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Part 1: Linear Algebraic Groups

Lecture 1. Classical Groups and Linear Algebraic Groups

Definition of a Linear Algebraic Group

Let GL(n,C) be the group of invertible n x n complex matrices, and let M, (C) be the algebra of
all n x n complex matrices. For y € M, (C) and 1 <i,j < n we write z;;(y) for the i, j entry in y.
A complex-valued function f on M, (C) is a polynomial function if

f(y) =p(z11(y), 712(y), - - s Ton(y))

where p e (C[xu, T12, .-, :rnn]

Definition: A subgroup G C GL(n,C) is a linear algebraic group if there is a set A of polynomial
functions on M, (C) so that

G ={g € GL(n,C) : f(g) =0forall f € A}.

General and Special Linear Groups

The general linear group GL(n,C) is a linear algebraic group. The special linear group SL(n,C)
consists of all matrices g € GL(n,C) with det(g) = 1. We shall call SL(n,C) a group of Type A,
where | =n — 1.

Orthogonal Groups

Let B be a nondegenerate symmetric bilinear form on C™. The orthogonal group relative to B is
O(C", B) = {g € GL(n,C) : B(gz,gy) = B(x,y) for z,y € C"}.

Let S be the matrix of the bilinear form: B(z,y) = 2!Sy. Then S is a symmetric, invertible matrix

and
g€ 0(C",B) <= ¢'Sg=3S. (1.1)

Proposition 1.1 Let B, B’ be nondegenerate symmetric bilinear forms on C". Then there exists
v € GL(n,C) such that O(C", B') = vO(C", B)y~L.

We call SO(C%, B) a group of type D; and SO(C?+1, B) a group of type B;.

Symplectic Groups

Let 2 be a nondegenerate skew symmetric bilinear form on C". Then n = 2] must be even. We
define the symplectic group relative to 2 as

Sp(C*, Q) = {g € GL(21,0) : Q(gx, gy) = Q(=,y) for z,y € C*'}.

Let R be the matrix of the bilinear form: Q(x,y) = 2! Ry. Then R is a skew-symmetric, invertible
matrix and
g €Sp(C%,Q) <= ¢g'Rg=R. (1.2)



Proposition 1.2 Let Q and € be nondegenerate skew symmetric bilinear forms on C?. Then
there exists v € GL(2l,C) such that Sp(C*, ') = 4Sp(C?, Q)y~L.

We call Sp(C%, Q) a group of type C.
The groups GL(n, C), SL(n,C), O(n,C), SO(n,C) and Sp(l,C) are called the classical groups.

Regular Functions on Linear Algebraic Groups

The group GL(V) is the principal open set {g € M, (C) : det(g) # 0} in the vector space M, (C).
Thus
AH(GL(V)) == (C[xlla T12y «+ «y Tnn, (det)_l]v

where {x;;} are the matrix coordinates relative to a basis for V.

Proposition 1.3 A subgroup G C GL(V) is a linear algebraic group if and only if G is a closed
subset of GL(V), relative to the Zariski topology.

A complex-valued function f on G is called regularif it is the restriction to G of a regular function on
GL(V). The set Aff(G) of regular functions on G is a commutative algebra over C under pointwise
multiplication. Define

Ig ={f € Af{(GL(V)) : f(G) = 0}.

The map f — f|g gives an algebra isomorphism
Aff(G) = Aff(GL(V))/Zg. (1.3)

If G, H are linear algebraic groups, then an (abstract) group homomorphism ¢ : G — H is regular
if ¢*(Aff(H)) C Aff(G). We say that G and H are isomorphic as algebraic groups if there exists a
regular homomorphism ¢ : G — H which has a regular inverse.

The set G x G carries the structure of an affine algebraic set, with the algebra of regular functions

AF(G x G) = Aff(G) @ AfE(G).

In this isomorphism, f’ @ f” € Aff(G) @ Aff(GQ) is identified with the function (g, h) — f'(g)f"(h)
on G xG.

Proposition 1.4 The maps p: G x G — G and v : G — G given by multiplication and inversion
are reqular. If f € Aff(G) then there exists an integer p and f!, f]' € Aff(G) fori=1,...,p, such

that
P

flgh) =" fi(g) f{'(h) for g,h € G. (1.4)

i=1
Furthermore, for fixed g € G the maps © — Lg(x) = gz and v — Ry(z) = zg from G — G are
regular.

If G ¢ GL(V), H C GL(W) are linear algebraic groups, then we make the group-theoretic direct

product K = G x H into an algebraic group by the natural block diagonal embedding into GL(V &
W) as the elements

_ 19 0
kz_lo h] ge G, heH.
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This embedding defines an isomorphism

Aff(K) 2 Afi(G) @ Aff(H).

Appendix: Algebraic Geometry for Lecture 1.

Affine Algebraic Sets and Regular Functions

Let V' be a finite-dimensional complex vector space. Let P(V) be the commutative algebra of
polynomial functions on V. A subset X C V is an affine algebraic set if there exist fi,..., fm €
P (V) such that

X={veV: fi(lv)=0fori=1,...,m}.

We define the affine ring of X to be the functions on X that are restrictions of polynomials on V:
AfE(X) = {flx : feP(V)}

We call these functions the regular functions on X. Define
Ix ={feP(V) : flx =0}.

Then Zx is an ideal in P(V), and Aff(X) = P(V)/Ix.

Theorem 1.5 (Hilbert basis theorem) LetZ C P(V) be an ideal. Then T is finitely generated:
there is a finite set of polynomials fi,..., fqg in T so that every g € T can be written as

g=qfi+ -+9gifa

for some choice of g1,...,94 € P(V).

Let a € X. Then
me = {f € Afl(X) : f(a) =0}

is a maximal ideal in Aff(X), since f — f(a) € m, for all f € Aff(X).

Theorem 1.6 (Hilbert Nullstellensatz) Let X be an affine algebraic set. If m is a mazimal
ideal in Aff(X) then there is a unique point a € X such that m = m,.

If A is an algebra with 1 over C, then Hom(A, C) is the set of all linear maps ¢ : A — C such that
#(1) =1 and ¢(a'a”) = ¢p(a’)p(a”) for all a’,a” € A (the multiplicative linear functionals on A).
When X is an affine algebraic set and A = Aff(X), then every x € X defines a homomorphism ¢,
by evaluation: ¢ (f) = f(z) for f € A.

Corollary 1.7 Let X be an affine algebraic set, and let A = Aff(X). The map v — ¢, is a
bijection between X and Hom(A,C).

Let X C V be an algebraic subset. If Y C X, then we say that Y is Zariski closed in X if Y is an
algebraic subset of V. Given 0 # f € Aff(X), the principal open subset of X defined by f is

X' ={xeX : f(z)£0}.



Lemma 1.8 The Zariski closed sets of X give X the structure of a topological space. The finite
unions of principal open sets X7, for 0 # f € Aff(X), are the non-empty open sets in this topology
(the Zariski topology).

Let V and W be finite-dimensional complex vector spaces. Suppose X C V and Y C W are
algebraic sets and f : X — Y. If g is a complex-valued function on Y define f*(g) to be the
function

f(g)(x)=g(f(z)) forze X.

We say that f is a regular map if f*(g) is in Aff(X) for all g € Aff(Y).
Let X be an affine algebraic subset of V', and let f € Aff(X), with f # 0. We make the principal
open set X/ into an affine algebraic set as follows: Define a map 1 : X/ — V x C by

P(a) = (2, f(2)7).
This map is injective, and we use it to define the structure of an affine algebraic set on X ¥ by
Aff(XT) ={goy : ge P(V xC)}.
Thus the regular functions on X7/ are the restrictions to X/ of the functions
p(x1, ..., xn, f71), where p € Clty,. .., thi1].

Here x4, ..., z, are linear coordinate functions on V.
Exercises for Lecture 1.

1. Show that the homomorphism C* x SL(n,C) — GL(n,C) given by (A, g) — Ag is surjective.
What is its kernel?

2. Consider the bilinear form Q(v, w) = det[vw] for v,w € C2.
(a) Show that 2 is skew-symmetric and nondegenerate.
(b) Show that g € GL(2, C) preserves €2 if and only if det(g) = 1.
Hence SL(2, C) = Sp(C?, Q).

3. Let A be in M,(C). Define G4 = {g € GL(n,C) : gAg" = A}. Set Asymm = %(A + A?),
Agew = %(A — At). Show that G4 = GAsymm NGy

skew *

4. Let A be a finite-dimensional algebra over C. This means that there is a multiplication map
w: AxA — A which is bilinear (it is not assumed to be associative). Define the automorphism
group of A to be

Aut(A) ={g € GL(A) : gu(X,Y) = u(gX,gY), for X,Y € A}.

Show that Aut(.A) is an algebraic subgroup of GL(A).



5. Let 2 be a nondegenerate skew-symmetric bilinear form on a finite-dimensional vector space

V. Define GSp(V, Q) to be all g € GL(V) for which there is a A € C* (depending on g) so
that

Qgz, gy) = A\Q(z,y) for all z,y € V.

(a) Show that the homomorphism C* x Sp(V,Q) — GSp(V, Q) given by (A, g) — Ag is
surjective. What is its kernel?

(b) Show that GSp(V, Q) is Zariski-closed in GL(V') and is thus a linear algebraic group.



Lecture 2. Representations, Connected Groups

Let G be a linear algebraic group. A representation of G is a pair (p, V), where V is a complex
vector space (not necessarily finite-dimensional), and p : G — GL(V) is a group homomorphism.
We say that the representation is regular if dim V' < oo and the functions on G

g~ (p(g)v,v"), (2.1)

which we call matriz coefficients of p, are regular, for all v € V and v* € V*.
For B € End(V) define the function ff, on G by

f5(9) = trv(p(g)B)

Then (p, V) is regular if and only if f% is a regular function on G, for all B € End(V). We set
E? ={f% : Be€End(V)}.

(the space of representative functions associated with p).

If (p,V) is a regular representation and W C V is a linear subspace, then we say that W is G-
invariant if p(g)w € W for all g € G and w € W. In this case we obtain a representation o of G
on W by restriction of p(g). We also obtain a representation 7 of G' on the quotient space V/W by
setting 7(g)(v+ W) = p(g)v+ W.

If (p,V) and (r,WW) are representations of G, then we say that they are equivalent if there is a
linear bijection T : V' — W so that

Tp(g)T ' =17(g9) forall g €G.

In this case we write p = 7.
We say that a representation (p, V) with V' # {0} is reducible if there is a G-invariant subspace
W C V such that W # {0} and W # V. If not such W exists, we call the representation irreducible.

Examples

1. Let G C GL(V) be a linear algebraic group. By definition of Aff(G), the representation p(g) = g
on V is regular. We call p the defining representation of G.

2. Let (p,V) be a regular representation. Define the contragredient (or dual) representation
(p*,V*) by p*(g)v* = v* o p(g~"). Then
EF" = *EP

where (0*f)(z) = f(z7!) for f € AfF(G).
3. Let (p,V) and (o, W) be regular representations of G. Define the direct sum representation
pHoonVOW by

(p@o)(g)(vew)=p(g)vdo(gw

forge G,veV and w € W. Then
EPY — EP 4 E°.



4. Let (p,V) and (o, W) be regular representations of G. Define the tensor product representation
p®conV W by

(p@o)(g)(v@w)=p(g)v®o(g)w
forge G,v eV and w € W. Then

Er®? = Span(E” - E7)

5. Consider the representations L and R of G on Aff(G) given by left and right translations:
L@)f(y) = fa™"y), R@)f(y) = f(ya) for | € ARK(G).
These representations are locally regular: for any regular function f on G,
V(f) = Span{L(z)R(y)f : =,y € G}
is a finite-dimensional subspace of Aff(G) which is invariant under R(G) and L(G).
Proposition 2.1 Suppose that G and H are algebraic subgroups of GL(n,C), and H C G. Then
H={9€G: R(9)Iy CIu}.

Connected Groups

Theorem 2.2 Let G be a linear algebraic group. Then G contains a unique subgroup G° which is
closed, irreducible, and of finite index in G. Furthermore, G° is a normal subgroup and its cosets
in G are both the irreducible components and the connected components of G.

Corollary 2.3 A linear algebraic group is (Zariski) connected if and only if it is irreducible.

Appendix: Algebraic Geometry for Lecture 2.

Irreducible Components of an Algebraic Set

Let V be a finite-dimensional complex vector spaces. Let X C V be a nonempty algebraic set. We
say that X is reducible if there are nonempty closed subsets X; # X, i = 1,2 such that X = X;UX>.
We say that X is irreducible if it is not reducible.

Lemma 2.4 An algebraic set X is irreducible if and only if Tx is a prime ideal (Aff(X) has no
zero divisors).

Lemma 2.5 Let X be an irreducible algebraic set. Every nonempty open subset of X is dense in
X. Furthermore, if Y C X and Z C X are nonempty open subsets, then Y N Z is nonempty.

Lemma 2.6 If X is an irreducible algebraic set then so is X7, for any 0 # f € Aff(X).

Lemma 2.7 Let V and W be finite-dimensional vector spaces. Suppose X CV andY C W are
wrreducible algebraic sets. Then X XY is an irreducible algebraic set in V & W.
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Lemma 2.8 Suppose f : X — Y is a reqular map between affine algebraic sets. Suppose X is
irreducible. Then f(X) is irreducible.

Lemma 2.9 If X is any algebraic set, then there exists a finite collection of irreducible closed sets
X, such that
X=X1U---UX, and X; ¢ X; fori# j. (2.2)

Furthermore, such a decomposition (2.2) is unique up to a permutation of the indices, and is called
an incontractible decomposition of X. The sets X; are called the irreducible components of X .

Exercises for Lecture 2.

1. Let w be a nondegenerate skew-symmetric bilinear form on C?'. Show that det(g) = 1 for all
g € Sp(C%,w). (Hint: Consider w to be an element of A?(C2)* and let Q be the I-fold wedge
power of w. Show that Q # 0, and hence CQ = A% (C?)*.)

2. Let G = GL(n,C) and let p be the defining representation of G on V = C".

(a) Define a representation 7 of G on M,,(C) by n(g)B = gBg® for ¢ € G and B € M,(C).
Show that (m, M,,(C)) is equivalent to (p® p,V ® V). (Hint: Let B = [b;;] € M,(C) be an
n x n matrix. Set T'(B) = 371", bije; ® ej, where {e;} is the standard basis for C". Show
that p®%(¢g)T(B) = T(9Bg").)

(b) Describe the action of G on the symmetric and the skew-symmetric two-tensors in terms
of matrices as in part (a).

3. Let (p, V) be a regular representation of the linear algebraic group G.
(a) Prove that (p, V) is irreducible if and only if the dual representation (p*, V*) is irreducible.
(Hint: Let E C V be a linear subspace. Show that E is G-invariant if and only if E+ C V*
is G-invariant.)
(b) Assume that (p,V) is irreducible. Fix v* € V* with v* # 0. For v € V let ¢, € Aff(G)
be the representative function ¢,(g) = (v*, p(g)v). Let E ={p, : v€V}andlet T:V — E
be the map Tv = ¢,. Prove that T is a bijective linear map and that T'p(g) = R(g)T for all
g € G, where R(g)f(x) = f(zg) for f € Aff(G). (Hint: To prove that T is injective, use (a)
to show that p*(G)v* spans V*.)
Thus every irreducible regular representation of G is equivalent to a subrepresentation of
(R, Aff(@)).

4. Let A be a finite-dimensional associative algebra with unit 1. Let G be the set of all g € A
such that g is invertible in A.
(a) Let f: A — C be given by f(a) = det(L,), where L, € End(.A) is the operator of left
multiplication by a. Show that G is the principal open set A7.
(b) Define ® : G — GL(A) by ®(9) = Ly. Show that ®(G) is a closed linear algebraic
subgroup in GL(.A) and that ®(G) is isomorphic with A/ as an algebraic subset. (Hint: To
show that ®(G) is closed, prove that T' € End(.A) commutes with all the operators of right
multiplication by elements of A if and only if T'= L, for some a € A.)
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Lecture 3. Subgroups and Homomorphisms
Group Structures on Affine Varieties

Subgroups of Algebraic Groups
Let G € GL(V) be a linear algebraic group.

Lemma 3.1 Let K be a subgroup of G. Then the closure (in the Zariski topology) K of K is a
subgroup, and hence an algebraic subgroup of G. Furthermore, if K contains a mon-empty open
subset of K then K is closed.

Regular Homomorphisms of Algebraic Groups

Theorem 3.2 Let ¢ : G — H be a regular homomorphism of linear algebraic groups. Then
F = Ker(¢) is a closed subgroup of G, and ¢(G) is a closed subgroup of H. Hence ¢(G) is an
algebraic group. Furthermore, $(G°) = ¢(G)°.

Corollary 3.3 Let ¢ : G — H be a reqular homomorphism of linear algebraic groups. Set K =
&(G). Let v : K — H be the inclusion map and let ¢ : G — K be the homomorphism ¢, viewed
as having image K. Then v is reqular and injective, ¢ is regular and surjective, and ¢ factors as

=109,

Group Structures on Affine Algebraic Sets

Theorem 3.4 Let X be an affine algebraic set. Assume that X has a group structure such that
x,y — 2y and x — x = are reqular mappings. Then there exists a linear algebraic group G and a
group isomorphism ® : X — G such that ® also an isomorphism of affine algebraic sets.

Theorem 3.5 Let G and H be linear algebraic groups. Suppose o : G — H is a bijective reqular
homomorphism. Then o' : H — G is reqular, and hence G = H as algebraic groups.

Appendix: Algebraic Geometry for Lecture 3.

Dominant Regular Maps of Algebraic Sets

Let X,Y be affine algebraic sets. A map f: X — Y is called dominant if it is regular and f(X) is
dense in Y. This is equivalent to the injectivity of f*: Aff(Y) — Aff(X).

Theorem 3.6 Assume that X,Y are irreducible affine algebraic sets and f : X — Y is a dominant
map. Let M C X be a nonempty open set. Then f(M) contains a nonempty open subset of Y.

This is proved using the following result on extensions of homomorphisms. Let A be an algebra
with 1 over C. Given 0 # a € A, we set

Hom(A,C)* = {¢ € Hom(A,C) : ¢(a) # 0}.

12



Theorem 3.7 Let B be a commutative algebra over C. Assume 1 € B and B has no zero divisors.
Suppose that A C B is a subalgebra such that B = A[by,...,b,] for some elements b; € B. Then
given 0 # b € B, there exists 0 # a € A such that every ¢ € Hom(A, C)?® extends to 1) € Hom(B, C)°.

Corollary 3.8 Let B be a finitely generated commutative algebra over C having no zero divisors.
Given 0 # b € B, there exists 1 € Hom(B, C) such that ¥(b) # 0.

Theorem 3.9 Let f: X — Y be a regular map between affine algebraic sets. Then f(X) contains
an open subset of f(X).

Rational Maps

Let A be a commutative ring with 1 and without zero divisors. Then A is embedded in its quotient
field Quot(A). The elements of this field are the formal expressions f = g/h, where g,h € A and
h # 0, with the usual algebraic operations on fractions. Let X be an irreducible algebraic set. The
algebra A = Aff(X) has no zero divisors, so it has a quotient field. We denote this field by Rat(X)
and call it the field of rational functions on X.
We may view the elements of Rat(X) as functions, as follows. If f € Rat(X), then we say that f
is defined at a point x € X if there exist g, h € Aff(X) with f = g/h and h(z) # 0. In this case we
set f(x) = g(x)/h(z). The domain Dy of f is the subset of X at which f is defined. It is a dense
open subset of X, since it contains the principal open set X"
A map f from X to an algebraic set Y is called rational if ¢ o f is a rational function on X for all
¢ € Aff(Y). Suppose Y C C" and y; is the restriction to Y of the ith linear coordinate function.
Set fi; = y; o f. Then f is rational if and only if f; € Rat(X) for i = 1,...,n. The domain of a
rational map f is defined as

Dr= () Deor.

GEAF(Y)

By Lemma 2.5 Dy = (;L; Dy,or is a dense open subset of X.

Lemma 3.10 Suppose X is irreducible and f : X — Y is a rational map. If Dy = X then f is a
regular map.

Let A C B be a subalgebra, and identify Quot(A) with the subfield of Quot(B) generated by A.
If A = Aff(X) for an irreducible variety X, and B = Aff(X/) for some non-zero f € A, then
B = A[b] C Quot(A), where b= 1/f. In this example, every 1) € Hom(B, C) such that 1(b) # 0 is
given by evaluation at a point z € X/, and hence 1 is uniquely determined by its restriction to A.

Theorem 3.11 Let B be a finitely generated algebra over C with no zero divisors. Let A C B be
a finitely generated subalgebra. Assume that there exists a nonzero element b € B so that every
element of Hom(B, C)° is uniquely determined by its restriction to A. Then B C Quot(A).

Suppose maps f, g and h satisfy the commutative diagram

h

M P

f g
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Then h is constant on the fibers of f, since f(m) = f(m') implies h(m) = g(f(m)) = h(m’).
Furthermore, if f is surjective, then g is uniquely determined by f and h. Conversely, given f
and h satisfying these conditions, we can ask for the regularity properties of the map g such that
h = go f. We weaken the fiber and surjectivity conditions with the aim of obtaining a rational

map g.

Theorem 3.12 Let M, N and P be irreducible affine varieties, and let f : M — N andh : M — P
be dominant regular maps. Assume that there is a non-empty open subset U of M so that f(m) =
f(m') implies h(m) = h(m') for m,m’ € U. Then there exists a rational map g : N — P such that

h=gof.
Exercises for Lecture 3.

1 =z
lo 11, zeC

and let I' be the subgroup of N consisting of the matrices with z € Z an integer. Prove that
I' is Zariski-dense in N.

1. Let N be the group of matrices

2. Define a multiplication y on C3 by
w1, w2, 3], (Y1, y2,y3]) = [T1 + Y1, T2 + Yo, T3 + Y3 + T1Y2]

(a) Prove that u satisfies the group axioms and that the inversion map is regular.

(b) Let N = (C3, 1) be the linear algebraic group with regular functions C[z1, z2, 23] and
multiplication . Let R(y)f(z) = f(u(x,y)) be the right translation representation of N on
Aff(N). Let V C C[x1, z2, z3] be the space spanned by 1, 1, x9, and z3. Show that V is
invariant under R(y), for y € N.

(c) Let p(y) = R(y)|y for y € N. Calculate the matrix of p(y) relative to the basis
{1, 21, 2,23} of V. Prove that p : N — GL(4,C) is injective, and that N = p(N) as
algebraic groups.

3. Define a multiplication y on C* x C by
w21, z2l, [y, v2l) = [z1y1, 22 + 2132

(a) Prove that u satisfies the group axioms and that the inversion map is regular.

(b) Let S = (C* x C, u) be the linear algebraic group with regular functions Clzy, 27", z2]
and multiplication . Let R(y)f(x) = f(u(z,y)) be the right translation representation of S
on Aff(S). Let V' C Aff(S) be the space spanned by the functions x; and 3. Show that V is
invariant under R(y), for y € S.

(c) Let p(y) = R(y)|v for y € S. Calculate the matrix of p(y) relative to the basis {z1, x2} of
V. Prove that p: S — GL(2,C) is injective, and that S = p(S) as an algebraic group.

14



Lecture 4. Lie Algebra of an Algebraic Group

Left-invariant Vector Fields

Let G = GL(V). For any A € End(V), f € Aff(G) and = € G, define a linear transformation X 4
on Aff(G) by

Xaf(z) = %f(x([—i—tA))\t:O, for f € Aff(G), z € G.

Fix a basis {e1,...,e,} for V, let E;; be the corresponding elementary matrices and let {z;;} be
the matrix coordinates. Define 0/0z;; to be the vector field
0

d
a:]Cijf(%) = af(x + tEij)|t=0

on M, (C). Then
0

%f(x) (4.1)

d n
XEZ]f(JZ) = af(x + thij)‘t:O = me‘
r=1
If A=3, ;a;E;j with a;; € C, then X4 is the vector field
XA = ZainEi]..
i3
The operator X4 has the following properties:
Xa(fife) = (Xafi)f2 + fi(Xafe) for fi, f2 € Af(G)
(the product rule for differentiation) and
Xa(L(g)f) = L(g)(Xaf) for f € Afl(G), g€ G,

where L(g)f(y) = f(g~'y) is the left representation of G on Aff(G). These two properties say that
X 4 is a left-invariant vector field on G.

Lemma 4.1 Let G = GL(V). If A, B € End(V) then
(X4, XB] = X|a,8)-
Furthermore, every left-invariant vector field Y on G is of the form X s for a unique A € End(V).
For C € End(V') we have define a function fc on G by
fe(g) =tr(gC), for g € GL(V).

The functions fo together with (det)~! generate the algebra Aff(G), as C ranges over End(V). If
Y is a vector field on G, then

(Ydet™)(g) = —det(g) (Y det)(g).

Since det(g) is a polynomial in the linear functions { fo : C' € End(V)}, it follows from the product
rule for derivations that Y is completely determined by its action on the functions fe.

We define Lie(GL(V)) = End(V), viewed as a Lie algebra with Lie bracket [4, B] = AB — BA as
above. If G C GL(V) is an algebraic subgroup, we define

Lie(G) ={A € End(V) : Xaf € Zg forall f € Ig}.
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Proposition 4.2 Let G be an algebraic subgroup of GL(V). If A,B € Lie(G) and A € C, then
A+ AB and [A, B] € Lie(G).

Theorem 4.3 Let G be a linear algebraic group. For every g € G the map A — (Xa)4 is a linear
isomorphism from Lie(G) onto T(G)y. Hence G is a smooth algebraic set and dim Lie(G) = dim G.

Lie Algebras of the Classical Groups

Lemma 4.4 Suppose G C GL(n,C) is a linear algebraic group. Let z — ¢(z) be a rational map
from C to M, (C) such that ¢$(0) = I and ¢(z) € G for all z € C except possibly for a finite set of
nonzero complex numbers. Then the matriz A = (d/dz)¢(z)|.=0 is in Lie(G).

Special Linear Group
Let G = SL(n,C). Then
Lie(G) = sl(n,C) = {A € M,(C) : tr(A) = 0}.
Orthogonal and Symplectic Groups
Let I" € M,,(C) be nonsingular. Let
Gr = {g € GL(n,C) : I"1¢'Tg = I}.

be the subgroup of GL(n, C) which preserves the nondegenerate bilinear form x'T'y on C".
Lemma 4.5 Suppose A € M, (C) and det(I—A) # 0. Then c(A) € Gr if and only if A'/T+T A = 0.
Theorem 4.6 The Lie algebra gr = Lie(Gt) consists of all A € M, (C) such that

AT +TA=0. (4.2)

Suppose n = 2! is even. We denote by sg the [ x [ matrix

[0 0 --- 0 17
0 0 1 0
0= : :
0 1 0 0
10 00

with 1 on the skew diagonal and 0 elsewhere. Set

1 0 s _ 0 so
J+_lso 0]’ J__[—SO 0]’

and define the bilinear forms
B(z,y) = (v, Jyy),  Qz,y) = (v,J-y) forz,yeC™ (4.3)

The form B is nondegenerate and symmetric, and the form €2 is nondegenerate and skew symmetric.
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Corollary 4.7 The Lie algebra so(C?, B) of SO(C%, B) consists of all matrices

A:[a bt ]
Cc —S0a°Sp

where a € gl(l,C), and b, c are | x | matrices such that
b= —sgbso, ¢t = —spes
(b and ¢ are skew symmetric around the skew diagonal).

Corollary 4.8 The Lie algebra sp(C?, Q) of Sp(C?, Q) consists of all matrices

A:[a bt ]
Cc —S0a°Sp

where a € gl(l,C), and b, c are | x | matrices such that
b= spbsg, et = speso
(b and ¢ are symmetric around the skew diagonal).
Corollary 4.9 The Lie algebra so(C**!, B) of SO(C**!, B) consists of all matrices
a w b
A= | u 0 —wts
c —sout —spatsg
where a € gl(l,C), b, c are | x | matrices such that
b= —sgbso, b = —speso

(b and ¢ are skew symmetric around the skew diagonal), w is a l x 1 matriz (column vector), and
u s an 1 X | matriz (row vector).

17



Appendix: Algebraic Geometry for Lecture 4.

Tangent Spaces

Suppose X C C" is an algebraic set. If x € X, then a tangent vector to X at x is a linear map
v : Aff(X) — C such that

v(fg) = v(f)g(x) + f(x)v(g) (4.4)

for all f,g € Aff(X). We call the set of all tangent vectors at x the tangent space of X at x. Let
m, C Aff(X) be the maximal ideal of all functions which vanish at . Then f — f(x) € m, for any
f e Aff(X), and v(f) = v(f — f(x)). Hence v is determined by its restriction to m;. On the other
hand, by (4.4) we see that v(m2) = 0, so v naturally defines an element @ € (m,/m2)*. This gives
a natural isomorphism

T(X)s = (my/m3)". (4.5)

Vector Fields

A Lie algebrais a vector space g with a bilinear multiplication (called the Lie bracket or commutator)
gxg—g Ty~ [Ty
such that [z,y] = —[y, ] (skew-symmetry) and
[z, [y, 2]] = [[=, y], 2] + [y, [z, 2]] (Jacobi identity)

for all z,y,z € g. A derivation of an algebra A is a linear map D : A — A such that D(ab) =
D(a)b+aD(b). If A is commutative and D, D’ are derivations of A, then any linear combination of
D, D' with coefficients in A is a derivation, and the commutator [D, D' = DD'—D'D is a derivation.
Thus the derivations of A form a Lie algebra Der(A) and an A-module. When A = Aff(X) where
X is an algebraic set, a derivation of A is called a wvector field. We denote by Vect(X) the Lie
algebra of all vector fields on X.

Given L € Vect(X) and x € X, we define L, f = (Lf)(x) for f € Aff(X). Then L, € T(X),, by
the definition of tangent vector. Conversely, if we have a correspondence z — L, € T(X), such
that the functions x +— L, (f) are regular for every f € Aff(X), then L is a vector field on X.

Dimension and Smoothness of an Affine Algebraic Set

Let X be an irreducible affine algebraic set. The algebra Aff(X) is finitely generated over C and has
no zero divisors. The following result (the Noether Normalization Lemma) describes the structure
of such algebras:

Lemma 4.10 Let k be a field and B = k[x1, ..., z,] a finitely generated commutative algebra over
k without zero divisors. Then there exist y1,...,y, € B such that

(1) {y1,...,yr} is algebraically independent over k;

(2) Every b € B is integral over the subring kly1, . .., y|.

The integer r is uniquely determined by properties (1) and (2), and is called the transcendence
degree of B over k. A set {y1,...,y,} with properties (1) and (2) is called a transcendence basis
for B over k.
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Let X C C™ be an algebraic set. We define its dimension dim X as follows: When X is irreducible,
we let dim X be the transcendence degree of the algebra Aff(X). If X is reducible, we let dim X
be the maximum of the dimensions of the irreducible components of X. Let a € X. Then

T(X), = {0 € T(C"), : 9(Zx) = 0}

Let {fi,..., fr} be a generating set of polynomials for the ideal Zx and set u; = 9(x; — a;). Then
0 € T(X), if and only if

9 Ofori=1,.. .r (4.6)
j

S,
<) Oy
7=1

Hence dimT'(X), = n —rank(J(a)), where J(a) is the r x n Jacobian matrix [0f;(a)/0x;].
If X is irreducible, we define

m(X) = CIC%I)I(I dim 7'(X),.

Let Xo ={z € X : dimT(X), = m(X)}. The points of Xy are called smooth. Since these are the
points at which the matrix J defined above has maximum rank d = n —m(X), Xy is Zariski dense
in X. If Xg =X then X is said to be smooth.

If X is a reducible algebraic set with irreducible components X;, then we say that X is smooth if
each X; is smooth. We define m(X) = max; m(X;) in this case.

Theorem 4.11 Let X be an algebraic set. Then m(X) = dim X.

Exercises for Lecture 4.

1. Show that the homomorphism C* x SL(n,C) — GL(n,C) given by (A, g) — Ag is surjective.
What is its kernel?

2. Consider the bilinear form Q(v, w) = det[vw] for v,w € C2.
(a) Show that © is skew-symmetric and nondegenerate.
(b) Show that g € GL(2, C) preserves €2 if and only if det(g) = 1.
Hence SL(2,C) = Sp(C?, Q).

3. Let A be in M,(C). Define G4 = {g € GL(n,C) : gAg" = A}. Set Asymm = 3(A + A?),
Agew = %(A — At). Show that G4 = GAsymm NGy

skew *

4. Let A be a finite-dimensional algebra over C. This means that there is a multiplication map
w: AxA — A which is bilinear (it is not assumed to be associative). Define the automorphism
group of A to be

Aut(A) ={g € GL(A) : gu(X,Y) = u(gX,gY), for X,Y € A}.

Show that Aut(.A) is an algebraic subgroup of GL(A).
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5. Let 2 be a nondegenerate skew-symmetric bilinear form on a finite-dimensional vector space

V. Define GSp(V, Q) to be all g € GL(V) for which there is a A € C* (depending on g) so
that

Qgz, gy) = A\Q(z,y) for all z,y € V.

(a) Show that the homomorphism C* x Sp(V,Q) — GSp(V, Q) given by (A, g) — Ag is
surjective. What is its kernel?

(b) Show that GSp(V, Q) is Zariski-closed in GL(V') and is thus a linear algebraic group.
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Lecture 5. Lie Algebra Representations
Adjoint Representation
Differential of a Regular Representation

Theorem 5.1 Let G be a linear algebraic group, and let (w,V) be a regular representation of G.
There is a unique linear map dr : g — End(V') such that

Xa(feom)(I) = famayc(I) for all A€ g, C € End(V). (5.1)
This map is a Lie algebra homomorphism:
dr([A, B]) = [dn(A),dr(B)] for A,B € g.
Furthermore, for f € Aff(GL(V)) and A € Lie(G),

Xa(fom) = (Xarayf)om. (5.2)

We call dr the differential of the representation 7.

Examples

1. Let 7 be the defining representation of G C GL(n,C). Then dr(A) = A, for A € g.

2. Let (m, V) be a regular representation of G. For dual representation (7*, V*) we have

dr*(A) = —(dr(A))" for A € g. (5.3)

3. Let (71, V1) and (mg, V) be regular representations of G. Let m = m @ m be the direct sum
representation on V = V; @ V5. Then

dr(X) = dmi(X) & dma(X).

4. Let (w1, V1) and (w9, V2) be regular representations of G and let # = m; ® mo be the tensor
product of the representations on V = V; ® V5. Then

dr(X) = dm(X) ® I + I @ dma(X). (5.4)

Theorem 5.2 Suppose G is a linear algebraic group with Lie algebra g. Let (mw, V) be a regular
representation of G.

(1) Suppose W C V is a linear subspace such that w(g)W C W for all g € G. Then dn(A)W C W
for all A € g.

(2) Assume that G is connected. If W C V is a linear subspace such that dm(X)W C W for all
X € g then w(g)W C W for all g € G.

Proposition 5.3 If 7 : G — H is a regular homomorphism, then dn(Lie(G)) C Lie(H) and dm
is a Lie algebra homomorphism. Furthermore, if K is a linear algebraic group and p : H — K is
another regular homomorphism, then d(pom) = dpodr. In particular, if G = K and p o is the
tdentity map, then dp o dm = identity, so that isomorphic linear algebraic groups have isomorphic
Lie algebras.
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Corollary 5.4 Suppose G and H are algebraic subgroups of GL(n,C).

(1) If G C H, then Lie(G) C Lie(H).

(2) If G C H and (7,V) is a regular representation of H, then the differential of m|q is dr|pie(c)-
(3) Lie(GN H) = Lie(G) N Lie(H).

Proposition 5.5 Let G be a connected linear algebraic group with Lie algebra g. Suppose o : G —
GL(n,C) is a regular representation and H C GL(n,C) is a linear algebraic subgroup with Lie
algebra b such that do(g) C h. Then o(G) C H. In particular, if H is connected and do(g) = b,
then o(G) = H.

Differential of the Adjoint Representation

Let G be a linear algebraic group.
Lemma 5.6 Let A € Lie(G) and g € G. Then gAg~! € Lie(G).

Define Ad(g)A = gAg~! for g € G and A € Lie(G). Then by Lemma 5.6, Ad(g) : Lie(G) — Lie(G).
The representation (Ad, Lie(G)) is called the adjoint representation of G. For A, B € Lie(G) we

have
Ad(g)[A, B] = [Ad(g)A, Ad(g) B],

Thus Ad : G — Aut(Lie(G)).

Theorem 5.7 Let g = Lie(G). The differential of the adjoint representation of G is the represen-
tation ad : g — End(g) given by

ad(A)(B) = [A, B] for A,B € g. (5.5)
Furthermore, ad(A) is a derivation of g, and hence ad(g) C Der(g).

Lemma 5.8 Let G be a closed subgroup of the linear algebraic group H. Denote the adjoint rep-
resentations of G and H by Adg and Adg. Then

Adg(9)X = Adg(9)X, for g € G, X € Lie(G). (5.6)

Appendix: Algebraic Geometry for Lecture 5.

Differential of a Regular Map

Let X,Y be algebraic sets and ¢ : X — Y a regular map. Then the induced map ¢* : Aff(Y) —
Aff(X) is an algebra homomorphism. If v € T'(X), then the linear functional f — v(¢*f), f €
Aff(Y), is a tangent vector at y = ¢(x) that we denote by d¢,(v). At each point z € X we thus
have a linear map

dog : T(X)e = T(Y) p(a)

which we call the differential of ¢ at x.
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Differential Criterion for Dominance of a Map

Proposition 5.9 Let X,Y be affine algebraic sets and ¢ : X — Y a reqular map. Assume Y is
irreducible and dimY = m. Suppose there exists an algebraically independent set {u1,...,um} C
AfE(Y') such that the set

{V*u1, ..., v uy} C Aff(X)
is also algebraically independent. Then (X)) is dense in Y .

Corollary 5.10 Let X C Y with X,Y irreducible affine algebraic sets. Suppose X is closed in'Y
and dim X =dimY. Then X =Y.

Theorem 5.11 Let X,Y be irreducible affine algebraic sets andp : X — Y a regular map. Suppose
there exists a smooth point p of X such that ¥ (p) is a smooth point of Y and
dipp 1 T(X)p — T(Y)Iﬁ(p)
is bijective. Then (X)) is dense in'Y'.
Lemma 5.12 Let X C C" be closed and irreducible and let p € X be a smooth point of X. Then

there ewists a open subset U C X with p € U and regular maps w; : U — C" for j =1,...,m =
dim X such that

T(X)y = @(ij(q)
j=1
forallqe U.

Corollary 5.13 Let X be an irreducible affine algebraic set. Let K(X) = Quot(Aff(X)) be the
field of rational functions on X. Suppose f € K(X) and Df =0 for all D € Der(K(X)). Then f
s constant.

Exercises for Lecture 5.

1. Let G and H be linear algebraic groups. Suppose ¢ : G — H is a surjective regular homo-
morphism such that Ker(¢) is finite. Prove that d¢ : Lie(G) — Lie(H) is an isomorphism.
(Hint: Prove that dim G = dim H.)

2. Let Q be a nondegenerate skew-symmetric form on C?, and let G = GSp((CQZ,Q) be the
group introduced in the Exercises for Lecture #1. Find Lie(G). (Hint: Use the surjective
homomorphism C* x Sp(C%, Q) — G and the previous exercise. )

3. Let G be a linear algebraic group and let g = Lie(G). Let (m, V) be a regular representation
of G.

(a) Let B be a G-invariant bilinear form on V. Show that B is g-invariant. (Hint: Consider
the representation of G on V* ® V*.)

(b) Let (o, W) be another regular representation of G. Set

Homg(V,W) = {T € Hom(V,W) : Tw(g)=0(g)T for all g € G}
Homg(V,W) = {T € Hom(V,W) : T'dr(A) = do(A)T for all A € g}.
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Show that Homg(V, W) C Homg(V, W) and that equality holds if G is connected. (Hint:
Consider the representation V* ® W.)

(c) Show that (a) is a special case of (b).
. Let G be a linear algebraic group. Let Int be the representation of G on Aff(G) given by

Int(g)f(z) = f(g twg) for f € Aff(Q) (thus Int(g) = L(g)R(g)). Assume that H is a Zariski
closed normal subgroup of G.

(a) Let f € Zp. Prove that there is a finite-dimensional subspace V' C Z g so that f € V and
Int(g)V C V.

(b) Set g = Lie(G) and h = Lie(H). Prove that Ad(G)h C h. (Hint: Use (a) to show that
R(9)XAR(g) Ty C Iy forall A€ handall g € G.)

(c) Prove that [g,h] C b, and hence b is an ideal in g. (Hint: By (b), b is an Ad(G)-invariant
subspace of g.)
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Lecture 6. Chevalley-Jordan Decomposition
Quotient Groups

Nilpotent and Unipotent Matrices

A matrix A € M, (C) is nilpotent if A¥ = 0 for some positive integer k. A linear transformation
u € M,(C) is called unipotent if w — I is nilpotent.
Let A € M, (C) be nilpotent. Then A™ = 0 and we define

n—1

1
epr:ZEAk:I—i-Y,
k=0 """

1

WA”_l is also nilpotent. Hence exp A is unipotent. If u = I+Y
n—1)!

1
WhereY:A+§A2+...+

is unipotent set
n—1 (_1)k;+1

logu = Z

k=1

Yk,

The exponential function is a bijective polynomial map from the nilpotent elements in gl(n, C) onto
the unipotent elements in GL(n, C), with polynomial inverse u — logu.

Lemma 6.1 (Taylor’s Formula) Suppose A € M,,(C) is nilpotent and f is a reqular function on
GL(n,C). Then there exists an integer k so that (X4)*f =0, and

k—1

flespA) = Y- —(Xa)" (D) (6.1)

m=0

Theorem 6.2 Let G C GL(n,C) be a linear algebraic group.

(1) Let A € M, (C) be a nilpotent matriz. Then A € Lie(G) if and only if exp A € G.

(2) Suppose A € Lie(G) is a nilpotent matriz and (p,V) is a reqular representation of G. Then
dp(A) is a nilpotent transformation on V, and

p(exp A) = expdp(A). (6.2)
Semisimple One-Parameter Groups
Let V be a vector space and T' € End(V'). For A € C let
V(T,\)={veV :Tv= v}
We say that T is a semisimple transformation if V.= @, V(T ).

Lemma 6.3 Let ¢ : C* — GL(n,C) be a reqular homomorphism. For p € Z let E, = {v € C":

¢(z)v = zPv}. Then
c"=PE, (6.3)

PEZ

and hence ¢(z) is a semisimple transformation. Conversely, given a direct sum decomposition (6.3)
of C", define ¢p(z)v = 2Pv for z € C*, v € E,. Then ¢ is a reqular homomorphism.
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Jordan-Chevalley Decomposition

Theorem 6.4 Let G C GL(n,C) be a linear algebraic group and set g = Lie(G).
(1) If A€ g and A= S+ N is its additive Jordan decomposition, then S, N € g.
(2) If g € G and g = su is its multiplicative Jordan decomposition, then s,u € G.

Theorem 6.5 Let G C GL(n,C) be a linear algebraic group with Lie algebra g. Suppose (p,V) is
a regular representation of G.

(1) IfA€ g and A= S+ N is its additive Jordan decomposition, then dp(S) is semisimple, dp(N)
is nilpotent, and dp(A) = dp(S) +dp(N) is the additive Jordan decomposition of dp(A) in End(V).
(2) If g € G and g = su is its multiplicative Jordan decomposition in G, then p(s) is semisimple,
p(u) is unipotent, and p(g) = p(s)p(u) is the multiplicative Jordan decomposition of p(g) in GL(V).

From theorems 6.4 and 6.5 we see that every element g of G has a semisimple component gs and a
unipotent component g, which are independent of the embedding G C GL(V'), such that g = g5g,.
Likewise, every element Y € g has a semisimple component Yy and a nilpotent component Y,, which
are independent of the embedding g C gl(V'), such that Y =Y, + Y,,.

We denote the set of all semisimple elements of G as G5 and the set of all unipotent elements as
G,. Likewise, we denote the set of all semisimple elements of g as g, and the set of all nilpotent
elements as g,,. Since T' € M,,(C) is nilpotent if and only if 7" = 0, we have

g, =9N{T € M,(C) : T" =0}
G,=Gn{ge€ GL(n,C) : (I —g)" =0}.

Thus g, is an algebraic subset of End(V') and G, is an algebraic subset of GL(V'). It follows from
Theorem 6.2 that the map N +— exp(N) from g, to G,, is an isomorphism of algebraic sets.

Normal Subgroups and Quotient Groups

Suppose G is a linear algebraic group and H C G is a normal algebraic subgroup. The quotient
G/H is an (abstract) group. To show that it has the structure of a linear algebraic group we need
to construct some representations.

Theorem 6.6 Suppose G is a linear algebraic group and N C G is an algebraic subgroup.

(1) There ezists a regular representation (w,V) of G and a 1-dimensional subspace Vo C V' so that
N={geG:n(g)Vo=W}.

(2) If N is normal, then there exists a regular representation (¢, W) of G so that N = Ker(¢).

Let G be a connected algebraic group, and N C G a normal algebraic subgroup. We define an
algebraic group structure on the abstract group H = G/N by taking a regular representation
(¢, W) of G such that Ker(¢) = N, whose existence is provided by Theorem 6.6. The group
K = ¢(G) € GL(W) is algebraic, by Theorem 3.2. As an abstract group, K is isomorphic to G/N
by the map p such that ¢ = pom, where 7 : G — G/N is the quotient map.

a2

K

G/N
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We define Aff(G/N) = p*Aff(K). This gives G/N the structure of an algebraic group, which a
priori might depend on the choice of the representation ¢. To show that this structure is unique,
we establish the following regularity result for homomorphisms.

Theorem 6.7 Suppose that G, H and K are algebraic groups, with G connected. Let ¢ : G — H
and ¢ : G — K be regular homomorphisms. Assume that 1 is surjective and Ker(y) C Ker(¢). Let
w: H — K be the map such that ¢ = pop. Then p is a reqular homomorphism.

Corollary 6.8 Assume that G, H are connected algebraic groups and that v : G — H is a bijective
reqular homomorphism. Then ™' is reqular, and hence 1) is an isomorphism of algebraic groups.

We now combine these results to obtain the existence and uniqueness of quotient groups as linear
algebraic groups.

Theorem 6.9 Let G be a connected algebraic group and N a normal algebraic subgroup.

(1) The algebraic group structure on G/N defined by a representation ¢ with Ker¢ = N is inde-
pendent of the choice of ¢, and the quotient map 7 : G — G/N ‘s regular.

(2) T*AfF(G/N) = Aff(G)N, the right N -invariant regular functions on G.

Appendix: Linear and Associative Algebra for Lecture 6.

Jordan Decompositions

Let A € M, (C). Then there exist S, N € M,(C) so that

(1) A=S+N

(2) S is semisimple and N is nilpotent

(3) NS=SN.

Properties (1), (2), (3) uniquely determine N and S. Furthermore, there is a polynomial ¢(z) so
that S = ¢(A). We write A; = S and A,, = N for the semisimple and nilpotent parts of A and call
A =S5+ N the additive Jordan decomposition of A.

There is a corresponding multiplicative Jordan decomposition: Let g € GL(n,C). There exist
s,u € GL(n, C) so that

(1) g = su

(2) s is semisimple and w is unipotent

(3) us = su.

Properties (1), (2), (3) uniquely determine v and s. Furthermore, there is a polynomial ¢(z) so that
s = ¢(g). We write s = g5 and u = g, for the semisimple and unipotent factors in the multiplicative
Jordan decomposition of g.

Exercises for Lecture 6.
1. Suppose V and W are finite-dimensional vector spaces over C. Let z € GL(V) and y €

GL(W) have multiplicative Jordan decompositions z = xsx, and y = ysy,. Prove that the
multiplicative Jordan decomposition of z @ y in GL(V@ W) is 2 @ y = (25 ® ys)(Ty @ yu).
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2. Suppose A is a finite-dimensional algebra over C (not necessarily associative). For example,
A could be a Lie algebra. Let g € Aut(.A) have multiplicative Jordan decomposition g = gsgu
in GL(A). Show that g5 and g, are also in Aut(.A).

3. Let G =SL(2,C).

(a) Show that {g € G : tr(g9)? # 4} C Gs. (Hint: Show that the elements in this set have
distinct eigenvalues.)

1t 0
(b) Let u(t) = 0 1 and v(t) = ¢ 1
rt(4 4 rt) # 0 and that u(r)v(t)u(r) € G5 whenever rt(2 + rt) # 0.
(c) Show that G5 and G, are not subgroups of G.

for ¢t € C. Show that u(r)v(t) € G5 whenever

(d) Show that every Zariski neighborhood of 1 in G contains unipotent elements, and hence
Gy is not closed in G. (Hint: If f € Aff(G) and f(1) # 0 then f(u(t)) is a non-vanishing
polynomial in ¢.)

4. Let G be a connected linear algebraic group and let Ad : G — GL(g) be the adjoint repre-
sentation of G. Let N = Ker(Ad). The group G/N is called the adjoint group of G.
(a) Suppose g is a simple Lie algebra. Prove that N is finite.

(b) Suppose G = SL(n,C), so that g = sl(n,C). Find N in this case. The group G/N is
denoted by PSL(n, C) (the projective linear group).
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Part 2: Stucture of Classical Groups

Lecture 7. Maximal Tori and Unipotent Generators for Classical Groups

Algebraic Tori

An algebraic torus is an algebraic group 7' isomorphic to C* x --- x C* (I factors); the integer [ is
the rank of T. If G is a linear algebraic group, then a torus H C G is maximal if it is not contained
in any larger torus in G.

Suppose now that G is one of the classical groups GL(I,C), SL(l + 1,C), Sp(C%,Q), SO(Cc%, B) ,
or SO(C?*1, B). We take as 2 and B the specific bilinear forms used in Lecture 4, Corollaries 4.7,
4.8, and 4.9. Let H be the subgroup of diagonal matrices in G.

(1) When G =SL(I + 1,C) (type 4;), then
H = {diag[xlv <y IY (xl o 'xl)_l] S CX}?

and
Lie(H) = {diag[a1, . .., ai4+1] ; a; € C, Zai = 0}.

(2) When G = Sp(C%, Q) (type C) or G = SO(C?, B) (type D;), then
H = {diag[zy, .. .,:1:1,:1:1_1, oozl s a e CXY,

and
Lie(H) = {diag[a1, . ..,a;, —ay,...,—a1]; a; € C}.

(3) When G = SO(C**!, B) (type B;), then
H = {diag[z1, ..., 2,1, :1:1_1, conarl] x ey

and
Lie(H) = {diag[a1, ...,a;,0,—ay,...,—a1]; a; € C}.

In all cases H is isomorphic as an algebraic group to the product of I copies of C*, so it is a torus
of rank [. Its Lie algebra is isomorphic to the vector space C' with all Lie brackets zero. Define
coordinate functions x1,...,x; on H as above. Then

Aff(H) = C[zy, .. .,:1:1,:1:1_1, .. .,:rl_l].

For any algebraic group K, a rational character of K is a regular homomorphism y : K — C*.
Denote by X (K) the set of rational characters of K. It has the natural structure of an abelian
group under pointwise multiplication.

Lemma 7.1 Let T be an algebraic torus of rank I. The group X (T) is isomorphic to Z'. Further-
more, X (T) is linearly independent, as a set of functions on H.
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Maximal Tori
Theorem 7.2 Let G be GL(n,C), SL(n, C), SO(C", B) or Sp(C%,Q) in the form given above, H
the diagonal subgroup in G. Suppose g € G and gh = hg for allh € H. Then g € H.

Corollary 7.3 Let G and H be as in Theorem 7.2. Suppose T C G is an abelian subgroup (not
assumed to be algebraic). If H C T then H =T. In particular, H is a mazimal torus in G.

Lemma 7.4 Let T be a torus. Then there exists an elementt € T so that the subgroup generated
by t is Zariski dense in T'.

Theorem 7.5 (Notation as in Theorem 7.2) Every semisimple element of G is G-conjugate to an
element of H. Thus

G, = U 'yH'y_l, (71)
yeG

Corollary 7.6 Let T be any mazimal torus in G. Then there exists g € G so that gT g~ = H.

From Corollary 7.6, we see that the integer [ = dim H does not depend on the choice of a particular
maximal torus in G. We call [ the rank of G.
Unipotent Generators for Classical Groups

We begin with the basic case G = SL(2, C). Let N be the subgroup of G consisting of the unipotent
matrices
1 =z

u(z)z[o 11, zeC

and let N be the subgroup of G consisting of the unipotent matrices

v(z):li (1)1, z € C.

Lemma 7.7 SL(2,C) is generated by N U N.

Theorem 7.8 Let G be one of the groups SL(l + 1,C), SO(2l + 1,C), Sp({,C), with | > 1, or
SO(2l,C) with Il > 2. Then G is generated by its unipotent elements.

Connectedness of Classical Groups

Theorem 7.9 The algebraic groups GL(n,C), SL(n,C), SO(n,C) and Sp(n,C) are connected in
the Zariski topology.

30



Roots with respect to a Maximal Torus

Assume G is a connected classical group of rank [, and set g = Lie(G). Thus G is GL(I,C),
SL(I 4 1,C), Sp(C%,9Q), SO(C?, B), or SO(C?*!, B) with B chosen so that the subgroup H of
diagonal matrices in G is a maximal torus of rank [. We write Lie(H) = . We let z1,...,2; be
the coordinate functions on H used in the proof of Theorem 7.2. The group X (H) of rational
characters of H is isomorphic to the additive group Z! (see Lemma 7.1). Here A = [Aq, ..., \]] € Z!
corresponds to the character h — h*, where

l
p* = ] @x(h)**, for h € H. (7.2)
k=1

We denote this character by e*.
Fix a basis for h* as follows:

(1) Let G = GL(l,C). Define the linear functional €; on b by (g;, A) = a; for A = diag|ay,...,q] €
h. Then {e1,...,&} is a basis for h*.

(2) Let G = SL(I + 1,C). In this case h consists of all diagonal matrices of trace zero. Define ¢;
as in (1) as a linear functional on the space of diagonal matrices for i« = 1,...,14+ 1. The
restriction of g; to b is then an element of h*. With an abuse of notation we will continue to
denote this linear functional as ;. The elements of h* can be written uniquely as

+1 +1
Z)\ié‘i, with A\; € C and Z)\z = 0.
=1 =1

The functionals

€ — (e1+-+ei41) fori=1,...,1

[+1
give a basis for h*.

(3) Let G be Sp(C%,9) or SO(C?, B). Define the linear functionals &; on h by (g;, A) = a; for
A = diaglay,...,a;, —a,...,—a;] €hand i =1,...,l. Then {e1,...,¢} is a basis for p*.

(4) Let G = SO(C?+! B). Define the linear functionals &; on § by
(ei, A) = a; for A =diagla,...,a;,0,—a,...,—a1] €handi=1,... 1
Then {e1,...,&} is a basis for h*.

We define P(G) = Span{df : 0 € X(H)} C b*. With the functionals ¢; defined as above, we then
have

l
P(G) = P zes. (7-3)
k=1

For a € h* let
go={X€g:[A X]=(a,A)X for all A € p}.

If @ # 0 and g, # 0 then « is called a root and g, is called a root space. If o is a root then a
nonzero element of g, is called a root vector for a. We call the set ® of roots the root system of g.
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Its definition requires fixing a choice of maximal torus, so we write ® = ®(g, ) when we want to
make this choice explicit.

General Linear Group: Let G = GL(/,C), and let E; ;, for 1 <14, j <, be the usual elementary
matrix which takes the basis vector e; to e;. The roots are

{gi_gj : 1317.]3[717&.]}7

each with multiplicity 1. The root space gy = CE; ; for A = ¢; — ¢;.

Type C: Let G = Sp(C?,9Q). Label the basis for C* as ey,...eq; with e_; = egy1 ;. Let
E; ; be the matrix that takes the basis vector e; to e;, where i and j range over £1,...,£l. Set
Xej—e; =FEij—E_j_;for1 <i,5 <1, i#j. Then X, € g is a root vector for the root ¢; — ¢;.
Set

i—€j

KXejte;, =Fi—j+Ej—iy, X ee=E_jitE_i;

for 1 <i < j <landset Xo., = E; _; for 1 <i <1[. Then Xi(5i+sj) is a root vector for the root
+(e;+¢5) for 1 <4 < j <. This gives the complete set of roots.

Type D: Let G = SO(C?, B). Label the basis for C* and define X, ¢, asin the case of Sp(C?, Q).
Then XEZ._E]. € g is a root vector for the root ¢; — ¢;.

X5i+5j = Ei,—j — Ej,—i7 X_Ei_é-]. = E—j,i — E—i,j for1 <14 <j <l
Then X. (., c;) € g is a root vector for the root +(¢; + ¢;). The roots are
+(e; —ej) and £ (g, +¢5) for 1 <i < j <,

each with multiplicity one.
Type B: Let G = SO(C¥+!, B). We label the basis for C2*! as

€_1,""",€-1,€0,€1,...,€,

where ey = €41 and e_; = eg42;. Let Ej;; be the matrix that takes the basis vector e; to e;,
where ¢ and j range over 0, £1, ..., £l. Then

Xejme; =FEij—E_j i, Xejoey =E;ji—E_;_;

Xeite; =Ei—j—FEj iy, X ¢ o =FE_ji—E

are root vectors for 1 < ¢ < j <. Define
Xe, =Eio— Eo—i, X_ci=EFEo;—E_io
for 1 <i <1I. Then X4, € g is a root vector. The roots of so(C2*+! B) are
+(e;—¢gj) and £ (g +¢j) for 1 <i<j<I, =epforl <k<I,

each with multiplicity one.
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Theorem 7.10 Let G be a classical group and let H C G be a mazimal torus. Let g = Lie(G) and
h = Lie(H) and let & = ®(g,b) be the set of roots of h on g.
(1) If « € ® then a € P(G), dimg, =1, and

g=b® ) g,

acd

(2) Ifa € ® and ca € @ for some ¢ € C then ¢ = £1.
(3) The symmetric bilinear form (X,Y) = tr(XY) on g is invariant:

([XvYLZ):_(K[sz]) Jor X,Y, Z € g.

(4) Let o, B € @ and o # —B. Then (h,9,) =0 and (g,,93) = 0.
(5) The form (X,Y) on g is non-degenerate.

Exercises for Lecture 7.

1. (Cayley Parameters) Let T' be a nonsingular n x n matrix. Assume that either I' = T or
I'=-T* Let G={g € GL(n,C) : ¢'Tg =T} and let g C M,(C) be the Lie algebra of G.
Set

Vo={geG:det(I+g)#0}, Vg={Xcg:det(l—X)#0}.
For X € Vy define the Cayley transform ¢(X) = (I + X)(I — X)'. (Recall that ¢(X) € G.)
(a) Show that c is a bijection from Vg onto Vg.
(b) Show that Vg is invariant under the adjoint action of G on g, and that ge(X)g™! =
c(gXg™!) for g € G and X € V.
(c) Prove that Vg is a dense Zariski-open set in G containing I and invariant under inner
automorphisms. (Hint: G is connected.)

2. Let (p,V) be a regular representation of a linear algebraic group G. Suppose W C V is
invariant under dp(g).

(a) Let X € g be nilpotent. Show that p(exp X)W C W by considering the Taylor expansion
of the polynomial ¢ — (v*, p(exptX)v) for v* € V* and v € V.

(b) Suppose G is generated by unipotent elements. Use (a) to prove that p(G)W C W.

3. For 0 < k <4 let /\k C* be the k™ exterior power of C*. It has basis ei, A--- e, where
1<ip <---<ip<4andeq,---,ey is the usual basis for C*. In particular, dim /\2 ct=6
and dim A*C* = 1. There is a representation of SL(4, C) on A C*:

for g € SL(4,C) and vy, . .., v € C*. The differential of this representation gives the action

X (A Avg) =Xt A Avg+-Fv1 A A Xvp
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of X € sl(4,C). For k = 2 we denote this representation by p. The wedge product a,b+— aAb
defines a map A?2C* x A2C* — A*C* Since A*C* = CQ, where Q = e; A ey Aes A ey, there
is a bilinear form B on A?C* so that a A b = B(a, b)S.

(a) Prove that the form B is symmetric and non-degenerate.

(b) Prove that B(p(g)a, p(g)b) = B(a b) and B(dp(X)a,b) + B(a, dp(X)b) = 0 for g €
SL(4,C), X € s((4,C) and a,b € A\>C*. (Hint: Show that Q is invariant under SL(4,C) and
use the definition of B in terms of the wedge product.)

(¢) Use dp to obtain a Lie algebra isomorphism sl(4,C) = so(A?C*, B). (Hint: si(4,C) is a
simple Lie algebra.)

(d) Explain the isomorphism in (c) in terms of the classification of simple Lie algebras by
Dynkin diagrams.

(e) Show that p : SL(4,C) — SO(A*C*, B) is surjective, and Ker(p) = {£I}. (Hint: For the
surjectivity, use (c) and the fact that SL(4,C) and SO(A?C*, B) are connected and of the
same dimension. To determine Ker(p), use (c) to show that Ad(g) = I for all g € Ker(p).)

. Let B be the symmetric bilinear form on A% C* and let p be the representation of SL(4,C) on
A% C* as in the previous exercise. Let

w=-e; Nes+exAes € N> CL
Identify C* with (C*)* by the inner product (x,y) = 'y, so that w can also be viewed as a
skew-symmetric bilinear form on C*. Define £ = {a € A>C* : B(a, w) = 0}.
(a) Prove that p(g)L C L for all g € Sp(C* w), and that A2C* = Cw @ L.

(b) Let 3 be the restriction of the bilinear form B to £ x £. Prove that [ is non-degenerate.

(c) Let ¢(g) be the restriction of p(g) to the subspace L, for g € Sp(C* w). Use d¢ to obtain
a Lie algebra isomorphism sp(C* w) = 50(C?, 3). (Hint: sp(C*, w) is a simple Lie algebra.)
(d) Explain the isomorphism in (c) in terms of the classification of simple Lie algebras by
Dynkin diagrams.

(e) Show that ¢ : Sp(C* w) — SO(L, B) is surjective, and Ker(¢p) = {£I}. (Hint: For the
surjectivity, use (c) and the fact that Sp(C* w) and SO(L, 3) are connected and of the same
dimension. To determine Ker(¢), use (c) to show that Ad(g) = I for all g € Ker(¢).)
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Lecture 8. Adjoint Representation and Reductivity of Classical Groups

Representations of si(2, C)
Let g = sl(2,C). The matrices

0 1 00 1 0
are a basis for g and satisfy the commutation relations

[h,e] =2e, [h, f]=-2f, e, f]=h. (8.1)

Any triple {e, f, h} of non-zero elements in a Lie algebra which satisfies (8.1) will be called a TDS
(three-dimensional simple) triple.

Lemma 8.1 Let (m,V) be a representation of g (with V' possibly infinite-dimensional). Set E =
w(e), F =n(f) and H=m(h).
(1) For all integers k > 1

[H,F¥ = —2kF*  [E,F¥ = kFFY(H — k+1). (8.2)

(2) Suppose 0 # vy € V satisfies Hvg = Agug for some A\g € C and Evg = 0. Set vy = (1/k!) FFug
fork=0,1,2,.... Then

Huy = (Ao — 2k)vg,  Evg = (Ao —k + 1)vg—1. (8.3)
(3) Let vg and Ao be as in (2). If o € {0,1,2,...,k — 1} then the set
{'U(), U1, .. .,'Uk;}

is linearly independent. Hence if dimV < oo then A\g = n for some nonnegative integer n and
Un+1 = 0.

Proposition 8.2 (1) Let (w,V) be a finite-dimensional representation of g = s1(2,C). Then there
exists 0 #£ vy € V and an integer n > 0 such that

m(h)vg = nvy, 7(e)vyg = 0. (8.4)

Define vy, = (1/K!) w(f)*v for k =0,1,...,n. Then {vo, ..., v,} is linearly independent and spans
an irreducible g-invariant subspace W of V.. The action of g on W is given by
m(h)vg = (n — 2k)vy
(o = (k+ Dogyr, w(e)vg=(n—k—+ 1)vg_1,
with the convention that v_; = 0 and v,4+1 = 0. In particular, if V is irreducible, then {vo, ..., v,}
is a basis for V and dimV =n+ 1.
(2) Let n be a nonnegative integer. Let V be an n + 1-dimensional vector space with basis

{vo,v1,...,vn}. Then formulas (8.5) define an irreducible representation m of g in which w(h)
is semisimple. The eigenvalues of w(h) are

nn—2,...,—n+2,—n

and each eigenvalue has multiplicity one.
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Representations of SL(2,C)

Proposition 8.3 Let G = SL(2,C), N the upper-triangular unipotent matrices, and N the lower-
triangular unipotent matrices in G. Let d(a) = diagla,a™!] for a € C*.

For every integer n > 0 there is a unique (up to equivalence) irreducible representation (p, V) of G
of dimension n + 1. The semisimple operator p(d(a)) has eigenvalues

a®, a2, a2 e

The space VIV of N-fized vectors is one-dimensional, and p(d(a)) acts on it by the scalar a™. The
space VN of N-fized vectors is also one-dimensional, and p(d(a)) acts on it by the scalar a™™. The
differential of p is the representation m in Proposition 8.2. Every irreducible reqular representation
of G is equivalent to one of these representations.

Commutation Relations of Root Spaces

Let G be a classical group and let H C G be a maximal torus. Let g = Lie(G) and h = Lie(H) and
let ® = ®(g, h) be the set of roots of h on g.

Lemma 8.4 For each o € O there exist e, € g, and fo € g_,, such that the element hy, = [eq, fo] €
h satisfies (o, ho) = 2. Hence

[homea] = 2eq, [haafa] = _Qfaa

so that {eq, fo, ha} is a TDS triple.

Type A: Let a = ¢;—¢; with1 <i < j <I+1. Set e = Fj; j and f, = Ej;. Then hy, = E; ;—Ej; ;.
Type B: (a) Fora =¢; —¢; with1 <i< j<lsete,=FE;;—FE_; ;and fo, = Ej; — E_; ;.
Then h, = Ei,i — Ej,j + E—j,—j — E—i,—i'

(b) For a = ¢; + €j with 1 <7 < j <lIlsete, = Ei,—j - Ej,—i and f, = E—j,i - E—i,j' Then
heo = Ei,i + Ej,j — E—j,—j — E—i,—i'
(C) For a = &; with 1 < 1 < l set Ca = i,0 — EO,—i and fa e QE()J‘ — QE_i’(). Then
ho =2E;; —2E_; _;.

Type C: (a) Fora =¢; —¢; with1 <i<j<lsete,=FE;;—FE_; ;and fo, = Ej; — E_; ;.
Then h, = Ei,i — Ej,j + E—j,—j — E—i,—i'

(b) For a =¢; + €j with 1 <7 < j <lIlsete, = Ei,—j + Ej,—i and f, = E—j,i - E—i,j' Then
ho = Ei,i + Ej,j — E—j,—j — E—i,—i'

(C) For a = 25i with 1 < 1 < [ set Ca = Ei,—i and fa e E—i,i' Then ha e Ei,i — E—i,—i'
Type D: (a) Fora =¢; —¢j with1 <i < j<lsete,=FE;;—E_;_;and fo, = Ej; — E_; _;.
Then h, = Ei,i — Ej,j + E—j,—j — E—i,—i'

(b) For aa =¢; + €j with 1 <7 < j <lIlsete, = Ei,—j — Ej,—i and f, = E—j,i — E—i,j' Then
heo = Ei,i + Ej,j — E—j,—j — E—i,—i'
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We call h,, the coroot to a.. Since the space [g,, g_,] is one-dimensional, h, is uniquely determined
by the properties
ha € [gom g—a]a <a7 ha> =2.

From the calculations in the proof of Lemma 8.4 we see that
(B, hqa) € {0,+1, £2} for all o, 8 € P. (8.6)

For a € ® we denote by s(«) the algebra spanned by {en, fa, ha}. It is isomorphic to sl(2, C) under
the map e — ey, f — fo, b — hq. The algebra g becomes a module for s(a) by restricting the
adjoint representation of g to s(«).
Let

R(a,pB)={f+ka:keczZ}n®,

which we call the « oot string through 5. The number of elements of a root string is called the
length of the string. Define
Vapg = Z 9y

YER(,f)

Then V,, g is a subspace of g whose dimension is the length of the « root string through 3.

Lemma 8.5 For every o, 8 € ® with o # £[3, the space V, g is invariant and irreducible under

ad(s()).
Corollary 8.6 If a, 3 € ® then — (B, ha)a € .

Corollary 8.7 If a, 8 € ® and a + 8 € ©, then [g,, 03] = 8015

Structure of Classical Root Systems

We call a subset A = {aq,...,oq} C ® a set of simple roots if every v € & can be written uniquely
as
vy =mnia1 + -+ oy, with nq,...,n; integers all of the same sign. (8.7)

If A is a set of simple roots, then we define the height of a root = nja; + - - - + may (relative to
A) as

ht(8) =n1 +---+ny.
The positive roots are then the roots 5 with ht(5) > 0. A root [ is called the highest root of ®,

relative to a set A of simple roots, if

ht(5) > ht(y) for all roots v # 3.

If such a root exits, it is clearly unique.

Type A (G =SL(I+1,C)): Let a; = ¢, —¢&;4+1 and A = {aq,...,}. The associated set of positive
roots is
Pt ={g—¢g;: 1<i<j<Il+1}

and the highest root is
Gd=¢e —ep =1+ +aq
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with ht(a) = 1.
Type B (G = SO(2{+1,C)): Let a; = g;—¢;41 for 1 <i<l—1and oy = ¢;. Take A ={ay,...,q}.
The associated set of positive roots is

Ot ={g;—¢j,e+e  1<i<j<Iu{e:1<i<l}

The highest root is
a=¢e1+es=0a1+ 200+ -4+ 24
with ht(a) = 21 — 1.
Type C (G =Sp(l,C)): Let a; =¢; — ;41 for 1 <i<[l—1and a = 2¢;. Take A ={ay,...,q}.
The associated set of positive roots is

Pt ={e;—¢gj,eite 1 1<i<j<I}u{2e:1<i<lI}.

The highest root is
a=2e=2a1+ - -+20;_1+
with ht(a) = 21 — 1.
Type D (G =SO(2[,C) with l > 3): Let ; =¢; — g1 for 1 <i<l—1and oy = ¢;_1 +¢;. Take
A={o,...,oq}.

Lemma 8.8 Let ® be the root system for a classical Lie algebra g of rank | and type A, B,C or
D (in the case of type D assume that | > 3). Let the system of simple roots A C ® be chosen as
above. Let ®T be the positive roots and let & be the mazimal root relative to A. Then the following
properties hold:

(1) Ifa,3€ & and a+ B € ®, then a+ (3 € dT.

(2) If B € @t and B is not a simple root, then there exist v,5 € ®T so that 3 = + 4.

(3) The highest root & € ® is of the form

a=na;+---+na, withn; >1 fori=1,...,1.
For any B € ®T with B # & there exists « € ®T so that a + 3 € &T.
(4) If a € ®F then there exist 1 < iy, i9,...,0, < I such that « = & — o, — -+ — «, and
a—ay—-—a; €D foralll <j<r.

Theorem 8.9 Let g be the Lie algebra of one of the groups
SL(1+1,C), Sp(C%,Q), or SO(C**! B)

with | > 1, or the Lie algebra of SO(C%, B) with | > 3. Take the set of simple roots A and the
positive roots ®* as in Lemma 8.8. The subspaces

n= @ G0y "= @ [
aedt aedt

are Lie subalgebras of g which are invariant under ad(h).
The subspace n +n generates g as a Lie algebra. In particular, g = [g,g]. There is a vector space
decomposition

g=un+bh+n. (8.8)
Furthermore, n is generated (as a Lie algebra) by the simple root spaces g, - - -5 8q, and n is gen-
erated by g_q, -y 8—q,-
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Irreducibility of Adjoint Representation

Theorem 8.10 Let G be one of the groups SL(C!*1), Sp(C?), SO(C?*1) with | > 1 or SO(C?)
with | > 3. Then the adjoint representation of G is irreducible.

Reductive Groups

Theorem 8.11 Let G be a finite group. Then G is reductive.

Proposition 8.12 Let G be a linear algebraic group. If the identity component G° is reductive,
then G is reductive.

Reductivity of Classical Groups

Theorem 8.13 Let G be a classical group. Then G is reductive.

This follows from the corresponding Lie algebra result:

Theorem 8.14 Let g be the Lie algebra of a classical group G, and assume that g is a simple Lie
algebra. Then every finite-dimensional representation (p, V') of g is completely reducible.

Exercises for Lecture 8.
1. Let E;; € M3(C) be the usual elementary matrices. Set e = Ey3, f = F3; and h = Ey1 — E33.
(a) Verify that {e, f,h} is a TDS in s((3, C).

(b) Let g = Ce + Cf + Ch = 5l(2,C) and let U = M3(C). Define a representation p of g on
U by p(A)X = [A, X] for A € g and X € M3(C). Prove (without calculation) that p(h) is
diagonalizable. Then calculate that p(h) has eigenvalues £2 (multiplicity 1), +1 (multiplicity
2) and 0 (multiplicity 3). Find all u € U so that p(h)u = Au and p(e)u = 0, where A =0, 1, 2.

(c) Let Vi denote the irreducible (k + 1)-dimensional representation of g. Show that
U=2WVhaeVieVieVoe W
as a g-module. (Hint: Use the results of (b) and Proposition 8.2 of the notes.)

2. Let G = SL(2,C). Let k be a non-negative integer and let W}, be the polynomials in C[z] of

degree at most k. If
a b
g= l e d ] ed

o1(9)f(x) = (—cx + )" f (%) '

and if f € W, then set

(a) Show that oy (g)Wy C Wy, and that (ox, W) defines a regular representation of G.

(b) Let Vi be the space of homogeneous polynomials of degree k in x1,z. Let p be the
representation of G given by p(g)d(z1, x2) = ¢(axy + cxa, bry + dze). Find a G isomorphism
between the representations (ox, W) and (pg, Vi).
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3. Let V = CJ[z]. Define operators E and F' on V by

1)
2 dx?

Eo(x) = Fo(a) = 5%0(x).

Set H = [E, F).

d 1
(a) Show that H = —ro- 5 and that {E, F, H} is a TDS.
x

(b) Find the space VE = {¢p € V : E¢ = 0}.

(c) Let g € End(V) be the Lie algebra spanned by E, F, H. Let Viyen C V' be the space of
even polynomials, and Voqq C V' be the space of odd polynomials. Show that each of these
spaces is invariant and irreducible under g. (Hint: Use (b) and Lemma 8.1 of the notes.)

(d) Show that V' = Veyen @ Voaq and that Viyen is not equivalent to Voqq as a module for g.
(Hint: Show that the operator H is diagonalizable on Veyen and Voqq and find its eigenvalues. )

4. Let G be a classical group. Let ® be the root system for G, a1, ..., o; the simple roots, and
dT the positive roots. Verify the following:

(a) For G of type A;, 1\ A consists of the roots

o+ F o for1 <i<j<lI.

(b) For G of type B; with [ > 2, ®* \ A consists of the roots

-ty for 1 <i <y <l

(c) For G of type C; with [ > 2, &+ \ A consists of the roots

o+ -+ o for 1 <i<j<l,
o+ -+ oo 205 -+ 201 g for 1 <i<j<l,
20+ -+ 2041 + oy for1 <i<l.

(d) For G of type D; with [ > 3, ®*\ A consists of the roots

i+t for1 <i<j<l,
a;+ -+ for1 <i<l—1,
a;+ -+ o+ for1 <i<l-—1,
ity 20 4+ 2009 + a1 + oy forl <i<j<l-1.
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Part 3: Homogeneous Spaces

Lecture 9. GG-spaces, Orbits, and Invariants

Algebraic Group Actions

Let M be a quasiprojective algebraic set. An algebraic action of a linear algebraic group G on M
is a regular map o : G x M — M, written as (g, m) — g - m, such that

g-(h-m)=(gh)-m, 1-m=m
for all g,h € G and m € M. (Recall that G x M is a quasiprojective algebraic set.)

Theorem 9.1 For every x € M, the stabilizer G, of x is an algebraic subgroup of G and the orbit
G - x is a smooth quasiprojective subset of M.

Corollary 9.2 There exists a point x € M so that G - x is closed in M.

Homogeneous G Spaces

We have the following converse to Theorem 9.1. Let H be an algebraic subgroup of an algebraic
group G. By Theorem 6.6 there is a regular representation (7, V') of G and a point zy € P(V') so
that H is the stabilizer of 9. The map g +— ¢ -z is a bijection from the coset space G/H to the
orbit G - zy. We view G/H as a smooth quasiprojective algebraic set by identifying it with the
orbit G - .

Theorem 9.3 (1) The quasiprojective algebraic set structure on G/H is independent of the choice
of the representation .

(2) The quotient map from G to G/H is regular.

(3) If M is any quasiprojective algebraic set on which G acts algebraically, and x € M is such that
H C Gy, then the map gH — g -x from G/H to the orbit G -z is regular.

Polynomial Invariants

Let G be a linear algebraic group. Suppose (m, V) is a regular representation of G. We define a
representation p of G on the algebra P(V) of polynomial functions on V' by

p(g)f(v) = f(g~ v) for f €P(V)

Here we write m(g)v = gv for g € G and v € V when the representation 7 is understood from the
context.
The finite-dimensional spaces

PEV) ={f € P(V) : f(2v) = 2"f(v) for z € C*}

of homogeneous polynomials of degree k are G-invariant for K = 0,1, ... and the restriction pj of p
to P¥(V) is a regular representation of G.

We denote the space of G-invariant polynomials on V by P(V)%. It is a commutative subalgebra
of P(V') which we call the algebra of G-invariants.
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Theorem 9.4 Suppose G is a reductive linear algebraic group acting by a regular representation
on a vector space V.. Then the algebra P(V) of G-invariant polynomials on'V is finitely-generated
as a C-algebra.

Let {f1,..., fa} be a set of generators for P(V) with n as small as possible. We call {fi, ..., fu}
a set of basic invariants. Theorem 9.4 asserts that when G is reductive, there always exists a finite
set of basic invariants. Since P(V) and J = P(V) are graded algebras, relative to the usual
degree of a polynomial, there is a set of basic invariants with each f; homogeneous, say of degree
d;. If we enumerate the f; so that d; < dy < --- then the sequence {d;} is uniquely determined
(even though the set of basic invariants is not unique).

Algebraic Quotients

Let G be an algebraic group acting on an affine algebraic variety X. Assume that the algebra
J = Aff(X)% of G-invariant regular functions on X is finitely generated over C (if G is reductive
this is always true, by complete reducibility). This action partitions X into G-orbits, and every
G-invariant function on X is constant on each orbit. An affine variety Y is called the algebraic
quotient of X by G if there is a regular map 7 : X — Y which is constant on each G-orbit in X,
with the following universal property: Given any algebraic variety Z and regular map f: X — Z
that is constant on G-orbits, there exists a unique regular map f such that f = f oT.

Theorem 9.5 (1) An algebraic quotient exists and is unique up to isomorphism of affine algebraic
sets. Denote it by X//G.
(2) If G is reductive, then the canonical map m: X — X//G is surjective.

Proof. (1): Let Y be the set of maximal ideals of J. We may identify the points of ¥V with
the algebra homomorphisms 7 — C by Hilbert’s Nullstellensatz. This identification gives a map
m: X — Y defined by 7(z)(f) = f(x) for f € J. We must show that (Y, 7) satisfies the universal
property of an algebraic quotient of X by G.

Let Z be an affine variety and f : X — Z be a regular function that is constant on G-orbits.
Then f*(Aff(Z)) C J, by definition. Hence every homomorphism ¢ : J — C determines a
homomorphism f(¢) : Aff(Z) — C, where f(¢)(h) = ¢(ho f) for h € Aff(Z). This defines a regular
map f such that f = for.)

It is clear that the universal property of a quotient variety uniquely determines it, up to isomor-
phism. Write Y = X//G and call 7 the canonical map.

(2): Since G is reductive, there is a projection g — ¢* from Aff(X) onto the G-invariants Aff(X)%.
To prove that the canonical map is surjective, let m C J be a maximal ideal. Then m generates
a proper ideal in Aff(X), since any relation Y, fig; = 1 with f; € m and g; € Aff(X) would give a
relation ) figf € m = 1. By the Hilbert Nullstellensatz there exists x € X so that all the functions
in m vanish at z. Hence 7(z) =m. O
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Appendix: Algebraic Geometry for Lecture 9.

Projective and Quasiprojective Sets

Let V' be a complex vector space. The projective space P(V) associated with V' is the set of lines
through 0 (one-dimensional subspaces) in V. For z € V' \ {0}, [z] € P(V) will denote the line
through . The map p: V' \ {0} — P(V) given by p(x) = [z] is surjective, and p(z) = p(y) if and
only if x = \y for some A\ € C*. We denote P(C"*!) by P" and for x = (zo, ..., 7,) € C"! we call
{z;} the homogeneous coordinates of [z].

If f(zo,...,7,) is a homogeneous polynomial in n + 1 variables and 0 # x € C*!, set

A ={[z] e P" : f(x)=0}.

The Zariski topology on P" is obtained by taking as closed sets the intersections

X =) 4y,
fes

where S is any set of homogeneous polynomials on C"*1. Any such set X will be called a projective
algebraic set The set

p HX)U{0} ={zeC™™ . f(x)=0forall f €S}

is closed in C"*! and is called the cone over X.
Every closed set in projective space is definable as the zero locus of a finite collection of homogeneous
polynomials, and the descending chain condition for closed sets is satisfied. Hence every closed set
is a finite union of irreducible closed sets, and any nonempty open subset of an irreducible closed
set M is dense in M.
Fori=0,...,nlet U} = {[z] € P" : x; # 0}. Each U7 is an open set in P", and every point of P"
lies in U} for some 4. For [z] € U} define the inhomogeneous coordinates of [x] to be y; = x;/x; for
j #i. The map

Wl([x]) = (y()v s Tiy '7yn)
(omit y;) is a bijection between U} and C". It is also a topological isomorphism (where U} has the
relative Zariski topology from P™ and C™ carries the Zariski topology).
Thus we have a covering by P" by the n + 1 open sets U}, each homeomorphic to the affine space

c".
Lemma 9.6 Let X C P". Suppose that for all i = 0,1,....n, X NU; is the set of zeros of
homogeneous polynomials fij(yo, ..., Ti,---,Yn), where {yy} are the inhomogeneous coordinates on

U;. Then X 1is closed in P™.

A quasiprojective algebraic setis a subset M C P™ defined by a finite set of equalities and inequalities
on the homogeneous coordinates of the form

fi(x)=0 foralli=1,...,kand gj(z) #0 forsomej=1,...,1

where f; and g; are homogeneous polynomials on C"*1. In topological terms, M is the intersection
of the closed set
Y={[z]eP": fi(x)=0foralli=1,...,k}

and the open set
Z ={[z] € P" : g;j(x) # 0 for some j}.
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Products of Projective Sets

We begin with the basic case of projective spaces. Let x and y be homogeneous coordinates on P™
and P". Denote the space of complex matrices of size r X s by M. and view C" = My, as row
vectors. We map C™+1 x ¢l — M(m41)x(nt1) DY (x,y) — x'y, where z! is the transpose of .
The image of (C™1\ {0}) x (C"*1 \ {0}) consists of all rank one matrices, hence it is defined by
the vanishing of all minors of size greater than 1. These minors are homogeneous polynomials in
the matrix coordinates z;j of 2 € M(;;,41)x (n41)- Passing to projective space, we have thus obtained
an embedding

P x P* — P(M(m—l—l)x(n—i—l)) = pmntmin (91)

with closed image. We take this as the structure of a projective algebraic set on P™ x P".
Let X C P™ and Y C P". The image of X X Y under the map (9.1) in P™++™M" ig closed if X and
Y are closed. Also, the image of X x Y is quasiprojective if X and Y are quasiprojective.

Lemma 9.7 Let X be a quasi-projective algebraic set and let
A={(z,z) rz2e X} C X xX

be the diagonal. Then A is closed.

Ascending Chain Property

Theorem 9.8 (1) Let M, N be irreducible affine algebraic sets, such that M C N. Then dim M <
dimN. Ifdim M = dim N then M = N.

(2) Let X1 C Xy C -+ be an increasing chain of irreducible affine algebraic subsets of an algebraic
set X. Then there ewists an index p so that X; = X, for j > p.

Exercises for Lecture 9.

1. Let G = SL(2,C) act on C? by left multiplication as usual. This gives an action on P!(C).
Let H = {diag[z, 27 !] : 2 € C*} be the diagonal subgroup, let N be the subgroup of upper-

triangular unipotent matrices l , 2 € C, and let B = HN be the upper triangular

z
01
subgroup.

(a) Show that G acts transitively on P(C). Find a point whose stabilizer is B.

(b) Show that H has one open dense orbit and two closed orbits on P(C). Show that N has
one open dense orbit and one closed orbit on P(C).

(c) Identify P(C) with the two-sphere S? by stereographic projection and give geometric
descriptions of the orbits in (b).

2. (Same notation as previous exercise) Let G act on g = {x € M3(C) : tr(xz) = 0} by the
adjoint representation Ad(g)x = gzg~!. For p € C define X, = {x € g : tr(z?) = 2u}. Use
the Jordan canonical form to prove the following.

(a) If  # 0 then X, is a G orbit and X, = G/H as a G-space.
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(b) If 4 = 0 then Xy = {0} UY is the union of two G orbits, where Y is the orbit of l 8 (1) ] .

Show that Y =2 G/{£1} N and that Y is not closed in g.

. (Same notation as previous ezercise) Let Z = P(g) = P?(C) be the projective space of g, and
let m: g — Z be the canonical mapping.

(a) Show that G has two orbits on Z, namely Z; = 7(X1) and Zy = n(Y').

(b) Find subgroups L; and Lg of G so that Z; = G/L; as a G space. (Hint: Be careful; from
the previous problem you know that H C L; and N C Lg, but these inclusions are proper.)

(c) Prove (without calculation) that one orbit must be closed in Z and one orbit must be
dense in Z. Then calculate dim Z; and identify the closed orbit. Find equations defining the
closed orbit.

. Let G = SL(n, C) and let V' be the space of all symmetric quadratic forms A(x) =3, ; a;jzz;
in n variables zi,...,x,, with n > 2. The group G acts on V via its linear action on
x =[x1,...,2,] € C". In terms of the symmetric matrix A = [a;;], the action is

g-A=(g")tAg™! (matrix multiplication).

(a) Show that the function D(A) = det A (the discriminant of the form) is G-invariant.

(b) Show that every G-orbit in V' contains exactly one of the forms
Qn,c(x) :C$%+«T%++.’L’i, Withc#o

Qr(z) =234 - +22 with0<r<n.
(Hint: There exists g € GL(n,C) so that (g')~'Ag~! is diagonal with all nonzero elements
1.)
(¢) Show that P(V)¢ = C[D]. (Hint: Define s : C — V by s(c) = Q.. Given f € P(V)Y,
show that when A is non-singular, f(A) = ¢(D(A)), where ¢ is the polynomial f o s.)
(d) Show that V//G = C, with the quotient map 7(z) = D(z). Show that the closed G-orbits

are those on which D # 0 (non-singular forms) and the point {0}, and the quotient map takes
all the non-closed orbits (the forms of rank r < n) to 0.

(e) Show that the G-invariant polynomials can separate the G orbits of the nonsingular forms,
but cannot separate the orbits of the singular forms. (Hint: Consider the sets D~!(c) for
ceC.)
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Lecture 10. Flag Manifolds and Solvable Groups

Grassmannian Manifolds

Let V' be a finite-dimensional vector space, and let /\k V be the kth exterior power of V. We call
an element of this space a k-vector. Given a k-vector u, we define a linear map

T,:V — NV
by Tyo =u Av forv e V. Set
V() ={veV :unv=0}=Ker(Ty,)

(the annihilator of win V). The non-zero k-vectors of the form vy A...Avg, with v; € V, are called
decomposable.

Lemma 10.1 Let dimV = n.

(1) Let 0 # u € A*V. Then dimV (u) < k and Rank(T,,) > n— k. Furthermore, Rank(T,) = n —k
if and only if u is decomposable.

(2) Suppose u=wv1 A...A vy is decomposable. Then

V(u) = Span{vy, ..., v}

Furthermore, if V(u) = V(w) then w = cu for some ¢ € C*. Hence the subspace V(u) C V
determines the point [u] € P(A* V).

(3) Let 0 < k <1l < n. Suppose 0 # u € ANV and 0 # w € AN'V are decomposable. Then
V(u) C V(w) if and only if Rank(T, & Ty,) is a minimum, namely n — k.

Denote the set of all k-dimensional subspaces of V' by Grassi (V) (the kth Grassmannian manifold).
Using part (2) of Lemma 10.1, we identify Grass, (V) with the subset of the projective space P(AF V)
corresponding to the decomposable k-vectors.

Proposition 10.2 Grassy (V) is an irreducible projective algebraic set.

Take V' = C™ and let X C M, «x(C) be the open subset of matrices of maximal rank k. The
k-dimensional subspaces of V' then correspond to the column spaces of matrices x € X. Since
x,y € X have the same column space if and only if z = yg for some g € GL(k, C), we may view
Grassy (V') as the space of orbits of GL(k,C) on X. That is, we introduce the equivalence relation
x ~ y if x = yg; then Grassg (V) is the set of equivalence classes.

FOTJ:(il,...,ik) with 1 <41 <+ < i <n, let

Til o Tigk
§s(x) = det :
Tigl  Tigk
be the minor determinant formed from rows iy, ..., i of x € M, «,(C). Set

X5= {x S Mnxk((c) : fj(x) 75 0}.
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As J ranges over all (}) increasing k-tuples the sets X; cover X. The homogeneous polynomials £
are the so-called Plicker coordinates on X (they are the restriction to X of the homogeneous linear
coordinates on A* C™ relative to the standard basis). Under right multiplication they transform by

£1(xg) = &5(x)detg, g€ GL(E,C),

so the ratios of the Pliicker coordinates are rational functions on Grassi (V).
Every matrix in X ; is equivalent (under the right GL(k,C) action) to a matrix in the affine-linear
subspace

Ay ={x € Mypxi(C) : xi,q = Opq for p,g=1,...,k}.

Clearly if z,y € Ay and = ~ y then z = y. Furthermore, {; = 1 on A; and the k(n — k) matrix
coordinates {z,, : p ¢ J} are the restrictions to A; of certain Pliicker coordinates. In particular,
dim Grassg (C") = (n — k)k.

Suppose that w is a bilinear form on V' (either symmetric or skew-symmetric). A subspace W C V
is isotropic relative to w if w(z,y) = 0 for all z,y € W. The quadric grassmannian Zy(V') is the
subset of Grass (V') consisting of all isotropic subspaces. Then Zj (V) is closed in Grassi(V'), and
hence is a projective algebraic set.

Flag Manifolds for Classical Groups

Let 0 < k1 < --- < kp < dimV be integers, and set k = (k1,..., k). Let Flagy (V) consist of all
nested chains Vi C --- C V), C V of subspaces with dimV; = k;. We can view Flag, (V') as a subset
of the projective algebraic set

Grassi (V) = Grassg, (V) x - - - x Grassy, (V).

By part (3) of Lemma 10.1, Flagy (V) is closed in Grassk(V'), since each inclusion V(u) C V(w)
between subspaces of V is defined by the vanishing of suitable minors in the matrix for 15, ® T,.
The group GL(V) acts on Grassg(V). Fix a basis {¢; : i« = 1,...,n} for V and set V; =
span{eq, ..., e }. Then Flagy (V) is the orbit of the flag xx = {V;}. The isotropy group Py of
xx consists of the block upper-triangular matrices

Ay - %
0 - Ay
where A; € GL(mi,(C), with my = ki, mo = ko — k1, .. S Mpt1 =N — k‘p.

Let G C GL(n,C) be a classical group, in the matrix realization used in Theorem 7.2. Let H be
the diagonal subgroup of G. Set b = b + n, where h = Lie(H) and

n= @ga

aedt

(recall that n consists of strictly upper triangular matrices). Denote by N,,(C) the group of all n xn
upper triangular unipotent matrices.
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Theorem 10.3 Let G be a connected classical group. There is a projective algebraic set Xg on
which G acts algebraically and transitively with the following properties.

(1) There is a point xo € X so that the stabilizer B = Gy, has Lie algebra b.

(2) The group B = H - N, with N connected, unipotent and normal in B.

(3) Lie(N) =n and N = GN N, (C).

G = GL(n,C) or SL(n,C):
Let X4 be the set of all full flags {V;}?,, dimV; = i. Let zo = {V} with V.0 = Span{ey, ..., e;},
where e, ..., e, is the standard basis for C".

G = Sp(l,C) or SO(n,C), n = 2I:
Let X be the set of all isotropic flags {Vi}ézl, with dim V; = ¢ and V; an isotropic subspace relative
to the bilinear form defining G.

G =S50(n,C),n=20+1:
Let X¢ be the set of all flags {Vz}ig such that dim V; = ¢ and Vj is isotropic for i = 1, ..., 1.

In all cases B is the group of all upper triangular matrices in G and N is the group of all unipotent
upper triangular matrices in G.

Solvable Groups
Let G be an (abstract) group. We say that G is solvable if there exists a series of subgroups

G=GyDG1D---DGqDGa1 ={1}

with G,11 a normal subgroup of G; and G;/G;41 commutative, for i =0,1,...,d.

The commutator subgroup D(G) of a group G is the group generated by the set of commutators
{zyxz~ty~! : 2,y € G}. If G1 is a normal subgroup of G, then G'/G is commutative if and only if
G1 D D(G). It follows that G is solvable if and only if G # D(G) and D(G) is solvable.

Define the derived series {D"(G)} of G inductively by

DYG)=G, D""YG)=DMD"(Q)).

Then G is solvable if and only if D" (G) = {1} for some n. In this case, the smallest such n is
called the solvable length of G.

The archetypical example of a solvable group is the subgroup, B,,, of upper triangular matrices in
GL(n,C) the we have already encountered in connection with the flag manifold. To see this we
observe that the upper triangular matrices, IV,,, with ones on the main diagonal form a normal
subgroup of B, such that B,,/N, is isomorphic with the group of diagonal matrices. We set Ny, ,
equal to the subgroup of N,, consisting of elements such that the second through the r-th diagonal
are zero. Then N, , is normal in B,, for r > 2 and N, /Ny 41 is abelian. The isotropy group of
any full flag in C" is conjugate in GL(n,C) to B, and hence is solvable.

We also note that if S is solvable and if H C S is a subgroup then H is solvable. For example, let
G C GL(n,C) be a connected classical group. Then the subgroup B in Theorem 10.3 is contained
in the isotropy group of a full flag and hence is solvable.

Proposition 10.4 Assume G is a connected algebraic group. Then D(G) is closed and connected.

48



Exercises for Lecture 10.

1. Let G = SL(2,C) x SL(2,C). Let p be the representation of G on My = M(C) given by
p(g,h)z = gzht and let B be the symmetric bilinear form on My such that B(z, z) = 2det(z).

(a) Find Ker(p) and prove that p(G) = SO(Ms, B) (Hint: Compare dim(G) and
dim(SO(Ma, B).)
(b) Use (a) to prove that so(4,C) = s1(2,C) @ sl(2,C).

2. (Notation as in previous evercise) Let 7 : C2 x C? — My by 7(z,y) = zy'. Identify P? with

P(Mz) and let 7 : P! x P — P3 be the map induced by 7 (the standard imbedding of P™ x P"
in ]Pmm—l—m—l—n)'

(a) Show that the image of 7 is {[z] : z € My \ {0} and det(z) = 0}.
(b) Let G act on P! x P! by the natural action on C? x C? and let G act on P? by the

representation p on My. Show that 7 intertwines the G actions.

(c) Show that G has two orbits on P3 and describe the closed orbit.

3. (Notation as in previous exercise) Consider the subspaces V; = CEy; + CEj2 and Vy =
CE11 + CEy; of My, where E;; are the usual elementary matrices.
(a) Show that V; are totally isotropic for the bilinear form B.
(b) Let Bi={g9 € G : p(g9)Vi =V;} for i = 1,2. Describe B;, By and B = B; N By in matrix
form.

(c) Show that B = H - N where H is a maximal torus in G and N is a connected unipotent
normal subgroup of B.

4. Let X = {z € Myx2(C) : rank(z) = 2}. For J = (i1,i2) with 1 < i3 < ig < 4 let
Xyj={r e X : &(x)#0}, where

£(x) = det [ L ]

Tipl Liy2

is the Pliicker coordinate corresponding to J.

(a) Let Agy 0y = {7 € X : x5 = 6;; for 1 <4, j < 2}. Calculate the restrictions of the Pliicker
coordinates to Ay gy

(b) Let GL(2,C) act by right multiplication on X. Show that Xy; 9y is invariant under
GL(2,C) and Ay oy is a cross-section for the GL(2, C) orbits.

(c) Let m : X — Grassp(C*?) map x to its orbit under GL(2,C). Let GL(4,C) act by left
multiplication on X and hence also on Grassy(C*). Show that this action is transitive and
calculate the stabilizer of m([ e; ey ]), where e; are the standard basis vectors for C*.
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Lecture 11. Borel Subgroups

Lie-Kolchin Theorem

A single linear transformation on C" can always be put into upper-triangular form by a suitable
choice of basis. The same is true for a connected solvable algebraic group.

Theorem 11.1 Let G be a connected solvable linear algebraic group, and let (w, V) be a regular
representation of G. Then there exists a flag

V=VidVeD---DV, D Vy1 ={0}
and reqular homomorphisms x; : G — C* fori=1,...xn so that for v €V,
m(g)v = xi(g)v mod Viyq.

Corollary 11.2 Assume G C GL(V) is connected and solvable. There exists a basis for V' so that
the elements of G are upper triangular matrices and the elements of D(G) have ones along the
main diagonal relative to this basis. In particular, D(G) is unipotent.

We have the following geometric generalization of the Lie-Kolchin theorem.

Theorem 11.3 (Borel Fixed-Point Theorem) Let S be a connected solvable group that acts
algebraically on a projective variety X . Then there exists a point xg € X such that s - xqg = xg for
allse S.

Existence and Conjugacy of Borel Subgroups

A Borel subgroup of an algebraic group G is a maximal connected solvable subgroup.

Theorem 11.4 Let G be a connected linear algebraic group. Then G contains a Borel subgroup B,
and all other Borel subgroups of G are conjugate to B. The homogeneous space G/B is a projective
variety. Furthermore, if S is any connected solvable subgroup of G such that G/S is a projective
variety, then S is a Borel subgroup.

Ezxample. Let G be a connected classical group and let B be the connected solvable subgroup
in Theorem 10.3. The quotient space X = G/B is a projective variety, and hence B is a Borel
subgroup.

Theorem 11.5 Let G be a connected linear algebraic group and B a fized Borel subgroup of G.
Then
G = U zBx~ L.

zeG

Thus every element of G is contained in a Borel subgroup.

Remark. When G is GL(n, C) this theorem is just the assertion that any (nonsingular) matrix can
be conjugated into upper-triangular form.
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Appendix: Algebraic Geometry for Lecture 11.

Let M be an irreducible affine set. Suppose U C M is an open subset. Define the regular functions
on U to be the restrictions to U of rational functions f € Rat(M) such that Dy D U. Replacing U
by a point x € M, we define the local ring O, at x to consist of all rational functions on M that
are defined at z. Clearly O, is a subalgebra of Rat(M), and Op = U,y Om(V), where V' runs
over all open sets containing .

This notion of regular function has two key properties:

(restriction) If U C V are open subsets of M and f € Oy (V), then fly € On(U).

(locality) Suppose f: U — C and for every = € U there exists ¢ € O, with ¢ = f on some open
neighborhood of z. Then f € Oy (U).

Lemma 11.6 Suppose X is a quasiprojective algebraic set. There is a finite open covering

X=|JUa
acA

with the following properties:
(1) There are irreducible affine algebraic sets M, and homeomorphisms ¢ : Uy — M, for a € A.
2) The maps ¢pgo ¢ ' : po(Us NUR) — ¢5(Uy NU3) are regular, for all o, B € A.

B O Po B 8 B

Let X be a quasiprojective algebraic set. We define the local ring O, at x € X by carrying over
the local rings of the affine open sets U, via the maps ¢q:

O, = ¢:§4(O¢a(m))v for x € U,,.

If x € Uy, NUg then O, is the same, whether we use ¢, or ¢g, by the last statement in Lemma
11.6. For any open set U C X we can now define the ring Ox (U) of regular functions on U using
the local rings, just as in the affine case: a continuous function f : U — C is regular if for each
x € U there exists g € O, so that f = g on an open neighborhood of x. One then verifies that the
restriction and locality properties hold for the rings Ox (U).

Let X,Y be quasiprojective. A map ¢ : X — Y will be called regular if ¢ is continuous and for
all open sets U C Y, ¢*(O(U)) C O(¢~1(U)). When X,Y are affine, this agrees with our earlier
definition.

Lemma 11.7 Let X,Y, Z be quasiprojective. A map z — (f(z),9(2)) from Z to X x Y is regular
ifand onlyif f: Z — X and g: Z — Y are reqular.

Proposition 11.8 Suppose X,Y are quasiprojective algebraic sets. Let ¢ : X — Y be regular.
Then

Ty = {(z,6(x)) 2 € X}
(the graph of ¢) is closed in X x Y.

Corollary 11.9 Let X be a quasi-projective algebraic set and ¢ : X — X a reqular map. Then the
fixed-point set

{reX : ¢(x) =z}

1s closed in X.
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We denote by C[X] = Ox(X) the ring of functions that are everywhere regular on X.
Theorem 11.10 Let X be an irreducible projective algebraic set. Then C[X] = C.

Corollary 11.11 If X is an irreducible projective algebraic set which is also isomorphic to an
affine algebraic set, then X is a single point.

A map ¢ : X — Y between quasiprojective algebraic sets is defined to be regular if ¢*Ogy(,) C Oy
for all x € X. When X and Y are affine, this is consistent with the earlier terminology, by Lemma
3.10.

Theorems 3.6 and 3.9 are also valid when X, Y are quasiprojective algebraic sets. Furthermore, if f
is a rational map between affine algebraic sets, then the open set Dy is a quasiprojective algebraic
set, and f : Dy — Y is a regular map in this new sense. Thus Theorem 3.12 is also valid for
quasiprojective algebraic sets.

If X is quasiprojective and z € X, we define dim,(X) = dimT'(U,),, where z € U, as in Lemma
11.6. It is easy to see that dim,(X) only depends on the local ring O, (cf. Theorem 4.11). We set
dim X = min dim,(X).
zeX
It is clear from this definition of dimension that Theorem 9.8 holds for quasi-projective algebraic
sets. Just as in the affine case, a point = € X is called simple if dim,(X) = dim X. When X is
irreducible, the simple points form a dense open set. If every point of X is simple then X is said

to be smooth or nonsingular.

Theorem 11.12 Let X, Y be quasiprojective sets with X projective. Let p(z,y) = y for (z,y) €
XxY. IfCC X xY is closed then p(C) is closed in'Y .

Corollary 11.13 Let X be projective and f : X — Y be a reqular map with Y quasiprojective.
Then f(X) is closed in'Y .

Exercises for Lecture 11.

1. Let X = C2?\ {0} with its structure as a quasiprojective algebraic set. Then X = X; U X,
where X7 = C* x C and X3 = C x C* are affine open subsets. Also f € O(X) (the ring of
regular functions on X) if and only if f|x, € Aff(X;) for i =1,2.

(a) Prove that O(X) = C[x1, 2o], where z; are the coordinate functions on C2. (Hint: Let
f € O(X). Write f|x, as a polynomial in 1, z7",; and write f|x, as a polynomial in
1, T2, Ty ! Then compare these expressions on X; N Xs.)

(b) Prove that X is not a projective algebraic set. (Hint: Consider O(X).)

(c) Prove that X is not an affine algebraic set. (Hint: By (a) there is a homomorphism
7 — 1(0) of O(X).)
(d) Let G = SL(2,C) and N the upper-triangular unipotent matrices in G. Prove that

G/N = C?\ {0}, with G acting as usual on C2. (Hint: Find a vector in C? whose stabilizer
is N.)
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2. Let G = GL(n,C), H = D,, the diagonal matrices in G, N the upper-triangular unipotent
matrices, and B = HN. Let X be the space of all flags in C".

(a) Suppose © = {V; C Vo C --- C V,,} is a flag that is invariant under H. Prove that there
is a permutation ¢ € &,, so that

Vi = Span{e,(1), .-+, e5()} fori=1,...,n.

(Hint: H is reductive and its action on C" is multiplicity-free.)

(b) Suppose the flag x in (a) is also invariant under N. Prove that o(i) = i for all i. (Hint:
Use induction on 17.)

(c) Prove that if g € G and gBg~! = B, then g € B. (Hint: By (a) and (b), B has exactly
one fixed point on X = G/B.)

3. Let G be a connected algebraic group and B C G a Borel subgroup. Let P C G be a closed
subgroup.

(a) Suppose that G/P is a projective algebraic set. Prove that there exists g € G such that
gBg~! C P. (Hint: B has a fixed point on G/P.)

(b) Suppose that B C P. Prove that G/P is a projective algebraic set. (Hint: Consider the
natural map G/B — G/P.)

4. Let G be a classical group. Let B be the upper-triangular (Borel) subgroup of G, and H the
diagonal subgroup of G. Suppose P C G is a closed subgroup such that B C P.

(a) Prove that Lie(P) is of the form

b+ > 0.4 (%)

a€ES

where b = Lie(B) and S C ®* (the positive roots of g). (Hint: Lie(P) is invariant under
Ad(H).)

(b) Let S C ®* be any subset and let {1, ..., q;} be the simple roots in ®*. Prove that the
subspace defined by (%) is a Lie algebra if and only if S satisfies the properties

(P1) If o, e Sand a+ 3 € T, then a + 3 € S.
(P2) If e Sand 8 —; € T then B —a; € S.

(Hint: b is generated by h and {g,, : i =1,...,[}.)

(c) Let R be any subset of the simple roots, and define Sg to be all the positive roots 3 so
that no elements of R occur in . Show that Sg satisfies (P1) and (P2). Conversely, if S
satisfies (P1) and (P2), let R be the set of simple roots that do not occur in any 5 € S.
Prove that S = Sg.

(d) Let G = GL(n,C). Use (c) to determine all subsets S of ®* that satisfy (P1) and (P2).
(Hint: Use Exercise #4 from Lecture 8.)

(e) For each subset S found in (d), show that there is a closed subgroup P D B with Lie(P)
given by (x). (Hint: Show that S corresponds to a partition of n and consider the corre-
sponding block decomposition of G.)
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Part 4: Irreducible Representations

Lecture 12. Weyl Group and Weight Lattice

Weyl Group of a Classical Group

Let G be a connected classical group and let H be a maximal torus in G. Define the normalizer of
H in G to be
Normg(H) = {g € G : ghg™' € H for all h € H},

and define the Weyl group Wg = Normg(H)/H. Since all maximal torii of G are conjugate,
the group W¢ is uniquely defined (as an abstract group) by G, and it acts (by conjugation) as
automorphisms of H.

Since H is abelian, there is a natural homomorphism ¢ : W — Aut(H) given by ¢(sH)h = shs™!
for s € Normg(H). This homomorphism gives an action of W on the character group X (H),
where for § € X(H) the character s - 6 is defined by

s-0(h) =6(s"*hs), forh e H.

Writing 6 = e* for A € P(G), we can describe this action as

where (s -\, x) = (\, Ad(s)"'z) for x € h. This defines a linear action of Wg on b*.
Theorem 12.1 Wg is a finite group and the representation of Wg on b* is faithful.
For o € &, let s, € GL(n, C) be the matrix such that

S0€i = €g(;y fori=1,...,n.

This is the usual representation of &,, on C™ as permutation matrices.

Suppose G = GL(n,C). Then H is the group of all n x n diagonal matrices. Every coset in W
is of the form s, H for some ¢ € &,,. Hence Wg = &,. The action of ¢ € &, on the diagonal
coordinate functions x1, ..., @, for H is 0 - x; = Ts-1(y).

Let G = SL(n,C). Then H consists of all diagonal matrices of determinant 1 and Wg = &,,.

Next, consider the case G = Sp(C%,Q), with Q as in (4.3). Let so € GL(2l,C) be the matrix for
the permutation (1,7)(2,{ —1)(3,l —2)---. For 0 € &; let s, € GL(l,C) be the corresponding
permutation matrix.Clearly sf. = s, so if we define

(o) = Sy 0
TII=1 0 spses0 |

then 7(0) € G and hence 7(0) € Normg(H). Consider the transpositions (i,20 + 1 — i) in Sy,
where 1 < i < 1. Set e_; = ey 1_i, where {e;} is the standard basis for C*. Define 7; € GL(2l,C)
by

Tiei=e_;, Tie_; =—¢€;, Tep=exfork#£i, —i.
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Given F' C {1,...,l}, define
TR = H 7; € Normg(H).

ieF
Then the H-cosets of the elements {7x} form an abelian subgroup 7} 2 (Z/2Z)"! of W¢. The action
of 7 on the coordinate functions x1, ..., z; for H is z; — xi_l fori e F and xj — z; for j ¢ F.

Lemma 12.2 For G = Sp(C?%,Q), the subgroup Ty C W¢ is normal, and Wq is the semidirect
product of Ty and 7(&;). The action of W on the coordinate functions for Aft(H) is by x; — xz_c(li)

(i=1,...,1), for every permutation o and choice £1 of exponents.

Now consider the case G = SO(C?*! B), with the symmetric form B having 1s on the skew-
diagonal and Os elsewhere. For o € &; define

s O 0
plo)=1 0 1 0
0 0 spsgso

Then ¢(0) € G and hence ¢(0) € Normg(H). Obviously ¢(o) € H if and only if 0 = 1, so again
we have an injective homomorphism ¢ : 6; — Wg.
We can construct other elements of W by the same method as for the symplectic group. Set

€_; = €949 fori=1,...,1+ 1.
For each transposition (4,2l 4+ 2 — i) in G941, where 1 < i <[, we define v; € GL(2l + 1,C) by
Vi€ = €—i, 7i€—i = €i, Yi€o = —¢€o,

vier = e for k #£4,0, —i.

Then «; € Normg (H). Furthermore, v2 € H and viy; = if 1 <4,j <I. Given F C {1,...,1},
we define
v = H vi € Normg(H).
ieF
Then the H-cosets of the elements {7y} form an abelian subgroup 7; = (Z/2Z)! of W¢. The action
of vF on the coordinate functions x1, ..., z; for Aff(H) is the same as that of 7 for the symplectic

group.

Lemma 12.3 Let G = SO(C?*1, B). The subgroup Ty C W¢ is normal, and Wg is the semidirect
product of Ty and ¢(&;). The action of W on the coordinate functions for Aft(H) is by x; — xz_c(li)
(i=1,...,1), for every permutation o and choice £1 of exponents.

Finally, we consider the case G = SO(C?, B), with B as in (4.3). For o € &; define 7(0) as in the
symplectic case. Then (o) € Normg(H). Obviously (o) € H if and only if o = 1, so we have an
injective homomorphism 7 : §; — W¢. The automorphism of H induced by o € &; is the same as
for the symplectic group.
Set

€_j = €2]+1—; for i = 1, e .,l.

55



For each transposition (7,2l 4+ 1 — i) in &g, where 1 < i <[, we define 3; € GL(2l,C) by
piei =e—i, Bie—i =¢€;, Piex=¢e, fork#i,—i.

Then 3; € O(C?%, B). Given F C {1,...,1}, define
Br =[] 8
ieF

If card(F') is even, then det Br = 1 and hence B € Normg(H). Thus the H cosets of the elements
{BF : card(F) even } form an abelian subgroup R; of Wg.

Lemma 12.4 Let G = SO(C*, B). The subgroup Ry C W¢ is normal, and Wg is the semidirect
product of Ry and w(&;). The action of W on the coordinate functions for Aff(H) is by x; — xz_c(li)

(i =1,...,1), for every permutation o and choice 1 of exponents with an even number of sign
changes.

Root Reflections

Let G be a connected classical group and let h be the Lie algebra of the maximal torus H of G.
Let ® C h* be the roots and A the simple roots of g relative to the choice ®* of positive roots. For
each a € @ let hy € [g,, 9_o] be the coroot to a.

Define the root refiection s, : h* — §* by

sa(B) =B — (B, ha)a, for B € b

We can also write the formula for s, as

Sa(a) = —a, sa(B) =P if (8, ha) =0.

Thus s2 = I. It can be described geometrically as the reflection through the hyperplane (ha)t.
Note that the roots a and —« define the same reflection.

Lemma 12.5 Let W = Normg(H)/H be the Weyl group of G. Identify W with a subgroup of
GL(p*) by the natural action of W on X (H).

(1) For every a € ® there exists w € W such that w acts on h* by the reflection s,.
2)W-A=9d

(3) W is generated by the reflections {s, : o € A}.

(4) Ifw e W and w®™ = & then w = 1.

(5) There exists a unique element wy € W such that wo®™ = —®T.
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Weight Lattice of a Classical Group

Proposition 12.6 Let g = sl(2,C) and let {e, f,h} be a TDS triple which is a basis for g. Let
(p, V) be a finite-dimensional g-module and set V¢ = Ker(p(e)).

(1) p(h) is diagonalizable with integral eigenvalues, while p(e) and p(f) are nilpotent.

(2) The eigenvalues of p(h) on V¢ are all non-negative.

(3) If v € V€ and p(h)v =0 then p(f)v = 0.

(1) V = Veap(f)V.

Let G be a connected classical group. Fix a maximal torus H in G and let g = Lie(G), h = Lie(H).
Let
s(g)={Z¢€g:[X,Z]=0foral X g}

be the center of g. Then 3(g) C h. Let & C b* be the roots of H on g.
Theorem 12.7 Let (w,V) be a finite-dimensional representation of g. For u € b* set
Vip) ={veV :n(Y)v={(u,Y)v foralY €p}.

(1) Suppose V() # 0. Then (u, ha) € Z for all a € ®, where hy is the coroot to a.
(2) Suppose w(Z) is diagonalizable for all Z € 3(g). Then

V=@ Vi
neh”

Hence n(Y') is diagonalizable for every Y € b.
We define the weight lattice for g as
P(g) ={pneb” : (uhy) €Z forall ac ®}.

If V is a g-module and V' (p) # 0, then we say that u is a weight of V. In this case u € P(g) by
Theorem 12.7. For example, the weights of the adjoint representation are ® U {0}.

Clearly P(g) is an additive subgroup of h*. We define the root lattice Q(g) to be the additive
subgroup of h* generated by ®. Thus Q(g) C P(g).

Lemma 12.8 The lattices P(g) and Q(g) are invariant under the Weyl group W.

We also denote by s, € GL(h) the transpose of the root reflection for «; it acts by
$aY =Y —(a,Y)h,

for Y €.

Proposition 12.9 Let (7, V) be a finite-dimensional representation of g. Fora € ® let {eq, fo, ha}
be a TDS triple associated with o, and define

To = exp(7m(eq)) exp(—7(fa)) exp(m(eq)) € GL(V).

Then
) Tam(Y)75 ' = w(saY) for Y €,

(1
(2) 7V (1) = V(sap) for all p € b,
(3) dlm V(p) =dimV(s-p) for all s e W.
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Fundamental Weights and Dominant Weights

Let A = {ay,...,q;} C ®* be the simple roots in ®* and denote by H; the coroot to «;, as in
Lemma 8.8. Let 3(g) be the center of g. Then

h=3(s) ®(HNJg 0]

Thus we may identify 3(g)* with the subspace of h* that annihilates h N [g, g]. Since {H;,..., H;}
is a basis for h N [g, g, there is a unique set {wy,...,w;} C h* such that

(wi, Hj) =035 fori,j=1,...,0 and w; L 3(g).

Then

P(g) =3(g)" ®{miw1 + -+ mw; : n; € Z}. (12.1)
The weights wyq, ..., w; will be called the fundamental weights for g.
We now give the fundamental weights for each type of classical group in terms of the weights {e;}.
Type A: (G =SL(l+1,C))

i
[+1

wi=¢€1+ - +eg— (e1+ - +e41) forl<i<l.

Type B: (G =S0(2l +1,0))

1
w;=€1+ --+¢; fOI‘lS'LSZ—l’ wl:§(51+"'+51)

Type C: (G = Sp(l,C))
w;=¢e1+---+eg forl<i<l|.

Type D: (G = SO(2l,C), with | > 2)

wi=e1+--+eg forl1<i<Il—2,

1 1
wi—1 = 5(81 +-de—e), w= 5(81 +-Fe1 +e).

Since the functionals €; are weights of the defining representation of G, we have ¢; € P(g) for
i=1,...,1. Thus P(G) C P(g). For g of type A or C all the fundamental weights are in P(G), so

P(G) = P(g) (G = SL(n, C) or Sp(n,C)).
However, for G = SO(2] + 1, C) we have

w; € P(G) for1<i<l—-1, 2w € P(G),
but w; ¢ P(G). For G = SO(2l,C) we have

w; € P(G) for1<i<l—2, mw_1+nw € P(G) ifm+nce?2Z,
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but w;_1 and w; are not in P(G). Thus
P(g)/P(G)=7/2Z when G = SO(n,C).

This means that for the orthogonal groups in odd (resp. even) dimensions there is no single-valued
character x on the maximal torus whose differential is w; (resp. w;—1 or w;). We will resolve this
difficulty in Lecture 17 with the construction of the groups Spin(n, C) and the spin representations.

Define the dominant weights for g (relative to the given choice of positive roots) to be

Pyy(o) = {p e Plo) : {u H) > 0fori=1,..I}.
From (12.1) we see that
P (g) =3(g) + Nwy + - - - + Nagg
where N = {0,1,2,...}. We say that pu € Py (g) is regular if (u, H;) > 0 for ¢ = 1,...,l. This is
equivalent to
w=C_C+nw+ -+ oy, with ¢ € 3(g)* and n; > 1 for all i.
We define the dominant weights for G to be
Pyy(G) = P(G) N P (g).

Then Py (G) = P44 (g) when G is SL(n,C) or Sp(n,C).

The definition of dominant weight depends on a choice of the system ®T of positive roots. We now
prove that any weight can be transformed into a unique dominant weight by the action of the Weyl
group. This means that the dominant weights give a cross-section for the orbits of the Weyl group
on the weight lattice.

Proposition 12.10 For every A € P(g) there is u € Pyy(g) and s € W such that A = s - u. The
weight w is uniquely determined by \. If u is regular, then s is uniquely determined by A and hence
the orbit W - i has |W| elements.

For each type of classical group the dominant weights are given in terms of the weights {e;} as
follows:

(1) Let G = GL(n,C) or SL(n,C). Then P+ (g) consists of all weights

w="Fkier+ -+ knep with k1 > ko >--->ky and k; — kipq1 € Z. (12.2)
(2) Let G = SO(20 + 1,C). Then Py, (g) consists of all
w==kier+---+ ke with k1 > ko >--->k >0. (12.3)

Here 2k; and k; — kj are integers for all i, j.
(3) Let G = Sp(l,C). Then Py(g) consists of all p satisfying (12.3) with k; integers for all i.
(4) Let G = SO(2l,C), Il > 2. Then Py (g) consists of all

pw==rker+---+ke withky > --->k_1> ‘k‘l‘ (12.4)

Here 2k; and k; — kj are integers for all i, j.
The weight 1 is reqular when all inequalities in (12.2), (12.3) or (12.4) are strict.
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Exercises for Lecture 12.

1. Let g = sl(2, C) with standard basis {e, f, h}. Let (p, W) be a finite dimensional representation
of g. For k € Z set f(k) = dim{w € W : p(h)w = kw}.
(a) Show that f(k) = f(—k).
(b) Let geven(k) = f(2k) and goad(k) = f(2k + 1). Show that geven and goda are unimodal

functions from Z to N. Here a function ¢ is called unimodal if there exists kg such that
¢(a) < @(b) for all a < b < kg and ¢(a) > ¢(b) for all kg < a <b.

(c) Suppose f(0) = f(2) =4, f(1) = f(3) =2, f(4) =2, f(6) =1 and f(k) = 0 for other
positive integers k. What is dim Kerp(e)? What are the irreducible g submodules in W?

2. Let G C GL(n,C) be a classical group and let ® be the root system of G. Set V ="' | Re;,.
Give V the inner product (- |-) so that (g;]e;) = d;;.

(a) Show that (a|a), for @ € @, is 1, 2 or 4, and that at most two distinct lengths occur.
(The system ® is called simply-laced when all roots have the same length, because the Dynkin
diagram has no double lines in this case.)

(b) Let o, 8 € ® with (o) = (8]5). Show that there exists w € W so that w-a = 5. (If
G = SO(2[,C) assume that [ > 3.)

3. Let G = SL(3,C), H the diagonal matrices in G, and let V = C3 ® C3.

(a) Find the weights of H on V. Express the weights in terms of 1, €2, €3 and for each weight
determine its multiplicity. Verify that the weight multiplicities are invariant under the Weyl
group W of G.

(b) Verify that each Weyl group orbit in the set of weights of V' contains exactly one dominant
weight. Find the extreme dominant weights G (those such that 5+ « is not a weight, for any
positive root ).

(c) Write the weights of V' in terms of the fundamental weights {w, wa} and plot the set
of weights in the h* plane. Indicate multiplicities and W-orbits in the plot. (Show that
||w1|| = ||w2|| and that the angle between w and wy is 60°. Note that €1 + 2 +e3 = 0 on
b*.)

(d) V decomposes into G-invariant subspaces V' = V. @&V_, where V. consists of the symmetric
2-tensors, and V_ is the skew-symmetric 2-tensors. Determine the weights and multiplicities
of V1 and verify that the weight multiplicities are invariant under W.

0 S0
—S0 0
the diagonal matrices in G, and let V = A% C%

4. Let G = Sp(C*,Q), where Q = l ] and sg has antidiagonal 1 as usual. Let H be

(a) Find all the weights of H on V. Express the weights in terms of €1, €5 and for each weight
determine its multiplicity (note that e3 = —e and €4 = —&1 as elements of h*). Verify that
the weight multiplicities are invariant under the Weyl group W of G.

(b) Verify that each Weyl group orbit in the set of weights of V' contains exactly one dominant
weight. Find the extreme dominant weights § (those such that 5+ « is not a weight, for any
positive root ).
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(c) Write the weights of V' in terms of the fundamental weights {w, wa} and plot the set
of weights in the h* plane. Indicate multiplicities and W orbits in the plot. (Show that
||ea||? = 2||1|| and that the angle between oy and s is 45° relative to a W-invariant inner

product on b*.
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Lecture 13. Highest Weight Theory

Extreme Vectors and Highest Weights

Let G be a classical group whose Lie algebra is semisimple. We fix a set ®T of positive roots and
the associated triangular decomposition

g=n+hHh+n
as in Theorem 8.9. We set b = § + n and call b a Borel subalgebra of g. We have
[b,6] = n, [h,n] = n.

Let P(g) be the weight lattice and P, (g) the dominant weights (relative to the choice of ®).
If (7, V) is a finite-dimensional representation of g, then V' has a weight-space decomposition

V=& V), (13.1)

neP(g)
where V(p) ={veV : n(Y)v=pu(Y)v forallY € h}. We denote by

X(V)=A{pePg) : V(u) # 0}
the set of weights of the g-module V.

Let {a1,...,q} be the simple roots in ® and let Q1 (g) = Nay + - -+ + Ny be the semigroup
generated by the positive roots. We define a partial order on P(g) by

A<p ifA=p—p forsome (€ Qi(g)\{0}.

Let (m, V) be a representation of g (not necessarily finite-dimensional). A non-zero vector vy € V
is called b-extreme if w(b)vg C Cvg. A vector vy € V' is g-cyclic if V' is spanned by vy together with
the vectors m(z1) - - -m(xp)vo, where z; € gand p=1,2,. ...

Proposition 13.1 Let (7, V) be a finite-dimensional representation of g.

(1) A wector vy is b-extreme if and only if w(n)vg = 0 and there exists p € Py (g) such that
m(H)vg = (u, H)yvg for all H € b.

(2) The b-extreme vectors in V' span the subspace

Vi={veV : x(n)v=0}

(3) Suppose p is a maximal element of X(V') relative to the partial order <. Then u is dominant
and V(p) C V™. In particular, V?' # 0.

(4) Suppose vy € V is b-extreme of weight p and is cyclic under g. Then w is irreducible, V(u) =
Cuvg, and X(V) C p— Q+(g).

Theorem 13.2 (Highest Weight) Suppose (m,V) is an irreducible finite-dimensional represen-
tation of g. Then V has a unique highest weight u such that A\ < u for all other weights \ of V.
One has p € Py (g) and dimV(u) = 1. A nonzero vector vy € V(u) is called a highest weight
vector of V. If U is another irreducible finite-dimensional g-module with highest weight 1, then
Uu=V.

The definition of highest weight depends on the choice of a set of positive roots. However, the
elements of Py (g) are in one-to-one correspondence with the Weyl group orbits in P(g). Thus
every irreducible finite-dimensional representation of g corresponds to a unique Wg-orbit in P9,
namely the orbit of the highest weight.
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Commuting Algebra and n-invariants

If V is a g-module we set
Vi={veV:X-v=0 foral X €n}.

Lemma 13.3 Let V be a finite-dimensional g-module. Then V s irreducible if and only if
dim V" =1.

Let V be a finite-dimensional g-module. We shall apply the theorem of the highest weight to
obtain the following decomposition of the commuting algebra Endg(V) as a direct sum of full
matrix algebras. Note that if 7' € Endg(V) then it preserves V™ and it preserves the weight space

decomposition
V= Vip).
HES
Here S = {u € Pry(g) : V™(u) # 0}. By Theorem 13.2 we can label the equivalence classes of
irreducible g-modules by their highest weights. For each u € S choose an irreducible representation
(m#, VH) with highest weight .

Theorem 13.4 The map ¢(T) = T|yn gives an algebra isomorphism

Endg(V) = @ End(V" (). (13.2)
RES

For every p € S the space V() is an irreducible module for Endg(V) and distinct values of p
give inequivalent modules for Endg(V'). Under the joint action of g and Endg(V) the space V

decomposes as
Ve Pvrevt(u, (13.3)
RES

where V# is the irreducible g-module with highest weight L.

Appendix: Linear and Associative Algebra for Lecture 13.

Representations of Associative Algebras

Let cA be an associative algebra over C with identity 1.

Lemma 13.5 (Schur) If (p,V) and (1,W) are finite-dimensional irreducible representations of
cA, then
. N ERIAGETCA
dim Hom, (V, W) = { 0 otherwise.
Let (p, V) be a finite-dimensional representation of A. We say that V' is completely reducible as an A
module if for every A-invariant subspace W C V there exists a complementary invariant subspace
U C V such that V =W @ U. If U is a finite-dimensional irreducible .4-module, we denote by [U]

63



the equivalence class of all A-modules equivalent to U. Let A be the set of all equivalence classes
of finite-dimensional irreducible A-modules.
Suppose that V is a completely reducible A-module. For each £ € A we define

Vo= > U,

UCV,|U]=¢

where the subspaces U are invariant and irreducible under A and furnish representations of A in
the equivalence class {. We call V(¢) the {-isotypic subspace of V.

For each ¢ € A fix a module E¢ in the class . There is a linear map

Se HomA(Eg, V)® E:—V, Sg(u ®w) = u(w)
for u € Homy(Fg, V) and w € E¢. If we make Hom 4(E¢, V) ® E¢ into an A-module with action
z-(uRw)=u® (x-w)for z € A, then S¢ is an A-intertwining map. If 0 # u € Homy (E¢, V) then
Schur’s Lemma implies that u(E¢) is an irreducible A-submodule of V' isomorphic to E¢. Hence

Sg(HomA(Eg, V)® Eg) C V(f)

for every & € A
Proposition 13.6 Let V' be a completely reducible A-module. Let

V=Wie oV (13.4)

be any decomposition with each V; invariant and irreducible. Then

Vo= @V (135
[Vj]=¢
for all € € .%T, and hence
V= Ve (13.6)
ced

The map Se¢ gives an A-module isomorphism
HomA(Eg, V) & Eg = V(g)
for each & € A

We call (13.6) the primary decomposition of V. The cardinality my (§) of the set {j : [V;] = ¢} is
called the multiplicity of £ in V. We have

my (€) = dim Hom 4 (Eg, V) = dim Hom4(V, E).
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Simple Associative Algebras

An associative algebra A is called simple if the only two-sided ideals in A are 0 and A.

Theorem 13.7 (Wedderburn) The algebra End(V') is simple for every finite dimensional com-
plex vector space V. Conversely, if A is any finite dimensional simple algebra over C with unit,
then there is a finite dimensional complex vector space V' such that A= End (V).

Theorem 13.8 (Burnside) Let (p, V) be an irreducible representation of an associative algebra
A. If dimV s finite and p(A) # 0 then p(A) = End(V).

Proposition 13.9 Up to equivalence, the only irreducible representation of End(V') is the repre-
sentation T on V given by 7(z)v = xv.

Theorem 13.10 Let A= End(V) and suppose (p, W) is a finite-dimensional representation of A.
Then dim W = mdim V', where m = dim Hom 4(V, W), and there exists a linear bijection

T:W —=V™  withTw = (v1,...,0m),

such that Tp(x)w = (xvy,...,z0y) for x € A and w € W. Hence W is equivalent to the A-module
Homu(V,W)® V', where x € A acts by x - (u®@v) = u® (zv) for uw € Hom4(V,W) and v € V.

Semisimple Associative Algebras

A finite-dimensional associative algebra A with unit is said to be semisimple if it is the direct sum
of simple algebras. Throughout this section we assume that A is semisimple with unit 14. By
Wedderburn’s theorem, there exist finite-dimensional vector spaces V*, with A running over some
finite set L, and an algebra isomorphism

®: A — PEad(V?). (13.7)
AeL

Conversely, every direct sum of matrix algebras is semisimple.
The isomorphism @ in (13.7) gives representations (7}, V) of A, where 7*(z) is the restriction of
®(z) to V> for z € A.

Proposition 13.11 The representations (7>, V) are irreducible and mutually inequivalent. Every

irreducible representation of A is equivalent to some .

An arbitrary representation of A can be described as follows.

Proposition 13.12 Let A be given by (13.7) and suppose (p, W) is a finite-dimensional represen-
tation of A. Set U» = Hom4(V*, W) for A € A and define a linear map

S:@U’\@)V’\—W/V, S(Zuk(@v,\):Zu,\(v,\).
AeA AeA AeA
Then S is an A-module isomorphism and

Sp(z)S = GBAIU* ® 1 (z). (13.8)
AcA
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Double Commutant Theorem

Let V be a finite dimensional vector space. For any subset S C End(V') we define
Comm(S) = {z € End(V) : zs =sx for all s € S}

and call it the commutant of S. We observe that Comm(S) is an associative algebra with unit Iy .
Suppose now that .4 C End(V) is a semisimple algebra with Iy € A. Set B = Comm(A). The
vector space A ® B is an associative algebra under the multiplication

(a®b)(d @) =ad @bV,

and A (resp. B) is isomorphic to the subalgebra A ® 1 (resp. 1 ® B) of A® B.
By Proposition 13.12 there is an .A-module isomorphism

V=@viel (13.9)
i=1
where V; is an irreducible A-module, V; 2 V; for i # j and U; = Homu(V;, V). Under this

isomorphism

A= PEnd(V;) @ Iy,. (13.10)
=1

We now use this isomorphism to obtain the basic dual relationship between the algebras A and

Comm(A).

Theorem 13.13 (Double Commutant) Let V' be a finite-dimensional vector space and A C
End(V) a semisimple algebra. Then the algebra B = Comm(.A) is semisimple and Comm(B) = A.
Furthermore, relative to the isomorphisms (13.9), (13.10), one has

B =PIy, ® End(Uy). (13.11)
=1

Hence the subspaces V; @ U; are irreducible and mutually inequivalent representations of the algebra

A® B.

We can view (13.9) in two ways: as a decomposition of V' into isotypic subspaces for A (where the
representation V; occurs with multiplicity dim U;), or as a decomposition of V' into isotypic subspaces
for B (where the representation U; occurs with multiplicity dim V;). This dual point of view sets
up a correspondence between irreducible representations of A and irreducible representations of B3,
where V; is paired with Uj.

Exercises for Lecture 13.

1. Let g = sl(3,C). Fix the positive roots ® = {e] — &3, €2 — €3, &1 — €3} as usual. Let 7 = ad
be the adjoint representation on g.
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(a) Express the highest weight A of 7 in terms of the fundamental weights w; and ws. What
is the highest weight vector?

(b) Find all 5 € P4 (g) of the form 8 = A\ — v, where v € Q4(g). (Here P;,(g) are the
dominant weights, and Q4 (g) are the sums of positive roots.) Verify that for every such 3,
the corresponding weight space gg # 0.

(c) Find the orbit W - 3 of each weight (3 in (b), where W is the Weyl group of g. Verify that
the union of these orbits is the set of weights of 7.

(d) Plot the set of weights of 7 as points in the h* plane. Observe that this set is in the
convex hull of the orbit W - X of the highest weight.

. Let g = sp(2,C). Fix the positive roots ® = {e — e9, &1 + €2, 261, 262} as usual. Let 7 = ad
be the adjoint representation on g. Carry out parts (a), (b), (c), (d) of the previous exercise
in this case.

. Let g = sp(2,C). Suppose (m, V) is the irreducible representation of g with highest weight
p = w1 + wy (the smallest regular dominant weight).

(a) Show that there is exactly one 8 € Py (g) of the form 5 = p — 7, where 0 # v € Q4 (g).
Show that V3 # 0 and find a spanning set for it. (Hint: Use the representation theory of
sl(2,C) and the action of U(g) on the highest weight vector.)

(b) Find the orbits W - p and W - 3, where W is the Weyl group of g.

(c) Plot the weights of 7 in the h* plane. Observe that all the weights are contained in the
convex hull of the orbit W - p of the highest weight.

(d) The Weyl dimension formula implies that dim V = 2/®"I = 16. Use this result to determine
the dimension of the weight space V3 in (a).

. Let g be the Lie algebra of a classical group of rank [ and let wy, ..., w; be the fundamental
weights. Suppose A = myw; + - - - + myw; is the highest weight of an irreducible g-module
V. Let A* be the highest weight of the dual module V*. Use the formula \* = —wg - A
(wo(®* = —®™T) and the results of Lecture 12 to show that A\* is given as follows:

Type A;: X* = myw +my—1wz + -+ -+ maw—1 + miw;
Type By or Ci: A* = A

Tvpe Dr: A\ — A if [ is even
yp r - miwi + -+ My_owi—o +mywi—1 +my_1wo; if [ is odd.
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Part 5: Invariant Theory and Irreducible Representations

Lecture 14. Invariants for Classical Groups

First Fundamental Theorem of Invariants

Let G be a reductive linear algebraic group and (p, V) a regular representation of G. For each
positive integer k, let
Vi=ve.  .aV.
—_———

k copies

(This should not be confused with the k-fold tensor power VE* = @FV.) Likewise, let (V*)* be
the sum of k copies of V*. Given positive integers k and m, consider the algebra P((V*)* x V™)
of polynomials with k covector arguments (elements of V*) and m vector arguments (elements of
V). The induced action of G on P((V*)* x V™) is

g'f(va"'vv;;vvla“'vvm)
= f(’UT Op(g), .- '71)]: Op(g),p(g_l)’l)l, .- .,p(g_l)’vn).

We shall refer to a description of (finite) generating sets for P((V*)¥ x V™)&  for all k,m, as a
First Fundamental Theorem (FFT) for the pair (G, p). Here the emphasis is on an explicit listing of
generating sets; the existence of a finite generating set of invariants (for each k, m) is a consequence
of Theorem 9.4. In this lecture we will state the FFT when G is a classical group and V is its
defining representation.

Since P((V*)*¥ x V™G o P((V¥)E x V™)GUV) 3 FFT for GL(V) gives some information about
invariants for the group p(G), so we first consider this case. The key observation is that GL(V)-
invariant polynomials on (V*)* x V™ come from the following geometric construction.

There are natural isomorphisms

(V¥ =~ Hom(V,C¥), V™= Hom(C™ V).
Here the direct sum v] @ - - - @ v} of k covectors corresponds to the linear map
v = [(01,0), - (v, v)]
from V to CF, while the direct sum v & - - - @ v,,, of m vectors corresponds to the linear map
[C1,. .y Cm] = c1v1 + -+ e,

from C™ to V. This gives an algebra isomorphism

P((V*)* x V™) = P(Hom(V, C*) x Hom(C™, V))
with the action of g € GL(V) on f € P(Hom(V,C*) x Hom(C™,V)) becoming

g f(zy) = flaplg™"),p(9)y), zEX, yey. (14.1)
We denote the vector space of k x m complex matrices as My, ,,. Define a map

w2 Hom(V, C*) x Hom(C™, V') — Mpn
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by u(x,y) = xy (composition of linear transformations). Then

w(zp(g™), plg)y) = zp(g) ' p(9)y = w(z,y)

for g € G and 2 € X,y € Y. The induced homomorphism p* on P(My,,) has range in the
GL(V)-invariant polynomials:

¥ P(Mpm) — P(Hom(V, C*) x Hom(C™, V))SHV),

where, as usual, u*(f) = fop for f € P(My,m). Thus if we let z;; = p*(z;;) be the image of the
matrix entry function x;; on My, ,,, then z;; is the contraction of the ith covector position with the
7th vector position:

(0 0 01,y 0m) = (07, ).
Theorem 14.1 (polynomial FFT for GL(V)) The map
M* P(Mk,m) N P((V*)k « Vm)GL(V)

is surjective. Hence P((V*)¥ x V™)GUV) s generated (as an algebra) by the contractions { (v}, v;)
i=1,...,m j=1,...k}.

Consider now the orthogonal or symplectic groups acting in their defining representations. Here we
obtain the invariant polynomials by the following modification of the geometric construction used
for GL(V).

Let V = C" and define the symmetric form

(z,y) = inyi for x,y € C". (14.2)

(2

Write O, for the orthogonal group for this form. Thus g € O, if and only if g'¢ = I,. Let
SMj, be the vector space of k x k complex symmetric matrices B (so B = B'). Define a map
7: My — SMy by 7(X) = X!X. Then

7(9X) = X'g'gX = 7(X) for g€ O and X € M, .
Hence 7*(f)(9X) = 7"(f)(X) for f € P(SMjy), so we obtain an algebra homomorphism
7t P(SMy) — P(VF)On
For example, given vy, ..., v € C", we can form the n X k matrix
X =[vi,...,u5) € My

(we always take C™ to consist of column wvectors with n components). Then X'X is the k x k
symmetric matrix with entries (v;, v;). Hence under the map 7* the matrix entry function z;; on
S My, pulls back to the O,-invariant quadratic polynomial

T*(xij)(’l)l, .. .,’Uk) = (’Ui, ’Uj)

on (C™)¥ (the contraction of the ith and jth vector position using the symmetric form).
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When n is even, let J,, be the n x n block-diagonal matrix

kK 0 - 0
0 /{/ DY 0 0 1
e N ﬁ:l—l 01'
00 - &
Define the skew-symmetric form
w(z,y) = (, Jny) (14.3)

for z,y € C™ and let Sp,, be the invariance group of this form. Thus g € Sp,, if and only if
gtJng = Jn. Let AMj be the vector space of k x k complex skew-symmetric matrices A (so
At = —A). Define a map

v My — AMg

by 7(X) = X*J,X. Then
v(gX) = X'g'JgX = v(X) for g € Sp,and X € M.
Hence v*(f)(gX) = v*(f)(X) for f € P(AMjy), so we obtain an algebra homomorphism
v P(AMy) — P(VF)5Pn,

As in the orthogonal case, given vy, ..., v, € C", we form the matrix X = [v1,...,v;] € My, . Then
the skew-symmetric k x k matrix X*J,, X has entries (v;, J,v;). Hence the matrix entry function
x;5 on AMj, pulls back to the Sp,,-invariant quadratic polynomial

Y (i) (v1, - - vk) = w(vi, v))
(the contraction of the ith and jth positions, i # j, using the skew form).

Theorem 14.2 (polynomial FFT for O,, and Sp,,)
(1) The homomorphism
T P(SMy) — P((C")F)On

is surjective. Hence P((C")*)On is generated (as an algebra) by the orthogonal contractions
{(vi,v5) : 1 <i<j <k}
(2) Suppose n is even. The homomorphism

v P(AMy) — P((C")*)%P
is surjective. Hence P((C")¥)SPn is generated (as an algebra) by the symplectic contractions
{w(vi,vj) 1 1<i<j<k}.

Corollary 14.3 (1) Let G = O,, and V = C". Then P((V*)k x V™% is generated (as an algebra)
by the quadratic polynomials

vi,vi), (v, vY), (vl v), or1<i,j<mandl1<p,q<k.
j P Yq P

(2) Let G = Sp,, and V = C" (with n even). Then P((V*)¥ x V™) is generated (as an algebra)
by the quadratic polynomials

w(vi,v5),  w(vy,vg), (v, i), for1<i,j<mand1<p,q<k.
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Tensor Invariants and Schur Duality

Let GL(V) act on V' by the defining representation p, and let p* be the dual representation on V*.
For all integers k,m > 0 we have the representations pr = p®* on V& and p?, = p*®* on V*&m,
Since there is a natural isomorphism

(V*)®m ~ (V®m)*

as GL(V) modules, we may view pf, as acting on (VE™)*. We set pi., = p®* @ p*®™ acting on
Vek @ (Vemyx,

To obtain the tensor form of the FFT for GL(V), we must find an explicit spanning set for the
space of GL(V) invariants in V& @ (V&™)*, For x € V& @ (V¥™)* and A € C* we have

Pkm( M)z = Nemmg,

Hence there are no invariants if k& # m, so we only need to consider the representation pj ; on
V©k ® (V®k)*.

Recall that when W is a finite-dimensional vector space, then W @ W* = End(W) as a GL(WW)
module, where w ® w* gives the linear transformation

u = (w*, uyw.
We apply this to the case W = V&, The action of g € GL(V) on End(V®*) is given by

T — pr(9)Tpr(g) "
Thus the space of GL(V) invariants in End(V®¥) is the commutant of the set of operators py(GL(V))

Let & be the group of permutations of {1,2,...,k}. Define a representation oy, of &) on Ve by
orp(s) (v ®@ - Q) = Vs=1(1) @+ +* @ Vg=1(f)-

Theorem 14.4 (Schur Duality) Set A = pi(C[GL(V)]) and B = 01(C[Sk]). Then Comm(B) =

A and Comm(A) = B.

We now apply this result to obtain the tensor version of the FFT for GL(V). Let ej,...,e, be
a basis for V' and let e],..., e} be the dual basis for V*. For a multi-index I = (iy,...,14x) with
1<i; <n,set |I|=Fk and

e =€; - & €.
The elements e; form a basis for ®"* V as I ranges over the finite set of all such multi-indices. For
s € & and I = (i1,...,1ix) we set

S (’il, Ceey ’Lk) = (is—l(l), Ceey is—l(k)).
Then we have oy (s)er = es.;. Let = be the set of all ordered pairs (I,.J) of multi-indices with
|I| = |J| = k. The set
{er@ey : (I,J) € E}
is a basis for V&F @ (V®k)*,
For s € &, define a tensor Cy of type (k, k) by

Cs = Z es] Rey. (14.4)
=
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Theorem 14.5 Let G = GL(V). The space of G-invariants in VEF @ V*®k s spanned by the
tensors {Cs : s € Si}.

Tensor Invariants for Orthogonal and Symplectic Groups

Let G € GL(V) be the group leaving invariant a nondegenerate bilinear form w (which we assume
is either symmetric or skew-symmetric). Since V' = V* as a G-module via the form w, we only
need to consider tensor invariants in (V™))% when m = 1,2, .. .. Clearly there are no invariants if
m is odd, since —I € GG, so we may assume that m = 2k is even.
The GL(V') isomorphism V* ® V = End(V) and the G-module isomorphism V' = V* combine to
give a G-module isomorphism

T : VO2F = End(VEF) (14.5)

which we take in the following explicit form: If u = v; ® - - - ® vgi, with v; € V', then T'(u) is the
linear transformation

T(u)(z1® - @ x) = w(xy, va)w(za, va) - - - wW(Tk, V2g)V1 @ U3 - - - & Vag—1

for x; € V. That is, we use the invariant form to change each wvo; into a covector, pair it with
v9;—1 to get a rank-one linear transformation on V', and then take the tensor product of these
transformations to get T'(u). We extend w to a nondegenerate bilinear form on V¥ for every k by

k

w(x1®--'®xk,y1®'“®yk) = Hw(%‘,yi)-
i=1

Then we can write the formula for T as
T(’Ul ® - @ Vo) T :w(x,v2®v4~'®v2k)v1 QU3 Q- @ Vog_1

for x € VO,

The identity operator I‘Q?k on V®F ig G-invariant, of course. We can express this operator in tensor
form as follows. Fix a basis {f,} for V and let { fP} be the dual basis for V relative to the invariant
form w:

w(fp, f9) = bpq.
Set 0 =351 fp ® fP (where n = dim V'). Then T'(¢) = Iy/. Hence the 2k-tensor

=00 ®0=> [, 0" Q@ fp ® [P

k P1;---5Pk

satisfies T'(0) = I‘Q?k . Tt follows that 6, is G-invariant. Since the action of G on V®2¢ commutes
with the action of Gy, the tensors oox(s)fy are also G-invariant, for any s € Sgr. The first
fundamental theorem asserts that all G-invariant tensors are linear combinations of these tensors.

Theorem 14.6 Let G be O(V) or Sp(V). Then [V®m]G =0 if m is odd, and

[V®2k]G = Span{oax(s)0; : s € Sai}.
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Exercises for Lecture 14.

In all these problems G = GL(n,C), V = C" = M, with left G action, and V* = M, with
right G action.

1. Let X = Mixn X Mypym and Y = My, Let G act on X by g - (z,y) = (zg~ !, gy). Map
X — Y by matrix multiplication: p(z,y) = zy.

(a) Assume that n > min(k,n), so p is surjective. Prove that (u,Y") is the algebraic quotient
X//G. (Hint: Use the first fundamental theorem of invariant theory for G to prove that
p*: P(Y) — P(X)Y is bijective. Note that X = (V*)¥ x V™ as a G module.)

(b) Let n be arbitrary. Let K = GL(k,C) x GL(m,C) act on X and on Y by matrix
multiplication: (g, h) - (u,v) = (gu,vh™1) and (g,h)-y) = gyh~! for (g,h) € K, (u,v) € X,
and y € Y. Let 7 = Ker(u*), where p* : P(Y) — P(X). Prove that Z is invariant under K
and that P(X)% = P(Y)/Z. (Hint: Show that K commutes with the action of G on X and
that the map p is K equivariant.)

2. Forv € V and v* € V*, let T'(v ® v*) = vv* € M,,. This defines the canonical isomorphism
u +— T'(u) between V@V * and M,. Let Ty = T®* be the canonical isomorphism (V@V*)®*F —
(M,,)®*. Let g € G act on = € M, by g-x = grg™'.

(a) Show that T} intertwines the action of G on (V ® V*)®k and (M,,)%*.

(b) Let 0 € & be a cyclic permutation m; — mg — -+ — mp — mpr1 = my. Let
C,: (V@ V*)® — C be the G-invariant contraction

k
Co( V] @ QUi Qup) = H{v;kn].,vm].+1>

7=1
Set X; = T'(v; ® v}). Prove that
Co(v1 @] ® -+ @ v @) = t1( Xy Ximy -+ - Xy )-
(Hint: Note that for X € M, one has T'(v* @ Xv) = XT(v* ®v) and tr(T(v* @ v)) = v*v.)

(c) Let o € & be a product of disjoint cyclic permutations cy, .. ., ¢, where ¢; is the cycle
M1 — Mo — - — My, i — mi,. Let Cp: (V®@V*)® — C be the G-invariant contraction

T P
Co—('l)l X 'UT K& Vg 2y 'U;:.) = H H<,U;kn]'7i’ vm]'+17i>
i=1j=1

Set X; = T'(v; ® v}). Prove that

,
Co(nn @U@ - QU Quy) = H tr(Xomy ; Xomg s+ Xmy,, )
i=1

a) Use the previous exercise to find a basis for the G-invariant linear functionals on M®?
assume n > 2).

-+ (
(
b) Prove that there are no nonzero skew-symmetric G invariant bilinear forms on M,,. (Hint:

(
Use the result in (a) and the projection from (M,,)*? onto (M,)"?2.)
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4. (a) Find a spanning set for the G-invariant linear functionals on MZ3.
(b) Define w(X1, Xo, X3) = tr([X1, X9]X3) for X; € M,,. Prove that w is skew-symmetric and
G invariant.

(c) Prove that w is the unique G invariant skew-symmetric linear functional on M3, up to a
scalar multiple. (Hint: Use the result in (a) and the projection from (M,,)®3 onto (M,)"?.)
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Lecture 15. Skew-Duality for Classical Groups

Representations on Exterior Algebras

We now use the FFT for a classical group G to find the commuting algebra of G on the exterior
algebra of its defining representation.
We denote by p the representation of GL(V) on A V:

p(g) (VI A= ANvp) = gur A+ A guy

for g € GL(V) and v; € V.. It is easy to check from the definition of interior and exterior products
that

p(g)e(w)p(g™) = e(gv),  plg)e(v*)plg™") = u((g") " 0"). (15.1)
We define the skew FEuler operator E on AV by

d

E =3 e(fi)uf)),

7=1
where d = dimV and {fi,..., fa} is a basis for V' with dual basis {f{,..., f]}.

Lemma 15.1 The operator E commutes with GL(V) and acts by the scalar k on NfV. Hence E
does not depend on the choice of basis for V. If T € End(AV) and T : NV — APV for all k,
then [E,T) = pT.

As a particular case of the commutation relations in Lemma 15.1, we have
[E,e(v)]=€(v), [E,t(v*)]=—(v") forveV and v* € V*. (15.2)

Now suppose G C GL(V) is an algebraic group. The action of G on V extends to regular represen-
tations on V®™ and on A V. Denote by Qj the projection from A V onto A¥ V. Then Q) commutes
with G and we may identify Hom(A!V, A* V) with the subspace of Endg(A V) consisting of the
operators Q;AQ;, where A € Endg(A V) (these are the G-intertwining operators that map ANV
to A¥V and are zero on A"V for r # 1). Thus

Endc(AV) = @o<i g Homa (A V, A" V).
Let 7 (V) be the tensor algebra over V and let P : 7(V) — AV be the projection operator:
1
Pu = - 626: sgn(s)on,(s)u  for u € VO™,

Then we have
Homg(A'V, A*V) = {PRP : R € Homg(V®, V&)1, (15.3)

We now use these results and the FFT to find generators for Endg(A V) when G € GL(V) is a
classical group.
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General Linear Group

Theorem 15.2 Let G = GL(V). Then Endg(AV) is generated by the skew Euler operator E.

Corollary 15.3 In the decomposition NV = @,y A"V, where n = dimV, the summands are
irreducible and mutually inequivalent GL(V')-modules.
Orthogonal and Symplectic Groups

Now let 2 be a non-degenerate bilinear form on V that is either symmetric or skew-symmetric. Let
G be the subgroup of GL(V') that preserves . In order to pass from the FFT for G to a description
of the commutant of G in End(A V'), we need to introduce some operators on the tensor algebra
over V.
Define C' : V& — y&(m+2) by

Cu=0®u forueV®m,

where 0 € (®? V)% is the invariant 2-tensor corresponding to the bilinear form ). Define C* :
vem _, yem=2) by

C*' (1@ @ Up) = Q(Vm—1, V)01 @+ -+ @ Vpp—2.

Clearly C and C* commute with the action of G.
For v* € V* define k(v*) : V& — V®(m=1) by evaluation on the first tensor place:

KU)W1® - @) = W, 0102 ® -+ ® Uy

For v € V define pu(v) : VE™ — V&™M+1) by left tensor multiplication:
p(0) (01 @+ Q@ Up) =V RV @ -+ ® Uy
For v € V let v* € V* be defined by
(', w) = Q(v,w) forallw e V.
Then v — v* is G-module isomorphism. We extend € to a bilinear form on V& for all k. Then
Q(Cu, w) = Qu, C*w), Qp(v)u,w) = Qu, K(vH)w).

The intertwining operators for GG on tensor spaces have the following form.

Lemma 15.4 Let G be O(V,Q) (if Q is symmetric) or Sp(V, Q) (if Q is skew-symmetric). Then
the space Homg(V®, VEk) is zero if k + 1 is odd. If k + 1 is even, this space is spanned by the
operators oy (s)Ao(t), where s € Sy, t € &; and A is one of the following operators:

(1) CB with B € Homg(V®, V&k-2)),

(2) BC* with B € Homg(V®(=2), k),

(3) S0y u(fp)Br(f;) with B € Homg(VEU=D, VO (here d = dim V).

In (3) {fp} is any basis for V and {f;} is the dual basis for V*.

From this lemma, we obtain the commuting algebra of G.
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Theorem 15.5 Assume the form § is symmetric and G = O(V,Q). Then Endg(A V) is generated
by the skew Fuler operator E.

Corollary 15.6 (2 symmetric) In the decomposition \'V = @gzl NV, the summands are irre-
ducible and mutually inequivalent O(V, Q)-modules.

Now assume that dim V' = 2n and Q is skew-symmetric. Let G = Sp(V, Q) and define
1 1
X = —§PC*P, Y = §PCP.

These operators on AV commute with the action of G, since C, C* and P commute with G on
tensor space.

Lemma 15.7 One has the commutation relations
Y, e(v)] = [X, ()] =0, [Y,e(oF)] = €(v), [X,e(v)] = e(vF)
forv eV and v* € V*. Furthermore,
[E,Y] =2V, [E,X]=-2X, and [V,X]=E —nl.
Define
¢ = Span{X,Y,E —nl}.
From Lemma 15.7 we see that ¢’ is a Lie algebra isomorphic to s[(2, C).
Theorem 15.8 (2 skew-symmetric) The commutant of G = Sp(V,Q) in End(AV) is generated
by ¢
Corollary 15.9 (G =Sp(V,Q)) There is a canonical decomposition

n

AV=@v*en, (15.4)
k=0

as a (G, g')-module, where dimV = 2n and VE s the irreducible g'-module of dimension k + 1.
Here H* is an irreducible G module and H* % H' for k # 1.

Lemma 15.10 The space Homg(/\l vV, \¥ V), for k+1 an even integer, is spanned by operators of
the following forms:

(1) YQ with Q € Homg (A 'V, AF2V).

(2) QX with @ € Homg(A' 72V, AF V).

(3) 212;21 e(fp)Qu(fy) with Q € Homg(A'™'V, A¥1 V). Here {f,} is any basis for V and {fy} is
the dual basis for V*.
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Appendix: Linear and Associative Algebra for Lecture 15.

Interior and Exterior Product Operators

Let V' be a finite-dimensional vector space and A®*V the exterior algebra over V. For v € V and
v* € V* we have the exterior product operator e(v) and the interior product operator v(v*) on A\*V
that act by

ev)u = vAu,

k
L(fu*)(ful/\..-/\fuk) = Z(—l)j_1<’l)*,’l)j>’01/\"'/\{)}/\"'/\'Uk
j=

—_

for u € AV and v; € V (here v; means to omit v;). Note that e(v) : APV — APV and
L) APV — AP7LV. Also
V) (w A ) = (L(v)w) Au+ (=DFw A (L(v*)u) forwe A¥V, ue AV.
Define the anti-commutator
{a,b} = ab+ ba

for elements a, b of an associative algebra. Then the exterior product and interior product operators
satisfy the canonical anti-commutation relations

{e(2), e(y)} =0, {u(a"),u(y)} =0, {e(),u(z")} = (2%, 2)] (15.5)

for x,y € V and x*,y* € V*. Interchanging V and V*, we also have the exterior and interior
multiplication operators €(v*) and ¢(v) on A®*V* for v € V and v* € V*. They satisfy

e(v*) = 1(v*), L(v) = e(v)? (15.6)

Exercises for Lecture 15.
1. Let G = O(V, B), where B is a symmetric bilinear form on V' (assume dim V' > 3). Let {e;}
be a basis for V' such that B(e;, ej) = d;;.
(a) Let R € (V®4)G. Show that there are constants a, b, ¢ € C so that

R = Z {adijom + boirdji + coudjpt e ®ej e @ e
,5,k,1

(Hint: Determine all the two-partitions of {1,2,3,4}).

(b) Use (a) to find a basis for the space [S?(V) ® S?(V)]
tensor positions 1, 2 and positions 3, 4.)

(c) Use (b) to show that dim Endg(S?(V)) = 2 and that S?(V) decomposes into the sum of
two inequivalent irreducible G modules. (Hint: S?(V) =2 S?(V)* as G modules.)

“ (Hint: Symmetrize relative to

(d) Find the dimensions of the irreducible modules in (c). (Hint: There is an obvious irre-
ducible submodule in S?(V).)
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2. Let G = O(V, B) as in the previous exercise.
G

(a) Use part (a) of the previous exercise to find a basis for the space [/\2 Ve N V} . (Hint:
Skew-symmetrize relative to tensor positions 1, 2 and positions 3, 4.)
(b) Use (a) to show that dim Endg(A%V) = 1 and hence A%V is irreducible under G. (Hint:
A2V =2 A?2V* as G modules.)

3. Let G = Sp(V, Q), where 2 is a nonsingular skew form on V' (assume dimV' > 4 is even). Let
{fi} and {f7} be bases for V' such that Q(f;, f7) = d;;.

(a) Show that (V®4)G is spanned by the tensors

heffefef, Y fiefiefef, Y fiofioflef
@] @] i,

G
(b) Use (a) to find a basis for the space [/\2 Ve A V} . (Hint: Skew-symmetrize relative
to tensor positions 1, 2 and positions 3, 4.)

(¢) Use (b) to show that dim Endg(A? V) = 2 and that A2V decomposes into the sum of two
inequivalent irreducible G modules. (Hint: A2V 2 A2 V* as a G-module.)

(d) Find the dimensions of the irreducible modules in (c). (Hint: There is an obvious irre-
ducible submodule in A2V.)
4. Let G = Sp(V, Q) as in the previous exercise.

(a) Use part (a) of the previous exercise to find a basis for the space [S%(V) ® SQ(V)]G.
(Hint: Symmetrize relative to tensor positions 1, 2 and positions 3, 4.)

(b) Use (a) to show that dimEndg(S?(V)) = 1 and hence S?(V) is irreducible under G.
(Hint: S%(V) = S2(V)* as a G-module.)
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Lecture 16. Tensor Models for Irreducible Representations

Fundamental Representations

Let G be a classical group whose Lie algebra g is semisimple. The irreducible finite-dimensional
representations of g are parameterized by their highest weights. We shall prove that for every
i € Pyi(g), there exists an irreducible finite-dimensional g-module V' with highest weight u. We
begin with the so-called fundamental representations. The elements of P, (g) are of the form

niwi + - - -+ ooy, with n; € N,

where w1, ..., w; are the fundamental weights. An irreducible finite-dimensional representation
of g whose highest weight is wj for some k is called a fundamental representation . We now
prove the existence of the fundamental representations by giving explicit models for them (for the
orthogonal groups this construction will be completed in Lecture 18 with the construction of the
spin representations).

Special Linear Group

We construct the fundamental representations when G is SL(n,C). Let (0., A" C") be the rth
exterior power of the defining representation of G on C"*, forr =1,2,...,n.

Theorem 16.1 Let G = SL(n,C). The representation o, on the rth exterior power N\ C" is
reqular, irreducible and has highest weight w, for 1 <r <mn.

Remark. For r = n the space A" C" is one-dimensional and o, is the trivial representation of
SL(n, C).

Special Orthogonal Group

Let G = SO(n,C). Let o1 be the defining representation of G on C" and denote by o, the
representation of G on the rth exterior power A" C".

Theorem 16.2 (1) Let n = 2l +1 > 3 be odd. For 1 < r <, (0., \"C") is an irreducible
representation of SO(n,C) with highest weight w, for r <l — 1 and highest weight 2wo; for r = 1.
(2) Let n =21 > 4 be even.

(a) For 1 <r <l—1, (o,, N"C") is an irreducible representation of SO(n,C) with highest weight
wy forr <1 —2 and highest weight w;_1 + w; forr=1—1.

(b) Forr =1, the space A C™ is irreducible under the action of O(n,C). As a module for SO(n, C)
it decomposes into the sum of two irreducible representations with highest weights 2w;_1 and 2w;.

Symplectic Group

Let G = Sp((CQZ , ), where 2 is a non-degenerate symplectic form. We recall the decomposition of
AC% under G (Corollary 15.9). Let 6 € (A V)% be the G-invariant skew 2-tensor corresponding
to Q. Let Y be the operator of exterior multiplication by %9, and let X = —Y™* (adjoint operator
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relative to the skew-bilinear form on AV obtained from ). Set H = II — E, where E is the
skew-Euler operator. Then

[H,X]=2X, [HY]=-2Y, [X,Y]=H

by Lemma 15.7. Set ¢’ = Span{X,Y, H}. Then g’ = s((2,C) and ¢’ generates the commuting
algebra Endg(A V), by Theorem 15.8.

We say that an element u € AC? is Q-harmonic if Xu = 0. Let H(AC?, Q) be the space of
Q-harmonic elements in A C%. Since X : AP C2 — A?72C%, an element u is Q-harmonic if and
only if each homogeneous component of u is 2-harmonic. Thus

H(/\ (C2lv Q) = @pzo H(/\ p(c2l’ Q)a

where H(APC?, Q) = {u € APC¥ : Xu = 0}. Because X commutes with G, the spaces
H(AP C%, Q) are G-invariant.

Theorem 16.3 (1) If p > [ then H(AP C%, Q) = 0.
(2) Let V¥ be the irreducible ¢'-module of dimension k + 1. Then

ACE =l {Vl—p ® H(A\P C2, Q)} (16.1)
as a (¢, G)-module.
(3) If 1 < p <1, then H(AP C%, Q) is an irreducible G-module with highest weight Wp.
Corollary 16.4 The map C[0] ® H(AC?, Q) — AC% given by f(0) @ u — f(0) Au (exterior
multiplication) is a G-module isomorphism. Thus

AF 2 = @L’Z? o A H(NF 2P CE, Q). (16.2)
Hence NF €2 is multiplicity-free as a G-module and has highest weights wi—2p forp=10,1,...,[k/2].
Corollary 16.5 For k =1,...,1 one has dim H(A\F C%, Q) = (3) — (,2,).
We can describe the space H(A? cZ, ) in another way. Let v; € C?. Call vy A--- A v, an isotropic
r-vector if Q(v;,v;) =0ford,j=1,...,r.

Proposition 16.6 Forp =1,...,1 the space H(\? c2, Q) is spanned by the isotropic p-vectors.

Cartan Product

Now that we have constructed the fundamental representations of g (with three exceptions in
the case of the orthogonal groups), we show how to obtain more irreducible representations by
decomposing tensor products of representations already constructed.

Given finite-dimensional representations (p,U) and (o, V) of g, we can form the tensor product
(p®o,U® V) of these representations. The weight spaces of p ® o are

UaeVip) = 3 UNe V(. (16.3)
Apu=v

In particular, for v € P9 we have

dmU @ V)(v)= Y dimU(\)dmV(u) (16.4)
Apu=v
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Proposition 16.7 Let (7, V?*) and (7#, V*) be finite dimensional irreducible representations of g
with highest weights A\, u € P11 (g).

(1) Fiz highest weight vectors vy € V* and v, € V. Then the g-cyclic subspace U C VA VH
generated by vy ® v, 1s an irreducible g-module with highest weight X + p.

(2) If v occurs as the highest weight of a g-submodule of V> @ V# then v < X+ p.

(3) The irreducible representation (", VATH) occurs with multiplicity one in V* @ VF,

We call the submodule U in (1) of Proposition 16.7 the Cartan product of the representations
(7, VA) and (7, VH).

Corollary 16.8 (1) The set of highest weights of irreducible finite-dimensional g-modules is closed
under addition.

(2) Suppose G is connected and has Lie algebra g. If 7 and n* are differentials of irreducible regular
representations of G, then the Cartan product of ™ and 7" is the differential of an irreducible
reqgular representation of G with highest weight \ + p.

(3) The set of highest weights of irreducible reqular G-modules is closed under addition.

Theorem 16.9 Let G be the group SL(V'), Sp(V) or SO(V) (in the last case assume dimV > 2).
For every dominant weight pn € Py (G) there exists an integer k so that VO contains an irreducible
G-module with highest weight . Hence every irreducible regular representation of G occurs in the
tensor algebra of V.

Irreducible Representations of GL(n,C)

We shall extend the theorem of the highest weight to the group G = GL(n, C). Recall from Lecture
#7 that Py (G) consists of all weights

p=mMiEL+ A Mpen, My > > My, m; €L (16.5)

Define the dominant weights
)\i:51+"'+5i (16.6)
for ¢ = 1,...,n. Note that the restriction of \; to the diagonal matrices of trace zero is the

fundamental weight w; of sl(n,C) for i = 1,...,n— 1. If p is given by (16.5) then
w=(m1—mo)A1 + (m2 —mg)Aa+ -+ (Mp_1 — Mp)Ap—1 + MpAn.
Hence Py (G) consists of all weights
w=Fkixi+ -+ kpAn, ki€eZ, k1>0,....k,—1>0.
The restriction of u to the diagonal matrices of trace zero is the weight
o = (mq —mao)wy + (me — mg)wa + -+ -+ (Mp—1 — My ) Wp_1. (16.7)

Theorem 16.10 Let G = GL(n,C) and let p be given by (16.5). Then there exists a unique
irreducible regular representation (7, V') of G such that

(1) the restriction of m to SL(n,C) has highest weight uo given by (16.7);

(2) w(2I,) = zm™ttmn]y, for z € C*.

Furthermore, the representation (7, V'), where 7(g) = (g
tion (m*, V™).

H=1, is equivalent to the dual representa-
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Lecture 17. Spinors

Clifford Algebras

Let V' be a finite-dimensional complex vector space with a symmetric bilinear form § (for the
moment we allow 3 to be degenerate). A Clifford algebra for (V,[) is an associative algebra
ClLiff(V, §) with unit 1 over C and a linear map

vV — CLfi(V, §)
satisfying the following properties:
(C1) {v(z),v(v)} = B(x,y)1 for x,y € V, where {a,b} = ab+ ba is the anticommutator of a, b.
(C2) ~(V) generates Cliff(V, 3) as an algebra.

(C3) Given any complex associative algebra A with unit and a linear map ¢ : V' — A such that
{6(z), p(y)} = B(z,y)1, there exists an associative algebra homomorphism

¢ : Cliff(V, B) — A

such that ¢ = 5 o:

CLf(V, )
Using the tensor algebra over V| one proves that an algebra satisfying properties (C1), (C2), and
(C3) exists and is unique (up to isomorphism).
Let Cliffx(V, 3) be the span of 1 and the operators
v(a1)---v(ap) fora; €V and p <k.
The subspaces Cliffy(V, ), for k = 0,1, ..., give a filtration of the Clifford algebra:
Clift(V, 8) - Cliff(V, 8) € Cliffyym(V, 5)

Let {v; : ¢ =1,...,n} be a basis for V. Since {y(v;),v(vj)} = B(vi,v;), we see from (C1) that
Cliffy(V, ) is spanned by 1 and the products

’Y(’Uil)""}/(’l)ip), 11 <’i2<"'<’ip
for p < k. In particular, we have
Cliff(V, g) = Clift,(V, 5), n=dimV.

and dim Cliff(V, 8) < 24imV,
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The linear map v — —v(v) satisfies (C3), so it extends to an algebra homomorphism
o : CLff(V, 8) — ClLfi(V, §)
such that

a(y(vr) - y(vp) = (=1 y(v1) - - -y (g).

Obviously o?(u) = u for all u € Cliff(V, 3). Hence « is an automorphism, which we call the main
involution of Cliff(V, 3). There is a decomposition

Cliff(V, B) = Cliff" (V, 8) @ Cliff~ (V, 3),

where Clifft(V, 3) is spanned by products of an even number of elements of V., Cliff(V, 3) is
spanned by products of an odd number of elements of V', and « acts by £1 on Cliﬁi(V, B).

Spaces of Spinors

Let V be a finite-dimensional complex vector space with nondegenerate symmetric bilinear form .
Let S be a complex vector space and let v : V' — End(S) be a linear map. We say that (S,~) is a
space of spinors for (V, 3) if

(S1) {v(2),7(y)} = B(z,y)I for all z,y € V.

(S2) The only subspaces of S that are invariant under (V') are 0 and S.

If (S,7) is a space of spinors, then the map 7 extends to an irreducible representation
v : Cliff(V, 8) — End(95),

and every irreducible representation of ClLff(V, ) arises this way. Since Cliff(V,3) is a finite-
dimensional algebra, a space of spinors for (V, 3) must also be finite-dimensional.

If (v,S) and (7', S’) are spaces of spinors for (V, 3) then (S,~) is said to be isomorphic to (S’,~")
if there exists a linear bijection 7' : S — S’ such that Ty(v) = +'(v)T for all v € V.

Theorem 17.1 Letn =dimV.

(1) If n is even then up to isomorphism there is exactly one space of spinors (v, S) for (V,3) and
dim § = 27/2.

(2) If n is odd, then up to isomorphism there are two spaces of spinors for (V, 3) and they are each
of dimension 2!"/2

Structure of Clifford Algebras

Proposition 17.2 Suppose dimV' = n is even. Let (S,v) be a space of spinors for (V,3). Then
(End(S), v) is a Clifford algebra for (V, (). Thus Cliff(V, 3) is a simple algebra of dimension 2.
The map v : V. — Cliff(V, §) is injective. For any basis {vi,...,v,} of V the set of all ordered
products

Y(viy) -y (viy) I1<ii<...<ip<n (17.1)

(empty product = 1) is a basis for Cliff(V, 3).
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Before considering the Clifford algebra for an odd-dimensional space, we introduce another model
for the spin spaces which is useful for calculations. Assume that dimV = 2[ is even. Take the
(B-isotropic spaces W, W* and the basis e4; for V as above. Set

U, = /\(Ce_i =Cl & Ce_;

fori=1,...,1. Then U; is a graded algebra with ordered basis {1, e_;} and relation e? ; = 0. Since
W*=Ce_1 @ --- @ Ce_y, there is an isomorphism of graded algebras

/\'(W*) > U1®---®U; (skew-commutative tensor product). (17.2)

If we ignore the algebra structure and consider A W* as a vector space, we have an isomorphism
AW*=2U; ®---® U;. Hence

End(/\ W*) 2 End(U1) ® - - - ® End(U)) (17.3)

(algebra isomorphism). Notice that in this isomorphism the factors on the right mutually commute.
To describe the operators y(z) in this tensor product model, let J = {j1,...,jp} with1 < j; <--- <
Jp < 1. Under the isomorphism (17.2) the element e_j, A.. .Ae_j, corresponds to uy = u1 ®- - -Quy,

where
o e_; ified
YT 1 ifig
We have
Ao A Ae . = 0 ifielJ
TR (=) e A Nesg AL Ne, if i ¢,
where r is the number of indices in J that are less than ¢. Thus the exterior multiplication operator
e(e—_;) acts on the basis {u;} by

0 0
AL, =H® --H® 10 I®---®1,
—_———
ith place
1 0 . . . . . .
where H = 0 -1 |’ I is the 2 x 2 identity matrix and we enumerate the basis for U; in the

order 1, e_;. On the other hand,

‘ ' ) MTe—jy ALooNeS AL Ney, ifie ]
L(ez)(e_h/\.../\e_]p)—{ 0 itig

Thus the interior product operator ¢(e;) acts on the basis {u;} by

0
Ai=H® --@H® 00 QI®- 1.
ith place

It is easy to check that the operators {Ay;} satisfy the canonical anticommutation relations (the
factors of H in the tensor product ensure that A;A; = —A;A;). This gives a direct proof that
S=U; ®---® U together with the map e4; — A; furnishes a space of spinors for (V, 3).
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When dimV = 2] + 1 is odd, set
Ay=H®---®H (I factors).

Then A(Q) =1 and AgA4; = —A;Ag for i = 1,...,1. Hence we can obtain models for the spinor
spaces (S,7v4) by seting S =U; ® - -+ ® Uy, with ey; acting by A4, and ey acting by +A,.

Proposition 17.3 Suppose dimV = 2]+ 1 is odd. Let (S,~v4) and (S,v-) be the two inequivalent
spaces of spinors for (V,[3), and let

YV = End($) @ End(S), () = 1+(v) & 1_(v).

Then (End(S) @ End(S), ) is a Clifford algebra for (V, 3). Thus CLiff(V, 3) is a semisimple algebra
and is the sum of two simple ideals of dimension 2"~*. The map v : V — Cliff(V, 8) is injective.
For any basis {vi,...,v,} of V the set of all ordered products

Y(vi) y(v,) 1<ii<...<ip<n
(empty product = 1) is a basis for Cliff(V, 3).

Let V be odd-dimensional. Decompose V = W @ Cey @ W* as above. Set Vo = W & W* and let
o be the restriction of 3 to Vg. Recall that Cliff"(V, ) is the subalgebra of Cliff(V, 3) spanned by
the products of an even number of elements of V.

Lemma 17.4 There is an algebra isomorphism
Cliff(Vp, o) = CIiff* (V. )

Hence Cliff (V, 3) is a simple algebra.

Exercises for Lecture 17.

1. Let V. = W @ W* be an even-dimensional space, and § a bilinear form on V for which W
and W* are f-isotropic and in duality.

(a) Let (S,7) be a space of spinors for (V, ). Show that (,-cp+ Ker(y(w*)) is one-
dimensional.

(b) Let "= AW and for w € W, w* € W* define v'(w 4+ w*) = e(w) + ¢t(w*) on S’, where
€(w) is the exterior product operator and ¢(w*) is the interior product operator. Show that
(S’,~') is a space of spinors for (V, 3).

(¢) Fix 0 #u € AW, where | = dim W. Show that there is a unique spinor-space isomor-
phism 7" from (A W*,v) to (A W,~’) such that T'(1) = u. Here v(w+w*) = t(w) + e(w*) and
7' is the map in (b).

(d) Let {e1, ..., e} be a basis for W and {e_1,...,e_;} a basis for W* such that (e;, e—;) =
0. For J={1<j1 <---<jp<l}setes=ej A---Aej,ande_y=e_j A---ANe_j . Let
T be the map in (c) defined using u = e; A --- A ¢e;. Prove that T'(e_;) = (—1)7 Pe e, where
q=j1+ -+ jpand J¢is the complement to J in {1,...,[}, arranged in increasing order.
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2. Let V be a complex vector space with a symmetric bilinear form 3. Let {e1,...,e,} be a
basis for V' such that ((e;, e;) = d;;.

(a) Show that if 4, j, k are distinct, then
€i€jCE = €;€LE; = €EEE€ 5,
where the product is in the Clifford algebra for (V, 3).

(b) Show that if A = [a;;] is a symmetric n x n matrix, then

L 1
Z Q;j € €5 = §tr(A)
ig=1

(product in the Clifford algebra for (V, 3)).

(c) Show that if A = [a;;] is a skew-symmetric n x n matrix, then

n
E aij €; ej =2 E aij €; ej

ij=1 1<i<j<n
(product in the Clifford algebra for (V, 3)).

3. Let (V, ) and ey, ..., e, be as in the previous exercise. Let R;jp € C for 1 <14, j,k,l < n be

such that

(i) Rijrr = Rriijs

(ii) Rjimt = —Rijms

(iii) Rijri + Riiji + Rjga = 0.
(a) Show that > Rjjueiejener = (1/2) > Rijji , where the multiplication of the e; is in the
Clifford algebra for (V, 3). (Hint: Use part (a) of the previous exercise to show that for each
[, the sum over distinct triples ¢, j, k is zero. Then use the anticommutation relations to show

that the sum with ¢ = j is also zero. Finally, use part (b) of the previous exercise to simplify
the remaining sum.)

(b) Let g be a Lie algebra and B a symmetric non-degenerate bilinear form on g such that
B([z,y],2) = —B(y, [, 2]). Let e1,...,e, be an orthonormal basis of g relative to B. Show
that Riju = B([ei, €], [ex, e1]) satsifies (i), (ii), and (iii).

4. Let V =C" and let 8(z,y) = z'y for x,y € V.

(a) Show that when n > 3, the polynomial 22 +- - -+22 in the commuting variables 1, . . ., z,
cannot be factored into a product of linear factors with coefficients in C.

(b) Show that 23 + - - + 22 = 2(x1e; + - - - + xpe,)? when the multiplication on the right is
done in the Clifford algebra Cliff(C", 5) and ey, ..., e, is a f-orthonormal basis for C™.

(c) Let (S,v) be a space of spinors for (C",3). Consider the Laplace operator A =
257 1(0/0z;)? acting on P(C", S) (polynomial functions with values in S). Show that A
can be factored as D?, where

0

0
D=~(e1)7—+- "+7(€n)%

8171
(D is called the Dirac operator).
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Lecture 18. Spin Representations

Embedding so(V) in Cliff(V)
For a,b € V define R, € End(V) by
Ry pv = B(b,v)a— B(a,v)b.

Since
ﬁ(Ra,bxa y) = ﬁ(bv :r)ﬂ(a, y) - ﬁ(av .’,lf)ﬂ(b, y) = _ﬁ(xv Ra,by)v
we have R, € so(V, ).

Lemma 18.1 so(V,3) = Span{R,p : a,b € V}.
Since R, is a skew-symmetric bilinear function of the vectors a, b, it defines a linear map
R: \*V —s0(V,B), aAbr Ray.
This map is easily seen to be injective, and by Lemma 18.1 it is surjective. We calculate that
[Rap, Rey) = RRa,bm,y + Rm,Ra,by (18.1)

for a,b, z,y € V, which shows that R intertwines the representation of so(V, 3) on A2V with the
adjoint representation of so(V, f3).

Lemma 18.2 Define a linear map ¢ : so(V, 3) — Cliffy(V, 3) by

1

¢(Rap) = 5[7((1), v(b)], fora,beV.

Then ¢ is an injective Lie algebra homomorphism, and

[¢(X), v (v)] = v(Xv). (18.2)

for X € s0(V,3) andv € V.

Spin Representations of so(V)

Assume V is even dimensional and fix a decomposition
V=waeWw"

with W and W* maximal -isotropic subspaces. Let (C*(W),~) be the space of spinors defined in
the proof of Theorem 17.1. Define the even and odd spin spaces

ctw)= g crw), Cc (W)= cr(W).
p even p odd
Then
y(v) : CE(W) — CF (W), forveV, (18.3)
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so the action of (V') interchanges the even and odd spin spaces. Denote by 7 the extension of
to a representation of Cliff(V, ) on C*(W).
Let ¢ : s0(V, 3) — Cliff(V, B) be the Lie algebra homomorphism in Lemma 18.2. Set

m(X) =5(o(X)), for X € s0(V, 3).

Since ¢(X) is an even element in the Clifford algebra, (18.3) implies that m(X) preserves the even
and odd subspaces C*(WW). We define

TH(X) = m(X)|cxw)

and call 7% the half-spin representations of so(V, 3). Notice that the labeling of these representations
by + depends on a particular choice of the space of spinors. In both cases the representation space
has dimension 2/~1, when dim V' = 21.

Proposition 18.3 (dimV = 21) The representations t+ of so(V, 3) are irreducible and have highest
weights i = %(51 + -4 e_1 £¢). The weights of ©* are

1
(Ee £ Ea) (18.4)

(with an even number of minus signs for 7 and an odd number of minus signs for =~ ), and each
weight has multiplicity one.

Now assume dim V' = 2] + 1. Fix a decomposition
V=Wa&Ce & W"

with W and W* maximal (-isotropic subspaces, as above. Let (C*(W), v4) be the space of spinors
defined in the proof of Theorem 17.1. Define a representation of so(V, 3) on C*(W) by

™= ﬁ-f— ° ¢7
where ¢ : so(V,3) — Cliff(V, () is the homomorphism in Lemma 18.2 and 74 is the canonical
extension of v4 to a representation of Cliff(V,3) on C*(W). We call 7 the spin representation of

s0(V, 3). The representation space has dimension 2! when dimV = 21 + 1.

Proposition 18.4 (dimV = 20 + 1) The spin representation of so(V,3) is irreducible and has
highest weight w; = %(51 + - 4e-1 +¢;). The weights of the spin representation are

1
gEer - £e) (18.5)

and each weight has multiplicity one.
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Spin Groups
On ClLiff(V, ) there is the main anti-automorphism 7 (‘transpose’) that acts by
T(y(v1) -+ y(vp)) = v(vp) -+ - y(v1), forv; € V.
We define the conjugation u— u* on Cliff(V, ) by
u' = T7(au)),
where « is the main involution. For vq,...,v, € V we have

(v(v1) - (vp))" = (=1)P(vp) - - =¥ (v1).
In particular, .
(@) =—(v), ()W) =-56(v,v) forveV.

Suppose v is non-isotropic and normalized so that (v, v) = —2. Then

V(W) ()" =)y (v) =1,

so we see that (v) is an invertible element of Cliff(V, 3) with v(v)~! = ~(v)*. Furthermore, for
y € V we can use the Clifford relations to write

a(y()v()y()" = y)y)v) = (Bv,y) = v(Y)y(v))y(v)
= W)+ 8w, y)yw) =(s),
where s,y = y + B(v,y)v is the orthogonal reflection through the hyperplane (v)‘. Thus the
(twisted) conjugation
V() = a(y(v)y(Y)y(v)*

on the Clifford algebra corresponds to the reflection s, on V.
In general, we define

Pin(V,3) = {z € Cliff(V,3) : - 2" =1 and a(z)y(V)z* = ~v(V)}.

Since Cliff(V, 3) is finite-dimensional, the condition x - * = 1 implies that z is invertible, with
x~! = x*. Thus Pin(V, 3) is a subgroup of the group of invertible elements of Cliff(V, 3). The
defining conditions are given by polynomial equations in the components of z, so Pin(V, 3) is an
algebraic group. The calculation above shows that v(v) € Pin(V, 5) when v € V and f(v,v) = —2.

Theorem 18.5 There is a unique regular homomorphism
7 : Pin(V, 3) — O(V, )

*

such that o(z)y(v)x* = y(mw(x)v) for v € V and x € Pin(V, 5). Furthermore, 7 is surjective and
Ker(m) = £1.

Since O(V, 3) is generated by reflections, the surjectivity of the map 7 furnishes an alternate
description of the Pin group:
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Corollary 18.6 The elements —1 and ~(v), with v € V and ((v,v) = —2, generate the group
Pin(V, 3).

Finally, we introduce the spin group. Assume dim V' > 3. Define
Spin(V, 3) = Pin(V, 8) N Cliff " (V, B).

Let | = [dimV/2]. When dimV is even, we fix a (-isotropic basis {ej, ..., e, e_1,...,e_;} for V
with

Blei, ej) = di+j (18.6)
for i,j = £1,...,2l. If dimV is odd, we take a basis {eg,e1,...,e;,e_1,...,e_;} for V so that
(18.6) holds for 4,7 =0,%1,...,+l. Fori=1,...,l and z € C*, define

ci(z) = zy(e)y(e—s) + 2 y(e_i)v(es).
For z = [z1,..., 2] € (C*)! set ¢(2) = c1(z1) - - -ci(z1).
Lemma 18.7 The map z — c(2) is a regular injective homomorphism from (C*)! to Spin(V, 3).

Let H C SO(V, 3) be the maximal torus that is diagonalized by the [-isotropic basis {e;} for V.
Define _
H={c(2) : z € (C)'}.

Then H is a torus of rank [ in Spin(V, 3), by Lemma 18.7.

Theorem 18.8 The group Spin(V, ) is the identity component of the group Pin(V, 3), and
7 : Spin(V, B) — SO(V, 3)

is surjective with Ker(m) = {£1}. One has H = n~'(H) and

| diag[z3, .. 2 R 2 (dimV = 21),
m(e(z)) = { diag[2?,...,27,1, zl_2, .. .,zl_2] (dimV =20 +1).

Hence H is a mazimal torus in Spin(V, 3) and every semisimple element of Spin(V, B) is conjugate
to an element of H.

Theorem 18.9 The Lie algebra of Spin(V, 3) is ¢(so(V, 3)), where ¢ is the isomorphism of Lemma
18.2.

Corollary 18.10 Let P be the weight lattice of so(V,3). For A € P4 there is an irreducible
regular representation of Spin(V, 3) and so(V, 3) with highest weight X.

Exercises for Lecture 18.

1. (a) Show that Spin(3,C) = SL(2,C) and the spin representation is the representation on C2.
(Hint: Consider the adjoint representation of SL(2,C).)

(b) Show that Spin(5, C) = Sp(C*) and the spin representation is the defining representation
of Sp(C*). (Hint: Use Exercise # 4 from Lecture 7.)
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2. (a) Show that Spin(4,C) = SL(2,C) x SL(2,C) and the half-spin representations are the two
representations (z,y) — x and (z,y) — y on C2.

(b) Show that Spin(6,C) = SL(4,C) and the half-spin representations are the representation
of SL(4,C) on C* and its dual. (Hint: Use Exercise #3 of Lecture 7.)

3. Let V = C™ with nondegenerate bilinear form . Let C = Cliff(V, 3) and identify V' with
(V) C C by the canonical map . Let a be the automorphism of C such that a(v) = —v for
v € V, let 7 be the antiautomorphism of C such that 7(v) = v for v € V, and let x — z* be
the antiautomorphism « o 7 of C. Define the norm function A : C — C by A(x) = z*z. Let
L={zxeC: Alzx) € C}.
(a) Show that A\+v € Lforall A\ e Candv e V.
(b) Show that if z,y € £ and A € C then Az € £ and

Azy) = A(@)A(y), A(r(z)) = Al(x)) = Ae") = A(z).

Hence xy € £ and £ is invariant under 7 and «. Prove that x € £ is invertible if and only if
A(z) # 0. In this case 27! = A(z)7t2* and A(z™!) = 1/A(z).
(c) Let I'(V, B) C L be the set of all products w; - - -wy, where w; € C+ V and A(w;) # 0

for all 1 < j < k (k arbitrary). Prove that I'(V, 3) is a group (under multiplication) that is
stable under o and 7.

(d) Prove that if g € T'(V, ) then a(g)(C+ V)g* = C+ V. (I'(V, B) is called the Clifford
group; note that it contains Pin(V, 3).)

4. Let g be the Lie algebra of a classical group. Assume that g = 7+ h + n is simple. Let
[ = dim b be the rank of g and let B(X,Y) = tr(XY) for X, Y € g. Then B is a nondegenerate
symmetric form on g, and ad : g — so(g, B).

(a) Set W = n—+u, where u is a maximal B-isotropic subspace in h. Show that IV is a maximal
B-isotropic subspace of g. Note that the weights of ad(h) on W are the positive roots with
multiplicity one and 0 with multiplicity [I/2].

(b) Let m be the spin representation of so(g, B) if [ is odd or either of the half-spin represen-
tations of so(g, B) if [ is even. Show that the representation 7 o ad of g is 2[l/2] copies of the
irreducible representation of g with highest weight p = wy + -+ -+ w;. ( Hint: Use (a) and
Propositions 18.3 and 18.4 to show that p is the only highest weight of 7 o ad and that it
occurs with multiplicity 21//2. Now apply Theorem 13.4.)
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Part 6: Representations on Spaces of Regular Functions

Lecture 19. Multiplicity Free Spaces

Isotypic Decomposition of Aff(X)

Let X be an affine algebraic set on which the reductive algebraic group G acts regularly. We denote
by px the associated representation of G on Aff(X), given by

px(9)f(x) = f(g~'x), for f € Aff(X).

This representation is locally regular: for any finite-dimensional subspace U C Aff(X), the G-
invariant space

CIGIU =) px(9)U
geG

that it generates is finite-dimensional, and the representation of G on C[G|U is regular.

Let G denote the set of equivalence classes of irreducible regular finite-dimensional representations
of G. For w € G let (7w, Viy) be a representation in the class w. Let (p, E') be a locally-regular
representation of G, for example the representation (px, Aff(X)) as above. Denote by E| the sum
of all the G-irreducible subspaces V' of E such that p|y is in the class w.

Proposition 19.1 One has E = @ E..-
we@

Let w € G. We can decompose the isotypic subspace E ) as a direct sum of irreducible representa-
tions in the class w (usually in a non-unique way). The number of summands (which can be finite
or infinite) is uniquely determined and is called the multiplicity of w in E, denoted as mult,(w). A
linear G-intertwining map 7 : V,, — FE is called a covariant of type w for the representation (p, E).
We denote the space of all covariants of type w by Homg(w, p). It is a G-module with trivial action.

Lemma 19.2 Let w € G. The map T @ v — T(v) for T € Homg(w,p) and v € V,, gives a
G-module isomorphism
Homg(w, p) ® V,, = E,). (19.1)

In particular,
mult,(w) = dim Homg(w, p). (19.2)

We say that (p, E) is multiplicity-free if mult,(w) < 1 for all w € G. When (px, Aff(X)) is
multiplicity-free, where X is an affine G-space, we also say that X is a multiplicity-free G-space.
Now suppose that G is a connected classical group. Fix a Borel subgroup B = HN of G, with H
a maximal torus in G and N the unipotent radical of B. Taking G C GL(n,C), we can always
conjugate G so that H consists of the diagonal matrices in G and N consists of the upper-triangular
unipotent matrices in G. Write P(G) C b* for the weight lattice of G and Py (G) for the dominant
weights, relative to the system of positive roots determined by N. For A € P(G) we denote by
h — h> the corresponding character of H. We extend this to a character of B by setting (hn)’\ = p
forhe H andn € N.
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Recall from Theorem 13.2 that an irreducible representation (m, V') of G is completely determined
(up to equivalence) by its highest weight, relative to the subgroup B. The subspace VN of N-fixed
vectors in V is one-dimensional, and H acts on it by a character h +— h* where A\ € Py, (G). For
each such A we fix a model (7%, V*) for the irreducible representation with highest weight \, and
we fix a non-zero highest weight vector vy € (VM)V. Let Aff(X)Y be the space of N-fixed regular
functions on X. For every regular character b — b* of B, let Aff(X)(\) be the N-fixed regular
functions f of weight A:

px(0)f =b f  forbe B. (19.3)

We can then describe the G-isotypic decomposition of Aff(X) as follows.

Theorem 19.3 For A € P, (G), the isotypic subspace of type ©* in AfF(X) is the span of
px (GYAE(X)N(N). This subspace is isomorphic to V> @ AF(X)N(N) as a G-module, with action
7g) ® 1. Thus
AEX)= P Ve ARX)N(N)
AEPL4(G)

This theorem shows that the G-multiplicities in Aff(X) are the dimensions of the spaces Aff(X)™(\).
We have AfF(X)V(N)- Aff(X)N(u) € AfF(X)™ (A4 p) under pointwise multiplication. Hence the set

S(X)={)e Py (Q) : AFX)N(N) #0} (the spectrum of X)

is an additive semigroup that completely determines the G-isotypic decomposition of Aff(X).

Multiplicities and B-Orbits

We now obtain a geometric condition for an affine G-space X to be multiplicity free. For a subgroup
M C G and z € X we write M, = {m € M : m -z = z} for the isotropy group at z. Note that if
m = Lie(M), then the Lie algebra of M, is

my ={Y €m: dp(Y), =0}.

(Here dp denotes the differential of the representation p of G on Aff(X). For Y € g the operator
dp(Y) is a vector field on X, and dp(Y), is the corresponding tangent vector at . When X is a
vector space and the G-action is linear, then dp(Y), = dp(Y)z.)

Theorem 19.4 Let X be an irreducible affine G-space. Suppose there is a point xg € X such that
B - xq is open in X (this is equivalent to the condition dimb = dim X + dim by, ). Then

(1) X is multiplicity-free as a G-space.

(2) If A\ € S(X) then h\ =1 for all h € H,,.

B-eigenfunctions for Linear Actions

Let (0, X) be a regular representation of G. Let p(g)f(x) = f(c(g~1)z) be the corresponding
representation of G on P(X).
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Theorem 19.5 Assume there is an xy € X with o(B)xg open in X. Let
H():{hGH : h'x():x()}.

Let £(X) be the set of all irreducible polynomials f € P(X) such that f is a B-eigenfunction and
f(zo) = 1. Then the following holds.

(1) The set E(X) ={f1,..., [r} is finite with k < dim(H/Hy), where the polynomial f; has B-
weight \; and is homogeneous of degree d;. Furthermore, the set of weights {\1,..., i} is linearly
independent over Q and h* =1 for all h € Hy.

(2) The B-eigenfunctions f € P(X), normalized by f(x¢) = 1, are the functions

k
fm =1 1™ (19.4)
i=1

with m = (my, ...,mg) € N* arbitrary.
(3) Forr >0 the space P"(X) of homogeneous polynomials of degree r decomposes under G as

Pr(X) =PV,
A

where the sum is over all X\ = S my\; with v = Y. dym;, and V?» is the irreducible G-module
generated by fm-

Corollary 19.6 The algebra P(X)N = C[f1,. .., fi] is a polynomial ring with generators £(X).

Exercises for Lecture 19.

1. Suppose the reductive group G acts linearly on a vector space V. The group C* acts on P(V)
via scalar multiplication on V', and commutes with G. Hence one has a representation of the
group G x C* on P(V). Prove that the isotypic decomposition of P(V) under G x C* is

PV)= P P"(V)w

k20 we@

where PF (V) (w) is the w-isotypic component in the homogeneous polynomials of degree k.

2. Let G = SL(n,C) acting on X = C" by the defining representation (n > 2). Let B be the
Borel subgroup of upper-triangular matrices in G and H the subgroup of diagonal matrices
in G.
(a) Let xp = e,. Show that Bz is Zariski open in C" and find the stabilizer H,,.

(b) Let A € P, (G). Show that h* =1 for all h € H,, if and only if A = kw,_; for some
k € N, where w,_; is the highest weight of the representation of G on (C™)*.

(c) Show that the only irreducible normalized B eigenfunction on C" is f(z) = z,, and the G
spectrum of X is {kw,_1 : k € N}.

ow that the space 1s an irreducible G module with highest weight kzo,—1.
d) Show that th P*(C™) is an irreducible G module with high ight k
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50
—S0 0
on the antidiagonal, 0 elsewhere). Take as Borel subgroup B the upper-triangular matrices
in G with maximal torus H the diagonal matrices in G.

(a) Show that the action of G on C?" is multiplicity-free. (Hint: Consider the B-orbit of
e1 + e2n-)

3. Let G = Sp(C?", ), where ) is the bilinear form with matrix l ] (where sp has 1

(b) Show that there is one irreducible B-eigenfunction. namely xg,. (Hint: Calculate the
stabilizer of e; + egy, in H.)

(c) Show that for k& > 1 the space P¥(C?") is irreducible under G, with highest weight koo

and highest weight eigenfunction (2,)*.

. Let G = SO(C",w) with n > 3, where the symmetric form w has matrix with 1 on the
antidiagonal and 0 elsewhere. Let Q(z) = w(x, z) be the G-invariant quadratic form on C”.
Take as Borel subgroup B the upper-triangular matrices in G with maximal torus H the
diagonal matrices in G.

(a) Show that the action of C* x G on C™ is multiplicity-free, where C* acts by scalar
multiplication. (Hint: Consider the C* x B-orbit of ¢ = e; + e, when n is even, or zg =
e1+e41 + e, when n =20+ 1 is odd.)

(b) Show that the irreducible C* x B-eigenfunctions are x, and Q. (Hint: Calculate the
stabilizer in C* x H of the vector z¢ in (a).)

(c) Show that for r > 1

Pr(cn) _ @ valmm (k‘ >0, m> 0)’
k+2m=r

where V*#1 is the G cyclic subspace generated by (z,)* and is an irreducible representation
of highest weight ko .

96



Lecture 20. Maximal Parabolic Subgroups and Multiplicity Free Spaces

Maximal Parabolic Subalgebras

Let g be a simple Lie algebra over C. Fix a Cartan subalgebra b and a set ®* of positive roots of
h on g. Let A be the simple roots in ®*. Fix an element oy € A and set Ag = A\ {ag}. Then
there exists a unique element Hj € h such that

(o, Hp) =1, (o, Hy) =0 for all a € Ay.

Set &g = {y € ® : (y,Hp) = 0} and ¥ = {8 € & : (Hy,3) > 0}. Then ®; consists of
all roots that do not contain «g, and ¥ consists of all positive roots that contain «g. Define
ho = Span{h, : o € Ay}, a = CHp, and

m=bo+ > 8, b= 85 P-=) 0p

YEDy pew pew

Then g =p, + m+a+p_ (direct sum of vector spaces) and m + a + p, is the maximal parabolic
subalgebra associated with the subset {ag} of A.

Proposition 20.1

(1) The subalgebra m + a is reductive with center a and semisimple derived algebra m. The Dynkin
diagram for m is obtained by removing the vertex for ag from the diagram for g.

(2) The subalgebras p, and p_ are nilpotent, and m+a normalizes p.. Alsop_ = (p,)
for m +a.

(3) Let & be the highest positive root. Suppose oy € A appears in & with coefficient 1. Then
Py, py] =0 and p, is the irreducible m module with highest weight &\bo. Furthermore, adHy has
ergenvalues £1, with eigenspaces p..

* as a module

Proof.

(1): by is a Cartan subalgebra of m. The root system of m is the restrictions of ®g to bj.

(2): This is clear from the root space decomposition; the Killing form gives the duality between p
and p_.

(3): If B € U, then 8 = copop + --- with ¢p > 1. But § < a (in the partial order defined by
the positive roots). Hence ¢y = 1. This shows that ad(Hp) = 1 on p,. Also, if 5,7 € ¥ then
B+v=2a0+-,s0 B+~ ¢ Thus [p,p]=0.

To prove irreducibility of p,, suppose 0 # V' C p, is invariant under adm. Then V* C p_ is also
m invariant. Since [p,,p_] is contained in the zero eigenspace of .J, which is a + m, it follows that
V*4+a+m+V is an ideal in g. But g is simple, so V' = p,. The a root space is in p . Since it is
annihilated by adgg for all 8 € @, it is the highest weight space for p, as an m module. O

Classical Examples

For each of the four types of classical simple Lie algebras we give the Dynkin diagram with the
coefficients of a written above each vertex. We determine m and p, for all the maximal parabolic
subalgebras defined by simple roots ag having coefficient 1 in a.
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Type A; (g = sl(n,C), with n =1+ 1 > 2): The Dynkin diagram is

1 1 1
O O O
£1—€2 £9—E€3 E1—€14+1

We may take og = € — €py1 for any 1 < p <1[. Then

ar 0
Hy=| " , wherep+qg=n
0 _Elq

(here I, is the p x p identity matrix). Removing ag from the Dynkin diagram, we obtain the
diagram for m = sl, @ sl;. In matrix form, m is block diagonal, corresponding to Hy.

We have U = {g; —¢p4; : 1 <i <pand1<j<q}. The Cartan subalgebra of m is g = hp @ by
where b, consists of diagonal matrices in sl,. The root &; — €, restricts to €; on b, and to —¢; on
bg- In this case a = &1 — €, and &\bo = w1 @ wy—1 (the first fundamental weight of sl, and the last
fundamental weight of sl;). Thus

P = CP® (C1)" = Myxg

as an m module (left multiplication by s, and right multiplication by sl;).

Type B; (g = 50(C", B), with n = 2/ + 1 > 7): We take the bilinear form B to have antidiagonal
1, as usual, and b the diagonal matrices in g. The Dynkin diagram is

€1—€2 €2—E€3 El—-1—¢€1 €l

The only choice for ag is €1 — e9. Then
Hy = diag][1,0,...,0,—1].

Removing g from the Dynkin diagram, we obtain the diagram for m = so0, 2. We have ¥ =
{er1}U{e1 —¢; : 2 < j <1} The Cartan subalgebra of m is

ho = {diag[0, za, ..., 2,0, —z, ..., —22,0]},

so g1 restricts to 0 on hy. Thus by has weights 0, £¢; (with j = 2,...,1) on p,, each with multiplicity
one. In this case a@ = &1 + €9 and &\bo = w1, the first fundamental weight of m. Hence p, = cn—2
is the defining representation for so,_s.

S0
—S0 0
where sg has 1 on the antidiagonal. We take § as the diagonal matrices in g. The Dynkin diagram

Type C; (g = sp(C", Q), with n = 2] > 4): We take the bilinear form 2 to have matrix

9
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is

E€1—E2 €9 —E3 E1—1—¢€] 26[

The only choice for ag is 2¢;. Then

1
=1 0
—| 2
Ho [0 —%11

Removing ag from the Dynkin diagram, we obtain the diagram for m = s((l, C). In matrix form, m
consists of the block diagonal matrices

A 0
X = l 0 _sodlsy ] , Ae€sl(l,C).

We have U = {eg; +¢; : 1 < i < j <I[}. The Cartan subalgebra h, of m consists of all X with
A diagonal. In this case a = 2¢; and &\bo = 2wy, where w; is the first fundamental weight of m.

Hence p, = SM;(C) (the I x | symmetric matrices) as an m module. In matrix form, p, consists of
all matrices

0 80Z$0
0 0

1 , Ze€SM(C)
and the action of m on p, is by Z — AZ + Z A", for A € sl(l, C).

Type D, (g = 50(C", B), with n = 2] > 8): We take the bilinear form B to have matrix [ 80 8(;) 1 )
0

We take h as the diagonal matrices in g. The Dynkin diagram is

€l—1+e;

€1—€2 €2—E3 El—2—€1-1 1

El-1—¢€

There are three choices for ag. Consider first the case ag = ;1 + ;. Then, just as for type Cj,

1
=1 0
— 2
Ho [0 —%11

Removing o from the Dynkin diagram, we obtain the diagram for m = s((I,C). As in the type C;
case, m consists of the block diagonal matrices
A 0
= A .
X l 0 —soAlsg ] ) € sl(l,C)
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However, now we have ¥ = {e;+¢; : 1 <1i < j <1}, since 2¢; is not a root. The Cartan subalgebra
ho consists of all X as above with A diagonal. In this case & = €1 4+ €2 and so &\bo = wsy, the
second fundamental weight of m. Hence p, = AM;(C) (the [ x | skew-symmetric matrices) as an m
module. In matrix form, p, consists of all

[ 0 80Z$0

0 0 ] , 4 € AM[((C).

The action of m on p, is by Z — AZ + ZA!, for A € sl(l, C).

The choice ag = €11 — ; gives a pair (m,p, ) isomorphic to (sl(l,C), AM;(C)), since there is an
outer automorphism of g that interchanges ¢; and —e;.

Finally, consider the choice g = €1 — €2. Then

Hy = diag][1,0,...,0,—1],

just as for Type B. Removing ag from the Dynkin diagram, we obtain the diagram for m = so,_s.
We have ¥ = {e1 £¢; : 2 < j <I}. The Cartan subalgebra

ho = {diag[0, za, ..., 2, —x, . .., —22,0]},

so €1 = 0 on hy. Thus by has weights +e; (with j = 2,...,1) on p,, each with multiplicity one.
In this case &\bo = wji, the first fundamental weight of m. Hence p, = C" 2 is the defining
representation for so,_s, as for Type B.

Remarks. Among the five exceptional simple Lie algebras, only Fg and Er have simple roots with
coefficient 1 in . For Fg there are two such roots, which are interchanged by an outer automorphism
(just as for D). Thus there is one pair (m,p,) associated with Eg, up to isomorphism. Here
m = so019. For E; there is a unique simple root with coefficient 1 in a. In this case m is of type FEg.

Multiplicity Free Spaces from Hermitian Symmetric Spaces

Let g =p_ +a+m+p, as in Proposition 20.1. We assume that the simple root o occurs with
coefficient 1 in the highest root. Let G be the adjoint group of g, and let K C G be a connected
subgroup with Lie algebra m + a. Then p, is a K module.

Theorem 20.2 The space p is multiplicity free for K.

This result has many important applications to geometry, function theory, and representation
theory for the following reason. Set ¢ =m +a and p =p, +p_. Then g = £+ p is the complexified
Cartan decomposition associated with a Hermitian symmetric space X = Gy/Ky of noncompact
type. Here Ky is the compact real form of K and Gg is a noncompact real form of G. The space
X can be holomorphically embedded in the complex vector space p, as a bounded, convex open
set (the Harish-Chandra embedding), with the action of Ky on X becoming the linear action of
Ad(Kp) on p,.

Theorem 20.2 was first obtained by L.K. Hua when X is a classical bounded domain (Cartan
domain) by elaborate calculations involving integration on compact groups. It was proved in
general by W. Schmid by a lengthy root system argument. A much simpler proof was later given
by K. Johnson, using a mixture of general invariant theory results and case-by-case arguments. In
our treatment we use the geometric criterion (Theorem 19.4) for multiplicity free actions together
with Theorem 19.5 to obtain a basis of highest weight vectors. We give full details for three of the
four types of classical domains. The remaining case (m = so,,_2) we leave as an exercise.
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Decomposition of P(M,y,) under GL, x GL,

Let G = GL(p, C) x GL(g, C) and let My, be the pxq complex matrices. Let p be the representation
of G on P(Mpxq) given by

p(y, 2) f(x) = f(y'wz) for f € P(Mpxg), (y,2) €G

In GL(n,C) we have the subgroups D,, of invertible diagonal matrices, N,, of upper-triangular

unipotent matrices, N,, of lower-triangular unipotent matrices. We set B,, = D,N,, and B, =
D,N,,. We extend a regular character x of D,, to a character of B, (resp. B,) by x(hu) = x(vh) =
x(h) for h € Dy, u € N,, and v € N,,. A weight pp = Y"1, w;e; of Dy, is called nonnegative if y; > 0
for all 4. The weight u is dominant if 1 > pus > -+ > .

When p is dominant, we denote by (7#, F#) the irreducible representation of GL(n, C) with highest
weight p. If g is dominant and nonnegative, we set

|| = Z“i (the size of p).

In this case it is convenient to extend p to a dominant weight of D; for all [ > n by setting pu; =0
for all integers ¢ > n. We define

depth(p) = min{k : pg41 = 0}.

Thus we may view p as a dominant integral weight of GL(I,C) for any | > depth(u). If p is a
nonnegative dominant weight of depth &, then

=M1+ Mg

with \; =1 + -+ ¢&; and myq, ..., my strictly positive integers.
The irreducible finite-dimensional regular representations of G = GL(p, C) x GL(g, C) are all given
as outer tensor products (7‘(5@7’(;, Fi® Fq”) For ¢ = 1,...,min{p, ¢} we denote by A; the ith

principal minor on M, ,. We denote by P(Mp’q)NPXN‘Z the subspace of polynomials on M, , that
are fixed by left translations by N, and right translations by N,.

Theorem 20.3 The space of homogeneous polynomials on Mpy, of degree d decomposes under the
representation p of GL(p, C) x GL(q,C) as a multiplicity-free sum

P Myxq) = PFY)* @ FY (20.1)

with the sum over all nonnegative dominant weights v of size d and depth(v) < r, where r =
min{p, q}. Furthermore, )
P(Mpsxg) VN = C[A, ..., A (20.2)

18 a polynomial ring on r algebraically independent generators.

Decomposition of S(S%(V)) under GL(V)

Let G = GL(n,C) and let SM,, be the space of symmetric n X n complex matrices. We let G act
on SM, by g,z +— (g")"'zg~!. Let p be the associated representation of G on P(SM,,):

p(9)f(x) = f(g'zg) for f € P(SM,).
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Note that SM,, = S?(C")* (the symmetric bilinear forms on C") as a G-module relative to this
action, where a matrix x € SM, corresponds to the symmetric bilinear form

Be(u,v) = u'zv  for u,v € C™.

Thus
P(SM,) = P(S*(C")*) = S(S*(C))

as a G-module.

Theorem 20.4 The space of homogeneous polynomials on SM, of degree r decomposes under
GL(n,C) in a multiplicity-free sum

Pr(SMy,) = P FY (20.3)

with the sum over all nonnegative dominant weights p = 3", pie; of size r such that p; € 2N for all
i. Furthermore, N N
P(SM,)N =C[Ay,...,A,), (20.4)

where A; denotes the restriction of the ith principal minor to the space of symmetric matrices. The
functions Ay, ..., A, are algebraically independent.

Decomposition of S(A%(V)) under GL(V)

Let G = GL(n,C) and let AM,, be the space of skew-symmetric n x n matrices. Let G act on AM,,
by g, 7+ (g")"twg~! and let
p(9)f(x) = f(g'zg)

be the associated representation of G' on P(AM,). Note that AM, = A*((C™)*) (the skew-
symmetric bilinear forms on C") as a G-module relative to this action, just as in the case of
symmetric matrices and symmetric bilinear forms. Thus we have

P(AM,) = P(A*(C™)*) = S(\*C™)
as a G-module. Let Pf; be the ith principal Pfaffian on AM,, for i = 1,..., k, where k = [n/2].

Theorem 20.5 The space of homogeneous polynomials on AM, of degree r decomposes under
GL(n,C) as a multiplicity-free sum

P"(AM,) = @ EP
with the sum over all nonnegative dominant integral weights 1 =Y p;e; such that || = r and
Hoi—1 = po; fori=1,....k and poxy1 =0 (20.5)
(the last equation only applies if n is odd). Furthermore,
P(AM,) N = C[Pfy,. .., Pf]

and the functions Pfy, ..., Pfy are algebraically independent.
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Appendix: Linear and Associative Algebra for Lecture 20.

Gauss Decomposition

Let Mj, be the space of k x k complex matrices, and Mj,,, the space of k x n complex matrices.
Let N,, denote the group of upper triangular matrices n x n matrices with diagonal entries 1, Ny,
the group of lower triangular k£ x k matrices with diagonal entries 1, and Dy, the k X n matrices
xr = [JZU] with T = 0 for ¢ 75 j

For x € My, ,, define the principal minors

11 o X1
A(z) = det
Til v Tig
fori=1,...,min{k,n}. It is also convenient to define Ay(x) = 1.

Lemma 20.6 Suppose x € My, ,, satisfies
Ai(x) #0  fori=1,...,min{k,n}.
Then there are matrices & € Ny, u € N, and h € Dy, , such that
x = uhu. (20.6)
The matriz h is uniquely determined by x and its nonzero entries are hy; = Aij(x)/Ai—1(x). If
k =n then the matrices u and u are also uniquely determined by x.
Factorization of Symmetric Matrices

Lemma 20.7 Suppose x € M, is a symmetric matriz and A;(z) # 0 fori=1,...,n. Then there
exists an upper-triangular matriz b € M,, such that x = b'b. The matriz b is uniquely determined
by = up to left multiplication by a diagonal matrix with entries £1.

Factorization of Skew-symmetric Matrices

Let A = [a;;] be a skew-symmetric 2n x 2n matrix. Given 2n vectors 1, . .., T2, € C*", define
1 n
Fa(w1,...,20,) = nlon 6262 Sgn(s)1_[1(%(21‘—1)714335(21‘))7
S 2n 1=

where (z, Ay) = x'Ay is the skew-symmetric bilinear form associated to A. Then Fj is a skew-
symmetric multilinear function of zy,...,z2,. Hence there is a complex number Pfaff(A) (called
the Pfaffian of A) such that

Fa(z1,...,z2,) = Plaff(A) det[z1, . .., z2,). (20.7)

In particular, taking x; = e;, the standard basis for C2", we have

= —on
n'2 s€EGay

1 n
Pfaff(A) = > sgn(s) [ asei-1),si), (20.8)
i—1
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since detleq, ..., e, = 1.
Let g € GL(2n,C). Then

Pfaff(g' Ag) = det gPfaff(A). (20.9)
Let A and B be a skew-symmetric matrices of sizes 2k x 2k and 2n x 2n, respectively. Then
A 0
Pfaff( 0 B ) = Pfaff(A)Pfaff(B). (20.10)
Let A = [a;;] be skew-symmetric n x n matrix. For k = 1,...,[n/2] define the truncated matrix

A(k) to be the 2k x 2k matrix [aij]lgi’jggk. Set
Pf},(A) = Pfaff(A ). (20.11)

Then Pf; is a homogeneous polynomial of degree k in the variables a;;, for 1 <7 < j < 2k, that we
will call the kth principal Pfaffian of A.

Let B, C GL(n,C) be the subgroup of upper-triangular matrices b = [b;;| (so b;; = 0 for i > j).
For b € B,, and A any n X n matrix, one has

(b A40) ) = by Ay by
where b(y) = [bij]1<ij<2k. Hence if A is skew-symmetric, (20.9) gives
Pf,(b'Ab) = Agr(b)Pfi(A), (20.12)

where Ag(b) = det(b(y)) is the principal minor of b of order 2k.
We have the following analog of Lemma 20.7 for skew-symmetric matrices. For n = 2k even, define
the n x n skew-symmetric matrix J, = J @ --- @ J (k summands), where

0 1
J- < ol )
For n = 2k + 1 odd define the n x n skew-symmetric matrix J, = J @ --- @ J &0 (k copies of J).

Lemma 20.8 Let A be a skew-symmetric n x n matriz. Assume that Pfp(A) # 0 for k =
1,...,[n/2]. Then there exists b € B,, so that A = b'.J,b.

Corollary 20.9 Let A be a skew-symmetric 2n x 2n matriz. Then

(Pfaff(A))? = det A.

Exercises for Lecture 20.

1. Let g be a semisimple Lie algebra with Cartan subalgebra b, root system ®. Fix positive
roots ®T. Let A C ®T be the simple roots, and for a € A let hy € b be the coroot to a. Fix
A€ Pyy(g) and define &g ={a € ® : (A, hy) =0} and S = PN A.

(a) Write A = nywy + - - - + myoy, where w; is the ith fundamental weight and n; € N. Show
that S = {a; : n; = 0}.
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(b) Set ¥ = {a € & : (\ hy) > 0 for all @ € S\}, by = Span{h, : a € Pg}, and a = {h €
h: (a,h) =0 forall « € S}. Let
m:b0+zga7 u:Zgﬂv L_l:Zg_/g
acdg pev pew

Thus g = u+m + a + u. Show that m 4+ a normalizes u and u, that a is the center of m + a,
and that m is a semisimple Lie algebra with Dynkin diagram corresponding to S. Thus
py = m+ a+ u is the parabolic subalgebra of g corresponding to the subset A\ S of simple
roots. In particular, p,, = m + a + u is the maximal parabolic subalgebra corresponding to

{ai}.

. (Same notation as previous ezercise). Suppose V? is the irreducible g module with highest
weight A. Let vy be a highest weight vector in V*.

(a) Prove that p, is the stabilizer of the line [v)] in P(V*). (Hint: First check that py stabilizes
V|- en use the representation theory of sl to show that g_gvy 1 € W, and hence
Th h i heory of h h 8 0if e w d h

py is the full stabilizer of [vy].)

(b) Let G be a connected group with Lie algebra g and Borel subgroup B corresponding to
the choice ®T of positive roots. Assume that A € P, (G) so that V* is a G module. Let
P C G be the stabilizer of [v)] in P(V?). Prove that Lie(P) = py and that the G orbit of [v)]
is closed in P(V?). (Hint: P contains B, so G/ P is a projective variety.)

(c) Let X be the Zariski-closure of the orbit G - vy. Then X is a G-invariant affine variety
in VA, called a highest vector variety. Show that X = G - vy U {0} and that X is invariant

under multiplication by C*. (Hint: Use (b) to show that X is the cone over a closed subset
of P(V*).)
. Let G, V* and X be as in the previous exercise.
(a) Show that X is a multiplicity-free G-space. (Hint: Let B = HN be the Borel subgroup
opposite to B. Show that B has an open orbit on X.)
(b) Let Aff(X)(™ be the restrictions to X of the homogeneous polynomials of degree n on
V2. Show that the isotypic decomposition of Aff(X) as a G module is
AFF(X) = €D Aff(x)™

neN
and Aff(X))(™ is an irreducible G-module isomorphic to (V™)*. (Hint: Let fa(z) = (v}, 2)
for z € X, where v} is the lowest weight vector in (V*)*. Show that f} is a B eigenfunction of
weight —n\ for the representation px, and hence (V"’\)*_Q AfF(X)™ for all positive integers

n. Now use Theorem 19.4 to show that if y occurs as a B-extreme weight in Aff(X)), then u
is proportional to \.)

. Let G = SO(C",w), n > 3 (take the matrix for w with 1 on antidiagonal, 0 elsewhere). Let
X ={zeC”: w(x,z) =0} be the set of w-isotropic vectors (the nullcone).
(a) Show that X is the Zariski closure of the orbit G - e;.

(b) Show that X is multiplicity free as a G space. (Hint: The vector e; is the highest weight
vector for G.)

(c) Find the decomposition of Aff(X) as a G-module. (Hint: Use the previous exercise.)
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