Integral Transforms

Roe Goodman

Introduction to Math at Rutgers

August 29, 2010

Fourier Transform

G - locally compact abelian topological group (written additively)

Fourier Transform

G - locally compact abelian topological group (written additively)
G has a Haar measure (translation invariant)
$L^{2}(G)$ - square integrable complex valued functions on G Inner product: $\quad(\phi, \psi)=\int_{G} \phi(x) \overline{\psi(x)} \mathrm{d} x$ norm: $\quad\|\phi\|_{2}=\sqrt{(\phi, \phi)}$
G acts on $L^{2}(G)$ by translations: $T_{y} \phi(x)=\phi(x-y)$

Fourier Transform

G - locally compact abelian topological group (written additively)
G has a Haar measure (translation invariant)
$L^{2}(G)$ - square integrable complex valued functions on G Inner product: $\quad(\phi, \psi)=\int_{G} \phi(x) \overline{\psi(x)} \mathrm{d} x$ norm: $\|\phi\|_{2}=\sqrt{(\phi, \phi)}$
G acts on $L^{2}(G)$ by translations: $T_{y} \phi(x)=\phi(x-y)$

Definition

A linear transformation (operator) $C: L^{2}(G) \rightarrow L^{2}(G)$ is translation invariant if it commutes with $\left\{T_{y}\right\}_{y \in G}$.

Fourier Transform

G - locally compact abelian topological group (written additively)
G has a Haar measure (translation invariant)
$L^{2}(G)$ - square integrable complex valued functions on G Inner product: $\quad(\phi, \psi)=\int_{G} \phi(x) \overline{\psi(x)} \mathrm{d} x$ norm: $\quad\|\phi\|_{2}=\sqrt{(\phi, \phi)}$
G acts on $L^{2}(G)$ by translations: $T_{y} \phi(x)=\phi(x-y)$

Definition

A linear transformation (operator) $C: L^{2}(G) \rightarrow L^{2}(G)$ is translation invariant if it commutes with $\left\{T_{y}\right\}_{y \in G}$.
Some Examples

- Translation: $C \phi=T_{y} \phi$ with $y \in G$
- Convolution: $C \phi(x)=\int_{G} f(y) \phi(x-y) d y$ with $f \in L^{1}(G)$ (weighted average of translates of ϕ)

Fourier Transform

G - locally compact abelian topological group (written additively)
G has a Haar measure (translation invariant)
$L^{2}(G)$ - square integrable complex valued functions on G Inner product: $\quad(\phi, \psi)=\int_{G} \phi(x) \overline{\psi(x)} \mathrm{d} x$ norm: $\quad\|\phi\|_{2}=\sqrt{(\phi, \phi)}$
G acts on $L^{2}(G)$ by translations: $T_{y} \phi(x)=\phi(x-y)$

Definition

A linear transformation (operator) $C: L^{2}(G) \rightarrow L^{2}(G)$ is translation invariant if it commutes with $\left\{T_{y}\right\}_{y \in G}$.
Some Examples

- Translation: $C \phi=T_{y} \phi$ with $y \in G$
- Convolution: $C \phi(x)=\int_{G} f(y) \phi(x-y) d y$ with $f \in L^{1}(G)$ (weighted average of translates of ϕ)

Problem: Diagonalize all translation invariant operators

Fourier Transform

G - locally compact abelian topological group (written additively)
G has a Haar measure (translation invariant)
$L^{2}(G)$ - square integrable complex valued functions on G Inner product: $\quad(\phi, \psi)=\int_{G} \phi(x) \overline{\psi(x)} \mathrm{d} x$ norm: $\quad\|\phi\|_{2}=\sqrt{(\phi, \phi)}$
G acts on $L^{2}(G)$ by translations: $T_{y} \phi(x)=\phi(x-y)$

Definition

A linear transformation (operator) $C: L^{2}(G) \rightarrow L^{2}(G)$ is translation invariant if it commutes with $\left\{T_{y}\right\}_{y \in G}$.
Some Examples

- Translation: $C \phi=T_{y} \phi$ with $y \in G$
- Convolution: $C \phi(x)=\int_{G} f(y) \phi(x-y) d y$ with $f \in L^{1}(G)$ (weighted average of translates of ϕ)

Problem: Diagonalize all translation invariant operators
Solution: Use characters of G and Fourier transform .

Fourier Transform on $\mathbb{Z} / n \mathbb{Z}$

Example $1 \quad G=\mathbb{Z} / n \mathbb{Z}$ (additive group of integers $\bmod n$)
$L^{2}(G)=\{\phi: \mathbb{Z} \rightarrow \mathbb{C}: \phi(k+n)=\phi(k)$ for all $k \in \mathbb{Z}\}$
inner product $(\phi, \psi)=\frac{1}{n} \sum_{k=0}^{n-1} \phi(k) \overline{\psi(k)}$

Fourier Transform on $\mathbb{Z} / n \mathbb{Z}$

Example $1 \quad G=\mathbb{Z} / n \mathbb{Z}$ (additive group of integers $\bmod n$)
$L^{2}(G)=\{\phi: \mathbb{Z} \rightarrow \mathbb{C}: \phi(k+n)=\phi(k)$ for all $k \in \mathbb{Z}\}$
inner product $(\phi, \psi)=\frac{1}{n} \sum_{k=0}^{n-1} \phi(k) \overline{\psi(k)}$
Characters $\quad e_{p}(k)=w^{k p}$ for $k, p \in \mathbb{Z} \quad\left(w=\mathrm{e}^{2 \pi \mathrm{i} / n}, \quad w^{n}=1\right)$

Fourier Transform on $\mathbb{Z} / n \mathbb{Z}$

Example $1 \quad G=\mathbb{Z} / n \mathbb{Z}$ (additive group of integers $\bmod n$)
$L^{2}(G)=\{\phi: \mathbb{Z} \rightarrow \mathbb{C}: \phi(k+n)=\phi(k)$ for all $k \in \mathbb{Z}\}$
inner product $(\phi, \psi)=\frac{1}{n} \sum_{k=0}^{n-1} \phi(k) \overline{\psi(k)}$
Characters $\quad e_{p}(k)=w^{k p}$ for $k, p \in \mathbb{Z} \quad\left(w=\mathrm{e}^{2 \pi \mathrm{i} / n}, \quad w^{n}=1\right)$

- $e_{p}(k+m)=e_{p}(k) e_{p}(m), \quad\left|e_{p}(k)\right|=1, \quad e_{p+n}=e_{p}$
- Eigenfunctions for translations $T_{k} e_{p}=w^{-k p} e_{p}$
- Orthogonality relations

$$
\left(e_{p}, e_{q}\right)= \begin{cases}1 & \text { if } p-q \equiv 0 \bmod (n) \\ 0 & \text { else }\end{cases}
$$

Fourier Transform on $\mathbb{Z} / n \mathbb{Z}$

Example $1 \quad G=\mathbb{Z} / n \mathbb{Z}$ (additive group of integers $\bmod n$)
$L^{2}(G)=\{\phi: \mathbb{Z} \rightarrow \mathbb{C}: \phi(k+n)=\phi(k)$ for all $k \in \mathbb{Z}\}$
inner product $(\phi, \psi)=\frac{1}{n} \sum_{k=0}^{n-1} \phi(k) \overline{\psi(k)}$
Characters $\quad e_{p}(k)=w^{k p}$ for $k, p \in \mathbb{Z} \quad\left(w=\mathrm{e}^{2 \pi \mathrm{i} / n}, \quad w^{n}=1\right)$

- $e_{p}(k+m)=e_{p}(k) e_{p}(m), \quad\left|e_{p}(k)\right|=1, \quad e_{p+n}=e_{p}$
- Eigenfunctions for translations $T_{k} e_{p}=w^{-k p} e_{p}$
- Orthogonality relations

$$
\left(e_{p}, e_{q}\right)= \begin{cases}1 & \text { if } p-q \equiv 0 \bmod (n) \\ 0 & \text { else }\end{cases}
$$

Finite Fourier Transform

$$
\widehat{\phi}(p)=\left(\phi, e_{p}\right)
$$

Fourier Transform on $\mathbb{Z} / n \mathbb{Z}$

Example $1 \quad G=\mathbb{Z} / n \mathbb{Z}$ (additive group of integers $\bmod n$)
$L^{2}(G)=\{\phi: \mathbb{Z} \rightarrow \mathbb{C}: \phi(k+n)=\phi(k)$ for all $k \in \mathbb{Z}\}$
inner product $(\phi, \psi)=\frac{1}{n} \sum_{k=0}^{n-1} \phi(k) \overline{\psi(k)}$
Characters $\quad e_{p}(k)=w^{k p}$ for $k, p \in \mathbb{Z} \quad\left(w=e^{2 \pi i / n}, \quad w^{n}=1\right)$

- $e_{p}(k+m)=e_{p}(k) e_{p}(m), \quad\left|e_{p}(k)\right|=1, \quad e_{p+n}=e_{p}$
- Eigenfunctions for translations $T_{k} e_{p}=w^{-k p} e_{p}$
- Orthogonality relations

$$
\left(e_{p}, e_{q}\right)= \begin{cases}1 & \text { if } p-q \equiv 0 \bmod (n) \\ 0 & \text { else }\end{cases}
$$

Finite Fourier Transform

$$
\widehat{\phi}(p)=\left(\phi, e_{p}\right)
$$

- Diagonalization $\psi=T_{k} \phi \Rightarrow \widehat{\psi}(p)=w^{-k p} \widehat{\phi}(p)$
- Fourier inversion $\quad \phi=\sum_{p=0}^{n-1} \widehat{\phi}(p) e_{p}$
- Plancherel formula $\quad(\phi, \psi)=\sum_{p=0}^{n-1} \widehat{\phi}(p) \overline{\widehat{\psi}(p)}$

Diagonalization of Translation Invariant Operators

Theorem

Let $G=\mathbb{Z} / n \mathbb{Z}$. Let C be a translation invariant operator on $L^{2}(G)$. There is a function F on $\widehat{G} \cong \mathbb{Z} / n \mathbb{Z}$ such that (*) $\widehat{C \phi}(p)=F(p) \widehat{\phi}(p)$ for all $\phi \in L^{2}(G)$ and $p \in \mathbb{Z}$. Conversely, every function F on $\mathbb{Z} / n \mathbb{Z}$ defines a translation invariant operator C on $L^{2}(G)$ by $(\star)(C=$ convolution by f, where $\widehat{f}=F$).

Diagonalization of Translation Invariant Operators

Theorem

Let $G=\mathbb{Z} / n \mathbb{Z}$. Let C be a translation invariant operator on
$L^{2}(G)$. There is a function F on $\widehat{G} \cong \mathbb{Z} / n \mathbb{Z}$ such that
$(\star) \quad \widehat{C} \phi(p)=F(p) \widehat{\phi}(p)$ for all $\phi \in L^{2}(G)$ and $p \in \mathbb{Z}$.
Conversely, every function F on $\mathbb{Z} / n \mathbb{Z}$ defines a translation invariant operator C on $L^{2}(G)$ by $(\star)(C=$ convolution by f, where $\widehat{f}=F$).

Proof.

Let $S=T_{1}$ (shift operator). Then S has n distinct eigenvalues $\lambda_{p}=w^{-p}$ for $p=0, \ldots, n-1$ with eigenvectors e_{p}. Since C commutes with S, the function $C e_{p}$ is an eigenvector for S with eigenvalue w^{-p}. Hence $C e_{p}=F(p) e_{p}$ for some scalar $F(p) \in \mathbb{C}$. The Fourier inversion formula now implies (\star).

Character Group and Duality

General Version of Fourier Transform

G - locally compact abelian topological group (written additively)
\widehat{G} - all characters of G :

$$
\begin{aligned}
& \psi: G \rightarrow \mathbb{T}=\{z \in \mathbb{C}:|z|=1\} \text { (continuous) } \\
& \psi(x+y)=\psi(x) \psi(y), \quad \psi(0)=1
\end{aligned}
$$

Character Group and Duality

General Version of Fourier Transform

G - locally compact abelian topological group (written additively)
\widehat{G} - all characters of G :
$\psi: G \rightarrow \mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ (continuous)
$\psi(x+y)=\psi(x) \psi(y), \quad \psi(0)=1$

- \widehat{G} is a locally compact abelian group under pointwise multiplication and uniform convergence on compacta topology.

Character Group and Duality

General Version of Fourier Transform

G - locally compact abelian topological group (written additively)
\widehat{G} - all characters of G :
$\psi: G \rightarrow \mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ (continuous)
$\psi(x+y)=\psi(x) \psi(y), \quad \psi(0)=1$

- \widehat{G} is a locally compact abelian group under pointwise multiplication and uniform convergence on compacta topology.
- $\widehat{(\widehat{G})} \cong G$ (natural isomorphism, as for vector space duality).

Character Group and Duality

General Version of Fourier Transform

G - locally compact abelian topological group (written additively)
\widehat{G} - all characters of G :
$\psi: G \rightarrow \mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ (continuous)
$\psi(x+y)=\psi(x) \psi(y), \quad \psi(0)=1$

- \widehat{G} is a locally compact abelian group under pointwise multiplication and uniform convergence on compacta topology.
- $\widehat{(\widehat{G})} \cong G$ (natural isomorphism, as for vector space duality).
- Fourier transform takes $L^{2}(G)$ onto $L^{2}(\widehat{G})$ preserving norm.

Character Group and Duality

General Version of Fourier Transform

G - locally compact abelian topological group (written additively)
\widehat{G} - all characters of G :
$\psi: G \rightarrow \mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ (continuous)
$\psi(x+y)=\psi(x) \psi(y), \quad \psi(0)=1$

- \widehat{G} is a locally compact abelian group under pointwise multiplication and uniform convergence on compacta topology.
- $\widehat{(\widehat{G})} \cong G$ (natural isomorphism, as for vector space duality).
- Fourier transform takes $L^{2}(G)$ onto $L^{2}(\widehat{G})$ preserving norm.
- Translation invariant operator C on $L^{2}(G)$ becomes multiplication by a function F on $L^{2}(\widehat{G})$.

Character Group and Duality

General Version of Fourier Transform

G - locally compact abelian topological group (written additively)
\widehat{G} - all characters of G :
$\psi: G \rightarrow \mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ (continuous)
$\psi(x+y)=\psi(x) \psi(y), \quad \psi(0)=1$

- \widehat{G} is a locally compact abelian group under pointwise multiplication and uniform convergence on compacta topology.
- $\widehat{(\widehat{G})} \cong G$ (natural isomorphism, as for vector space duality).
- Fourier transform takes $L^{2}(G)$ onto $L^{2}(\widehat{G})$ preserving norm.
- Translation invariant operator C on $L^{2}(G)$ becomes multiplication by a function F on $L^{2}(\widehat{G})$.

Example
$G=\mathbb{Z} / n \mathbb{Z} \quad \widehat{G}=\left\{e_{p}: p \in \mathbb{Z} / n \mathbb{Z}\right\} \cong G$
Choose basic character e_{1}. Then $e_{p}(k)=e_{1}(p k)$

Fourier Transform on \mathbb{R} / \mathbb{Z}

Example $2 \quad G=\mathbb{R} / \mathbb{Z}$ (additive group of real numbers modulo 1) $L^{2}(\mathbb{R} / \mathbb{Z}) \quad \phi: \mathbb{R} \rightarrow \mathbb{C}, \phi(x+1)=\phi(x)$ (periodic, measurable) $\int_{0}^{1}|\phi(x)|^{2} \mathrm{~d} x<\infty \quad$ (Lebesgue integral)
Inner product $\quad(\phi, \psi)=\int_{0}^{1} \phi(x) \overline{\psi(x)} \mathrm{d} x$

Fourier Transform on \mathbb{R} / \mathbb{Z}

Example $2 \quad G=\mathbb{R} / \mathbb{Z}$ (additive group of real numbers modulo 1) $L^{2}(\mathbb{R} / \mathbb{Z}) \quad \phi: \mathbb{R} \rightarrow \mathbb{C}, \phi(x+1)=\phi(x)$ (periodic, measurable) $\int_{0}^{1}|\phi(x)|^{2} \mathrm{~d} x<\infty \quad$ (Lebesgue integral)
Inner product $\quad(\phi, \psi)=\int_{0}^{1} \phi(x) \overline{\psi(x)} \mathrm{d} x$
Characters $\quad e_{p}(x)=\exp (2 \pi \mathrm{i} p x)$ for $p \in \mathbb{Z}$ and $x \in \mathbb{R}$

Fourier Transform on \mathbb{R} / \mathbb{Z}

Example $2 \quad G=\mathbb{R} / \mathbb{Z}$ (additive group of real numbers modulo 1) $L^{2}(\mathbb{R} / \mathbb{Z}) \quad \phi: \mathbb{R} \rightarrow \mathbb{C}, \phi(x+1)=\phi(x)$ (periodic, measurable) $\int_{0}^{1}|\phi(x)|^{2} \mathrm{~d} x<\infty \quad$ (Lebesgue integral)
Inner product $\quad(\phi, \psi)=\int_{0}^{1} \phi(x) \overline{\psi(x)} \mathrm{d} x$
Characters $\quad e_{p}(x)=\exp (2 \pi \mathrm{i} p x)$ for $p \in \mathbb{Z}$ and $x \in \mathbb{R}$

- $e_{p}(x+1)=e_{p}(x), \quad\left|e_{p}(x)\right|=1$
- $e_{p}(x) e_{q}(x)=e_{p+q}(x)$, so $\widehat{G} \cong \mathbb{Z}$ under $e_{p} \leftrightarrow p$
- Orthogonality relations $\left(e_{p}, e_{q}\right)= \begin{cases}1 & \text { if } p=q \\ 0 & \text { else }\end{cases}$

Fourier Transform on \mathbb{R} / \mathbb{Z}

Example $2 \quad G=\mathbb{R} / \mathbb{Z}$ (additive group of real numbers modulo 1) $L^{2}(\mathbb{R} / \mathbb{Z}) \quad \phi: \mathbb{R} \rightarrow \mathbb{C}, \phi(x+1)=\phi(x)$ (periodic, measurable)

$$
\int_{0}^{1}|\phi(x)|^{2} \mathrm{~d} x<\infty \quad \text { (Lebesgue integral) }
$$

Inner product $\quad(\phi, \psi)=\int_{0}^{1} \phi(x) \overline{\psi(x)} \mathrm{d} x$
Characters $\quad e_{p}(x)=\exp (2 \pi \mathrm{i} p x)$ for $p \in \mathbb{Z}$ and $x \in \mathbb{R}$

- $e_{p}(x+1)=e_{p}(x), \quad\left|e_{p}(x)\right|=1$
- $e_{p}(x) e_{q}(x)=e_{p+q}(x)$, so $\widehat{G} \cong \mathbb{Z}$ under $e_{p} \leftrightarrow p$
- Orthogonality relations $\left(e_{p}, e_{q}\right)= \begin{cases}1 & \text { if } p=q \\ 0 & \text { else }\end{cases}$

Fourier transform

$$
\widehat{\phi}(p)=\left(\phi, e_{p}\right)=\int_{0}^{1} \phi(x) \exp (-2 \pi \mathrm{i} p x) \mathrm{d} x
$$

Fourier Transform on \mathbb{R} / \mathbb{Z}

Example $2 \quad G=\mathbb{R} / \mathbb{Z}$ (additive group of real numbers modulo 1) $L^{2}(\mathbb{R} / \mathbb{Z}) \quad \phi: \mathbb{R} \rightarrow \mathbb{C}, \phi(x+1)=\phi(x)$ (periodic, measurable)

$$
\int_{0}^{1}|\phi(x)|^{2} \mathrm{~d} x<\infty \quad \text { (Lebesgue integral) }
$$

Inner product $\quad(\phi, \psi)=\int_{0}^{1} \phi(x) \overline{\psi(x)} \mathrm{d} x$
Characters $\quad e_{p}(x)=\exp (2 \pi \mathrm{i} p x)$ for $p \in \mathbb{Z}$ and $x \in \mathbb{R}$

- $e_{p}(x+1)=e_{p}(x), \quad\left|e_{p}(x)\right|=1$
- $e_{p}(x) e_{q}(x)=e_{p+q}(x)$, so $\widehat{G} \cong \mathbb{Z}$ under $e_{p} \leftrightarrow p$
- Orthogonality relations $\left(e_{p}, e_{q}\right)= \begin{cases}1 & \text { if } p=q \\ 0 & \text { else }\end{cases}$

Fourier transform

$$
\widehat{\phi}(p)=\left(\phi, e_{p}\right)=\int_{0}^{1} \phi(x) \exp (-2 \pi \mathrm{i} p x) \mathrm{d} x
$$

- Diagonalization $\psi=T_{y} \phi \Rightarrow \widehat{\psi}(p)=e_{p}(-y) \widehat{\phi}(p)$
- Fourier inversion $\quad \phi=\sum_{p \in \mathbb{Z}} \widehat{\phi}(p) e_{p} \quad\left(L^{2}\right.$ convergence)
- Plancherel formula $(\phi, \psi)=\sum_{p \in \mathbb{Z}} \widehat{\phi}(p) \overline{\widehat{\psi}(p)}$

Bounded Translation Invariant Operators

Linear operator C on $L^{2}(\mathbb{R} / \mathbb{Z})$ is bounded if $\|C \phi\|_{2} \leq M\|\phi\|_{2}$ Same as: C is a continuous transformation w.r.t. $\|\phi\|_{2}$.

Bounded Translation Invariant Operators

Linear operator C on $L^{2}(\mathbb{R} / \mathbb{Z})$ is bounded if $\|C \phi\|_{2} \leq M\|\phi\|_{2}$ Same as: C is a continuous transformation w.r.t. $\|\phi\|_{2}$.

Theorem
Let C be a bounded translation invariant operator on $L^{2}(\mathbb{R} / \mathbb{Z})$.
Then there is a bounded function F on \mathbb{Z} such that
$(\star) \quad \widehat{C} \phi(p)=F(p) \widehat{\phi}(p)$ for all $\phi \in L^{2}(\mathbb{R} / \mathbb{Z})$.
Conversely, every bounded function F on \mathbb{Z} defines a bounded translation invariant operator C on $L^{2}(\mathbb{R} / \mathbb{Z})$ by (\star).

Bounded Translation Invariant Operators

Linear operator C on $L^{2}(\mathbb{R} / \mathbb{Z})$ is bounded if $\|C \phi\|_{2} \leq M\|\phi\|_{2}$ Same as: C is a continuous transformation w.r.t. $\|\phi\|_{2}$.

Theorem
Let C be a bounded translation invariant operator on $L^{2}(\mathbb{R} / \mathbb{Z})$.
Then there is a bounded function F on \mathbb{Z} such that

$$
(\star) \quad \widehat{C} \phi(p)=F(p) \widehat{\phi}(p) \text { for all } \phi \in L^{2}(\mathbb{R} / \mathbb{Z})
$$

Conversely, every bounded function F on \mathbb{Z} defines a bounded translation invariant operator C on $L^{2}(\mathbb{R} / \mathbb{Z})$ by (\star).

Proof.
Let $S=T_{y}$, y irrational. Then S has distinct eigenvalues $\lambda_{p}=\exp (-2 \pi \mathrm{i} y p)$ for $p \in \mathbb{Z}$ with eigenvectors e_{p}.

Bounded Translation Invariant Operators

Linear operator C on $L^{2}(\mathbb{R} / \mathbb{Z})$ is bounded if $\|C \phi\|_{2} \leq M\|\phi\|_{2}$ Same as: C is a continuous transformation w.r.t. $\|\phi\|_{2}$.

Theorem
Let C be a bounded translation invariant operator on $L^{2}(\mathbb{R} / \mathbb{Z})$.
Then there is a bounded function F on \mathbb{Z} such that

$$
(\star) \quad \widehat{C} \phi(p)=F(p) \widehat{\phi}(p) \text { for all } \phi \in L^{2}(\mathbb{R} / \mathbb{Z})
$$

Conversely, every bounded function F on \mathbb{Z} defines a bounded translation invariant operator C on $L^{2}(\mathbb{R} / \mathbb{Z})$ by (\star).

Proof.

Let $S=T_{y}, y$ irrational. Then S has distinct eigenvalues $\lambda_{p}=\exp (-2 \pi \mathrm{i} y p)$ for $p \in \mathbb{Z}$ with eigenvectors e_{p}. $C S=S C \Rightarrow C e_{p}=F(p) e_{p}$ with $F(p) \in \mathbb{C}$. Then C bounded \Rightarrow $\|F\|_{\infty}:=\sup _{p}|F(p)|<\infty$. Hence

$$
C \phi=\sum_{p \in \mathbb{Z}} \widehat{\phi}(p) C e_{p}=\sum_{p \in \mathbb{Z}} \widehat{\phi}(p) F(p) e_{p}
$$

Fourier Analysis of $C^{\infty}(\mathbb{R} / \mathbb{Z})$

$C^{\infty}(\mathbb{R} / \mathbb{Z})=$ differentiable periodic functions on \mathbb{R}

Fourier Analysis of $C^{\infty}(\mathbb{R} / \mathbb{Z})$

$C^{\infty}(\mathbb{R} / \mathbb{Z})=$ differentiable periodic functions on \mathbb{R}
$D=\frac{1}{2 \pi \mathrm{i}} \frac{d}{d x}$ translation invariant operator on $C^{\infty}(\mathbb{R} / \mathbb{Z})$

- $D e_{p}=p e_{p}$ for $p \in \mathbb{Z}$, so D is not bounded on $L^{2}(\mathbb{R} / \mathbb{Z})$

Fourier Analysis of $C^{\infty}(\mathbb{R} / \mathbb{Z})$

$C^{\infty}(\mathbb{R} / \mathbb{Z})=$ differentiable periodic functions on \mathbb{R}
$D=\frac{1}{2 \pi i} \frac{d}{d x}$ translation invariant operator on $C^{\infty}(\mathbb{R} / \mathbb{Z})$

- $D e_{p}=p e_{p}$ for $p \in \mathbb{Z}$, so D is not bounded on $L^{2}(\mathbb{R} / \mathbb{Z})$
- $(D \phi, \psi)=(\phi, D \psi)$ for $\phi, \psi \in C^{\infty}(\mathbb{R} / \mathbb{Z})$ (integrate by parts)
- $\widehat{D \phi}(p)=p \widehat{\phi}(p)$ for $\phi \in C^{\infty}(\mathbb{R} / \mathbb{Z})$
- $\phi \in C^{\infty}(\mathbb{R} / \mathbb{Z}) \Longleftrightarrow \widehat{\phi}$ is rapidly decreasing:

For every positive integer $r \quad \sup _{p \in \mathbb{Z}}\left|p^{r} \widehat{\phi}(p)\right|<\infty$

Fourier Analysis of $C^{\infty}(\mathbb{R} / \mathbb{Z})$

$C^{\infty}(\mathbb{R} / \mathbb{Z})=$ differentiable periodic functions on \mathbb{R}
$D=\frac{1}{2 \pi i} \frac{d}{d x}$ translation invariant operator on $C^{\infty}(\mathbb{R} / \mathbb{Z})$

- $D e_{p}=p e_{p}$ for $p \in \mathbb{Z}$, so D is not bounded on $L^{2}(\mathbb{R} / \mathbb{Z})$
- $(D \phi, \psi)=(\phi, D \psi)$ for $\phi, \psi \in C^{\infty}(\mathbb{R} / \mathbb{Z})$ (integrate by parts)
- $\widehat{D \phi}(p)=p \widehat{\phi}(p)$ for $\phi \in C^{\infty}(\mathbb{R} / \mathbb{Z})$
- $\phi \in C^{\infty}(\mathbb{R} / \mathbb{Z}) \Longleftrightarrow \widehat{\phi}$ is rapidly decreasing:

For every positive integer $r \quad \sup _{p \in \mathbb{Z}}\left|p^{r} \widehat{\phi}(p)\right|<\infty$
Theorem
Let C be a continuous translation invariant operator on $C^{\infty}(\mathbb{R} / \mathbb{Z})$.
Then there is a function F on \mathbb{Z} of polynomial growth at ∞ such that
$(\star) \quad \widehat{C \phi}(p)=F(p) \widehat{\phi}(p)$ for all $\phi \in C^{\infty}(\mathbb{R} / \mathbb{Z})$.
Conversely, every such function F on \mathbb{Z} defines a continuous translation invariant operator C on $C^{\infty}(\mathbb{R} / \mathbb{Z})$ by (\star).

Fourier Transform on \mathbb{R}

Example $3 \quad G=\mathbb{R}$ (additive group of real numbers) $L^{2}(\mathbb{R}) \quad \phi: \mathbb{R} \rightarrow \mathbb{C}, \quad$ (measurable) $\int_{-\infty}^{\infty}|\phi(x)|^{2} \mathrm{~d} x<\infty$ Inner product

$$
(\phi, \psi)=\int_{-\infty}^{\infty} \phi(x) \overline{\psi(x)} \mathrm{d} x
$$

Fourier Transform on \mathbb{R}

Example $3 \quad G=\mathbb{R}$ (additive group of real numbers) $L^{2}(\mathbb{R}) \quad \phi: \mathbb{R} \rightarrow \mathbb{C}, \quad$ (measurable) $\int_{-\infty}^{\infty}|\phi(x)|^{2} \mathrm{~d} x<\infty$ Inner product $\quad(\phi, \psi)=\int_{-\infty}^{\infty} \phi(x) \overline{\psi(x)} \mathrm{d} x$
Characters $\quad e_{\xi}(x)=\exp (2 \pi \mathrm{i} x \xi)$ for $x, \xi \in \mathbb{R}$.

Fourier Transform on \mathbb{R}

Example $3 \quad G=\mathbb{R}$ (additive group of real numbers)
$L^{2}(\mathbb{R}) \quad \phi: \mathbb{R} \rightarrow \mathbb{C}, \quad$ (measurable) $\int_{-\infty}^{\infty}|\phi(x)|^{2} \mathrm{~d} x<\infty$
Inner product $\quad(\phi, \psi)=\int_{-\infty}^{\infty} \phi(x) \overline{\psi(x)} \mathrm{d} x$
Characters $\quad e_{\xi}(x)=\exp (2 \pi \mathrm{i} x \xi)$ for $x, \xi \in \mathbb{R}$.

- Fix basic character e_{1}. Then $e_{\xi}(x)=e_{1}(x \xi)$
- $e_{\xi}(x) e_{\tau}(x)=e_{\xi+\tau}(x)$, so $\widehat{\mathbb{R}} \cong \mathbb{R}$ under $e_{\xi} \leftrightarrow \xi$
- \mathbb{R} not compact $\Rightarrow e_{\xi} \notin L^{2}(\mathbb{R})$ (plane wave, frequency ξ)

Fourier Transform on \mathbb{R}

Example $3 \quad G=\mathbb{R}$ (additive group of real numbers)
$L^{2}(\mathbb{R}) \quad \phi: \mathbb{R} \rightarrow \mathbb{C}, \quad$ (measurable) $\int_{-\infty}^{\infty}|\phi(x)|^{2} \mathrm{~d} x<\infty$
Inner product $\quad(\phi, \psi)=\int_{-\infty}^{\infty} \phi(x) \overline{\psi(x)} \mathrm{d} x$
Characters $\quad e_{\xi}(x)=\exp (2 \pi \mathrm{i} x \xi)$ for $x, \xi \in \mathbb{R}$.

- Fix basic character e_{1}. Then $e_{\xi}(x)=e_{1}(x \xi)$
- $e_{\xi}(x) e_{\tau}(x)=e_{\xi+\tau}(x)$, so $\widehat{\mathbb{R}} \cong \mathbb{R}$ under $e_{\xi} \leftrightarrow \xi$
- \mathbb{R} not compact $\Rightarrow e_{\xi} \notin L^{2}(\mathbb{R})$ (plane wave, frequency ξ)

Fourier transform For $\phi \in L^{1}(\mathbb{R})$ define

$$
\widehat{\phi}(\xi)=\int_{-\infty}^{\infty} \phi(x) e_{-\xi}(x) \mathrm{d} x \text { (integral converges absolutely) }
$$

Fourier Transform on \mathbb{R}

Example $3 \quad G=\mathbb{R}$ (additive group of real numbers)
$L^{2}(\mathbb{R}) \quad \phi: \mathbb{R} \rightarrow \mathbb{C}, \quad$ (measurable) $\int_{-\infty}^{\infty}|\phi(x)|^{2} \mathrm{~d} x<\infty$
Inner product

$$
(\phi, \psi)=\int_{-\infty}^{\infty} \phi(x) \overline{\psi(x)} \mathrm{d} x
$$

Characters $\quad e_{\xi}(x)=\exp (2 \pi \mathrm{i} x \xi)$ for $x, \xi \in \mathbb{R}$.

- Fix basic character e_{1}. Then $e_{\xi}(x)=e_{1}(x \xi)$
- $e_{\xi}(x) e_{\tau}(x)=e_{\xi+\tau}(x)$, so $\widehat{\mathbb{R}} \cong \mathbb{R}$ under $e_{\xi} \leftrightarrow \xi$
- \mathbb{R} not compact $\Rightarrow e_{\xi} \notin L^{2}(\mathbb{R})$ (plane wave, frequency ξ)

Fourier transform For $\phi \in L^{1}(\mathbb{R})$ define $\widehat{\phi}(\xi)=\int_{-\infty}^{\infty} \phi(x) e_{-\xi}(x) \mathrm{d} x$ (integral converges absolutely)

- Fourier transform extends to isometry $L^{2}(\mathbb{R}) \rightarrow L^{2}(\widehat{\mathbb{R}})$
- Plancherel formula $(\phi, \psi)=\int_{-\infty}^{\infty} \widehat{\phi}(\xi) \widehat{\psi}(\xi) \mathrm{d} \xi$
- Bounded translation invariant operator C on $L^{2}(\mathbb{R}) \longleftrightarrow$ multiplication by bounded measurable function F on $\widehat{\mathbb{R}}$

Tempered Fourier Analysis on \mathbb{R}

$\mathcal{S}(\mathbb{R})=$ rapidly decreasing C^{∞} functions on \mathbb{R} :
$\sup _{x \in \mathbb{R}}\left|x^{m}\left(\frac{d}{d x}\right)^{k} \phi(x)\right|<\infty$ for all positive integers m, k
Example $\quad \phi(x)=p(x) e^{-\pi x^{2}}$ with $p(x)$ a polynomial
Fourier transform of ϕ is $q(\xi) e^{-\pi \xi^{2}}$ with q a polynomial

Tempered Fourier Analysis on \mathbb{R}

$\mathcal{S}(\mathbb{R})=$ rapidly decreasing C^{∞} functions on \mathbb{R} :
$\sup _{x \in \mathbb{R}}\left|x^{m}\left(\frac{d}{d x}\right)^{k} \phi(x)\right|<\infty$ for all positive integers m, k
Example $\quad \phi(x)=p(x) e^{-\pi x^{2}}$ with $p(x)$ a polynomial
Fourier transform of ϕ is $q(\xi) e^{-\pi \xi^{2}}$ with q a polynomial

- $\mathcal{S}(\mathbb{R})$ invariant under $D_{x}=\frac{1}{2 \pi \mathrm{i}} \frac{d}{d x}, \quad M_{x}=$ multiplication by x
- $\widehat{D_{x} \phi}=M_{\xi} \widehat{\phi}$ for $\phi \in \mathcal{S}(G)$ (integrate by parts)
- $\widehat{M_{x} \phi}=D_{\xi} \widehat{\phi}$ for $\phi \in \mathcal{S}(G)$ (differentiate under integral)
- $\phi \in \mathcal{S}(\mathbb{R}) \Longleftrightarrow \widehat{\phi} \in \mathcal{S}(\mathbb{R})$

Tempered Fourier Analysis on \mathbb{R}

$\mathcal{S}(\mathbb{R})=$ rapidly decreasing C^{∞} functions on \mathbb{R} :
$\sup _{x \in \mathbb{R}}\left|x^{m}\left(\frac{d}{d x}\right)^{k} \phi(x)\right|<\infty$ for all positive integers m, k
Example $\quad \phi(x)=p(x) e^{-\pi x^{2}}$ with $p(x)$ a polynomial
Fourier transform of ϕ is $q(\xi) e^{-\pi \xi^{2}}$ with q a polynomial

- $S(\mathbb{R})$ invariant under $D_{x}=\frac{1}{2 \pi \mathrm{i}} \frac{d}{d x}, \quad M_{x}=$ multiplication by x
- $\widehat{D_{x} \phi}=M_{\xi} \widehat{\phi}$ for $\phi \in \mathcal{S}(G)$ (integrate by parts)
- $\widehat{M_{x} \phi}=D_{\xi} \widehat{\phi}$ for $\phi \in \mathcal{S}(G)$ (differentiate under integral)
- $\phi \in \mathcal{S}(\mathbb{R}) \Longleftrightarrow \widehat{\phi} \in \mathcal{S}(\mathbb{R})$

Theorem
Let C be a continuous translation invariant operator on $\mathcal{S}(\mathbb{R})$.
Then there is a C^{∞} function F on \mathbb{R} with all derivatives of polynomial growth at ∞ such that
$(\star) \quad \widehat{C} \phi(\xi)=F(\xi) \widehat{\phi}(\xi)$ for all $\phi \in \mathcal{S}(\mathbb{R})$.
Conversely, every such function F on \mathbb{R} defines a continuous translation invariant operator C on $\mathcal{S}(\mathbb{R})$ by (\star).

Fourier-Mellin Transform

$\mathbb{R}^{\times}=\mathbb{R} \backslash\{0\}$ - locally compact group under multiplication

- Invariant integral $\int_{-\infty}^{\infty} f(x) \frac{\mathrm{d} x}{|x|}$
- Characters $\quad e_{\tau, \epsilon}(x)=\operatorname{sgn}(x)^{\epsilon}|x|^{i \tau}$ with $\tau \in \mathbb{R}$ and $\epsilon= \pm 1$ $\widehat{\mathbb{R}^{\times}} \cong \mathbb{R} \times(\mathbb{Z} / 2 \mathbb{Z})$

Fourier-Mellin Transform

$\mathbb{R}^{\times}=\mathbb{R} \backslash\{0\}$ - locally compact group under multiplication

- Invariant integral $\int_{-\infty}^{\infty} f(x) \frac{\mathrm{d} x}{|x|}$
- Characters $\quad e_{\tau, \epsilon}(x)=\operatorname{sgn}(x)^{\epsilon}|x|^{\text {i } \tau}$ with $\tau \in \mathbb{R}$ and $\epsilon= \pm 1$ $\widehat{\mathbb{R}^{\times}} \cong \mathbb{R} \times(\mathbb{Z} / 2 \mathbb{Z})$
- Fourier-Mellin transform $\widehat{f}(\tau, \epsilon)=\int_{-\infty}^{\infty} f(x) e_{-\tau, \epsilon}(x) \frac{\mathrm{d} x}{|x|}$ for $f \in L^{1}\left(\mathbb{R}, \frac{\mathrm{~d} x}{|x|}\right)$
- Plancherel Formula

$$
\int_{-\infty}^{\infty} f(x) \overline{g(x)} \frac{\mathrm{d} x}{|x|}=\sum_{\epsilon= \pm 1} \int_{-\infty}^{\infty} \widehat{f}(\tau, \epsilon) \overline{\hat{g}(\tau, \epsilon)} \mathrm{d} \tau
$$

for $f, g \in L^{2}\left(\mathbb{R}, \frac{\mathrm{~d} x}{|x|}\right)$

Fourier-Mellin Transform

$\mathbb{R}^{\times}=\mathbb{R} \backslash\{0\}$ - locally compact group under multiplication

- Invariant integral $\int_{-\infty}^{\infty} f(x) \frac{\mathrm{d} x}{|x|}$
- Characters $\quad e_{\tau, \epsilon}(x)=\operatorname{sgn}(x)^{\epsilon}|x|^{\text {i } \tau}$ with $\tau \in \mathbb{R}$ and $\epsilon= \pm 1$ $\widehat{\mathbb{R}^{\times}} \cong \mathbb{R} \times(\mathbb{Z} / 2 \mathbb{Z})$
- Fourier-Mellin transform

$$
\widehat{f}(\tau, \epsilon)=\int_{-\infty}^{\infty} f(x) e_{-\tau, \epsilon}(x) \frac{\mathrm{d} x}{|x|}
$$ for $f \in L^{1}\left(\mathbb{R}, \frac{d x}{|x|}\right)$

- Plancherel Formula

$$
\int_{-\infty}^{\infty} f(x) \overline{g(x)} \frac{\mathrm{d} x}{|x|}=\sum_{\epsilon= \pm 1} \int_{-\infty}^{\infty} \widehat{f}(\tau, \epsilon) \overline{\hat{g}(\tau, \epsilon)} \mathrm{d} \tau
$$

for $f, g \in L^{2}\left(\mathbb{R}, \frac{\mathrm{~d} x}{|x|}\right)$
Log Trick: Use group homomorphism $x \mapsto(\log |x|, \operatorname{sgn}(x))$ to turn Fourier-Mellin transform into Fourier transform on $\mathbb{R} \times(\mathbb{Z} / 2 \mathbb{Z})$.

Fourier Analysis on \mathbb{Q}_{p}

$\mathbb{Q}_{p}=$ completion of \mathbb{Q} relative to p-adic absolute value (p prime) $\left|p^{k} r / s\right|_{p}=p^{-k}$ if r, s integers relatively prime to p

Fourier Analysis on \mathbb{Q}_{p}

$\mathbb{Q}_{p}=$ completion of \mathbb{Q} relative to p-adic absolute value (p prime)
$\left|p^{k} r / s\right|_{p}=p^{-k}$ if r, s integers relatively prime to p

- locally compact totally disconnected field with metric $d(x, y)=|x-y|_{p}, \quad|x+y|_{p}=\max \left\{|x|_{p},|y|_{p}\right\}$

Fourier Analysis on \mathbb{Q}_{p}

$\mathbb{Q}_{p}=$ completion of \mathbb{Q} relative to p-adic absolute value (p prime)
$\left|p^{k} r / s\right|_{p}=p^{-k}$ if r, s integers relatively prime to p

- locally compact totally disconnected field with metric

$$
d(x, y)=|x-y|_{p}, \quad|x+y|_{p}=\max \left\{|x|_{p},|y|_{p}\right\}
$$

- p-adic expansion $\quad x=\sum_{n=k}^{\infty} a_{n} p^{n} \quad a_{n} \in\{0,1, \ldots, p-1\}$
$|x|_{p}=p^{-k}$ with $k=\min \left\{n: a_{n} \neq 0\right\}$ if $x \neq 0$

Fourier Analysis on \mathbb{Q}_{p}

$\mathbb{Q}_{p}=$ completion of \mathbb{Q} relative to p-adic absolute value (p prime)
$\left|p^{k} r / s\right|_{p}=p^{-k}$ if r, s integers relatively prime to p

- locally compact totally disconnected field with metric

$$
d(x, y)=|x-y|_{p}, \quad|x+y|_{p}=\max \left\{|x|_{p},|y|_{p}\right\}
$$

- p-adic expansion $\quad x=\sum_{n=k}^{\infty} a_{n} p^{n} \quad a_{n} \in\{0,1, \ldots, p-1\}$
$|x|_{p}=p^{-k}$ with $k=\min \left\{n: a_{n} \neq 0\right\}$ if $x \neq 0$
- ring of p-adic integers $\mathbb{Z}_{p}=\left\{|x|_{p} \leq 1\right\}$ (compact)

Fourier Analysis on \mathbb{Q}_{p}

$\mathbb{Q}_{p}=$ completion of \mathbb{Q} relative to p-adic absolute value (p prime)
$\left|p^{k} r / s\right|_{p}=p^{-k}$ if r, s integers relatively prime to p

- locally compact totally disconnected field with metric

$$
d(x, y)=|x-y|_{p}, \quad|x+y|_{p}=\max \left\{|x|_{p},|y|_{p}\right\}
$$

- p-adic expansion $\quad x=\sum_{n=k}^{\infty} a_{n} p^{n} \quad a_{n} \in\{0,1, \ldots, p-1\}$ $|x|_{p}=p^{-k}$ with $k=\min \left\{n: a_{n} \neq 0\right\}$ if $x \neq 0$
- ring of p-adic integers $\mathbb{Z}_{p}=\left\{|x|_{p} \leq 1\right\}$ (compact)

Characters Let $\mathbb{Q}_{p}^{+}=$additive group of \mathbb{Q}_{p}

- $e(x)=\exp (2 \pi i z)$ with $z=\sum_{n<0} a_{n} p^{n} \in \mathbb{Q} \quad\left(x \in z+\mathbb{Z}_{p}\right)$

Fourier Analysis on \mathbb{Q}_{p}

$\mathbb{Q}_{p}=$ completion of \mathbb{Q} relative to p-adic absolute value (p prime)
$\left|p^{k} r / s\right|_{p}=p^{-k}$ if r, s integers relatively prime to p

- locally compact totally disconnected field with metric

$$
d(x, y)=|x-y|_{p}, \quad|x+y|_{p}=\max \left\{|x|_{p},|y|_{p}\right\}
$$

- p-adic expansion $\quad x=\sum_{n=k}^{\infty} a_{n} p^{n} \quad a_{n} \in\{0,1, \ldots, p-1\}$ $|x|_{p}=p^{-k}$ with $k=\min \left\{n: a_{n} \neq 0\right\}$ if $x \neq 0$
- ring of p-adic integers $\mathbb{Z}_{p}=\left\{|x|_{p} \leq 1\right\}$ (compact)

Characters Let $\mathbb{Q}_{p}^{+}=$additive group of \mathbb{Q}_{p}

- $e(x)=\exp (2 \pi i z)$ with $z=\sum_{n<0} a_{n} p^{n} \in \mathbb{Q} \quad\left(x \in z+\mathbb{Z}_{p}\right)$
- $\mathbb{Q}_{p}^{+} \cong \widehat{\mathbb{Q}_{p}^{+}}=\left\{e_{y}\right\}_{y \in \mathbb{Q}_{p}}$ where $e_{y}(x)=e(x y)$ for $x, y \in \mathbb{Q}_{p}$

Fourier Analysis on \mathbb{Q}_{p}

$\mathbb{Q}_{p}=$ completion of \mathbb{Q} relative to p-adic absolute value (p prime)
$\left|p^{k} r / s\right|_{p}=p^{-k}$ if r, s integers relatively prime to p

- locally compact totally disconnected field with metric

$$
d(x, y)=|x-y|_{p}, \quad|x+y|_{p}=\max \left\{|x|_{p},|y|_{p}\right\}
$$

- p-adic expansion $\quad x=\sum_{n=k}^{\infty} a_{n} p^{n} \quad a_{n} \in\{0,1, \ldots, p-1\}$ $|x|_{p}=p^{-k}$ with $k=\min \left\{n: a_{n} \neq 0\right\}$ if $x \neq 0$
- ring of p-adic integers $\mathbb{Z}_{p}=\left\{|x|_{p} \leq 1\right\}$ (compact)

Characters Let $\mathbb{Q}_{p}^{+}=$additive group of \mathbb{Q}_{p}

- $e(x)=\exp (2 \pi i z)$ with $z=\sum_{n<0} a_{n} p^{n} \in \mathbb{Q} \quad\left(x \in z+\mathbb{Z}_{p}\right)$
- $\mathbb{Q}_{p}^{+} \cong \widehat{\mathbb{Q}_{p}^{+}}=\left\{e_{y}\right\}_{y \in \mathbb{Q}_{p}}$ where $e_{y}(x)=e(x y)$ for $x, y \in \mathbb{Q}_{p}$
- Fourier transform analogous to Fourier transform on

$$
\mathbb{R}^{+}=\mathbb{Q}_{\infty}^{+}
$$

Fourier Analysis on \mathbb{Q}_{p}

$\mathbb{Q}_{p}=$ completion of \mathbb{Q} relative to p-adic absolute value (p prime)
$\left|p^{k} r / s\right|_{p}=p^{-k}$ if r, s integers relatively prime to p

- locally compact totally disconnected field with metric

$$
d(x, y)=|x-y|_{p}, \quad|x+y|_{p}=\max \left\{|x|_{p},|y|_{p}\right\}
$$

- p-adic expansion $\quad x=\sum_{n=k}^{\infty} a_{n} p^{n} \quad a_{n} \in\{0,1, \ldots, p-1\}$ $|x|_{p}=p^{-k}$ with $k=\min \left\{n: a_{n} \neq 0\right\}$ if $x \neq 0$
- ring of p-adic integers $\mathbb{Z}_{p}=\left\{|x|_{p} \leq 1\right\}$ (compact)

Characters Let $\mathbb{Q}_{p}^{+}=$additive group of \mathbb{Q}_{p}

- $e(x)=\exp (2 \pi i z)$ with $z=\sum_{n<0} a_{n} p^{n} \in \mathbb{Q} \quad\left(x \in z+\mathbb{Z}_{p}\right)$
- $\mathbb{Q}_{p}^{+} \cong \widehat{\mathbb{Q}_{p}^{+}}=\left\{e_{y}\right\}_{y \in \mathbb{Q}_{p}}$ where $e_{y}(x)=e(x y)$ for $x, y \in \mathbb{Q}_{p}$
- Fourier transform analogous to Fourier transform on

$$
\mathbb{R}^{+}=\mathbb{Q}_{\infty}^{+}
$$

Fourier-Mellin transform on \mathbb{Q}_{p}^{\times}more complicated than \mathbb{R}^{\times}

Fourier Analysis on \mathbb{Q}_{p}

$\mathbb{Q}_{p}=$ completion of \mathbb{Q} relative to p-adic absolute value (p prime)
$\left|p^{k} r / s\right|_{p}=p^{-k}$ if r, s integers relatively prime to p

- locally compact totally disconnected field with metric

$$
d(x, y)=|x-y|_{p}, \quad|x+y|_{p}=\max \left\{|x|_{p},|y|_{p}\right\}
$$

- p-adic expansion $\quad x=\sum_{n=k}^{\infty} a_{n} p^{n} \quad a_{n} \in\{0,1, \ldots, p-1\}$ $|x|_{p}=p^{-k}$ with $k=\min \left\{n: a_{n} \neq 0\right\}$ if $x \neq 0$
- ring of p-adic integers $\mathbb{Z}_{p}=\left\{|x|_{p} \leq 1\right\}$ (compact)

Characters Let $\mathbb{Q}_{p}^{+}=$additive group of \mathbb{Q}_{p}

- $e(x)=\exp (2 \pi i z)$ with $z=\sum_{n<0} a_{n} p^{n} \in \mathbb{Q} \quad\left(x \in z+\mathbb{Z}_{p}\right)$
- $\mathbb{Q}_{p}^{+} \cong \widehat{\mathbb{Q}_{p}^{+}}=\left\{e_{y}\right\}_{y \in \mathbb{Q}_{p}}$ where $e_{y}(x)=e(x y)$ for $x, y \in \mathbb{Q}_{p}$
- Fourier transform analogous to Fourier transform on

$$
\mathbb{R}^{+}=\mathbb{Q}_{\infty}^{+}
$$

Fourier-Mellin transform on \mathbb{Q}_{p}^{\times}more complicated than \mathbb{R}^{\times}

$$
\mathbb{Q}_{p}^{\times} \cong\left\{p^{k}\right\}_{k \in \mathbb{Z}} \times(\mathbb{Z} /(p-1) \mathbb{Z}) \times A \text { with } A=\exp \left\{x:|x|_{p}<1\right\}
$$

Fourier Analysis on \mathbb{Q}_{p}

$\mathbb{Q}_{p}=$ completion of \mathbb{Q} relative to p-adic absolute value (p prime)
$\left|p^{k} r / s\right|_{p}=p^{-k}$ if r, s integers relatively prime to p

- locally compact totally disconnected field with metric

$$
d(x, y)=|x-y|_{p}, \quad|x+y|_{p}=\max \left\{|x|_{p},|y|_{p}\right\}
$$

- p-adic expansion $\quad x=\sum_{n=k}^{\infty} a_{n} p^{n} \quad a_{n} \in\{0,1, \ldots, p-1\}$ $|x|_{p}=p^{-k}$ with $k=\min \left\{n: a_{n} \neq 0\right\}$ if $x \neq 0$
- ring of p-adic integers $\mathbb{Z}_{p}=\left\{|x|_{p} \leq 1\right\}$ (compact)

Characters Let $\mathbb{Q}_{p}^{+}=$additive group of \mathbb{Q}_{p}

- $e(x)=\exp (2 \pi i z)$ with $z=\sum_{n<0} a_{n} p^{n} \in \mathbb{Q} \quad\left(x \in z+\mathbb{Z}_{p}\right)$
- $\mathbb{Q}_{p}^{+} \cong \widehat{\mathbb{Q}_{p}^{+}}=\left\{e_{y}\right\}_{y \in \mathbb{Q}_{p}}$ where $e_{y}(x)=e(x y)$ for $x, y \in \mathbb{Q}_{p}$
- Fourier transform analogous to Fourier transform on

$$
\mathbb{R}^{+}=\mathbb{Q}_{\infty}^{+}
$$

Fourier-Mellin transform on \mathbb{Q}_{p}^{\times}more complicated than \mathbb{R}^{\times}

$$
\mathbb{Q}_{p}^{\times} \cong\left\{p^{k}\right\}_{k \in \mathbb{Z}} \times(\mathbb{Z} /(p-1) \mathbb{Z}) \times A \text { with } A=\exp \left\{x:|x|_{p}<1\right\}
$$

$$
\left\{\widehat{\left.p^{k}\right\}_{k \in \mathbb{Z}}} \cong \mathbb{R} / \mathbb{Z} \quad(\text { compact }) \quad \widehat{A} \cong \overleftarrow{\lim _{k \rightarrow \infty}} \mathbb{Z} /\left(p^{k} \mathbb{Z}\right) \quad(\text { countable })\right.
$$

Laplace operator

$G=$ Euclidean motion group on \mathbb{R}^{n} (translations and rotations)

Laplace operator

$G=$ Euclidean motion group on \mathbb{R}^{n} (translations and rotations) $\Delta=\partial^{2} / \partial x_{1}^{2}+\cdots+\partial^{2} / \partial x_{n}^{2} \quad$ Laplace operator on \mathbb{R}^{n}
Polynomials in Δ give all differential operators on \mathbb{R}^{n} invariant under G

Laplace operator

$G=$ Euclidean motion group on \mathbb{R}^{n} (translations and rotations) $\Delta=\partial^{2} / \partial x_{1}^{2}+\cdots+\partial^{2} / \partial x_{n}^{2} \quad$ Laplace operator on \mathbb{R}^{n}
Polynomials in Δ give all differential operators on \mathbb{R}^{n} invariant under G

Problem: Diagonalize action of Δ on $L^{2}\left(\mathbb{R}^{n}\right)$

Laplace operator

$G=$ Euclidean motion group on \mathbb{R}^{n} (translations and rotations) $\Delta=\partial^{2} / \partial x_{1}^{2}+\cdots+\partial^{2} / \partial x_{n}^{2} \quad$ Laplace operator on \mathbb{R}^{n}
Polynomials in Δ give all differential operators on \mathbb{R}^{n} invariant under G

Problem: Diagonalize action of Δ on $L^{2}\left(\mathbb{R}^{n}\right)$
Fourier Transform Method:
Use spherical coordinates on \mathbb{R}^{n} (singularity at 0) and expansion in spherical harmonics. On radial functions get Fourier-Bessel transform (integral transform with Bessel function kernel).

Laplace operator

$G=$ Euclidean motion group on \mathbb{R}^{n} (translations and rotations)
$\Delta=\partial^{2} / \partial x_{1}^{2}+\cdots+\partial^{2} / \partial x_{n}^{2} \quad$ Laplace operator on \mathbb{R}^{n}
Polynomials in Δ give all differential operators on \mathbb{R}^{n} invariant under G

Problem: Diagonalize action of Δ on $L^{2}\left(\mathbb{R}^{n}\right)$
Fourier Transform Method:
Use spherical coordinates on \mathbb{R}^{n} (singularity at 0) and expansion in spherical harmonics. On radial functions get Fourier-Bessel transform (integral transform with Bessel function kernel).

Radon Transform Method:

Use integral transform that turns Δ into $(\partial / \partial p)^{2}$ on even functions of $p \in \mathbb{R}$ with parameter $\omega \in \mathbb{S}^{n-1}$ (no singularity). Then diagonalize by one-dimensional Fourier transform.

Radon Transform

$\mathbb{S}^{n-1}=\left\{x \in \mathbb{R}^{n}: x \cdot x=1\right\}$ unit sphere $x \cdot y=x_{1} y_{1}+\cdots+x_{n} y_{n} \quad$ inner product on \mathbb{R}^{n}

Radon Transform

$\mathbb{S}^{n-1}=\left\{x \in \mathbb{R}^{n}: x \cdot x=1\right\}$ unit sphere
$x \cdot y=x_{1} y_{1}+\cdots+x_{n} y_{n} \quad$ inner product on \mathbb{R}^{n}
Hyperplane with oriented normal $\omega \in \mathbb{S}^{n-1}$ and height $p \in \mathbb{R}$:
$H(\omega, p)=\left\{x \in \mathbb{R}^{n}: x \cdot \omega=p\right\}$

Radon Transform

$\mathbb{S}^{n-1}=\left\{x \in \mathbb{R}^{n}: x \cdot x=1\right\}$ unit sphere
$x \cdot y=x_{1} y_{1}+\cdots+x_{n} y_{n} \quad$ inner product on \mathbb{R}^{n}
Hyperplane with oriented normal $\omega \in \mathbb{S}^{n-1}$ and height $p \in \mathbb{R}$:
$H(\omega, p)=\left\{x \in \mathbb{R}^{n}: x \cdot \omega=p\right\}$
Write $\xi=H(\omega, p) \cong \mathbb{R}^{n-1}$
$\mathrm{d} m=(n-1)$-dimensional Lebesgue measure on ξ

Radon Transform

$\mathbb{S}^{n-1}=\left\{x \in \mathbb{R}^{n}: x \cdot x=1\right\}$ unit sphere
$x \cdot y=x_{1} y_{1}+\cdots+x_{n} y_{n} \quad$ inner product on \mathbb{R}^{n}
Hyperplane with oriented normal $\omega \in \mathbb{S}^{n-1}$ and height $p \in \mathbb{R}$:
$H(\omega, p)=\left\{x \in \mathbb{R}^{n}: x \cdot \omega=p\right\}$
Write $\xi=H(\omega, p) \cong \mathbb{R}^{n-1}$
$\mathrm{d} m=(n-1)$-dimensional Lebesgue measure on ξ
$\mathbb{P}^{n}=$ set of all hyperplanes ξ in \mathbb{R}^{n} (smooth n-dim manifold)
two-sheeted covering $\mathbb{S}^{n-1} \times \mathbb{R} \rightarrow \mathbb{P}^{n}$ (no singularities)

$$
(\omega, p) \mapsto H(\omega, p)=H(-\omega,-p)
$$

Radon Transform

$\mathbb{S}^{n-1}=\left\{x \in \mathbb{R}^{n}: x \cdot x=1\right\}$ unit sphere
$x \cdot y=x_{1} y_{1}+\cdots+x_{n} y_{n} \quad$ inner product on \mathbb{R}^{n}
Hyperplane with oriented normal $\omega \in \mathbb{S}^{n-1}$ and height $p \in \mathbb{R}$:

$$
H(\omega, p)=\left\{x \in \mathbb{R}^{n}: x \cdot \omega=p\right\}
$$

Write $\xi=H(\omega, p) \cong \mathbb{R}^{n-1}$
$\mathrm{d} m=(n-1)$-dimensional Lebesgue measure on ξ
$\mathbb{P}^{n}=$ set of all hyperplanes ξ in \mathbb{R}^{n} (smooth n-dim manifold)
two-sheeted covering $\mathbb{S}^{n-1} \times \mathbb{R} \rightarrow \mathbb{P}^{n}$ (no singularities)

$$
(\omega, p) \mapsto H(\omega, p)=H(-\omega,-p)
$$

Radon transform of $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$:

$$
F(\omega, p)=\int_{x \cdot \omega=p} f(x) \mathrm{d} m(x)
$$

Radon Transform

$\mathbb{S}^{n-1}=\left\{x \in \mathbb{R}^{n}: x \cdot x=1\right\}$ unit sphere
$x \cdot y=x_{1} y_{1}+\cdots+x_{n} y_{n} \quad$ inner product on \mathbb{R}^{n}
Hyperplane with oriented normal $\omega \in \mathbb{S}^{n-1}$ and height $p \in \mathbb{R}$:
$H(\omega, p)=\left\{x \in \mathbb{R}^{n}: x \cdot \omega=p\right\}$
Write $\xi=H(\omega, p) \cong \mathbb{R}^{n-1}$
$\mathrm{d} m=(n-1)$-dimensional Lebesgue measure on ξ
$\mathbb{P}^{n}=$ set of all hyperplanes ξ in \mathbb{R}^{n} (smooth n-dim manifold)
two-sheeted covering $\mathbb{S}^{n-1} \times \mathbb{R} \rightarrow \mathbb{P}^{n}$ (no singularities)

$$
(\omega, p) \mapsto H(\omega, p)=H(-\omega,-p)
$$

Radon transform of $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$:

$$
F(\omega, p)=\int_{x \cdot \omega=p} f(x) \mathrm{d} m(x)
$$

- Integral converges since $\left.f\right|_{H(\omega, p)}$ is rapidly decreasing
- $F(\xi)=F(\omega, p)$ defined on \mathbb{P}^{n} since $F(\omega, \xi)=F(-\omega,-\xi)$

Radon Transform

$\mathbb{S}^{n-1}=\left\{x \in \mathbb{R}^{n}: x \cdot x=1\right\}$ unit sphere
$x \cdot y=x_{1} y_{1}+\cdots+x_{n} y_{n} \quad$ inner product on \mathbb{R}^{n}
Hyperplane with oriented normal $\omega \in \mathbb{S}^{n-1}$ and height $p \in \mathbb{R}$:
$H(\omega, p)=\left\{x \in \mathbb{R}^{n}: x \cdot \omega=p\right\}$
Write $\xi=H(\omega, p) \cong \mathbb{R}^{n-1}$
$\mathrm{d} m=(n-1)$-dimensional Lebesgue measure on ξ
$\mathbb{P}^{n}=$ set of all hyperplanes ξ in \mathbb{R}^{n} (smooth n-dim manifold) two-sheeted covering $\mathbb{S}^{n-1} \times \mathbb{R} \rightarrow \mathbb{P}^{n}$ (no singularities)

$$
(\omega, p) \mapsto H(\omega, p)=H(-\omega,-p)
$$

Radon transform of $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$:

$$
F(\omega, p)=\int_{x \cdot \omega=p} f(x) \mathrm{d} m(x)
$$

- Integral converges since $\left.f\right|_{H(\omega, p)}$ is rapidly decreasing
- $F(\xi)=F(\omega, p)$ defined on \mathbb{P}^{n} since $F(\omega, \xi)=F(-\omega,-\xi)$
- Fourier transform $\widehat{f}(r \omega)=\int_{-\infty}^{\infty} F(\omega, p) \mathrm{e}^{-2 \pi \mathrm{i} r p} \mathrm{~d} p$

Radon Transform

$\mathbb{S}^{n-1}=\left\{x \in \mathbb{R}^{n}: x \cdot x=1\right\}$ unit sphere
$x \cdot y=x_{1} y_{1}+\cdots+x_{n} y_{n} \quad$ inner product on \mathbb{R}^{n}
Hyperplane with oriented normal $\omega \in \mathbb{S}^{n-1}$ and height $p \in \mathbb{R}$:
$H(\omega, p)=\left\{x \in \mathbb{R}^{n}: x \cdot \omega=p\right\}$
Write $\xi=H(\omega, p) \cong \mathbb{R}^{n-1}$
$\mathrm{d} m=(n-1)$-dimensional Lebesgue measure on ξ
$\mathbb{P}^{n}=$ set of all hyperplanes ξ in \mathbb{R}^{n} (smooth n-dim manifold) two-sheeted covering $\mathbb{S}^{n-1} \times \mathbb{R} \rightarrow \mathbb{P}^{n}$ (no singularities)

$$
(\omega, p) \mapsto H(\omega, p)=H(-\omega,-p)
$$

Radon transform of $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$:
$F(\omega, p)=\int_{x \cdot \omega=p} f(x) \mathrm{d} m(x)$

- Integral converges since $\left.f\right|_{H(\omega, p)}$ is rapidly decreasing
- $F(\xi)=F(\omega, p)$ defined on \mathbb{P}^{n} since $F(\omega, \xi)=F(-\omega,-\xi)$
- Fourier transform $\widehat{f}(r \omega)=\int_{-\infty}^{\infty} F(\omega, p) \mathrm{e}^{-2 \pi \mathrm{i} r p} \mathrm{~d} p$
- Radon transform of $\Delta f(x)$ is $(\partial / \partial p)^{2} F(\omega, p)$

Inverse Radon Transform

For $x \in \mathbb{R}^{n}$
$K(x)=$ all hyperplanes ξ containing x
$=\{(\omega, p): x \cdot \omega=p\} \cong \mathbb{S}^{n-1} / \pm 1$
Let $\mathrm{d} \mu=$ invariant measure on $K(x)$ (total mass 1)

Inverse Radon Transform

For $x \in \mathbb{R}^{n}$
$K(x)=$ all hyperplanes ξ containing x

$$
=\{(\omega, p): x \cdot \omega=p\} \cong \mathbb{S}^{n-1} / \pm 1
$$

Let $\mathrm{d} \mu=$ invariant measure on $K(x)$ (total mass 1)
For $F \in \mathcal{S}\left(\mathbb{P}^{n}\right)$ define dual Radon transform

$$
\widetilde{F}(x)=\int_{\xi \in K(x)} F(\xi) \mathrm{d} \mu(\xi)=\int_{\omega \in \mathbb{S}^{n-1}} F(\omega, \omega \cdot x) \mathrm{d} \omega
$$

Inverse Radon Transform

For $x \in \mathbb{R}^{n}$
$K(x)=$ all hyperplanes ξ containing x

$$
=\{(\omega, p): x \cdot \omega=p\} \cong \mathbb{S}^{n-1} / \pm 1
$$

Let $\mathrm{d} \mu=$ invariant measure on $K(x)$ (total mass 1)
For $F \in \mathcal{S}\left(\mathbb{P}^{n}\right)$ define dual Radon transform

$$
\widetilde{F}(x)=\int_{\xi \in K(x)} F(\xi) \mathrm{d} \mu(\xi)=\int_{\omega \in \mathbb{S}^{n-1}} F(\omega, \omega \cdot x) \mathrm{d} \omega
$$

Radon Inversion Formula
If $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $F=$ Radon transform of f, then

$$
f(x)=c(-\Delta)^{(n-1) / 2} \widetilde{F}(x) \quad(c=\text { normalizing constant })
$$

Inverse Radon Transform

For $x \in \mathbb{R}^{n}$

$$
\begin{aligned}
K(x) & =\text { all hyperplanes } \xi \text { containing } x \\
& =\{(\omega, p): x \cdot \omega=p\} \cong \mathbb{S}^{n-1} / \pm 1
\end{aligned}
$$

Let $\mathrm{d} \mu=$ invariant measure on $K(x)$ (total mass 1)
For $F \in \mathcal{S}\left(\mathbb{P}^{n}\right)$ define dual Radon transform

$$
\widetilde{F}(x)=\int_{\xi \in K(x)} F(\xi) \mathrm{d} \mu(\xi)=\int_{\omega \in \mathbb{S}^{n-1}} F(\omega, \omega \cdot x) \mathrm{d} \omega
$$

Radon Inversion Formula

If $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $F=$ Radon transform of f, then

$$
f(x)=c(-\Delta)^{(n-1) / 2} \tilde{F}(x) \quad(c=\text { normalizing constant })
$$

odd dimensions: Inversion formula is local - differential operator applied to $\widetilde{F}(x)$
even dimensions: Inversion formula is non-local - square root of differential operator (Hilbert transform) applied to $\widetilde{F}(x)$

Further Reading

The Wikipedia articles on Fourier Analysis, p-adic Numbers, and Radon Transform are good starting points. Here are some books:

- Fourier analysis on locally compact abelian groups:
W. Rudin, Fourier Analysis on Groups, Wiley (1962)
G. Folland, A Course in Abstract Harmonic Analysis, CRC Press (1995)
- Finite Fourier transform:
A. Terras, Fourier Analysis on Finite Groups and applications, Cambridge (1999)
- Fourier analysis on \mathbb{R} / \mathbb{Z} and \mathbb{R} :
G. Folland, Real Analysis: Modern Techniques and Their Applications, Wiley (1999)
- Radon Transform:
S. Helgason, Groups and Geometric Analysis, Academic Press (1984)

