F(\omega,p) = \int_{X\omega=n} f(x) \, \mathrm{d} m(x) \\ \end{pmatrix}$$

- Integral converges since $f|_{H(\omega,p)}$ is rapidly decreasing
- $F(\xi) = F(\omega, p)$ defined on \mathbb{P}^n since $F(\omega, \xi) = F(-\omega, -\xi)$
- Fourier transform $\hat{f}(r\omega) = \int_{-\infty}^{\infty} F(\omega, p) e^{-2\pi i r p} dp$

$$\mathbb{S}^{n-1} = \{x \in \mathbb{R}^n : x \cdot x = 1\} \text{ unit sphere } \\ x \cdot y = x_1 y_1 + \dots + x_n y_n \quad \text{inner product on } \mathbb{R}^n \\ \text{Hyperplane with oriented normal } \omega \in \mathbb{S}^{n-1} \text{ and height } p \in \mathbb{R} \text{:} \\ H(\omega,p) = \{x \in \mathbb{R}^n : x \cdot \omega = p\} \\ \text{Write } \xi = H(\omega,p) \cong \mathbb{R}^{n-1} \\ \mathrm{d} m = (n-1) \text{-dimensional Lebesgue measure on } \xi \\ \mathbb{P}^n = \text{ set of all hyperplanes } \xi \text{ in } \mathbb{R}^n \text{ (smooth n-dim manifold)} \\ \text{two-sheeted covering } \mathbb{S}^{n-1} \times \mathbb{R} \to \mathbb{P}^n \text{ (no singularities)} \\ (\omega,p) \mapsto H(\omega,p) = H(-\omega,-p) \\ \text{Radon transform of } f \in \mathbb{S}(\mathbb{R}^n) \text{:} \\ F(\omega,p) = \int_{X^n \omega = p} f(x) \, \mathrm{d} m(x) \\ \end{cases}$$

- Integral converges since $f|_{H(\omega,p)}$ is rapidly decreasing
- $F(\xi) = F(\omega, p)$ defined on \mathbb{P}^n since $F(\omega, \xi) = F(-\omega, -\xi)$
- Fourier transform $\widehat{f}(r\omega) = \int_{-\infty}^{\infty} F(\omega, p) e^{-2\pi i r p} dp$
- Radon transform of $\Delta f(x)$ is $(\partial/\partial p)^2 F(\omega, p)$

```
For x \in \mathbb{R}^n
K(x) = \text{all hyperplanes } \xi \text{ containing } x
= \{(\omega, p) : x \cdot \omega = p\} \cong \mathbb{S}^{n-1} / \pm 1
Let \mathrm{d}\mu = \text{invariant measure on } K(x) \text{ (total mass 1)}
```

For
$$x \in \mathbb{R}^n$$
 $K(x) = \text{all hyperplanes } \xi \text{ containing } x$ $= \{(\omega, p) : x \cdot \omega = p\} \cong \mathbb{S}^{n-1} / \pm 1$ Let $\mathrm{d}\mu = \mathrm{invariant}$ measure on $K(x)$ (total mass 1) For $F \in \mathcal{S}(\mathbb{P}^n)$ define dual Radon transform $\widetilde{F}(x) = \int_{\mathcal{E} \in K(x)} F(\xi) \, \mathrm{d}\mu(\xi) = \int_{\omega \in \mathbb{S}^{n-1}} F(\omega, \omega \cdot x) \, \mathrm{d}\omega$

For
$$x \in \mathbb{R}^n$$
 $K(x) = \text{all hyperplanes } \xi \text{ containing } x$ $= \{(\omega, p) : x \cdot \omega = p\} \cong \mathbb{S}^{n-1}/\pm 1$ Let $\mathrm{d}\mu = \mathrm{invariant}$ measure on $K(x)$ (total mass 1) For $F \in \mathcal{S}(\mathbb{P}^n)$ define dual Radon transform $\widetilde{F}(x) = \int_{\xi \in K(x)} F(\xi) \, \mathrm{d}\mu(\xi) = \int_{\omega \in \mathbb{S}^{n-1}} F(\omega, \omega \cdot x) \, \mathrm{d}\omega$ Radon Inversion Formula If $f \in \mathcal{S}(\mathbb{R}^n)$ and $F = \mathrm{Radon}$ transform of f , then $f(x) = c \, (-\Delta)^{(n-1)/2} \, \widetilde{F}(x)$ ($c = \mathrm{normalizing}$ constant)

For
$$x \in \mathbb{R}^n$$

$$K(x) = \text{all hyperplanes } \xi \text{ containing } x$$

= $\{(\omega, p) : x \cdot \omega = p\} \cong \mathbb{S}^{n-1} / \pm 1$

Let $d\mu = \text{invariant measure on } K(x) \text{ (total mass 1)}$

For $F \in \mathbb{S}(\mathbb{P}^n)$ define dual Radon transform

$$\widetilde{F}(x) = \int_{\xi \in K(x)} F(\xi) \, \mathrm{d}\mu(\xi) = \int_{\omega \in \mathbb{S}^{n-1}} F(\omega, \omega \cdot x) \, \mathrm{d}\omega$$

Radon Inversion Formula

If $f \in S(\mathbb{R}^n)$ and F = Radon transform of <math>f, then

$$f(x) = c (-\Delta)^{(n-1)/2} \widetilde{F}(x)$$
 (c = normalizing constant)

odd dimensions: Inversion formula is local - differential operator applied to $\widetilde{F}(x)$

even dimensions: Inversion formula is non-local - square root of differential operator (Hilbert transform) applied to $\widetilde{F}(x)$

Further Reading

The Wikipedia articles on Fourier Analysis, p-adic Numbers, and Radon Transform are good starting points. Here are some books:

- Fourier analysis on locally compact abelian groups:
 W. Rudin, Fourier Analysis on Groups, Wiley (1962)
 G. Folland, A Course in Abstract Harmonic Analysis, CRC Press (1995)
- Finite Fourier transform:
 A. Terras, Fourier Analysis on Finite Groups and applications, Cambridge (1999)
- Fourier analysis on \mathbb{R}/\mathbb{Z} and \mathbb{R} : G. Folland, **Real Analysis: Modern Techniques and Their Applications**, Wiley (1999)
- Radon Transform:
 S. Helgason, Groups and Geometric Analysis, Academic Press (1984)