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Fourier Transform

G – locally compact abelian topological group (written additively)
G has a Haar measure (translation invariant)
L2(G ) – square integrable complex valued functions on G

Inner product: (φ, ψ) =
∫
G φ(x)ψ(x) dx

norm: ‖φ‖2 =
√

(φ, φ)
G acts on L2(G ) by translations: Tyφ(x) = φ(x − y)

Definition
A linear transformation (operator) C : L2(G )→ L2(G ) is
translation invariant if it commutes with {Ty}y∈G .

Some Examples

• Translation: Cφ = Tyφ with y ∈ G

• Convolution: Cφ(x) =
∫
G f (y)φ(x − y) dy with f ∈ L1(G )

(weighted average of translates of φ)

Problem: Diagonalize all translation invariant operators
Solution: Use characters of G and Fourier transform
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Fourier Transform on Z/nZ
Example 1 G = Z/nZ (additive group of integers mod n)
L2(G ) = {φ : Z→ C : φ(k + n) = φ(k) for all k ∈ Z}
inner product (φ, ψ) = 1

n

∑n−1
k=0 φ(k)ψ(k)

Characters ep(k) = wkp for k , p ∈ Z (w = e2πi/n, wn = 1)

• ep(k + m) = ep(k)ep(m), |ep(k)| = 1, ep+n = ep

• Eigenfunctions for translations Tkep = w−kpep

• Orthogonality relations

(ep, eq) =

{
1 if p − q ≡ 0 mod (n)
0 else

Finite Fourier Transform φ̂(p) = (φ, ep)

• Diagonalization ψ = Tkφ ⇒ ψ̂(p) = w−kpφ̂(p)

• Fourier inversion φ =
∑n−1

p=0 φ̂(p)ep

• Plancherel formula (φ, ψ) =
∑n−1

p=0 φ̂(p)ψ̂(p)
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Diagonalization of Translation Invariant Operators

Theorem
Let G = Z/nZ. Let C be a translation invariant operator on
L2(G ). There is a function F on Ĝ ∼= Z/nZ such that

(?) Ĉφ(p) = F (p)φ̂(p) for all φ ∈ L2(G ) and p ∈ Z.
Conversely, every function F on Z/nZ defines a translation
invariant operator C on L2(G ) by (?) (C = convolution by f ,
where f̂ = F ).

Proof.
Let S = T1 (shift operator). Then S has n distinct eigenvalues
λp = w−p for p = 0, . . . , n − 1 with eigenvectors ep. Since C
commutes with S , the function Cep is an eigenvector for S with
eigenvalue w−p. Hence Cep = F (p)ep for some scalar F (p) ∈ C.
The Fourier inversion formula now implies (?).
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Character Group and Duality

General Version of Fourier Transform
G – locally compact abelian topological group (written additively)
Ĝ – all characters of G :
ψ : G → T = {z ∈ C : |z | = 1} (continuous)
ψ(x + y) = ψ(x)ψ(y), ψ(0) = 1

• Ĝ is a locally compact abelian group under pointwise
multiplication and uniform convergence on compacta topology.

• (̂Ĝ ) ∼= G (natural isomorphism, as for vector space duality).

• Fourier transform takes L2(G ) onto L2(Ĝ ) preserving norm.

• Translation invariant operator C on L2(G ) becomes
multiplication by a function F on L2(Ĝ ).

Example
G = Z/nZ Ĝ = {ep : p ∈ Z/nZ} ∼= G
Choose basic character e1. Then ep(k) = e1(pk)
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Fourier Transform on R/Z
Example 2 G = R/Z (additive group of real numbers modulo 1)
L2(R/Z) φ : R→ C, φ(x + 1) = φ(x) (periodic, measurable)∫ 1

0 |φ(x)|2 dx <∞ (Lebesgue integral)

Inner product (φ, ψ) =
∫ 1
0 φ(x)ψ(x) dx

Characters ep(x) = exp(2πipx) for p ∈ Z and x ∈ R
• ep(x + 1) = ep(x), |ep(x)| = 1

• ep(x)eq(x) = ep+q(x), so Ĝ ∼= Z under ep ↔ p

• Orthogonality relations (ep, eq) =

{
1 if p = q
0 else

Fourier transform φ̂(p) = (φ, ep) =
∫ 1
0 φ(x) exp(−2πipx) dx

• Diagonalization ψ = Tyφ ⇒ ψ̂(p) = ep(−y)φ̂(p)

• Fourier inversion φ =
∑

p∈Z φ̂(p)ep (L2 convergence)

• Plancherel formula (φ, ψ) =
∑

p∈Z φ̂(p)ψ̂(p)
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Bounded Translation Invariant Operators

Linear operator C on L2(R/Z) is bounded if ‖Cφ‖2 ≤ M‖φ‖2
Same as: C is a continuous transformation w.r.t. ‖φ‖2.

Theorem
Let C be a bounded translation invariant operator on L2(R/Z).
Then there is a bounded function F on Z such that
(?) Ĉφ(p) = F (p)φ̂(p) for all φ ∈ L2(R/Z).

Conversely, every bounded function F on Z defines a bounded
translation invariant operator C on L2(R/Z) by (?).

Proof.
Let S = Ty , y irrational. Then S has distinct eigenvalues
λp = exp(−2πiyp) for p ∈ Z with eigenvectors ep.
CS = SC ⇒ Cep = F (p)ep with F (p) ∈ C. Then C bounded ⇒
‖F‖∞ := supp |F (p)| <∞. Hence

Cφ =
∑

p∈Z φ̂(p)Cep =
∑

p∈Z φ̂(p)F (p)ep
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Fourier Analysis of C∞(R/Z)

C∞(R/Z) = differentiable periodic functions on R
D = 1

2πi
d
dx translation invariant operator on C∞(R/Z)

• Dep = pep for p ∈ Z, so D is not bounded on L2(R/Z)

• (Dφ, ψ) = (φ,Dψ) for φ, ψ ∈ C∞(R/Z) (integrate by parts)

• D̂φ(p) = pφ̂(p) for φ ∈ C∞(R/Z)

• φ ∈ C∞(R/Z)⇐⇒ φ̂ is rapidly decreasing:

For every positive integer r supp∈Z |pr φ̂(p)| <∞

Theorem
Let C be a continuous translation invariant operator on C∞(R/Z).
Then there is a function F on Z of polynomial growth at ∞ such
that
(?) Ĉφ(p) = F (p)φ̂(p) for all φ ∈ C∞(R/Z).
Conversely, every such function F on Z defines a continuous
translation invariant operator C on C∞(R/Z) by (?).

Roe Goodman Integral Transforms



Fourier Transform on R
Example 3 G = R (additive group of real numbers)
L2(R) φ : R→ C, (measurable)

∫∞
−∞ |φ(x)|2 dx <∞

Inner product (φ, ψ) =
∫∞
−∞ φ(x)ψ(x) dx

Characters eξ(x) = exp(2πixξ) for x , ξ ∈ R.

• Fix basic character e1. Then eξ(x) = e1(xξ)

• eξ(x)eτ (x) = eξ+τ (x), so R̂ ∼= R under eξ ↔ ξ

• R not compact ⇒ eξ /∈ L2(R) (plane wave, frequency ξ)

Fourier transform For φ ∈ L1(R) define

φ̂(ξ) =
∫∞
−∞ φ(x)e−ξ(x) dx (integral converges absolutely)

• Fourier transform extends to isometry L2(R)→ L2(R̂)

• Plancherel formula (φ, ψ) =
∫∞
−∞ φ̂(ξ)ψ̂(ξ) dξ

• Bounded translation invariant operator C on L2(R) ←→
multiplication by bounded measurable function F on R̂
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Tempered Fourier Analysis on R
S(R) = rapidly decreasing C∞ functions on R:

supx∈R

∣∣∣xm
(

d
dx

)k
φ(x)

∣∣∣ <∞ for all positive integers m, k

Example φ(x) = p(x)e−πx2
with p(x) a polynomial

Fourier transform of φ is q(ξ)e−πξ
2

with q a polynomial

• S(R) invariant under Dx = 1
2πi

d
dx , Mx = multiplication by x

• D̂xφ = Mξφ̂ for φ ∈ S(G ) (integrate by parts)

• M̂xφ = Dξφ̂ for φ ∈ S(G ) (differentiate under integral)

• φ ∈ S(R)⇐⇒ φ̂ ∈ S(R)

Theorem
Let C be a continuous translation invariant operator on S(R).
Then there is a C∞ function F on R with all derivatives of
polynomial growth at ∞ such that
(?) Ĉφ(ξ) = F (ξ)φ̂(ξ) for all φ ∈ S(R).
Conversely, every such function F on R defines a continuous
translation invariant operator C on S(R) by (?).
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Fourier-Mellin Transform

R× = R \ {0} – locally compact group under multiplication

• Invariant integral

∫ ∞
−∞

f (x)
dx

|x |
• Characters eτ,ε(x) = sgn(x)ε|x |iτ with τ ∈ R and ε = ±1

R̂× ∼= R× (Z/2Z)

• Fourier-Mellin transform f̂ (τ, ε) =

∫ ∞
−∞

f (x)e−τ,ε(x)
dx

|x |
for f ∈ L1(R, dx

|x |)

• Plancherel Formula∫ ∞
−∞

f (x)g(x)
dx

|x |
=
∑
ε=±1

∫ ∞
−∞

f̂ (τ, ε)ĝ(τ, ε) dτ

for f , g ∈ L2(R, dx
|x |)

Log Trick: Use group homomorphism x 7→ (log |x |, sgn(x)) to turn
Fourier-Mellin transform into Fourier transform on R× (Z/2Z).
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Fourier Analysis on Qp

Qp = completion of Q relative to p-adic absolute value (p prime)
|pk r/s|p = p−k if r , s integers relatively prime to p

• locally compact totally disconnected field with metric
d(x , y) = |x − y |p, |x + y |p = max{|x |p, |y |p}

• p-adic expansion x =
∑∞

n=k anpn an ∈ {0, 1, . . . , p − 1}
|x |p = p−k with k = min{n : an 6= 0} if x 6= 0

• ring of p-adic integers Zp = {|x |p ≤ 1} (compact)

Characters Let Q+
p = additive group of Qp

• e(x) = exp(2πiz) with z =
∑

n<0 anpn ∈ Q (x ∈ z + Zp)

• Q+
p
∼= Q̂+

p = {ey}y∈Qp where ey (x) = e(xy) for x , y ∈ Qp

• Fourier transform analogous to Fourier transform on
R+ = Q+

∞
Fourier-Mellin transform on Q×p more complicated than R×

Q×p ∼= {pk}k∈Z× (Z/(p− 1)Z)×A with A = exp{x : |x |p < 1}
̂{pk}k∈Z ∼= R/Z (compact) Â ∼=

←−
lim

k→∞
Z/(pkZ) (countable)
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Laplace operator

G = Euclidean motion group on Rn (translations and rotations)

∆ = ∂2/∂x2
1 + · · ·+ ∂2/∂x2

n Laplace operator on Rn

Polynomials in ∆ give all differential operators on Rn invariant
under G

Problem: Diagonalize action of ∆ on L2(Rn)

Fourier Transform Method:
Use spherical coordinates on Rn (singularity at 0) and expansion in
spherical harmonics. On radial functions get Fourier-Bessel
transform (integral transform with Bessel function kernel).

Radon Transform Method:
Use integral transform that turns ∆ into (∂/∂p)2 on even
functions of p ∈ R with parameter ω ∈ Sn−1 (no singularity). Then
diagonalize by one-dimensional Fourier transform.
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Radon Transform

Sn−1 = {x ∈ Rn : x · x = 1} unit sphere
x · y = x1y1 + · · ·+ xnyn inner product on Rn

Hyperplane with oriented normal ω ∈ Sn−1 and height p ∈ R:
H(ω, p) = {x ∈ Rn : x · ω = p}

Write ξ = H(ω, p) ∼= Rn−1

dm = (n − 1)-dimensional Lebesgue measure on ξ
Pn = set of all hyperplanes ξ in Rn (smooth n-dim manifold)
two-sheeted covering Sn−1 × R→ Pn (no singularities)

(ω, p) 7→ H(ω, p) = H(−ω,−p)
Radon transform of f ∈ S(Rn):

F (ω, p) =
∫
x ·ω=p f (x) dm(x)

• Integral converges since f |H(ω,p) is rapidly decreasing

• F (ξ) = F (ω, p) defined on Pn since F (ω, ξ) = F (−ω,−ξ)

• Fourier transform f̂ (rω) =
∫∞
−∞ F (ω, p)e−2πirp dp

• Radon transform of ∆f (x) is (∂/∂p)2 F (ω, p)
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Inverse Radon Transform

For x ∈ Rn

K (x) = all hyperplanes ξ containing x
= {(ω, p) : x · ω = p} ∼= Sn−1/± 1

Let dµ = invariant measure on K (x) (total mass 1)
For F ∈ S(Pn) define dual Radon transform

F̃ (x) =
∫
ξ∈K(x) F (ξ) dµ(ξ) =

∫
ω∈Sn−1 F (ω, ω · x) dω

Radon Inversion Formula
If f ∈ S(Rn) and F = Radon transform of f , then

f (x) = c (−∆)(n−1)/2 F̃ (x) (c = normalizing constant)

odd dimensions: Inversion formula is local - differential operator
applied to F̃ (x)
even dimensions: Inversion formula is non-local - square root of
differential operator (Hilbert transform) applied to F̃ (x)
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Further Reading

The Wikipedia articles on Fourier Analysis, p-adic Numbers, and
Radon Transform are good starting points. Here are some books:

• Fourier analysis on locally compact abelian groups:
W. Rudin, Fourier Analysis on Groups, Wiley (1962)
G. Folland, A Course in Abstract Harmonic Analysis, CRC
Press (1995)

• Finite Fourier transform:
A. Terras, Fourier Analysis on Finite Groups and
applications, Cambridge (1999)

• Fourier analysis on R/Z and R:
G. Folland, Real Analysis: Modern Techniques and Their
Applications, Wiley (1999)

• Radon Transform:
S. Helgason, Groups and Geometric Analysis, Academic
Press (1984)
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