Integral Transforms

Roe Goodman

Introduction to Math at Rutgers

August 29, 2010

Fourier Transform

- G locally compact abelian topological group (written additively) G has a Haar measure (translation invariant)
- $L^{2}(G)$ square integrable complex valued functions on GInner product: $(\phi, \psi) = \int_{G} \phi(x) \overline{\psi(x)} dx$ norm: $\|\phi\|_{2} = \sqrt{(\phi, \phi)}$

G acts on $L^2(G)$ by translations: $T_y\phi(x) = \phi(x-y)$

Definition

A linear transformation (operator) $C : L^2(G) \to L^2(G)$ is translation invariant if it commutes with $\{T_y\}_{y \in G}$.

Some Examples

- Translation: $C\phi = T_y \phi$ with $y \in G$
- Convolution: Cφ(x) = ∫_G f(y)φ(x − y) dy with f ∈ L¹(G) (weighted average of translates of φ)

Problem: Diagonalize all translation invariant operators Solution: Use characters of *G* and Fourier transform

Fourier Transform on $\mathbb{Z}/n\mathbb{Z}$

Example 1 $G = \mathbb{Z}/n\mathbb{Z}$ (additive group of integers mod *n*) $L^{2}(G) = \{ \phi : \mathbb{Z} \to \mathbb{C} : \phi(k+n) = \phi(k) \text{ for all } k \in \mathbb{Z} \}$ inner product $(\phi, \psi) = \frac{1}{n} \sum_{k=0}^{n-1} \phi(k) \overline{\psi(k)}$ **Characters** $e_p(k) = w^{kp}$ for $k, p \in \mathbb{Z}$ $(w = e^{2\pi i/n}, w^n = 1)$ • $e_n(k+m) = e_n(k)e_n(m), \quad |e_n(k)| = 1, \quad e_{n+n} = e_n$ • Eigenfunctions for translations $T_k e_n = w^{-kp} e_n$ Orthogonality relations $(e_p, e_q) = \begin{cases} 1 & \text{if } p - q \equiv 0 \mod (n) \\ 0 & \text{else} \end{cases}$ Finite Fourier Transform $\widehat{\phi}(p) = (\phi, e_n)$ • Diagonalization $\psi = T_k \phi \Rightarrow \widehat{\psi}(p) = w^{-kp} \widehat{\phi}(p)$ • Fourier inversion $\phi = \sum_{n=0}^{n-1} \widehat{\phi}(p) e_n$ • Plancherel formula $(\phi, \psi) = \sum_{p=0}^{n-1} \widehat{\phi}(p) \overline{\widehat{\psi}(p)}$

Diagonalization of Translation Invariant Operators

Theorem

Let $G = \mathbb{Z}/n\mathbb{Z}$. Let C be a translation invariant operator on $L^2(G)$. There is a function F on $\widehat{G} \cong \mathbb{Z}/n\mathbb{Z}$ such that (*) $\widehat{C}\phi(p) = F(p)\widehat{\phi}(p)$ for all $\phi \in L^2(G)$ and $p \in \mathbb{Z}$. Conversely, every function F on $\mathbb{Z}/n\mathbb{Z}$ defines a translation invariant operator C on $L^2(G)$ by (*) (C = convolution by f, where $\widehat{f} = F$).

Proof.

Let $S = T_1$ (shift operator). Then S has n distinct eigenvalues $\lambda_p = w^{-p}$ for p = 0, ..., n-1 with eigenvectors e_p . Since C commutes with S, the function Ce_p is an eigenvector for S with eigenvalue w^{-p} . Hence $Ce_p = F(p)e_p$ for some scalar $F(p) \in \mathbb{C}$. The Fourier inversion formula now implies (*).

General Version of Fourier Transform

G – locally compact abelian topological group (written additively) \widehat{G} – all characters of G:

$$\psi: G \to \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$$
 (continuous)
 $\psi(x + y) = \psi(x)\psi(y), \quad \psi(0) = 1$

- G is a locally compact abelian group under pointwise multiplication and uniform convergence on compacta topology.
- $(\widehat{G}) \cong G$ (natural isomorphism, as for vector space duality).
- Fourier transform takes $L^2(G)$ onto $L^2(\widehat{G})$ preserving norm.
- Translation invariant operator C on L²(G) becomes multiplication by a function F on L²(G).

Example

$$G = \mathbb{Z}/n\mathbb{Z}$$
 $\widehat{G} = \{e_p : p \in \mathbb{Z}/n\mathbb{Z}\} \cong G$
Choose basic character e_1 . Then $e_p(k) = e_1(pk)$

Fourier Transform on \mathbb{R}/\mathbb{Z}

Example 2 $G = \mathbb{R}/\mathbb{Z}$ (additive group of real numbers modulo 1) $L^2(\mathbb{R}/\mathbb{Z})$ $\phi: \mathbb{R} \to \mathbb{C}, \ \phi(x+1) = \phi(x)$ (periodic, measurable) $\int_0^1 |\phi(x)|^2 dx < \infty$ (Lebesgue integral) Inner product $(\phi, \psi) = \int_0^1 \phi(x) \overline{\psi(x)} \, dx$ **Characters** $e_p(x) = \exp(2\pi i p x)$ for $p \in \mathbb{Z}$ and $x \in \mathbb{R}$ • $e_p(x+1) = e_p(x), |e_p(x)| = 1$ • $e_p(x)e_q(x) = e_{p+q}(x)$, so $\widehat{G} \cong \mathbb{Z}$ under $e_p \leftrightarrow p$ • Orthogonality relations $(e_p, e_q) = \begin{cases} 1 & \text{if } p = q \\ 0 & \text{else} \end{cases}$ Fourier transform $\hat{\phi}(p) = (\phi, e_p) = \int_0^1 \phi(x) \exp(-2\pi i p x) dx$ • Diagonalization $\psi = T_v \phi \Rightarrow \widehat{\psi}(p) = e_p(-v)\widehat{\phi}(p)$ • Fourier inversion $\phi = \sum_{p \in \mathbb{Z}} \widehat{\phi}(p) e_p$ (*L*² convergence) • Plancherel formula $(\phi, \psi) = \sum_{p \in \mathbb{Z}} \widehat{\phi}(p) \widehat{\psi}(p)$

Bounded Translation Invariant Operators

Linear operator C on $L^2(\mathbb{R}/\mathbb{Z})$ is bounded if $||C\phi||_2 \le M ||\phi||_2$ Same as: C is a continuous transformation w.r.t. $||\phi||_2$.

Theorem

Let C be a bounded translation invariant operator on $L^2(\mathbb{R}/\mathbb{Z})$. Then there is a bounded function F on \mathbb{Z} such that (\star) $\widehat{C}\phi(p) = F(p)\widehat{\phi}(p)$ for all $\phi \in L^2(\mathbb{R}/\mathbb{Z})$.

Conversely, every bounded function F on \mathbb{Z} defines a bounded translation invariant operator C on $L^2(\mathbb{R}/\mathbb{Z})$ by (\star) .

Proof.

Let $S = T_y$, y irrational. Then S has distinct eigenvalues $\lambda_p = \exp(-2\pi i y p)$ for $p \in \mathbb{Z}$ with eigenvectors e_p . $CS = SC \Rightarrow Ce_p = F(p)e_p$ with $F(p) \in \mathbb{C}$. Then C bounded \Rightarrow $\|F\|_{\infty} := \sup_p |F(p)| < \infty$. Hence $C\phi = \sum_{p \in \mathbb{Z}} \widehat{\phi}(p)Ce_p = \sum_{p \in \mathbb{Z}} \widehat{\phi}(p)F(p)e_p$

Fourier Analysis of $C^{\infty}(\mathbb{R}/\mathbb{Z})$

 $C^{\infty}(\mathbb{R}/\mathbb{Z}) =$ differentiable periodic functions on \mathbb{R} $D = \frac{1}{2\pi i} \frac{d}{dx}$ translation invariant operator on $C^{\infty}(\mathbb{R}/\mathbb{Z})$

- $De_p = pe_p$ for $p \in \mathbb{Z}$, so D is not bounded on $L^2(\mathbb{R}/\mathbb{Z})$
- $(D\phi,\psi)=(\phi,D\psi)$ for $\phi,\psi\in C^\infty(\mathbb{R}/\mathbb{Z})$ (integrate by parts)
- $\widehat{D\phi}(p) = p\widehat{\phi}(p)$ for $\phi \in C^{\infty}(\mathbb{R}/\mathbb{Z})$
- $\phi \in C^{\infty}(\mathbb{R}/\mathbb{Z}) \iff \widehat{\phi}$ is rapidly decreasing: For every positive integer $r \quad \sup_{p \in \mathbb{Z}} |p^r \widehat{\phi}(p)| < \infty$

Theorem

Let C be a continuous translation invariant operator on $C^{\infty}(\mathbb{R}/\mathbb{Z})$. Then there is a function F on \mathbb{Z} of polynomial growth at ∞ such that

(*) $\widehat{C\phi}(p) = F(p)\widehat{\phi}(p)$ for all $\phi \in C^{\infty}(\mathbb{R}/\mathbb{Z})$. Conversely, every such function F on \mathbb{Z} defines a continuous translation invariant operator C on $C^{\infty}(\mathbb{R}/\mathbb{Z})$ by (*).

Fourier Transform on ${\mathbb R}$

Example 3 $G = \mathbb{R}$ (additive group of real numbers) $L^2(\mathbb{R}) \quad \phi : \mathbb{R} \to \mathbb{C}$, (measurable) $\int_{-\infty}^{\infty} |\phi(x)|^2 dx < \infty$ Inner product $(\phi, \psi) = \int_{-\infty}^{\infty} \phi(x) \overline{\psi(x)} dx$

 $\begin{array}{ll} \mathsf{Characters} & e_\xi(x) = \exp(2\pi\mathrm{i} x\xi) \text{ for } x, \xi \in \mathbb{R}. \end{array}$

• Fix basic character e_1 . Then $e_{\xi}(x) = e_1(x\xi)$

•
$$e_{\xi}(x)e_{\tau}(x) = e_{\xi+\tau}(x)$$
, so $\widehat{\mathbb{R}} \cong \mathbb{R}$ under $e_{\xi} \leftrightarrow \xi$

• \mathbb{R} not compact $\Rightarrow e_{\xi} \notin L^2(\mathbb{R})$ (plane wave, frequency ξ)

Fourier transform For $\phi \in L^1(\mathbb{R})$ define

 $\widehat{\phi}(\xi) = \int_{-\infty}^{\infty} \phi(x) e_{-\xi}(x) \, \mathrm{d}x$ (integral converges absolutely)

- Fourier transform extends to isometry $L^2(\mathbb{R}) \to L^2(\widehat{\mathbb{R}})$
- Plancherel formula $(\phi,\psi)=\int_{-\infty}^{\infty}\widehat{\phi}(\xi)\widehat{\psi}(\xi)\,\mathrm{d}\xi$

Tempered Fourier Analysis on $\ensuremath{\mathbb{R}}$

$$\begin{split} & \mathcal{S}(\mathbb{R}) = \text{ rapidly decreasing } C^{\infty} \text{ functions on } \mathbb{R}: \\ & \sup_{x \in \mathbb{R}} \left| x^m \left(\frac{d}{dx} \right)^k \phi(x) \right| < \infty \text{ for all positive integers } m, k \\ & \text{Example} \quad \phi(x) = p(x)e^{-\pi x^2} \text{ with } p(x) \text{ a polynomial} \\ & \text{Fourier transform of } \phi \text{ is } q(\xi)e^{-\pi \xi^2} \text{ with } q \text{ a polynomial} \end{split}$$

- $S(\mathbb{R})$ invariant under $D_x = \frac{1}{2\pi i} \frac{d}{dx}$, $M_x =$ multiplication by x
- $\widehat{D_{x}\phi} = M_{\xi}\widehat{\phi}$ for $\phi \in S(G)$ (integrate by parts)
- $\widehat{M_x\phi} = D_{\xi}\widehat{\phi}$ for $\phi \in S(G)$ (differentiate under integral)

•
$$\phi \in \mathbb{S}(\mathbb{R}) \Longleftrightarrow \widehat{\phi} \in \mathbb{S}(\mathbb{R})$$

Theorem

Let C be a continuous translation invariant operator on $S(\mathbb{R})$. Then there is a C^{∞} function F on \mathbb{R} with all derivatives of polynomial growth at ∞ such that (\star) $\widehat{C}\phi(\xi) = F(\xi)\widehat{\phi}(\xi)$ for all $\phi \in S(\mathbb{R})$. Conversely, every such function F on \mathbb{R} defines a continuous translation invariant operator C on $S(\mathbb{R})$ by (\star) .

Fourier-Mellin Transform

 $\mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}$ – locally compact group under multiplication

Invariant integral

$$\int_{-\infty}^{\infty} f(x) \frac{\mathrm{d}x}{|x|}$$

- Characters $e_{\tau,\epsilon}(x) = \operatorname{sgn}(x)^{\epsilon} |x|^{i\tau}$ with $\tau \in \mathbb{R}$ and $\epsilon = \pm 1$ $\widehat{\mathbb{R}^{\times}} \cong \mathbb{R} \times (\mathbb{Z}/2\mathbb{Z})$
- Fourier-Mellin transform $\widehat{f}(\tau, \epsilon) = \int_{-\infty}^{\infty} f(x) e_{-\tau, \epsilon}(x) \frac{dx}{|x|}$ for $f \in L^1(\mathbb{R}, \frac{dx}{|x|})$
- Plancherel Formula

$$\int_{-\infty}^{\infty} f(x)\overline{g(x)} \frac{\mathrm{d}x}{|x|} = \sum_{\epsilon = \pm 1} \int_{-\infty}^{\infty} \widehat{f}(\tau, \epsilon) \overline{\widehat{g}(\tau, \epsilon)} \,\mathrm{d}\tau$$
for $f, g \in L^2(\mathbb{R}, \frac{\mathrm{d}x}{|x|})$

Log Trick: Use group homomorphism $x \mapsto (\log |x|, \operatorname{sgn}(x))$ to turn Fourier-Mellin transform into Fourier transform on $\mathbb{R} \times (\mathbb{Z}/2\mathbb{Z})$.

Fourier Analysis on \mathbb{Q}_p

- $\mathbb{Q}_p = \text{completion of } \mathbb{Q}$ relative to *p*-adic absolute value (*p* prime) $|p^k r/s|_p = p^{-k}$ if *r*, *s* integers relatively prime to *p*
 - locally compact totally disconnected field with metric $d(x, y) = |x y|_p$, $|x + y|_p = \max\{|x|_p, |y|_p\}$
 - p-adic expansion $x = \sum_{n=k}^{\infty} a_n p^n$ $a_n \in \{0, 1, \dots, p-1\}$ $|x|_p = p^{-k}$ with $k = \min\{n : a_n \neq 0\}$ if $x \neq 0$
 - ring of *p*-adic integers $\mathbb{Z}_p = \{|x|_p \leq 1\}$ (compact)

Characters Let $\mathbb{Q}_p^+ =$ additive group of \mathbb{Q}_p

- $e(x) = \exp(2\pi i z)$ with $z = \sum_{n < 0} a_n p^n \in \mathbb{Q}$ $(x \in z + \mathbb{Z}_p)$
- $\mathbb{Q}_p^+ \cong \widehat{\mathbb{Q}}_p^+ = \{e_y\}_{y \in \mathbb{Q}_p}$ where $e_y(x) = e(xy)$ for $x, y \in \mathbb{Q}_p$
- Fourier transform analogous to Fourier transform on $\mathbb{R}^+ = \mathbb{Q}^+_\infty$

Fourier-Mellin transform on \mathbb{Q}_{p}^{\times} more complicated than \mathbb{R}^{\times} $\mathbb{Q}_{p}^{\times} \cong \{p^{k}\}_{k \in \mathbb{Z}} \times (\mathbb{Z}/(p-1)\mathbb{Z}) \times A \text{ with } A = \exp\{x : |x|_{p} < 1\}$ $\widehat{\{p^{k}\}_{k \in \mathbb{Z}}} \cong \mathbb{R}/\mathbb{Z} \text{ (compact)} \quad \widehat{A} \cong \varprojlim_{k \to \infty} \mathbb{Z}/(p^{k}\mathbb{Z}) \text{ (countable)}$ $\begin{aligned} G &= \text{Euclidean motion group on } \mathbb{R}^n \text{ (translations and rotations)} \\ \Delta &= \partial^2 / \partial x_1^2 + \dots + \partial^2 / \partial x_n^2 \quad \text{Laplace operator on } \mathbb{R}^n \\ \text{Polynomials in } \Delta \text{ give all differential operators on } \mathbb{R}^n \text{ invariant} \\ \text{under } G \end{aligned}$

Problem: Diagonalize action of Δ on $L^2(\mathbb{R}^n)$

Fourier Transform Method:

Use spherical coordinates on \mathbb{R}^n (singularity at 0) and expansion in spherical harmonics. On radial functions get Fourier-Bessel transform (integral transform with Bessel function kernel).

Radon Transform Method:

Use integral transform that turns Δ into $(\partial/\partial p)^2$ on even functions of $p \in \mathbb{R}$ with parameter $\omega \in \mathbb{S}^{n-1}$ (no singularity). Then diagonalize by one-dimensional Fourier transform.

Radon Transform

$$\mathbb{S}^{n-1} = \{x \in \mathbb{R}^n : x \cdot x = 1\}$$
 unit sphere

 $x \cdot y = x_1y_1 + \cdots + x_ny_n$ inner product on \mathbb{R}^n Hyperplane with oriented normal $\omega \in \mathbb{S}^{n-1}$ and height $p \in \mathbb{R}$:

 $\begin{aligned} & \mathcal{H}(\omega,p) = \{x \in \mathbb{R}^n \ : \ x \cdot \omega = p\} \\ & \text{Write } \xi = \mathcal{H}(\omega,p) \cong \mathbb{R}^{n-1} \end{aligned}$

dm = (n-1)-dimensional Lebesgue measure on ξ $\mathbb{P}^n =$ set of all hyperplanes ξ in \mathbb{R}^n (smooth *n*-dim manifold) two-sheeted covering $\mathbb{S}^{n-1} \times \mathbb{R} \to \mathbb{P}^n$ (no singularities)

 $(\omega, p) \mapsto H(\omega, p) = H(-\omega, -p)$ Radon transform of $f \in S(\mathbb{R}^n)$:

 $F(\omega, p) = \int_{x \cdot \omega = p} f(x) \, \mathrm{d}m(x)$

- Integral converges since $f|_{H(\omega,p)}$ is rapidly decreasing
- $F(\xi) = F(\omega, p)$ defined on \mathbb{P}^n since $F(\omega, \xi) = F(-\omega, -\xi)$
- Fourier transform $\hat{f}(r\omega) = \int_{-\infty}^{\infty} F(\omega, p) e^{-2\pi i r p} dp$
- Radon transform of $\Delta f(x)$ is $(\partial/\partial p)^2 F(\omega, p)$

Inverse Radon Transform

For
$$x \in \mathbb{R}^n$$

 $K(x) = \text{all hyperplanes } \xi \text{ containing } x$
 $= \{(\omega, p) : x \cdot \omega = p\} \cong \mathbb{S}^{n-1}/\pm 1$
Let $d\mu = \text{invariant measure on } K(x) \text{ (total mass 1)}$
For $F \in S(\mathbb{P}^n)$ define dual Radon transform
 $\widetilde{F}(x) = \int_{\xi \in K(x)} F(\xi) d\mu(\xi) = \int_{\omega \in \mathbb{S}^{n-1}} F(\omega, \omega \cdot x) d\omega$
Radon Inversion Formula

If $f \in S(\mathbb{R}^n)$ and F = Radon transform of f, then

$$f(x) = c \left(-\Delta\right)^{(n-1)/2} \widetilde{F}(x) \qquad (c = ext{ normalizing constant})$$

odd dimensions: Inversion formula is local - differential operator applied to $\widetilde{F}(x)$

even dimensions: Inversion formula is non-local - square root of differential operator (Hilbert transform) applied to $\widetilde{F}(x)$

The Wikipedia articles on Fourier Analysis, p-adic Numbers, and Radon Transform are good starting points. Here are some books:

- Fourier analysis on locally compact abelian groups:
 W. Rudin, Fourier Analysis on Groups, Wiley (1962)
 G. Folland, A Course in Abstract Harmonic Analysis, CRC Press (1995)
- Finite Fourier transform:

A. Terras, Fourier Analysis on Finite Groups and applications, Cambridge (1999)

- Fourier analysis on ℝ/ℤ and ℝ:
 G. Folland, Real Analysis: Modern Techniques and Their Applications, Wiley (1999)
- Radon Transform:

S. Helgason, **Groups and Geometric Analysis**, Academic Press (1984)