Multilinear Algebra and Tensor Symmetries

Roe Goodman
Introduction to Math at Rutgers

August 28, 2011

Vector Spaces and Duality

$\mathbb{F}=$ field: $\mathbb{R}, \mathbb{C}, \ldots$
$V=$ finite-dimensional vector space over $\mathbb{F}(\operatorname{dim} V=n)$
$V \longleftrightarrow \mathbb{F}^{n}=n \times 1$ column vectors when basis $\left\{\mathbf{v}_{i}\right\}$ fixed

Vector Spaces and Duality

$\mathbb{F}=$ field: $\mathbb{R}, \mathbb{C}, \ldots$
$V=$ finite-dimensional vector space over $\mathbb{F}(\operatorname{dim} V=n)$
$V \longleftrightarrow \mathbb{F}^{n}=n \times 1$ column vectors when basis $\left\{\mathbf{v}_{i}\right\}$ fixed
$\mathrm{GL}(V)=$ group of invertible linear transformations $g: V \rightarrow V$ $\longleftrightarrow \mathrm{GL}(n, \mathbb{F})(n \times n$ matrices with det $\neq 0)$

Vector Spaces and Duality

$\mathbb{F}=$ field: $\mathbb{R}, \mathbb{C}, \ldots$
$V=$ finite-dimensional vector space over $\mathbb{F}(\operatorname{dim} V=n)$
$V \longleftrightarrow \mathbb{F}^{n}=n \times 1$ column vectors when basis $\left\{\mathbf{v}_{i}\right\}$ fixed
$\mathrm{GL}(V)=$ group of invertible linear transformations $g: V \rightarrow V$ $\longleftrightarrow \mathrm{GL}(n, \mathbb{F})(n \times n$ matrices with det $\neq 0)$
$V^{*}=$ dual space of linear functions $\mathbf{v}^{*}: V \rightarrow \mathbb{F}$ covectors
Duality pairing $V^{*} \times V \rightarrow \mathbb{F}$ (bilinear): $\left\langle\mathbf{v}^{*}, \mathbf{u}\right\rangle \stackrel{\text { def }}{=} \mathbf{v}^{*}(\mathbf{u})$ $V^{*} \longleftrightarrow 1 \times n$ row vectors using dual basis: $\left\langle\mathbf{v}_{j}^{*}, \mathbf{v}_{i}\right\rangle=\delta_{i j}$
When basis/dual basis fixed, then $\left\langle\mathbf{v}^{*}, \mathbf{u}\right\rangle=\mathbf{v}^{*} \mathbf{u}$.
(row vector \times column vector $=$ scalar)

Vector Spaces and Duality

$\mathbb{F}=$ field: $\mathbb{R}, \mathbb{C}, \ldots$
$V=$ finite-dimensional vector space over $\mathbb{F}(\operatorname{dim} V=n)$
$V \longleftrightarrow \mathbb{F}^{n}=n \times 1$ column vectors when basis $\left\{\mathbf{v}_{i}\right\}$ fixed
$\mathrm{GL}(V)=$ group of invertible linear transformations $g: V \rightarrow V$
$\longleftrightarrow \mathrm{GL}(n, \mathbb{F})(n \times n$ matrices with det $\neq 0)$
$V^{*}=$ dual space of linear functions $\mathbf{v}^{*}: V \rightarrow \mathbb{F}$ covectors
Duality pairing $V^{*} \times V \rightarrow \mathbb{F}$ (bilinear): $\left\langle\mathbf{v}^{*}, \mathbf{u}\right\rangle \stackrel{\text { def }}{=} \mathbf{v}^{*}(\mathbf{u})$ $V^{*} \longleftrightarrow 1 \times n$ row vectors using dual basis: $\left\langle\mathbf{v}_{j}^{*}, \mathbf{v}_{i}\right\rangle=\delta_{i j}$
When basis/dual basis fixed, then $\left\langle\mathbf{v}^{*}, \mathbf{u}\right\rangle=\mathbf{v}^{*} \mathbf{u}$.
(row vector \times column vector $=$ scalar)
If $g \in \mathrm{GL}(V)$, then transpose ${ }^{t} g \in \mathrm{GL}\left(V^{*}\right):\left\langle{ }^{t} g \mathbf{v}^{*}, \mathbf{u}\right\rangle \stackrel{\text { def }}{=}\left\langle\mathbf{v}^{*}, g \mathbf{u}\right\rangle$.
Calculate as $\mathbf{v}^{*} g$ (matrix product) when $\mathbf{v}^{*}=$ row vector.
Same as: Use (transposed matrix) \times (column vector)

Change of Basis vs. Moving a Vector

- Express \mathbf{u} in terms of basis $\left\{\mathbf{v}_{i}\right\}$ or basis $\left\{g \mathbf{v}_{i}\right\}(g \in G L(V))$.

Change of Basis vs. Moving a Vector

- Express \mathbf{u} in terms of basis $\left\{\mathbf{v}_{i}\right\}$ or basis $\left\{g \mathbf{v}_{i}\right\}(g \in G L(V))$.
- Change vector \mathbf{u} to $g \mathbf{u}$ (orbit of \mathbf{u} under action of $\mathrm{GL}(V)$).

Change of Basis vs. Moving a Vector

- Express \mathbf{u} in terms of basis $\left\{\mathbf{v}_{i}\right\}$ or basis $\left\{g \mathbf{v}_{i}\right\}(g \in G L(V))$.
- Change vector \mathbf{u} to $g \mathbf{u}$ (orbit of \mathbf{u} under action of $G L(V)$). Expansion Formulas: $\quad \mathbf{u}=\sum_{i}\left\langle\mathbf{v}_{i}^{*}, \mathbf{u}\right\rangle \mathbf{v}_{i}, \quad \mathbf{v}^{*}=\sum_{i}\left\langle\mathbf{v}^{*}, \mathbf{v}_{i}\right\rangle \mathbf{v}_{i}^{*}$ for $\mathbf{u} \in V$ and $\mathbf{v}^{*} \in V^{*}$

Change of Basis vs. Moving a Vector

- Express \mathbf{u} in terms of basis $\left\{\mathbf{v}_{i}\right\}$ or basis $\left\{g \mathbf{v}_{i}\right\}(g \in G L(V))$.
- Change vector \mathbf{u} to $g \mathbf{u}$ (orbit of \mathbf{u} under action of $G L(V)$). Expansion Formulas: $\quad \mathbf{u}=\sum_{i}\left\langle\mathbf{v}_{i}^{*}, \mathbf{u}\right\rangle \mathbf{v}_{i}, \quad \mathbf{v}^{*}=\sum_{i}\left\langle\mathbf{v}^{*}, \mathbf{v}_{i}\right\rangle \mathbf{v}_{i}^{*}$ for $\mathbf{u} \in V$ and $\mathbf{v}^{*} \in V^{*}$
Components of \mathbf{u} relative to basis $\left\{\mathbf{v}_{i}\right\}$ are $x_{i} \stackrel{\text { def }}{=}\left\langle\mathbf{v}_{i}^{*}, \mathbf{u}\right\rangle$. Components of \mathbf{v}^{*} relative to basis $\left\{\mathbf{v}_{i}^{*}\right\}$ are $y^{i} \stackrel{\text { def }}{=}\left\langle\mathbf{v}^{*}, \mathbf{v}_{i}\right\rangle$.

Change of Basis vs. Moving a Vector

- Express \mathbf{u} in terms of basis $\left\{\mathbf{v}_{i}\right\}$ or basis $\left\{g \mathbf{v}_{i}\right\}(g \in G L(V))$.
- Change vector \mathbf{u} to $g \mathbf{u}$ (orbit of \mathbf{u} under action of $G L(V)$). Expansion Formulas: $\quad \mathbf{u}=\sum_{i}\left\langle\mathbf{v}_{i}^{*}, \mathbf{u}\right\rangle \mathbf{v}_{i}, \quad \mathbf{v}^{*}=\sum_{i}\left\langle\mathbf{v}^{*}, \mathbf{v}_{i}\right\rangle \mathbf{v}_{i}^{*}$ for $\mathbf{u} \in V$ and $\mathbf{v}^{*} \in V^{*}$
Components of \mathbf{u} relative to basis $\left\{\mathbf{v}_{i}\right\}$ are $x_{i} \stackrel{\text { def }}{=}\left\langle\mathbf{v}_{i}^{*}, \mathbf{u}\right\rangle$. Components of \mathbf{v}^{*} relative to basis $\left\{\mathbf{v}_{i}^{*}\right\}$ are $y^{i} \stackrel{\text { def }}{=}\left\langle\mathbf{v}^{*}, \mathbf{v}_{i}\right\rangle$. Key Property: $\quad\left\langle{ }^{t} g^{-1} \mathbf{v}^{*}, g \mathbf{u}\right\rangle=\left\langle\mathbf{v}^{*}, g^{-1} g \mathbf{u}\right\rangle=\left\langle\mathbf{v}^{*}, \mathbf{u}\right\rangle$ Hence $f\left(\mathbf{v}^{*}, \mathbf{u}\right) \stackrel{\text { def }}{=}\left\langle\mathbf{v}^{*}, \mathbf{u}\right\rangle$ is a $G L(V)$-invariant function on $V^{*} \times V$.

Change of Basis vs. Moving a Vector

- Express \mathbf{u} in terms of basis $\left\{\mathbf{v}_{i}\right\}$ or basis $\left\{g \mathbf{v}_{i}\right\}(g \in G L(V))$.
- Change vector \mathbf{u} to $g \mathbf{u}$ (orbit of \mathbf{u} under action of $G L(V)$).

Expansion Formulas: $\quad \mathbf{u}=\sum_{i}\left\langle\mathbf{v}_{i}^{*}, \mathbf{u}\right\rangle \mathbf{v}_{i}, \quad \mathbf{v}^{*}=\sum_{i}\left\langle\mathbf{v}^{*}, \mathbf{v}_{i}\right\rangle \mathbf{v}_{i}^{*}$ for $\mathbf{u} \in V$ and $\mathbf{v}^{*} \in V^{*}$
Components of \mathbf{u} relative to basis $\left\{\mathbf{v}_{i}\right\}$ are $x_{i} \stackrel{\text { def }}{=}\left\langle\mathbf{v}_{i}^{*}, \mathbf{u}\right\rangle$.
Components of \mathbf{v}^{*} relative to basis $\left\{\mathbf{v}_{i}^{*}\right\}$ are $y^{i} \stackrel{\text { def }}{=}\left\langle\mathbf{v}^{*}, \mathbf{v}_{i}\right\rangle$.
Key Property: $\quad\left\langle{ }^{t} g^{-1} \mathbf{v}^{*}, g \mathbf{u}\right\rangle=\left\langle\mathbf{v}^{*}, g^{-1} g \mathbf{u}\right\rangle=\left\langle\mathbf{v}^{*}, \mathbf{u}\right\rangle$
Hence $f\left(\mathbf{v}^{*}, \mathbf{u}\right) \stackrel{\text { def }}{=}\left\langle\mathbf{v}^{*}, \mathbf{u}\right\rangle$ is a $G L(V)$-invariant function on $V^{*} \times V$.
Consequences:

- $\left\{{ }^{t} g^{-1} \mathbf{v}_{i}^{*}\right\}$ is the dual basis to $\left\{g \mathbf{v}_{i}\right\}$

Change of Basis vs. Moving a Vector

- Express \mathbf{u} in terms of basis $\left\{\mathbf{v}_{i}\right\}$ or basis $\left\{g \mathbf{v}_{i}\right\}(g \in G L(V))$.
- Change vector \mathbf{u} to $g \mathbf{u}$ (orbit of \mathbf{u} under action of $G L(V)$).

Expansion Formulas: $\quad \mathbf{u}=\sum_{i}\left\langle\mathbf{v}_{i}^{*}, \mathbf{u}\right\rangle \mathbf{v}_{i}, \quad \mathbf{v}^{*}=\sum_{i}\left\langle\mathbf{v}^{*}, \mathbf{v}_{i}\right\rangle \mathbf{v}_{i}^{*}$ for $\mathbf{u} \in V$ and $\mathbf{v}^{*} \in V^{*}$
Components of \mathbf{u} relative to basis $\left\{\mathbf{v}_{i}\right\}$ are $x_{i} \stackrel{\text { def }}{=}\left\langle\mathbf{v}_{i}^{*}, \mathbf{u}\right\rangle$.
Components of \mathbf{v}^{*} relative to basis $\left\{\mathbf{v}_{i}^{*}\right\}$ are $y^{i} \stackrel{\text { def }}{=}\left\langle\mathbf{v}^{*}, \mathbf{v}_{i}\right\rangle$.
Key Property: $\quad\left\langle{ }^{t} g^{-1} \mathbf{v}^{*}, g \mathbf{u}\right\rangle=\left\langle\mathbf{v}^{*}, g^{-1} g \mathbf{u}\right\rangle=\left\langle\mathbf{v}^{*}, \mathbf{u}\right\rangle$
Hence $f\left(\mathbf{v}^{*}, \mathbf{u}\right) \stackrel{\text { def }}{=}\left\langle\mathbf{v}^{*}, \mathbf{u}\right\rangle$ is a $G L(V)$-invariant function on $V^{*} \times V$.
Consequences:

- $\left\{{ }^{t} g^{-1} \mathbf{v}_{i}^{*}\right\}$ is the dual basis to $\left\{g \mathbf{v}_{i}\right\}$
- Components of $g \mathbf{u}$ relative to basis $\left\{g \mathbf{v}_{i}\right\}$ are the same $\left\{x_{i}\right\}$.
- Components of ${ }^{t} g^{-1} \mathbf{v}^{*}$ relative to basis $\left\{{ }^{t} g^{-1} \mathbf{v}_{i}^{*}\right\}$ are the same $\left\{y^{i}\right\}$.
- $\left\langle\mathbf{v}^{*}, \mathbf{u}\right\rangle=\sum_{i} y_{i} x^{i} \quad$ (contraction of covector and vector)

Tensor Products

Question: How do we multiply vector spaces?

Tensor Products

Question: How do we multiply vector spaces?
Let U, V be finite-dimensional vector spaces. Fix bases $\left\{\mathbf{u}_{i}\right\},\left\{\mathbf{v}_{j}\right\}$. Define tensor product $U \otimes V=$ vector space with basis $\left\{\mathbf{u}_{i} \otimes \mathbf{v}_{j}\right\}$

- $\mathbf{x}=\sum_{i j} x_{i j} \mathbf{u}_{i} \otimes \mathbf{v}_{j} \in U \otimes V$ has components $\left\{x_{i j}\right\}$ relative to basis $\left\{\mathbf{u}_{i} \otimes \mathbf{v}_{j}\right\}$.
- $\operatorname{dim} U \otimes V=\operatorname{dim} U \operatorname{dim} V$.
- Use dual bases to get bilinear map $\tau: U \times V \rightarrow U \otimes V$ $\tau(\mathbf{u}, \mathbf{v})=\sum_{i, j} x_{i} y_{j} \mathbf{u}_{i} \otimes \mathbf{v}_{j} \stackrel{\text { def }}{=} \mathbf{u} \otimes \mathbf{v} \quad$ Kronecker product Here $\left\{x_{i}\right\}=$ components of $\mathbf{u}, \quad\left\{y_{j}\right\}=$ components of \mathbf{v}

Tensor Products

Question: How do we multiply vector spaces?
Let U, V be finite-dimensional vector spaces. Fix bases $\left\{\mathbf{u}_{i}\right\},\left\{\mathbf{v}_{j}\right\}$. Define tensor product $U \otimes V=$ vector space with basis $\left\{\mathbf{u}_{i} \otimes \mathbf{v}_{j}\right\}$

- $\mathbf{x}=\sum_{i j} x_{i j} \mathbf{u}_{i} \otimes \mathbf{v}_{j} \in U \otimes V$ has components $\left\{x_{i j}\right\}$ relative to basis $\left\{\mathbf{u}_{i} \otimes \mathbf{v}_{j}\right\}$.
- $\operatorname{dim} U \otimes V=\operatorname{dim} U \operatorname{dim} V$.
- Use dual bases to get bilinear map $\tau: U \times V \rightarrow U \otimes V$ $\tau(\mathbf{u}, \mathbf{v})=\sum_{i, j} x_{i} y_{j} \mathbf{u}_{i} \otimes \mathbf{v}_{j} \stackrel{\text { def }}{=} \mathbf{u} \otimes \mathbf{v} \quad$ Kronecker product Here $\left\{x_{i}\right\}=$ components of $\mathbf{u}, \quad\left\{y_{j}\right\}=$ components of \mathbf{v}

Universal Linearization Property: Let W be any vector space, and $\beta: U \times V \rightarrow W$ a bilinear map (linear in each variable) Set $B\left(\sum_{i, j} x_{i j} \mathbf{u}_{i} \otimes \mathbf{v}_{j}\right)=\sum_{i j} x_{i j} \beta\left(\mathbf{u}_{i}, \mathbf{v}_{j}\right)$

Tensor Products

Question: How do we multiply vector spaces?
Let U, V be finite-dimensional vector spaces. Fix bases $\left\{\mathbf{u}_{i}\right\},\left\{\mathbf{v}_{j}\right\}$. Define tensor product $U \otimes V=$ vector space with basis $\left\{\mathbf{u}_{i} \otimes \mathbf{v}_{j}\right\}$

- $\mathbf{x}=\sum_{i j} x_{i j} \mathbf{u}_{i} \otimes \mathbf{v}_{j} \in U \otimes V$ has components $\left\{x_{i j}\right\}$ relative to basis $\left\{\mathbf{u}_{i} \otimes \mathbf{v}_{j}\right\}$.
- $\operatorname{dim} U \otimes V=\operatorname{dim} U \operatorname{dim} V$.
- Use dual bases to get bilinear map $\tau: U \times V \rightarrow U \otimes V$ $\tau(\mathbf{u}, \mathbf{v})=\sum_{i, j} x_{i} y_{j} \mathbf{u}_{i} \otimes \mathbf{v}_{j} \stackrel{\text { def }}{=} \mathbf{u} \otimes \mathbf{v} \quad$ Kronecker product Here $\left\{x_{i}\right\}=$ components of $\mathbf{u}, \quad\left\{y_{j}\right\}=$ components of \mathbf{v}

Universal Linearization Property: Let W be any vector space, and $\beta: U \times V \rightarrow W$ a bilinear map (linear in each variable) Set $B\left(\sum_{i, j} x_{i j} \mathbf{u}_{i} \otimes \mathbf{v}_{j}\right)=\sum_{i j} x_{i j} \beta\left(\mathbf{u}_{i}, \mathbf{v}_{j}\right)$

- $B: U \otimes V \rightarrow W$ is linear
- $B(u \otimes v)=\beta(u, v)$

Functoriality of Tensor Products

Let $\operatorname{Hom}(U, V)=$ all linear maps $T: U \rightarrow V$

Functoriality of Tensor Products

Let $\operatorname{Hom}(U, V)=$ all linear maps $T: U \rightarrow V$
Theorem
If X, Y are vector spaces and $S \in \operatorname{Hom}(U, X), T \in \operatorname{Hom}(V, Y)$, then there exists a unique $S \otimes T \in \operatorname{Hom}(U \otimes V, X \otimes Y)$ such that
$(S \otimes T)(\mathbf{u} \otimes \mathbf{v})=(S \mathbf{u}) \otimes(T \mathbf{v}) \quad$ for $\mathbf{u} \in U, \mathbf{v} \in V$.

Functoriality of Tensor Products

Let $\operatorname{Hom}(U, V)=$ all linear maps $T: U \rightarrow V$
Theorem
If X, Y are vector spaces and $S \in \operatorname{Hom}(U, X), T \in \operatorname{Hom}(V, Y)$, then there exists a unique $S \otimes T \in \operatorname{Hom}(U \otimes V, X \otimes Y)$ such that $(S \otimes T)(\mathbf{u} \otimes \mathbf{v})=(S \mathbf{u}) \otimes(T \mathbf{v}) \quad$ for $\mathbf{u} \in U, \mathbf{v} \in V$.
This sets up a linear isomorphism
(*) $\operatorname{Hom}(U, X) \otimes \operatorname{Hom}(V, Y) \cong \operatorname{Hom}(U \otimes V, X \otimes Y)$
(Each side has dimension $=\operatorname{dim} U \operatorname{dim} X \operatorname{dim} V \operatorname{dim} Y$.)

Functoriality of Tensor Products

Let $\operatorname{Hom}(U, V)=$ all linear maps $T: U \rightarrow V$

Theorem

If X, Y are vector spaces and $S \in \operatorname{Hom}(U, X), T \in \operatorname{Hom}(V, Y)$, then there exists a unique $S \otimes T \in \operatorname{Hom}(U \otimes V, X \otimes Y)$ such that
$(S \otimes T)(\mathbf{u} \otimes \mathbf{v})=(S \mathbf{u}) \otimes(T \mathbf{v}) \quad$ for $\mathbf{u} \in U, \mathbf{v} \in V$.
This sets up a linear isomorphism
(*) $\operatorname{Hom}(U, X) \otimes \operatorname{Hom}(V, Y) \cong \operatorname{Hom}(U \otimes V, X \otimes Y)$
(Each side has dimension $=\operatorname{dim} U \operatorname{dim} X \operatorname{dim} V \operatorname{dim} Y$.)
Special Cases of $(*)$

- $X=Y=\mathbb{F} \cong \mathbb{F} \otimes \mathbb{F}$, so $U^{*} \otimes V^{*} \cong(U \otimes V)^{*}$

Basis $\left\{\mathbf{u}_{i}^{*} \otimes \mathbf{v}_{j}^{*}\right\}$ for $U^{*} \otimes V^{*}$ dual to basis $\left\{\mathbf{u}_{i} \otimes \mathbf{v}_{j}\right\}$ for $U \otimes V$ Components of $\mathbf{x} \in U \otimes V$ are $x_{i j}=\left\langle\mathbf{u}_{i}^{*} \otimes \mathbf{v}_{j}^{*}, \mathbf{x}\right\rangle$

Functoriality of Tensor Products

Let $\operatorname{Hom}(U, V)=$ all linear maps $T: U \rightarrow V$

Theorem

If X, Y are vector spaces and $S \in \operatorname{Hom}(U, X), T \in \operatorname{Hom}(V, Y)$, then there exists a unique $S \otimes T \in \operatorname{Hom}(U \otimes V, X \otimes Y)$ such that
$(S \otimes T)(\mathbf{u} \otimes \mathbf{v})=(S \mathbf{u}) \otimes(T \mathbf{v}) \quad$ for $\mathbf{u} \in U, \mathbf{v} \in V$.
This sets up a linear isomorphism
(*) $\operatorname{Hom}(U, X) \otimes \operatorname{Hom}(V, Y) \cong \operatorname{Hom}(U \otimes V, X \otimes Y)$
(Each side has dimension $=\operatorname{dim} U \operatorname{dim} X \operatorname{dim} V \operatorname{dim} Y$.)
Special Cases of (\star)

- $X=Y=\mathbb{F} \cong \mathbb{F} \otimes \mathbb{F}$, so $U^{*} \otimes V^{*} \cong(U \otimes V)^{*}$

Basis $\left\{\mathbf{u}_{i}^{*} \otimes \mathbf{v}_{j}^{*}\right\}$ for $U^{*} \otimes V^{*}$ dual to basis $\left\{\mathbf{u}_{i} \otimes \mathbf{v}_{j}\right\}$ for $U \otimes V$ Components of $\mathbf{x} \in U \otimes V$ are $x_{i j}=\left\langle\mathbf{u}_{i}^{*} \otimes \mathbf{v}_{j}^{*}, \mathbf{x}\right\rangle$

- $U \otimes V^{*} \cong \operatorname{Hom}(V, U)$:
$\mathbf{u} \otimes \mathbf{v}^{*}$ gives transformation $T_{\mathbf{u}, \mathbf{v}^{*}}: \mathbf{x} \mapsto\left\langle\mathbf{v}^{*}, \mathbf{x}\right\rangle \mathbf{u}$
$U=\mathbb{F}^{m}, V=\mathbb{F}^{n}: \operatorname{Hom}(V, U)=m \times n$ matrices
$T_{\mathbf{u}, \mathbf{v}^{*}}=\mathbf{u v}^{*}$ (column \times row) rank one matrix

Iterated Tensor Products: Linearizing Multilinear Maps

Associativity of Tensor Product: U, V, W vector spaces
Define bilinear map $\tau:(U \otimes V) \times W \rightarrow U \otimes(V \otimes W)$ by

$$
\tau(\mathbf{u} \otimes \mathbf{v}, \mathbf{w})=\mathbf{u} \otimes(\mathbf{v} \otimes \mathbf{w})
$$

Iterated Tensor Products: Linearizing Multilinear Maps

Associativity of Tensor Product: U, V, W vector spaces
Define bilinear map $\tau:(U \otimes V) \times W \rightarrow U \otimes(V \otimes W)$ by

$$
\tau(\mathbf{u} \otimes \mathbf{v}, \mathbf{w})=\mathbf{u} \otimes(\mathbf{v} \otimes \mathbf{w}) .
$$

Construction of tensor product gives isomorphism

$$
T:(U \otimes V) \otimes W \xrightarrow{\cong} U \otimes(V \otimes W)
$$

Iterated Tensor Products: Linearizing Multilinear Maps

Associativity of Tensor Product: U, V, W vector spaces Define bilinear map $\tau:(U \otimes V) \times W \rightarrow U \otimes(V \otimes W)$ by

$$
\tau(\mathbf{u} \otimes \mathbf{v}, \mathbf{w})=\mathbf{u} \otimes(\mathbf{v} \otimes \mathbf{w})
$$

Construction of tensor product gives isomorphism

$$
T:(U \otimes V) \otimes W \xrightarrow{\cong} U \otimes(V \otimes W)
$$

On basis: $T\left(\mathbf{u}_{i} \otimes \mathbf{v}_{j}\right) \otimes \mathbf{w}_{k}=\mathbf{u}_{i} \otimes\left(\mathbf{v}_{j} \otimes \mathbf{w}_{k}\right)$
Write $(U \otimes V) \otimes W=U \otimes(V \otimes W)=U \otimes V \otimes W$ (note order)

Iterated Tensor Products: Linearizing Multilinear Maps

Associativity of Tensor Product: U, V, W vector spaces Define bilinear map $\tau:(U \otimes V) \times W \rightarrow U \otimes(V \otimes W)$ by

$$
\tau(\mathbf{u} \otimes \mathbf{v}, \mathbf{w})=\mathbf{u} \otimes(\mathbf{v} \otimes \mathbf{w})
$$

Construction of tensor product gives isomorphism

$$
T:(U \otimes V) \otimes W \xrightarrow{\cong} U \otimes(V \otimes W)
$$

On basis: $T\left(\mathbf{u}_{i} \otimes \mathbf{v}_{j}\right) \otimes \mathbf{w}_{k}=\mathbf{u}_{i} \otimes\left(\mathbf{v}_{j} \otimes \mathbf{w}_{k}\right)$
Write $(U \otimes V) \otimes W=U \otimes(V \otimes W)=U \otimes V \otimes W$ (note order)
$\mathbf{x}=\sum_{i, j, k} x_{i j k} \mathbf{u}_{i} \otimes \mathbf{v}_{j} \otimes \mathbf{w}_{k} \quad$ components $\quad x_{i j k}=\left\langle\mathbf{u}_{i}^{*} \otimes \mathbf{v}_{j}^{*} \otimes \mathbf{w}_{k}^{*}, \mathbf{x}\right\rangle$

Iterated Tensor Products: Linearizing Multilinear Maps

Associativity of Tensor Product: U, V, W vector spaces Define bilinear map $\tau:(U \otimes V) \times W \rightarrow U \otimes(V \otimes W)$ by

$$
\tau(\mathbf{u} \otimes \mathbf{v}, \mathbf{w})=\mathbf{u} \otimes(\mathbf{v} \otimes \mathbf{w})
$$

Construction of tensor product gives isomorphism

$$
T:(U \otimes V) \otimes W \xrightarrow{\cong} U \otimes(V \otimes W)
$$

On basis: $T\left(\mathbf{u}_{i} \otimes \mathbf{v}_{j}\right) \otimes \mathbf{w}_{k}=\mathbf{u}_{i} \otimes\left(\mathbf{v}_{j} \otimes \mathbf{w}_{k}\right)$
Write $(U \otimes V) \otimes W=U \otimes(V \otimes W)=U \otimes V \otimes W$ (note order)
$\mathbf{x}=\sum_{i, j, k} x_{i j k} \mathbf{u}_{i} \otimes \mathbf{v}_{j} \otimes \mathbf{w}_{k} \quad$ components $\quad x_{i j k}=\left\langle\mathbf{u}_{i}^{*} \otimes \mathbf{v}_{j}^{*} \otimes \mathbf{w}_{k}^{*}, \mathbf{x}\right\rangle$ Linearization Property: If $f: U \times V \times W \rightarrow Z$ is a trilinear map, then there exists unique linear map $F: U \otimes V \otimes W \rightarrow Z$ with

$$
f(\mathbf{u}, \mathbf{v}, \mathbf{w})=F(\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w})
$$

Iterated Tensor Products: Linearizing Multilinear Maps

Associativity of Tensor Product: U, V, W vector spaces Define bilinear map $\tau:(U \otimes V) \times W \rightarrow U \otimes(V \otimes W)$ by

$$
\tau(\mathbf{u} \otimes \mathbf{v}, \mathbf{w})=\mathbf{u} \otimes(\mathbf{v} \otimes \mathbf{w})
$$

Construction of tensor product gives isomorphism

$$
T:(U \otimes V) \otimes W \xrightarrow{\cong} U \otimes(V \otimes W)
$$

On basis: $T\left(\mathbf{u}_{i} \otimes \mathbf{v}_{j}\right) \otimes \mathbf{w}_{k}=\mathbf{u}_{i} \otimes\left(\mathbf{v}_{j} \otimes \mathbf{w}_{k}\right)$
Write $(U \otimes V) \otimes W=U \otimes(V \otimes W)=U \otimes V \otimes W$ (note order)
$\mathbf{x}=\sum_{i, j, k} x_{i j k} \mathbf{u}_{i} \otimes \mathbf{v}_{j} \otimes \mathbf{w}_{k} \quad$ components $\quad x_{i j k}=\left\langle\mathbf{u}_{i}^{*} \otimes \mathbf{v}_{j}^{*} \otimes \mathbf{w}_{k}^{*}, \mathbf{x}\right\rangle$ Linearization Property: If $f: U \times V \times W \rightarrow Z$ is a trilinear map, then there exists unique linear map $F: U \otimes V \otimes W \rightarrow Z$ with

$$
f(\mathbf{u}, \mathbf{v}, \mathbf{w})=F(\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w})
$$

General Case: For vector spaces V_{1}, \ldots, V_{p}, Z the tensor product $V_{1} \otimes \cdots \otimes V_{p}$ has basis $\left\{\mathbf{v}_{i_{1}} \otimes \cdots \otimes \mathbf{v}_{i_{p}}\right\}$ and linearizes p-multilinear maps $f: V_{1} \times \cdots \times V_{p} \rightarrow Z$.

Notation: $V^{\otimes p}=V \otimes \cdots \otimes V$ (p factors)

$$
V^{\otimes(p, q)}=V^{\otimes p} \otimes\left(V^{*}\right)^{\otimes q} \quad \text { mixed tensors of type }(p, q)
$$

Notation: $V^{\otimes p}=V \otimes \cdots \otimes V$ (p factors)

$$
V^{\otimes(p, q)}=V^{\otimes p} \otimes\left(V^{*}\right)^{\otimes \boldsymbol{q}} \quad \text { mixed tensors of type }(p, q)
$$

Basis for $V^{\otimes(p, q)}$ from basis/dual basis for V and V^{*} :

$$
\left\{\mathbf{v}_{i_{1}} \otimes \cdots \otimes \mathbf{v}_{i_{p}} \otimes \mathbf{v}_{k_{1}}^{*} \otimes \cdots \otimes \mathbf{v}_{k_{q}}^{*}\right\} \quad\left(i_{j}, k_{j}=1, \ldots, n=\operatorname{dim} V\right)
$$

Mixed Tensors

Notation: $V^{\otimes p}=V \otimes \cdots \otimes V$ (p factors)

$$
V^{\otimes(p, q)}=V^{\otimes p} \otimes\left(V^{*}\right)^{\otimes \boldsymbol{q}} \quad \text { mixed tensors of type }(p, q)
$$

Basis for $V^{\otimes(p, q)}$ from basis/dual basis for V and V^{*} :

$$
\left\{\mathbf{v}_{i_{1}} \otimes \cdots \otimes \mathbf{v}_{i_{p}} \otimes \mathbf{v}_{k_{1}}^{*} \otimes \cdots \otimes \mathbf{v}_{k_{q}}^{*}\right\} \quad\left(i_{j}, k_{j}=1, \ldots, n=\operatorname{dim} V\right)
$$

Classic Tensor Notation: Components of $\mathbf{x} \in V^{\otimes(p, q)}$ are written

$$
\mathbf{x}_{i_{1} \cdots i_{p}}^{k_{1} \cdots k_{q}} \stackrel{\text { def }}{=}\left\langle\mathbf{v}_{i_{1}}^{*} \otimes \cdots \otimes \mathbf{v}_{i_{p}}^{*} \otimes \mathbf{v}_{k_{1}} \otimes \cdots \otimes \mathbf{v}_{k_{q}}, \mathbf{x}\right\rangle
$$

Identify $\left(V^{*}\right)^{*}=V$ as usual; $\left\{\mathbf{v}_{i}\right\}$ is dual basis to $\left\{\mathbf{v}_{i}^{*}\right\}$.

Mixed Tensors

Notation: $V^{\otimes p}=V \otimes \cdots \otimes V$ (p factors)

$$
V^{\otimes(p, q)}=V^{\otimes p} \otimes\left(V^{*}\right)^{\otimes \boldsymbol{q}} \quad \text { mixed tensors of type }(p, q)
$$

Basis for $V^{\otimes(p, q)}$ from basis/dual basis for V and V^{*} :

$$
\left\{\mathbf{v}_{i_{1}} \otimes \cdots \otimes \mathbf{v}_{i_{p}} \otimes \mathbf{v}_{k_{1}}^{*} \otimes \cdots \otimes \mathbf{v}_{k_{q}}^{*}\right\} \quad\left(i_{j}, k_{j}=1, \ldots, n=\operatorname{dim} V\right)
$$

Classic Tensor Notation: Components of $\mathbf{x} \in V^{\otimes(p, q)}$ are written

$$
\mathbf{x}_{i_{1} \cdots i_{p}}^{k_{1} \cdots k_{q}} \stackrel{\text { def }}{=}\left\langle\mathbf{v}_{i_{1}}^{*} \otimes \cdots \otimes \mathbf{v}_{i_{p}}^{*} \otimes \mathbf{v}_{k_{1}} \otimes \cdots \otimes \mathbf{v}_{k_{q}}, \mathbf{x}\right\rangle
$$

Identify $\left(V^{*}\right)^{*}=V$ as usual; $\left\{\mathbf{v}_{i}\right\}$ is dual basis to $\left\{\mathbf{v}_{i}^{*}\right\}$.
Call i_{1}, \ldots, i_{p} the covariant indices of \mathbf{x} and k_{1}, \ldots, k_{q} the contravariant indices of \mathbf{x}.

Mixed Tensors

Notation: $V^{\otimes p}=V \otimes \cdots \otimes V$ (p factors)

$$
V^{\otimes(p, q)}=V^{\otimes p} \otimes\left(V^{*}\right)^{\otimes \boldsymbol{q}} \quad \text { mixed tensors of type }(p, q)
$$

Basis for $V^{\otimes(p, q)}$ from basis/dual basis for V and V^{*} :

$$
\left\{\mathbf{v}_{i_{1}} \otimes \cdots \otimes \mathbf{v}_{i_{p}} \otimes \mathbf{v}_{k_{1}}^{*} \otimes \cdots \otimes \mathbf{v}_{k_{q}}^{*}\right\} \quad\left(i_{j}, k_{j}=1, \ldots, n=\operatorname{dim} V\right)
$$

Classic Tensor Notation: Components of $\mathbf{x} \in V^{\otimes(p, q)}$ are written

$$
\mathbf{x}_{i_{1} \cdots i_{p}}^{k_{1} \cdots k_{q}} \stackrel{\text { def }}{=}\left\langle\mathbf{v}_{i_{1}}^{*} \otimes \cdots \otimes \mathbf{v}_{i_{p}}^{*} \otimes \mathbf{v}_{k_{1}} \otimes \cdots \otimes \mathbf{v}_{k_{q}}, \mathbf{x}\right\rangle
$$

Identify $\left(V^{*}\right)^{*}=V$ as usual; $\left\{\mathbf{v}_{i}\right\}$ is dual basis to $\left\{\mathbf{v}_{i}^{*}\right\}$.
Call i_{1}, \ldots, i_{p} the covariant indices of \mathbf{x} and k_{1}, \ldots, k_{q} the contravariant indices of \mathbf{x}.
Representation of $\mathrm{GL}(V)$:

Mixed Tensors

Notation: $V^{\otimes p}=V \otimes \cdots \otimes V$ (p factors)

$$
V^{\otimes(p, q)}=V^{\otimes p} \otimes\left(V^{*}\right)^{\otimes q} \quad \text { mixed tensors of type }(p, q)
$$

Basis for $V^{\otimes(p, q)}$ from basis/dual basis for V and V^{*} :

$$
\left\{\mathbf{v}_{i_{1}} \otimes \cdots \otimes \mathbf{v}_{i_{p}} \otimes \mathbf{v}_{k_{1}}^{*} \otimes \cdots \otimes \mathbf{v}_{k_{q}}^{*}\right\} \quad\left(i_{j}, k_{j}=1, \ldots, n=\operatorname{dim} V\right)
$$

Classic Tensor Notation: Components of $\mathbf{x} \in V^{\otimes(p, q)}$ are written

$$
\mathbf{x}_{i_{1} \cdots i_{p}}^{k_{1} \cdots k_{q}} \stackrel{\text { def }}{=}\left\langle\mathbf{v}_{i_{1}}^{*} \otimes \cdots \otimes \mathbf{v}_{i_{p}}^{*} \otimes \mathbf{v}_{k_{1}} \otimes \cdots \otimes \mathbf{v}_{k_{q}}, \mathbf{x}\right\rangle
$$

Identify $\left(V^{*}\right)^{*}=V$ as usual; $\left\{\mathbf{v}_{i}\right\}$ is dual basis to $\left\{\mathbf{v}_{i}^{*}\right\}$.
Call i_{1}, \ldots, i_{p} the covariant indices of \mathbf{x} and k_{1}, \ldots, k_{q} the contravariant indices of \mathbf{x}.

Representation of $\mathrm{GL}(V)$:
Define a group homomorphism $\rho: \mathrm{GL}(V) \rightarrow \mathrm{GL}\left(V^{\otimes(p, q)}\right)$ by

$$
\begin{aligned}
& \rho(g)\left(\mathbf{x}_{1} \otimes \cdots \otimes \mathbf{x}_{p} \otimes \mathbf{y}_{1}^{*} \otimes \cdots \otimes \mathbf{y}_{q}^{*}\right)= \\
& \quad g \mathbf{x}_{1} \otimes \cdots \otimes g \mathbf{x}_{p} \otimes^{t} g^{-1} \mathbf{y}_{1}^{*} \otimes \cdots \otimes^{t} g^{-1} \mathbf{y}_{q}^{*}
\end{aligned}
$$

(for any $\mathbf{x}_{i} \in V$ and $\mathbf{y}_{j}^{*} \in V^{*}$).

Mixed Tensors

Notation: $V^{\otimes p}=V \otimes \cdots \otimes V$ (p factors)

$$
V^{\otimes(p, q)}=V^{\otimes p} \otimes\left(V^{*}\right)^{\otimes q} \quad \text { mixed tensors of type }(p, q)
$$

Basis for $V^{\otimes(p, q)}$ from basis/dual basis for V and V^{*} :

$$
\left\{\mathbf{v}_{i_{1}} \otimes \cdots \otimes \mathbf{v}_{i_{p}} \otimes \mathbf{v}_{k_{1}}^{*} \otimes \cdots \otimes \mathbf{v}_{k_{q}}^{*}\right\} \quad\left(i_{j}, k_{j}=1, \ldots, n=\operatorname{dim} V\right)
$$

Classic Tensor Notation: Components of $\mathbf{x} \in V^{\otimes(p, q)}$ are written

$$
\mathbf{x}_{i_{1} \cdots i_{p}}^{k_{1} \cdots k_{q}} \stackrel{\text { def }}{=}\left\langle\mathbf{v}_{i_{1}}^{*} \otimes \cdots \otimes \mathbf{v}_{i_{p}}^{*} \otimes \mathbf{v}_{k_{1}} \otimes \cdots \otimes \mathbf{v}_{k_{q}}, \mathbf{x}\right\rangle
$$

Identify $\left(V^{*}\right)^{*}=V$ as usual; $\left\{\mathbf{v}_{i}\right\}$ is dual basis to $\left\{\mathbf{v}_{i}^{*}\right\}$.
Call i_{1}, \ldots, i_{p} the covariant indices of \mathbf{x} and k_{1}, \ldots, k_{q} the contravariant indices of \mathbf{x}.
Representation of $\mathrm{GL}(V)$:
Define a group homomorphism $\rho: \mathrm{GL}(V) \rightarrow \mathrm{GL}\left(V^{\otimes(p, q)}\right)$ by

$$
\begin{aligned}
& \rho(g)\left(\mathbf{x}_{1} \otimes \cdots \otimes \mathbf{x}_{p} \otimes \mathbf{y}_{1}^{*} \otimes \cdots \otimes \mathbf{y}_{q}^{*}\right)= \\
& \quad g \mathbf{x}_{1} \otimes \cdots \otimes g \mathbf{x}_{p} \otimes^{t} g^{-1} \mathbf{y}_{1}^{*} \otimes \cdots \otimes^{t} g^{-1} \mathbf{y}_{q}^{*}
\end{aligned}
$$

(for any $\mathbf{x}_{i} \in V$ and $\mathbf{y}_{j}^{*} \in V^{*}$).
Need ${ }^{t} g^{-1}$ on \mathbf{y}_{i}^{*} to have $\rho(g h)=\rho(g) \rho(h)$ for $g, h \in G L(V)$.

Contractions

For each $1 \leq r \leq p$ and $1 \leq s \leq q$, define a linear map

$$
C_{r}^{s}: V^{\otimes(\bar{p}, q)} \rightarrow V^{\otimes(p-1, \bar{q}-1)} \quad(r, s) \text { contraction }
$$

by taking components of $C_{r}^{s} \mathrm{x}$ as

$$
\sum_{1 \leq j \leq n} \mathbf{x}_{i_{1} \cdots i_{r-1} j i_{r+1} \cdots i_{p-1}}^{k_{1} k_{s-1} j k_{s+1} \cdots k_{q-1}} \quad\left(\text { set } i_{r}=k_{s}=j \text { and sum on } j\right) .
$$

Contractions

For each $1 \leq r \leq p$ and $1 \leq s \leq q$, define a linear map

$$
C_{r}^{s}: V^{\otimes(\bar{p}, q)} \rightarrow V^{\otimes(p-1, \bar{q}-1)} \quad(r, s) \text { contraction }
$$

by taking components of $C_{r}^{s} \mathrm{x}$ as

$$
\sum_{1 \leq j \leq n} \mathbf{x}_{i_{1} \cdots i_{r-1} j i_{r+1} \cdots i_{p-1}}^{k_{1} \cdots k_{s-1} j k_{s+1} \cdots k_{q-1}} \quad\left(\text { set } i_{r}=k_{s}=j \text { and sum on } j\right) .
$$

Theorem
Contractions commute with the action of $\mathrm{GL}(V)$ on mixed tensors.

Contractions

For each $1 \leq r \leq p$ and $1 \leq s \leq q$, define a linear map

$$
C_{r}^{s}: V^{\otimes(\bar{p}, q)} \rightarrow V^{\otimes(p-1, \bar{q}-1)} \quad(r, s) \text { contraction }
$$

by taking components of $C_{r}^{s} \mathrm{x}$ as

$$
\sum_{1 \leq j \leq n} \mathbf{x}_{i_{1} \cdots i_{r-1} j i_{r+1} \cdots i_{s-1} j k_{s+1} \cdots k_{q-1}}^{k_{p-1}} \quad\left(\text { set } i_{r}=k_{s}=j \text { and sum on } j\right) .
$$

Theorem
Contractions commute with the action of $\mathrm{GL}(V)$ on mixed tensors.
Examples: 1) $V^{\otimes(1,1)}=V \otimes V^{*} \cong \operatorname{End}(V)$, and
$C_{1}^{1}: V^{\otimes(1,1)} \rightarrow V^{\otimes(0,0)}=\mathbb{F}$ by $C_{1}^{1} \mathbf{x}=\sum_{j} x_{j}^{j}=\operatorname{tr}(\mathbf{x})$ (trace of \mathbf{x})
If $\mathbf{x}=\mathbf{u} \otimes \mathbf{u}^{*}$ then $C_{1}^{1}(\mathbf{x})=\left\langle\mathbf{u}^{*}, \mathbf{u}\right\rangle$.

Contractions

For each $1 \leq r \leq p$ and $1 \leq s \leq q$, define a linear map

$$
C_{r}^{s}: V^{\otimes(\bar{p}, q)} \rightarrow V^{\otimes(p-1, \bar{q}-1)} \quad(r, s) \text { contraction }
$$

by taking components of $C_{r}^{s} \mathrm{x}$ as

$$
\sum_{1 \leq j \leq n} \mathbf{x}_{i_{1} \cdots i_{r-1} j i_{r+1} \cdots i_{s-1} j k_{s+1} \cdots k_{q-1}}^{k_{1}} \quad\left(\text { set } i_{r}=k_{s}=j \text { and sum on } j\right) .
$$

Theorem
Contractions commute with the action of $\mathrm{GL}(V)$ on mixed tensors. Examples: 1) $V^{\otimes(1,1)}=V \otimes V^{*} \cong \operatorname{End}(V)$, and $C_{1}^{1}: V^{\otimes(1,1)} \rightarrow V^{\otimes(0,0)}=\mathbb{F}$ by $C_{1}^{1} \mathbf{x}=\sum_{j} x_{j}^{j}=\operatorname{tr}(\mathbf{x})($ trace of $\mathbf{x})$ If $\mathbf{x}=\mathbf{u} \otimes \mathbf{u}^{*}$ then $C_{1}^{1}(\mathbf{x})=\left\langle\mathbf{u}^{*}, \mathbf{u}\right\rangle$.
2) Take $\mathbb{F}=\mathbb{R}$ and $V=$ tangent space at a point of a Riemannian manifold. Then the curvature tensor $R \in V^{\otimes(2,2)}$.

Contractions

For each $1 \leq r \leq p$ and $1 \leq s \leq q$, define a linear map

$$
C_{r}^{s}: V^{\otimes(\bar{p}, q)} \rightarrow V^{\otimes(p-1, \bar{q}-1)} \quad(r, s) \text { contraction }
$$

by taking components of $C_{r}^{s} \mathrm{x}$ as

$$
\sum_{1 \leq j \leq n} \mathbf{x}_{i_{1} \cdots i_{r-1} j i_{r+1} \cdots i_{s-1} j k_{s+1} \cdots k_{q-1}}^{k_{1}} \quad\left(\text { set } i_{r}=k_{s}=j \text { and sum on } j\right) .
$$

Theorem
Contractions commute with the action of $\mathrm{GL}(V)$ on mixed tensors. Examples: 1) $V^{\otimes(1,1)}=V \otimes V^{*} \cong \operatorname{End}(V)$, and $C_{1}^{1}: V^{\otimes(1,1)} \rightarrow V^{\otimes(0,0)}=\mathbb{F}$ by $C_{1}^{1} \mathbf{x}=\sum_{j} x_{j}^{j}=\operatorname{tr}(\mathbf{x})($ trace of $\mathbf{x})$ If $\mathbf{x}=\mathbf{u} \otimes \mathbf{u}^{*}$ then $C_{1}^{1}(\mathbf{x})=\left\langle\mathbf{u}^{*}, \mathbf{u}\right\rangle$.
2) Take $\mathbb{F}=\mathbb{R}$ and $V=$ tangent space at a point of a Riemannian manifold. Then the curvature tensor $R \in V^{\otimes(2,2)}$. contraction of R gives Ricci curvature Ric $\in V^{\otimes(1,1)}$

Contractions

For each $1 \leq r \leq p$ and $1 \leq s \leq q$, define a linear map

$$
C_{r}^{s}: V^{\otimes(\bar{p}, q)} \rightarrow V^{\otimes(p-1, \bar{q}-1)} \quad(r, s) \text { contraction }
$$

by taking components of $C_{r}^{s} \mathrm{x}$ as

$$
\sum_{1 \leq j \leq n} \mathbf{x}_{i_{1} \cdots i_{r-1} j i_{r+1} \cdots i_{p-1}}^{k_{1} \cdots k_{s-1} j k_{s+1} \cdots k_{q-1}} \quad\left(\text { set } i_{r}=k_{s}=j \text { and sum on } j\right) .
$$

Theorem
Contractions commute with the action of $\mathrm{GL}(V)$ on mixed tensors. Examples: 1) $V^{\otimes(1,1)}=V \otimes V^{*} \cong \operatorname{End}(V)$, and $C_{1}^{1}: V^{\otimes(1,1)} \rightarrow V^{\otimes(0,0)}=\mathbb{F}$ by $C_{1}^{1} \mathbf{x}=\sum_{j} x_{j}^{j}=\operatorname{tr}(\mathbf{x})$ (trace of \mathbf{x}) If $\mathbf{x}=\mathbf{u} \otimes \mathbf{u}^{*}$ then $C_{1}^{1}(\mathbf{x})=\left\langle\mathbf{u}^{*}, \mathbf{u}\right\rangle$.
2) Take $\mathbb{F}=\mathbb{R}$ and $V=$ tangent space at a point of a Riemannian manifold. Then the curvature tensor $R \in V^{\otimes(2,2)}$. contraction of R gives Ricci curvature Ric $\in V^{\otimes(1,1)}$ contraction (trace) of Ric gives scalar curvature in $V^{\otimes(0,0)}=\mathbb{R}$

Contractions

For each $1 \leq r \leq p$ and $1 \leq s \leq q$, define a linear map

$$
C_{r}^{s}: V^{\otimes(\bar{p}, q)} \rightarrow V^{\otimes(p-1, \bar{q}-1)} \quad(r, s) \text { contraction }
$$

by taking components of $C_{r}^{s} \mathrm{x}$ as

$$
\sum_{1 \leq j \leq n} \mathbf{x}_{i_{1} \cdots i_{r-1} j i_{r+1} \cdots i_{p-1}}^{k_{1} \cdots k_{s-1} j k_{s+1} \cdots k_{q-1}} \quad\left(\text { set } i_{r}=k_{s}=j \text { and sum on } j\right) .
$$

Theorem
Contractions commute with the action of $\mathrm{GL}(V)$ on mixed tensors.
Examples: 1) $V^{\otimes(1,1)}=V \otimes V^{*} \cong \operatorname{End}(V)$, and
$C_{1}^{1}: V^{\otimes(1,1)} \rightarrow V^{\otimes(0,0)}=\mathbb{F}$ by $C_{1}^{1} \mathbf{x}=\sum_{j} x_{j}^{j}=\operatorname{tr}(\mathbf{x})$ (trace of $\left.\mathbf{x}\right)$
If $\mathbf{x}=\mathbf{u} \otimes \mathbf{u}^{*}$ then $C_{1}^{1}(\mathbf{x})=\left\langle\mathbf{u}^{*}, \mathbf{u}\right\rangle$.
2) Take $\mathbb{F}=\mathbb{R}$ and $V=$ tangent space at a point of a Riemannian manifold. Then the curvature tensor $R \in V^{\otimes(2,2)}$. contraction of R gives Ricci curvature Ric $\in V^{\otimes(1,1)}$ contraction (trace) of Ric gives scalar curvature in $V^{\otimes(0,0)}=\mathbb{R}$
"Contraction is an operation of almost magical efficiency"
(Tensor Analysis, Encyclopedia Britannica, 14th ed.)

Symmetry Properties of Tensors

$\mathfrak{S}_{k}=$ symmetric group (permutations of $\{1, \ldots, k\}$

Symmetry Properties of Tensors

$\mathfrak{S}_{k}=$ symmetric group (permutations of $\{1, \ldots, k\}$ Permutation $s \in \mathfrak{S}_{k}$ acts on $V^{\otimes k}$ by moving the vectors:

$$
\sigma(s)\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=\mathbf{u}_{s^{-1}(1)} \otimes \cdots \otimes \mathbf{u}_{s^{-1}(k)}
$$

(vector in position $i \rightarrow$ position $s(i)$)

Symmetry Properties of Tensors

$\mathfrak{S}_{k}=$ symmetric group (permutations of $\{1, \ldots, k\}$
Permutation $s \in \mathfrak{S}_{k}$ acts on $V^{\otimes k}$ by moving the vectors:

$$
\sigma(s)\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=\mathbf{u}_{s^{-1}(1)} \otimes \cdots \otimes \mathbf{u}_{s^{-1}(k)}
$$

(vector in position $i \rightarrow$ position $s(i)$)

- $\sigma: \mathfrak{S}_{k} \rightarrow \mathrm{GL}\left(V^{\otimes k}\right)$ is a representation:

$$
\sigma(s t)=\sigma(s) \sigma(t) \text { and } \sigma_{k}(1)=I
$$

Symmetry Properties of Tensors

$\mathfrak{S}_{k}=$ symmetric group (permutations of $\{1, \ldots, k\}$ Permutation $s \in \mathfrak{S}_{k}$ acts on $V^{\otimes k}$ by moving the vectors:

$$
\sigma(s)\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=\mathbf{u}_{s^{-1}(1)} \otimes \cdots \otimes \mathbf{u}_{s^{-1}(k)}
$$

(vector in position $i \rightarrow$ position $s(i)$)

- $\sigma: \mathfrak{S}_{k} \rightarrow \mathrm{GL}\left(V^{\otimes k}\right)$ is a representation:

$$
\sigma(s t)=\sigma(s) \sigma(t) \text { and } \sigma_{k}(1)=I .
$$

- The transformation $\sigma(s)$ commutes with the transformation $\rho(g)$ for all $s \in \mathfrak{S}_{k}$ and $g \in \operatorname{GL}(V)$.

Symmetry Properties of Tensors

$\mathfrak{S}_{k}=$ symmetric group (permutations of $\{1, \ldots, k\}$

Permutation $s \in \mathfrak{S}_{k}$ acts on $V^{\otimes k}$ by moving the vectors:

$$
\sigma(s)\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=\mathbf{u}_{s^{-1}(1)} \otimes \cdots \otimes \mathbf{u}_{s^{-1}(k)}
$$

(vector in position $i \rightarrow$ position $s(i)$)

- $\sigma: \mathfrak{S}_{k} \rightarrow \mathrm{GL}\left(V^{\otimes k}\right)$ is a representation:

$$
\sigma(s t)=\sigma(s) \sigma(t) \text { and } \sigma_{k}(1)=l .
$$

- The transformation $\sigma(s)$ commutes with the transformation $\rho(g)$ for all $s \in \mathfrak{S}_{k}$ and $g \in \operatorname{GL}(V)$.

Theorem (Schur duality)
(1) Any linear transformation on $V^{\otimes k}$ that commutes with $\rho(g)$ for all $g \in \mathrm{GL}(V)$ is a linear combination of $\left\{\sigma(s): s \in \mathfrak{S}_{k}\right\}$.

Symmetry Properties of Tensors

$\mathfrak{S}_{k}=$ symmetric group (permutations of $\{1, \ldots, k\}$

Permutation $s \in \mathfrak{S}_{k}$ acts on $V^{\otimes k}$ by moving the vectors:

$$
\sigma(s)\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=\mathbf{u}_{s^{-1}(1)} \otimes \cdots \otimes \mathbf{u}_{s^{-1}(k)}
$$

(vector in position $i \rightarrow$ position $s(i)$)

- $\sigma: \mathfrak{S}_{k} \rightarrow \mathrm{GL}\left(V^{\otimes k}\right)$ is a representation:

$$
\sigma(s t)=\sigma(s) \sigma(t) \text { and } \sigma_{k}(1)=I .
$$

- The transformation $\sigma(s)$ commutes with the transformation $\rho(g)$ for all $s \in \mathfrak{S}_{k}$ and $g \in G L(V)$.

Theorem (Schur duality)
(1) Any linear transformation on $V^{\otimes k}$ that commutes with $\rho(g)$ for all $g \in \mathrm{GL}(V)$ is a linear combination of $\left\{\sigma(s): s \in \mathfrak{S}_{k}\right\}$. (2) Any linear transformation on $V^{\otimes k}$ that commutes with $\sigma(s)$ for all $s \in \mathfrak{S}_{k}$ is a linear combination of $\{\rho(g): g \in G L(V)\}$.

Symmetric Tensors

Symmetrizer operator Sym : $V^{\otimes k} \rightarrow V^{\otimes k}$ (assume $\left.\operatorname{char}(\mathbb{F})=0\right)$ $\boldsymbol{\operatorname { S y m }}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=\frac{1}{k!} \sum_{s \in \mathfrak{S}_{k}} \sigma(s)\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)$

Symmetric Tensors

Symmetrizer operator Sym : $V^{\otimes k} \rightarrow V^{\otimes k}$ (assume $\operatorname{char}(\mathbb{F})=0$)
$\boldsymbol{\operatorname { S y m }}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=\frac{1}{k!} \sum_{s \in \mathfrak{S}_{k}} \sigma(s)\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)$

- $\mathbf{S y m}^{2}=\mathbf{S y m}$ (projection operator)

Symmetric Tensors

Symmetrizer operator Sym : $V^{\otimes k} \rightarrow V^{\otimes k}$ (assume char $\left.(\mathbb{F})=0\right)$
$\boldsymbol{S y m}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=\frac{1}{k!} \sum_{s \in \mathfrak{S}_{k}} \sigma(s)\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)$

- $\mathbf{S y m}^{2}=\mathbf{S y m}$ (projection operator) Proof:

$$
\begin{aligned}
\mathbf{S y m}^{2} & =\frac{1}{(k!)^{2}} \sum_{s, t \in \mathfrak{S}_{k}} \sigma(s) \sigma(t)=\frac{1}{(k!)^{2}} \sum_{s, t \in \mathfrak{S}_{k}} \sigma(s t) \\
& =\frac{1}{k!} \sum_{r \in \mathfrak{S}_{k}} \sigma(r)=\mathbf{S y m}
\end{aligned}
$$

Symmetric Tensors

Symmetrizer operator Sym : $V^{\otimes k} \rightarrow V^{\otimes k}$ (assume char $(\mathbb{F})=0$)
$\boldsymbol{S y m}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=\frac{1}{k!} \sum_{s \in \mathfrak{S}_{k}} \sigma(s)\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)$

- $\mathbf{S y m}^{2}=\mathbf{S y m}$ (projection operator) Proof:

$$
\begin{aligned}
\mathbf{S y m}^{2} & =\frac{1}{(k!)^{2}} \sum_{s, t \in \mathfrak{S}_{k}} \sigma(s) \sigma(t)=\frac{1}{(k!)^{2}} \sum_{s, t \in \mathfrak{S}_{k}} \sigma(s t) \\
& =\frac{1}{k!} \sum_{r \in \mathfrak{S}_{k}} \sigma(r)=\mathbf{S y m}
\end{aligned}
$$

- $\quad \sigma(t) \mathbf{S y m}=\mathbf{S y m}$ for all $t \in \mathfrak{S}_{k}$

Symmetric Tensors

Symmetrizer operator Sym : $V^{\otimes k} \rightarrow V^{\otimes k}$ (assume $\operatorname{char}(\mathbb{F})=0$)
$\boldsymbol{\operatorname { S y m }}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=\frac{1}{k!} \sum_{s \in \mathfrak{S}_{k}} \sigma(s)\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)$

- $\mathbf{S y m}^{2}=\mathbf{S y m}$ (projection operator)

Proof:

$$
\begin{aligned}
\mathbf{S y m}^{2} & =\frac{1}{(k!)^{2}} \sum_{s, t \in \mathfrak{S}_{k}} \sigma(s) \sigma(t)=\frac{1}{(k!)^{2}} \sum_{s, t \in \mathfrak{S}_{k}} \sigma(s t) \\
& =\frac{1}{k!} \sum_{r \in \mathfrak{S}_{k}} \sigma(r)=\mathbf{S y m}
\end{aligned}
$$

- $\quad \sigma(t) \mathbf{S y m}=\mathbf{S y m}$ for all $t \in \mathfrak{S}_{k}$

Proof:

$$
\sigma(t) \mathbf{S y m}=\frac{1}{k!} \sum_{s \in \mathfrak{S}_{k}} \sigma(t) \sigma(s)=\frac{1}{k!} \sum_{r \in \mathfrak{S}_{k}} \sigma(r)=\mathbf{S y m}
$$

Symmetric Tensors

Symmetrizer operator Sym : $V^{\otimes k} \rightarrow V^{\otimes k}$ (assume $\operatorname{char}(\mathbb{F})=0$)
$\boldsymbol{\operatorname { S y m }}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=\frac{1}{k!} \sum_{s \in \mathfrak{S}_{k}} \sigma(s)\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)$

- $\mathbf{S y m}^{2}=\mathbf{S y m}$ (projection operator)

Proof:

$$
\begin{aligned}
\mathbf{S y m}^{2} & =\frac{1}{(k!)^{2}} \sum_{s, t \in \mathfrak{S}_{k}} \sigma(s) \sigma(t)=\frac{1}{(k!)^{2}} \sum_{s, t \in \mathfrak{S}_{k}} \sigma(s t) \\
& =\frac{1}{k!} \sum_{r \in \mathfrak{S}_{k}} \sigma(r)=\mathbf{S y m}
\end{aligned}
$$

- $\quad \sigma(t) \mathbf{S y m}=\mathbf{S y m}$ for all $t \in \mathfrak{S}_{k}$

Proof:

$$
\sigma(t) \mathbf{S y m}=\frac{1}{k!} \sum_{s \in \mathfrak{S}_{k}} \sigma(t) \sigma(s)=\frac{1}{k!} \sum_{r \in \mathfrak{S}_{k}} \sigma(r)=\mathbf{S y m}
$$

Define $S^{k}(V)=\operatorname{Sym}\left(V^{\otimes k}\right) \quad$ (symmetric k-tensors) If $\mathbf{x} \in S^{k}(V)$ then the components $x_{i_{1} \ldots i_{k}}$ are symmetric in the indices (unchanged under any transposition of indices), and conversely.

Universal Linearization Property of $S^{k}(V)$

Theorem
Let $f: V \times \cdots \times V \rightarrow W$ (k factors) be any k-multilinear map that is symmetric in its arguments.

Universal Linearization Property of $S^{k}(V)$

Theorem
Let $f: V \times \cdots \times V \rightarrow W$ (k factors) be any k-multilinear map that is symmetric in its arguments.
There is a unique linear map $F: S^{k}(V) \rightarrow W$ such that $F\left(\operatorname{Sym}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)\right)=f\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$.

Universal Linearization Property of $S^{k}(V)$

Theorem

Let $f: V \times \cdots \times V \rightarrow W$ (k factors) be any k-multilinear map that is symmetric in its arguments.
There is a unique linear map $F: S^{k}(V) \rightarrow W$ such that $F\left(\operatorname{Sym}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)\right)=f\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$.
Proof: There exists linear map $F: V^{\otimes k} \rightarrow W$ with $F\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=f\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$
Then $F \circ \mathbf{S y m}=F$ since f is symmetric, so $F \circ(I-\operatorname{Sym})=0$.

Universal Linearization Property of $S^{k}(V)$

Theorem

Let $f: V \times \cdots \times V \rightarrow W$ (k factors) be any k-multilinear map that is symmetric in its arguments.
There is a unique linear map $F: S^{k}(V) \rightarrow W$ such that $F\left(\operatorname{Sym}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)\right)=f\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$.
Proof: There exists linear map $F: V^{\otimes k} \rightarrow W$ with $F\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=f\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$
Then $F \circ \mathbf{S y m}=F$ since f is symmetric, so $F \circ(I-\operatorname{Sym})=0$.

Example

$\left(V^{*}\right)^{\otimes 2} \longleftrightarrow$ bilinear forms on V

$$
\mathbf{b}=\sum_{i, j} b^{i j} \mathbf{v}_{i}^{*} \otimes \mathbf{v}_{j}^{*} \longleftrightarrow B(\mathbf{x}, \mathbf{y})=\sum_{i j} b^{i j} x_{i} y_{j}
$$

(written as $b^{i j} x_{i} y_{j}$ in Einstein summation notation)

Universal Linearization Property of $S^{k}(V)$

Theorem

Let $f: V \times \cdots \times V \rightarrow W$ (k factors) be any k-multilinear map that is symmetric in its arguments.
There is a unique linear map $F: S^{k}(V) \rightarrow W$ such that $F\left(\operatorname{Sym}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)\right)=f\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$.
Proof: There exists linear map $F: V^{\otimes k} \rightarrow W$ with

$$
F\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=f\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

Then $F \circ \mathbf{S y m}=F$ since f is symmetric, so $F \circ(I-\mathbf{S y m})=0$.

Example

$\left(V^{*}\right)^{\otimes 2} \longleftrightarrow$ bilinear forms on V

$$
\mathbf{b}=\sum_{i, j} b^{i j} \mathbf{v}_{i}^{*} \otimes \mathbf{v}_{j}^{*} \longleftrightarrow B(\mathbf{x}, \mathbf{y})=\sum_{i j} b^{i j} x_{i} y_{j}
$$

(written as $b^{i j} x_{i} y_{j}$ in Einstein summation notation)
Then $\mathbf{b} \in S^{2}\left(V^{*}\right) \Longleftrightarrow b^{i j}=b^{j i} \Longleftrightarrow B(\mathbf{x}, \mathbf{y})=B(\mathbf{y}, \mathbf{x})$

Alternating Tensors

For $s \in \mathfrak{S}_{k}$ define $\operatorname{sgn}(s)=(-1)^{m}$ if s is a product of m transpositions. Then $\operatorname{sgn}(s) \operatorname{sgn}(t)=\operatorname{sgn}(s t), \operatorname{sgn}(1)=1$.

Alternating Tensors

For $s \in \mathfrak{S}_{k}$ define $\operatorname{sgn}(s)=(-1)^{m}$ if s is a product of m transpositions. Then $\operatorname{sgn}(s) \operatorname{sgn}(t)=\operatorname{sgn}(s t), \operatorname{sgn}(1)=1$. Alternation operator Alt : $\boldsymbol{V}^{\otimes k} \rightarrow V^{\otimes k}$

$$
\boldsymbol{A l t}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=\frac{1}{k!} \sum_{s \in \mathfrak{S}_{k}} \operatorname{sgn}(s) \sigma(s)\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)
$$

Alternating Tensors

For $s \in \mathfrak{S}_{k}$ define $\operatorname{sgn}(s)=(-1)^{m}$ if s is a product of m transpositions. Then $\operatorname{sgn}(s) \operatorname{sgn}(t)=\operatorname{sgn}(s t), \operatorname{sgn}(1)=1$. Alternation operator Alt : $\boldsymbol{V}^{\otimes k} \rightarrow V^{\otimes k}$

$$
\boldsymbol{A l t}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=\frac{1}{k!} \sum_{s \in \mathfrak{S}_{k}} \operatorname{sgn}(s) \sigma(s)\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)
$$

Properties:

- $\mathbf{A l t}^{2}=\mathbf{A l t}$ (projection operator)

Alternating Tensors

For $s \in \mathfrak{S}_{k}$ define $\operatorname{sgn}(s)=(-1)^{m}$ if s is a product of m transpositions. Then $\operatorname{sgn}(s) \operatorname{sgn}(t)=\operatorname{sgn}(s t), \operatorname{sgn}(1)=1$. Alternation operator Alt : $V^{\otimes k} \rightarrow V^{\otimes k}$

$$
\boldsymbol{\operatorname { A l t }}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=\frac{1}{k!} \sum_{s \in \mathfrak{S}_{k}} \operatorname{sgn}(s) \sigma(s)\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)
$$

Properties:

- $\mathbf{A l t}^{2}=\mathbf{A l t}$ (projection operator)

Proof:

$$
\begin{aligned}
\mathbf{A l t}^{2} & =\frac{1}{(k!)^{2}} \sum_{s, t \in \mathfrak{S}_{k}} \operatorname{sgn}(s) \operatorname{sgn}(t) \sigma(s) \sigma(t) \\
& =\frac{1}{(k!)^{2}} \sum_{s, t \in \mathfrak{S}_{k}} \operatorname{sgn}(s t) \sigma(s t)=\frac{1}{k!} \sum_{r \in \mathfrak{S}_{k}} \operatorname{sgn}(r) \sigma(r) \\
& =\mathbf{A l t}
\end{aligned}
$$

Alternating Tensors

For $s \in \mathfrak{S}_{k}$ define $\operatorname{sgn}(s)=(-1)^{m}$ if s is a product of m transpositions. Then $\operatorname{sgn}(s) \operatorname{sgn}(t)=\operatorname{sgn}(s t), \operatorname{sgn}(1)=1$. Alternation operator Alt : $V^{\otimes k} \rightarrow V^{\otimes k}$

$$
\boldsymbol{A l t}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=\frac{1}{k!} \sum_{s \in \mathfrak{S}_{k}} \operatorname{sgn}(s) \sigma(s)\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)
$$

Properties:

- $\mathbf{A l t}^{2}=\mathbf{A l t}$ (projection operator)

Proof:

$$
\begin{aligned}
\mathbf{A l t}^{2} & =\frac{1}{(k!)^{2}} \sum_{s, t \in \mathfrak{S}_{k}} \operatorname{sgn}(s) \operatorname{sgn}(t) \sigma(s) \sigma(t) \\
& =\frac{1}{(k!)^{2}} \sum_{s, t \in \mathfrak{S}_{k}} \operatorname{sgn}(s t) \sigma(s t)=\frac{1}{k!} \sum_{r \in \mathfrak{S}_{k}} \operatorname{sgn}(r) \sigma(r) \\
& =\mathbf{A l t}
\end{aligned}
$$

- $\sigma(t) \mathbf{A l t}=\operatorname{sgn}(t)$ Alt for all $t \in \mathfrak{S}_{k}$

Alternating Tensors

For $s \in \mathfrak{S}_{k}$ define $\operatorname{sgn}(s)=(-1)^{m}$ if s is a product of m transpositions. Then $\operatorname{sgn}(s) \operatorname{sgn}(t)=\operatorname{sgn}(s t), \operatorname{sgn}(1)=1$.
Alternation operator Alt : $V^{\otimes k} \rightarrow V^{\otimes k}$

$$
\boldsymbol{A l t}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=\frac{1}{k!} \sum_{s \in \mathfrak{S}_{k}} \operatorname{sgn}(s) \sigma(s)\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)
$$

Properties:

- $\mathbf{A l t}^{2}=\mathbf{A l t}$ (projection operator)

Proof:

$$
\begin{aligned}
\mathbf{A l t}^{2} & =\frac{1}{(k!)^{2}} \sum_{s, t \in \mathfrak{S}_{k}} \operatorname{sgn}(s) \operatorname{sgn}(t) \sigma(s) \sigma(t) \\
& =\frac{1}{(k!)^{2}} \sum_{s, t \in \mathfrak{S}_{k}} \operatorname{sgn}(s t) \sigma(s t)=\frac{1}{k!} \sum_{r \in \mathfrak{S}_{k}} \operatorname{sgn}(r) \sigma(r) \\
& =\mathbf{A l t}
\end{aligned}
$$

- $\sigma(t) \mathbf{A l t}=\operatorname{sgn}(t)$ Alt for all $t \in \mathfrak{S}_{k}$

Proof:

$$
\begin{aligned}
& \sigma(t) \text { Alt }=\frac{1}{k!} \sum_{s \in \mathfrak{S}_{k}} \operatorname{sgn}(s) \sigma(t) \sigma(s)=\frac{1}{k!} \sum_{r \in \mathfrak{S}_{k}} \operatorname{sgn}(t)^{-1} \sigma(r) \\
& \quad=\operatorname{sgn}(t) \text { Alt }
\end{aligned}
$$

Alternating Tensors

For $s \in \mathfrak{S}_{k}$ define $\operatorname{sgn}(s)=(-1)^{m}$ if s is a product of m transpositions. Then $\operatorname{sgn}(s) \operatorname{sgn}(t)=\operatorname{sgn}(s t), \operatorname{sgn}(1)=1$.
Alternation operator Alt : $V^{\otimes k} \rightarrow V^{\otimes k}$

$$
\boldsymbol{A l t}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=\frac{1}{k!} \sum_{s \in \mathfrak{S}_{k}} \operatorname{sgn}(s) \sigma(s)\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)
$$

Properties:

- $\mathbf{A l t}^{2}=\mathbf{A l t}$ (projection operator)

Proof:

$$
\begin{aligned}
\mathbf{A l t}^{2} & =\frac{1}{(k!)^{2}} \sum_{s, t \in \mathfrak{S}_{k}} \operatorname{sgn}(s) \operatorname{sgn}(t) \sigma(s) \sigma(t) \\
& =\frac{1}{(k!)^{2}} \sum_{s, t \in \mathfrak{S}_{k}} \operatorname{sgn}(s t) \sigma(s t)=\frac{1}{k!} \sum_{r \in \mathfrak{S}_{k}} \operatorname{sgn}(r) \sigma(r) \\
& =\mathbf{A l t}
\end{aligned}
$$

- $\sigma(t) \mathbf{A l t}=\operatorname{sgn}(t)$ Alt for all $t \in \mathfrak{S}_{k}$

Proof:

$$
\begin{aligned}
& \sigma(t) \text { Alt }=\frac{1}{k!} \sum_{s \in \mathfrak{S}_{k}} \operatorname{sgn}(s) \sigma(t) \sigma(s)=\frac{1}{k!} \sum_{r \in \mathfrak{S}_{k}} \operatorname{sgn}(t)^{-1} \sigma(r) \\
& \quad=\operatorname{sgn}(t) \text { Alt }
\end{aligned}
$$

Universal Linearization Property of $\bigwedge^{k}(V)$

Define $\Lambda^{k}(V)=\operatorname{Alt}\left(V^{\otimes k}\right) \quad$ (alternating k-tensors)
If $\mathbf{x} \in \Lambda^{k}(V)$ then the components $x_{i_{1} \ldots i_{k}}$ are skew-symmetric in the indices (change sign under any transposition), and conversely.

Universal Linearization Property of $\bigwedge^{k}(V)$

Define $\Lambda^{k}(V)=\mathbf{A l t}\left(V^{\otimes k}\right) \quad$ (alternating k-tensors)
If $\mathbf{x} \in \Lambda^{k}(V)$ then the components $x_{i_{1} \ldots i_{k}}$ are skew-symmetric in the indices (change sign under any transposition), and conversely.

Theorem
Let $f: V \times \cdots \times V \rightarrow W$ (k factors) be any k-multilinear map that is alternating in its arguments (changes sign when two arguments are permuted).

Universal Linearization Property of $\wedge^{\star}(V)$

Define $\Lambda^{k}(V)=\mathbf{A l t}\left(V^{\otimes k}\right) \quad$ (alternating k-tensors)
If $\mathbf{x} \in \Lambda^{k}(V)$ then the components $x_{i_{1} \ldots i_{k}}$ are skew-symmetric in the indices (change sign under any transposition), and conversely.

Theorem
Let $f: V \times \cdots \times V \rightarrow W$ (k factors) be any k-multilinear map that is alternating in its arguments (changes sign when two arguments are permuted).
There is a unique linear map $F: \bigwedge^{k}(V) \rightarrow W$ such that

$$
F\left(\mathbf{A l t}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)\right)=f\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

Universal Linearization Property of $\wedge^{\star}(V)$

Define $\Lambda^{k}(V)=\mathbf{A l t}\left(V^{\otimes k}\right) \quad$ (alternating k-tensors)
If $\mathbf{x} \in \Lambda^{k}(V)$ then the components $x_{i_{1} \ldots i_{k}}$ are skew-symmetric in the indices (change sign under any transposition), and conversely.

Theorem

Let $f: V \times \cdots \times V \rightarrow W$ (k factors) be any k-multilinear map that is alternating in its arguments (changes sign when two arguments are permuted).
There is a unique linear map $F: \bigwedge^{k}(V) \rightarrow W$ such that

$$
F\left(\mathbf{A l t}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)\right)=f\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

Proof: There exists linear map $F: V^{\otimes k} \rightarrow W$ with

$$
F\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=f\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

Then $F \circ \mathbf{A l t}=F$ since f is alternating, so $F \circ(I-\mathbf{A l t})=0$.

Universal Linearization Property of $\wedge^{\star}(V)$

Define $\Lambda^{k}(V)=\mathbf{A l t}\left(V^{\otimes k}\right) \quad$ (alternating k-tensors)
If $\mathbf{x} \in \Lambda^{k}(V)$ then the components $x_{i_{1} \ldots i_{k}}$ are skew-symmetric in the indices (change sign under any transposition), and conversely.

Theorem

Let $f: V \times \cdots \times V \rightarrow W$ (k factors) be any k-multilinear map that is alternating in its arguments (changes sign when two arguments are permuted).
There is a unique linear map $F: \bigwedge^{k}(V) \rightarrow W$ such that

$$
F\left(\boldsymbol{\operatorname { A l t }}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)\right)=f\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

Proof: There exists linear map $F: V^{\otimes k} \rightarrow W$ with

$$
F\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=f\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

Then $F \circ \mathbf{A l t}=F$ since f is alternating, so $F \circ(I-\mathbf{A l t})=0$.
Notation: $\boldsymbol{\operatorname { A l t }}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right)=\mathbf{u}_{1} \wedge \cdots \wedge \mathbf{u}_{k}$ (exterior product of vectors)

Comparisons between Symmetric and Alternating Tensors

$S^{k}(V) \quad(\operatorname{dim} V=n)$

Comparisons between Symmetric and Alternating Tensors

$S^{k}(V) \quad(\operatorname{dim} V=n)$

- basis $\left\{\operatorname{Sym}\left(\mathbf{v}_{i_{1}} \otimes \cdots \otimes \mathbf{v}_{i_{k}}\right\}\right.$ labelled by indices $1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n$

Comparisons between Symmetric and Alternating Tensors

$S^{k}(V) \quad(\operatorname{dim} V=n)$

- basis $\left\{\operatorname{Sym}\left(\mathbf{v}_{i_{1}} \otimes \cdots \otimes \mathbf{v}_{i_{k}}\right\}\right.$ labelled by indices $1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n$
- $\operatorname{dim} S^{k}(V)=\binom{n+k-1}{k}=\#\{k$ balls in n boxes $\}$

Comparisons between Symmetric and Alternating Tensors

$S^{k}(V) \quad(\operatorname{dim} V=n)$

- basis $\left\{\operatorname{Sym}\left(\mathbf{v}_{i_{1}} \otimes \cdots \otimes \mathbf{v}_{i_{k}}\right\}\right.$ labelled by indices $1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n$
- $\operatorname{dim} S^{k}(V)=\binom{n+k-1}{k}=\#\{k$ balls in n boxes $\}$
- $S^{k}(V) \cong \mathcal{P}^{k}\left(V^{*}\right)=$ homogeneous polynomials of degree k on V^{*} (nonzero space for all k):
$\operatorname{Sym}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right) \longleftrightarrow$ monomial $\left\langle\mathbf{u}^{*}, \mathbf{u}_{1}\right\rangle \cdots\left\langle\mathbf{u}^{*}, \mathbf{u}_{k}\right\rangle$

Comparisons between Symmetric and Alternating Tensors

$S^{k}(V) \quad(\operatorname{dim} V=n)$

- basis $\left\{\operatorname{Sym}\left(\mathbf{v}_{i_{1}} \otimes \cdots \otimes \mathbf{v}_{i_{k}}\right\}\right.$ labelled by indices $1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n$
- $\operatorname{dim} S^{k}(V)=\binom{n+k-1}{k}=\#\{k$ balls in n boxes $\}$
- $S^{k}(V) \cong \mathcal{P}^{k}\left(V^{*}\right)=$ homogeneous polynomials of degree k on V^{*} (nonzero space for all k):
$\operatorname{Sym}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right) \longleftrightarrow$ monomial $\left\langle\mathbf{u}^{*}, \mathbf{u}_{1}\right\rangle \cdots\left\langle\mathbf{u}^{*}, \mathbf{u}_{k}\right\rangle$
- \mathfrak{S}_{k} acts by identity on $S^{k}(V)$

Comparisons between Symmetric and Alternating Tensors

$S^{k}(V) \quad(\operatorname{dim} V=n)$

- basis $\left\{\operatorname{Sym}\left(\mathbf{v}_{i_{1}} \otimes \cdots \otimes \mathbf{v}_{i_{k}}\right\}\right.$ labelled by indices $1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n$
- $\operatorname{dim} S^{k}(V)=\binom{n+k-1}{k}=\#\{k$ balls in n boxes $\}$
- $S^{k}(V) \cong \mathcal{P}^{k}\left(V^{*}\right)=$ homogeneous polynomials of degree k on V^{*} (nonzero space for all k):
$\operatorname{Sym}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right) \longleftrightarrow$ monomial $\left\langle\mathbf{u}^{*}, \mathbf{u}_{1}\right\rangle \cdots\left\langle\mathbf{u}^{*}, \mathbf{u}_{k}\right\rangle$
- \mathfrak{S}_{k} acts by identity on $S^{k}(V)$
- $S^{k}(V)$ is invariant under $G L(V)$, and contains no proper subspace that is invariant under $\mathrm{GL}(V)$ (irreducible representation of $\mathrm{GL}(V)$)

Comparisons between Symmetric and Alternating Tensors

$S^{k}(V) \quad(\operatorname{dim} V=n)$

- basis $\left\{\operatorname{Sym}\left(\mathbf{v}_{i_{1}} \otimes \cdots \otimes \mathbf{v}_{i_{k}}\right\}\right.$ labelled by indices $1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n$
- $\operatorname{dim} S^{k}(V)=\binom{n+k-1}{k}=\#\{k$ balls in n boxes $\}$
- $S^{k}(V) \cong \mathcal{P}^{k}\left(V^{*}\right)=$ homogeneous polynomials of degree k on V^{*} (nonzero space for all k):
$\operatorname{Sym}\left(\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{k}\right) \longleftrightarrow$ monomial $\left\langle\mathbf{u}^{*}, \mathbf{u}_{1}\right\rangle \cdots\left\langle\mathbf{u}^{*}, \mathbf{u}_{k}\right\rangle$
- \mathfrak{S}_{k} acts by identity on $S^{k}(V)$
- $S^{k}(V)$ is invariant under $\mathrm{GL}(V)$, and contains no proper subspace that is invariant under $\mathrm{GL}(V)$ (irreducible representation of $\mathrm{GL}(V)$)
- Quantum mechanics: $S^{k}(V)$ describes systems of k bosons
$\bigwedge^{k}(V) \quad(\operatorname{dim} V=n)$
$\Lambda^{k}(V) \quad(\operatorname{dim} V=n)$
- basis $\left\{\mathbf{v}_{i_{1}} \wedge \cdots \wedge \mathbf{v}_{i_{k}}\right\}$ labelled by indices
$1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$
$\Lambda^{k}(V) \quad(\operatorname{dim} V=n)$
- basis $\left\{\mathbf{v}_{i_{1}} \wedge \cdots \wedge \mathbf{v}_{i_{k}}\right\}$ labelled by indices $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$
- $\operatorname{dim} \bigwedge^{k}(V)=\binom{n}{k}=\#\{$ subsets of size k in n-element set $\}$
$\Lambda^{k}(V) \quad(\operatorname{dim} V=n)$
- basis $\left\{\mathbf{v}_{i_{1}} \wedge \cdots \wedge \mathbf{v}_{i_{k}}\right\}$ labelled by indices $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$
- $\operatorname{dim} \bigwedge^{k}(V)=\binom{n}{k}=\#\{$ subsets of size k in n-element set $\}$
- $\bigwedge^{k}(V) \cong$ homogeneous alternating functions of degree k on $V^{*}($ zero if $k>n)$
$\Lambda^{k}(V) \quad(\operatorname{dim} V=n)$
- basis $\left\{\mathbf{v}_{i_{1}} \wedge \cdots \wedge \mathbf{v}_{i_{k}}\right\}$ labelled by indices
$1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$
- $\operatorname{dim} \bigwedge^{k}(V)=\binom{n}{k}=\#\{$ subsets of size k in n-element set $\}$
- $\bigwedge^{k}(V) \cong$ homogeneous alternating functions of degree k on V^{*} (zero if $k>n$)
- \mathfrak{S}_{k} acts by sgn on $\bigwedge^{k}(V)$
$\Lambda^{k}(V) \quad(\operatorname{dim} V=n)$
- basis $\left\{\mathbf{v}_{i_{1}} \wedge \cdots \wedge \mathbf{v}_{i_{k}}\right\}$ labelled by indices $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$
- $\operatorname{dim} \bigwedge^{k}(V)=\binom{n}{k}=\#\{$ subsets of size k in n-element set $\}$
- $\bigwedge^{k}(V) \cong$ homogeneous alternating functions of degree k on V^{*} (zero if $k>n$)
- \mathfrak{S}_{k} acts by sgn on $\bigwedge^{k}(V)$
- $\bigwedge^{k}(V)$ is invariant under $\mathrm{GL}(V)$, and contains no proper subspace that is invariant under $\mathrm{GL}(V)$ (irreducible representation of $\mathrm{GL}(V)$)
$\bigwedge^{k}(V) \quad(\operatorname{dim} V=n)$
- basis $\left\{\mathbf{v}_{i_{1}} \wedge \cdots \wedge \mathbf{v}_{i_{k}}\right\}$ labelled by indices $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$
- $\operatorname{dim} \bigwedge^{k}(V)=\binom{n}{k}=\#\{$ subsets of size k in n-element set $\}$
- $\bigwedge^{k}(V) \cong$ homogeneous alternating functions of degree k on V^{*} (zero if $k>n$)
- \mathfrak{S}_{k} acts by sgn on $\bigwedge^{k}(V)$
- $\bigwedge^{k}(V)$ is invariant under $\mathrm{GL}(V)$, and contains no proper subspace that is invariant under $\mathrm{GL}(V)$ (irreducible representation of $\mathrm{GL}(V)$)
- $\operatorname{dim} \bigwedge^{n} V=1$. Fix basis vector \mathbf{u}. Then $\rho(g) \mathbf{u}=\operatorname{det}(g) \mathbf{u}$ for $g \in \operatorname{GL}(V)$.
$\Lambda^{k}(V) \quad(\operatorname{dim} V=n)$
- basis $\left\{\mathbf{v}_{i_{1}} \wedge \cdots \wedge \mathbf{v}_{i_{k}}\right\}$ labelled by indices $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$
- $\operatorname{dim} \bigwedge^{k}(V)=\binom{n}{k}=\#\{$ subsets of size k in n-element set $\}$
- $\bigwedge^{k}(V) \cong$ homogeneous alternating functions of degree k on V^{*} (zero if $k>n$)
- \mathfrak{S}_{k} acts by sgn on $\bigwedge^{k}(V)$
- $\bigwedge^{k}(V)$ is invariant under $\mathrm{GL}(V)$, and contains no proper subspace that is invariant under $\mathrm{GL}(V)$ (irreducible representation of $\mathrm{GL}(V)$)
- $\operatorname{dim} \bigwedge^{n} V=1$. Fix basis vector \mathbf{u}. Then $\rho(g) \mathbf{u}=\operatorname{det}(g) \mathbf{u}$ for $g \in \operatorname{GL}(V)$.
- Geometry: $\mathbf{u}_{1} \wedge \cdots \wedge \mathbf{u}_{k} \neq 0 \Longleftrightarrow\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ are linearly independent (span a k-plane).
$\Lambda^{k}(V) \quad(\operatorname{dim} V=n)$
- basis $\left\{\mathbf{v}_{i_{1}} \wedge \cdots \wedge \mathbf{v}_{i_{k}}\right\}$ labelled by indices $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$
- $\operatorname{dim} \bigwedge^{k}(V)=\binom{n}{k}=\#\{$ subsets of size k in n-element set $\}$
- $\bigwedge^{k}(V) \cong$ homogeneous alternating functions of degree k on V^{*} (zero if $k>n$)
- \mathfrak{S}_{k} acts by sgn on $\bigwedge^{k}(V)$
- $\bigwedge^{k}(V)$ is invariant under $\mathrm{GL}(V)$, and contains no proper subspace that is invariant under $\mathrm{GL}(V)$ (irreducible representation of $\mathrm{GL}(V)$)
- $\operatorname{dim} \bigwedge^{n} V=1$. Fix basis vector \mathbf{u}. Then $\rho(g) \mathbf{u}=\operatorname{det}(g) \mathbf{u}$ for $g \in \operatorname{GL}(V)$.
- Geometry: $\mathbf{u}_{1} \wedge \cdots \wedge \mathbf{u}_{k} \neq 0 \Longleftrightarrow\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ are linearly independent (span a k-plane).
- Quantum Mechanics: $\bigwedge^{k}(V)$ describes systems of k fermions (Pauli exclusion principle)

Other Symmetry Types of Tensors

The group $\mathrm{GL}(V) \times \mathfrak{S}_{k}$ acts on $V^{\otimes k}$. Program: Decompose $V^{\otimes k}$ into a direct sum of subspaces that are irreducible under the action of $\mathrm{GL}(V) \times \mathfrak{S}_{k}$

Other Symmetry Types of Tensors

The group $\mathrm{GL}(V) \times \mathfrak{S}_{k}$ acts on $V^{\otimes k}$. Program: Decompose $V^{\otimes k}$ into a direct sum of subspaces that are irreducible under the action of $\mathrm{GL}(V) \times \mathfrak{S}_{k}$
We already have two such spaces, namely $S^{k}(V)$ and $\bigwedge^{k}(V)$.

Other Symmetry Types of Tensors

The group $\mathrm{GL}(V) \times \mathfrak{S}_{k}$ acts on $V^{\otimes k}$.
Program: Decompose $V^{\otimes k}$ into a direct sum of subspaces that are irreducible under the action of $\mathrm{GL}(V) \times \mathfrak{S}_{k}$
We already have two such spaces, namely $S^{k}(V)$ and $\bigwedge^{k}(V)$.
Example When $k=2$, then $V^{\otimes 2}=S^{2}(V) \oplus \bigwedge^{2}(V)$
(Every bilinear form is the sum of a symmetric form and a skew-symmetric form)

Other Symmetry Types of Tensors

The group $\mathrm{GL}(V) \times \mathfrak{S}_{k}$ acts on $V^{\otimes k}$.
Program: Decompose $V^{\otimes k}$ into a direct sum of subspaces that are irreducible under the action of $\mathrm{GL}(V) \times \mathfrak{S}_{k}$
We already have two such spaces, namely $S^{k}(V)$ and $\Lambda^{k}(V)$.
Example When $k=2$, then $V^{\otimes 2}=S^{2}(V) \oplus \bigwedge^{2}(V)$
(Every bilinear form is the sum of a symmetric form and a skew-symmetric form)
For $k>2 ? \operatorname{dim} V^{\otimes k}=n^{k} \gg \operatorname{dim} S^{2}(V)+\operatorname{dim} \bigwedge^{2}(V)$

Other Symmetry Types of Tensors

The group $\mathrm{GL}(V) \times \mathfrak{S}_{k}$ acts on $V^{\otimes k}$.
Program: Decompose $V^{\otimes k}$ into a direct sum of subspaces that are irreducible under the action of $\mathrm{GL}(V) \times \mathfrak{S}_{k}$
We already have two such spaces, namely $S^{k}(V)$ and $\Lambda^{k}(V)$.
Example When $k=2$, then $V^{\otimes 2}=S^{2}(V) \oplus \bigwedge^{2}(V)$
(Every bilinear form is the sum of a symmetric form and a skew-symmetric form)
For $k>2 ? \operatorname{dim} V^{\otimes k}=n^{k} \gg \operatorname{dim} S^{2}(V)+\operatorname{dim} \bigwedge^{2}(V)$

Schur-Weyl Duality

Schur-Weyl Duality

As a module for $G L(V) \times \mathfrak{S}_{k}, \quad V^{\otimes k} \cong \bigoplus_{\lambda} E_{\lambda} \otimes F_{\lambda}$

Schur-Weyl Duality

As a module for $\mathrm{GL}(V) \times \mathfrak{S}_{k}, \quad V^{\otimes k} \cong \bigoplus_{\lambda} E_{\lambda} \otimes F_{\lambda}$

- λ runs over all partitions of k with at most $\operatorname{dim} V$ parts

Schur-Weyl Duality

As a module for $\mathrm{GL}(V) \times \mathfrak{S}_{k}, \quad V^{\otimes k} \cong \bigoplus_{\lambda} E_{\lambda} \otimes F_{\lambda}$

- λ runs over all partitions of k with at most $\operatorname{dim} V$ parts
- E_{λ} is an irreducible representation of $\mathrm{GL}(V)$, and only occurs in the decomposition paired with F_{λ}

Schur-Weyl Duality

As a module for $\mathrm{GL}(V) \times \mathfrak{S}_{k}, \quad V^{\otimes k} \cong \bigoplus_{\lambda} E_{\lambda} \otimes F_{\lambda}$

- λ runs over all partitions of k with at most $\operatorname{dim} V$ parts
- E_{λ} is an irreducible representation of $\mathrm{GL}(V)$, and only occurs in the decomposition paired with F_{λ}
- F_{λ} is an irreducible representation of \mathfrak{S}_{k}, and only occurs in the decomposition paired with E_{λ}

Schur-Weyl Duality

As a module for $\mathrm{GL}(V) \times \mathfrak{S}_{k}, \quad V^{\otimes k} \cong \bigoplus_{\lambda} E_{\lambda} \otimes F_{\lambda}$

- λ runs over all partitions of k with at most $\operatorname{dim} V$ parts
- E_{λ} is an irreducible representation of $\mathrm{GL}(V)$, and only occurs in the decomposition paired with F_{λ}
- F_{λ} is an irreducible representation of \mathfrak{S}_{k}, and only occurs in the decomposition paired with E_{λ}
trivial representation of $\mathfrak{S}_{k} \longleftrightarrow S^{k}(V)$
sgn representation of $\mathfrak{S}_{k} \longleftrightarrow \bigwedge^{k}(V)$

Schur-Weyl Duality

As a module for $\mathrm{GL}(V) \times \mathfrak{S}_{k}, \quad V^{\otimes k} \cong \bigoplus_{\lambda} E_{\lambda} \otimes F_{\lambda}$

- λ runs over all partitions of k with at most $\operatorname{dim} V$ parts
- E_{λ} is an irreducible representation of $\mathrm{GL}(V)$, and only occurs in the decomposition paired with F_{λ}
- F_{λ} is an irreducible representation of \mathfrak{S}_{k}, and only occurs in the decomposition paired with E_{λ}
trivial representation of $\mathfrak{S}_{k} \longleftrightarrow S^{k}(V)$
sgn representation of $\mathfrak{S}_{k} \longleftrightarrow \bigwedge^{k}(V)$
- $G L(V)$ acts on the first tensor factor in $E_{\lambda} \otimes F_{\lambda}$

Schur-Weyl Duality

As a module for $\mathrm{GL}(V) \times \mathfrak{S}_{k}, \quad V^{\otimes k} \cong \bigoplus_{\lambda} E_{\lambda} \otimes F_{\lambda}$

- λ runs over all partitions of k with at most $\operatorname{dim} V$ parts
- E_{λ} is an irreducible representation of $\mathrm{GL}(V)$, and only occurs in the decomposition paired with F_{λ}
- F_{λ} is an irreducible representation of \mathfrak{S}_{k}, and only occurs in the decomposition paired with E_{λ}
trivial representation of $\mathfrak{S}_{k} \longleftrightarrow S^{k}(V)$
sgn representation of $\mathfrak{S}_{k} \longleftrightarrow \bigwedge^{k}(V)$
- $G L(V)$ acts on the first tensor factor in $E_{\lambda} \otimes F_{\lambda}$
- \mathfrak{S}_{k} acts on the second tensor factor in $E_{\lambda} \otimes F_{\lambda}$

Schur-Weyl Duality

As a module for $\mathrm{GL}(V) \times \mathfrak{S}_{k}, \quad V^{\otimes k} \cong \bigoplus_{\lambda} E_{\lambda} \otimes F_{\lambda}$

- λ runs over all partitions of k with at most $\operatorname{dim} V$ parts
- E_{λ} is an irreducible representation of $\mathrm{GL}(V)$, and only occurs in the decomposition paired with F_{λ}
- F_{λ} is an irreducible representation of \mathfrak{S}_{k}, and only occurs in the decomposition paired with E_{λ}
trivial representation of $\mathfrak{S}_{k} \longleftrightarrow S^{k}(V)$
sgn representation of $\mathfrak{S}_{k} \longleftrightarrow \bigwedge^{k}(V)$
- $G L(V)$ acts on the first tensor factor in $E_{\lambda} \otimes F_{\lambda}$
- \mathfrak{S}_{k} acts on the second tensor factor in $E_{\lambda} \otimes F_{\lambda}$
- There are explicit operators (Young symmetrizers) that project on the subspaces E_{λ} and $E_{\lambda} \otimes F_{\lambda}$

Lots of interesting algebra, analysis, and combinatorics!

