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Part 1: Linear Algebraic Groups

Lecture 1. Classical Groups and Linear Algebraic Groups

Definition of a Linear Algebraic Group

Let GL(n,C) be the group of invertible n× n complex matrices, and let Mn(C) be the algebra of
all n× n complex matrices. For y ∈Mn(C) and 1 ≤ i, j ≤ n we write xij(y) for the i, j entry in y.
A complex-valued function f on Mn(C) is a polynomial function if

f(y) = p(x11(y), x12(y), . . . , xnn(y))

where p ∈ C[x11, x12, . . . , xnn].

Definition: A subgroup G ⊂ GL(n,C) is a linear algebraic group if there is a set A of polynomial
functions on Mn(C) so that

G = {g ∈ GL(n,C) : f(g) = 0 for all f ∈ A}.

General and Special Linear Groups

The general linear group GL(n,C) is a linear algebraic group. The special linear group SL(n,C)
consists of all matrices g ∈ GL(n,C) with det(g) = 1. We shall call SL(n,C) a group of Type Al,
where l = n− 1.

Orthogonal Groups

Let B be a nondegenerate symmetric bilinear form on Cn. The orthogonal group relative to B is

O(Cn, B) = {g ∈ GL(n,C) : B(gx, gy) = B(x, y) for x, y ∈ Cn}.

Let S be the matrix of the bilinear form: B(x, y) = xtSy. Then S is a symmetric, invertible matrix
and

g ∈ O(Cn, B) ⇐⇒ gtSg = S. (1.1)

Proposition 1.1 Let B,B′ be nondegenerate symmetric bilinear forms on Cn. Then there exists
γ ∈ GL(n,C) such that O(Cn, B′) = γO(Cn, B)γ−1.

We call SO(C2l, B) a group of type Dl and SO(C2l+1, B) a group of type Bl.

Symplectic Groups

Let Ω be a nondegenerate skew symmetric bilinear form on Cn. Then n = 2l must be even. We
define the symplectic group relative to Ω as

Sp(C2l,Ω) = {g ∈ GL(2l,C) : Ω(gx, gy) = Ω(x, y) for x, y ∈ C2l}.

Let R be the matrix of the bilinear form: Ω(x, y) = xtRy. Then R is a skew-symmetric, invertible
matrix and

g ∈ Sp(C2l,Ω) ⇐⇒ gtRg = R. (1.2)
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Proposition 1.2 Let Ω and Ω′ be nondegenerate skew symmetric bilinear forms on C2l. Then
there exists γ ∈ GL(2l,C) such that Sp(C2l,Ω′) = γSp(C2l,Ω)γ−1.

We call Sp(C2l,Ω) a group of type Cl.

The groups GL(n,C), SL(n,C), O(n,C), SO(n,C) and Sp(l,C) are called the classical groups.

Regular Functions on Linear Algebraic Groups

The group GL(V ) is the principal open set {g ∈ Mn(C) : det(g) 6= 0} in the vector space Mn(C).
Thus

Aff(GL(V )) = C[x11, x12, . . . , xnn, (det)−1],

where {xij} are the matrix coordinates relative to a basis for V .

Proposition 1.3 A subgroup G ⊂ GL(V ) is a linear algebraic group if and only if G is a closed
subset of GL(V ), relative to the Zariski topology.

A complex-valued function f on G is called regular if it is the restriction toG of a regular function on
GL(V ). The set Aff(G) of regular functions on G is a commutative algebra over C under pointwise
multiplication. Define

IG = {f ∈ Aff(GL(V )) : f(G) = 0}.
The map f 7→ f |G gives an algebra isomorphism

Aff(G) ∼= Aff(GL(V ))/IG. (1.3)

If G,H are linear algebraic groups, then an (abstract) group homomorphism φ : G→ H is regular
if φ∗(Aff(H)) ⊂ Aff(G). We say that G and H are isomorphic as algebraic groups if there exists a
regular homomorphism φ : G→ H which has a regular inverse.
The set G×G carries the structure of an affine algebraic set, with the algebra of regular functions

Aff(G×G) ∼= Aff(G)⊗Aff(G).

In this isomorphism, f ′ ⊗ f ′′ ∈ Aff(G)⊗ Aff(G) is identified with the function (g, h) 7→ f ′(g)f ′′(h)
on G×G.

Proposition 1.4 The maps µ : G ×G→ G and ι : G → G given by multiplication and inversion
are regular. If f ∈ Aff(G) then there exists an integer p and f ′i , f

′′
i ∈ Aff(G) for i = 1, . . . , p, such

that

f(gh) =
p∑
i=1

f ′i(g) f ′′i (h) for g, h ∈ G. (1.4)

Furthermore, for fixed g ∈ G the maps x 7→ Lg(x) = gx and x 7→ Rg(x) = xg from G → G are
regular.

If G ⊂ GL(V ), H ⊂ GL(W ) are linear algebraic groups, then we make the group-theoretic direct
product K = G×H into an algebraic group by the natural block diagonal embedding into GL(V ⊕
W ) as the elements

k =

[
g 0
0 h

]
g ∈ G, h ∈ H.

5



This embedding defines an isomorphism

Aff(K) ∼= Aff(G)⊗ Aff(H).

Appendix: Algebraic Geometry for Lecture 1.

Affine Algebraic Sets and Regular Functions

Let V be a finite-dimensional complex vector space. Let P(V ) be the commutative algebra of
polynomial functions on V . A subset X ⊂ V is an affine algebraic set if there exist f1, . . . , fm ∈
P(V ) such that

X = {v ∈ V : fi(v) = 0 for i = 1, . . . , m}.
We define the affine ring of X to be the functions on X that are restrictions of polynomials on V :

Aff(X) = {f |X : f ∈ P(V )}.

We call these functions the regular functions on X . Define

IX = {f ∈ P(V ) : f |X = 0}.

Then IX is an ideal in P(V ), and Aff(X) ∼= P(V )/IX.

Theorem 1.5 (Hilbert basis theorem) Let I ⊂ P(V ) be an ideal. Then I is finitely generated:
there is a finite set of polynomials f1, . . . , fd in I so that every g ∈ I can be written as

g = g1f1 + · · ·+ gdfd

for some choice of g1, . . . , gd ∈ P(V ).

Let a ∈ X . Then
ma = {f ∈ Aff(X) : f(a) = 0}

is a maximal ideal in Aff(X), since f − f(a) ∈ ma for all f ∈ Aff(X).

Theorem 1.6 (Hilbert Nullstellensatz) Let X be an affine algebraic set. If m is a maximal
ideal in Aff(X) then there is a unique point a ∈ X such that m = ma.

If A is an algebra with 1 over C, then Hom(A,C) is the set of all linear maps φ : A→ C such that
φ(1) = 1 and φ(a′a′′) = φ(a′)φ(a′′) for all a′, a′′ ∈ A (the multiplicative linear functionals on A).
When X is an affine algebraic set and A = Aff(X), then every x ∈ X defines a homomorphism φx
by evaluation: φx(f) = f(x) for f ∈ A.

Corollary 1.7 Let X be an affine algebraic set, and let A = Aff(X). The map x 7→ φx is a
bijection between X and Hom(A,C).

Let X ⊂ V be an algebraic subset. If Y ⊂ X , then we say that Y is Zariski closed in X if Y is an
algebraic subset of V . Given 0 6= f ∈ Aff(X), the principal open subset of X defined by f is

Xf = {x ∈ X : f(x) 6= 0}.
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Lemma 1.8 The Zariski closed sets of X give X the structure of a topological space. The finite
unions of principal open sets Xf , for 0 6= f ∈ Aff(X), are the non-empty open sets in this topology
(the Zariski topology).

Let V and W be finite-dimensional complex vector spaces. Suppose X ⊂ V and Y ⊂ W are
algebraic sets and f : X → Y . If g is a complex-valued function on Y define f∗(g) to be the
function

f∗(g)(x) = g(f(x)) for x ∈ X .

We say that f is a regular map if f∗(g) is in Aff(X) for all g ∈ Aff(Y ).
Let X be an affine algebraic subset of V , and let f ∈ Aff(X), with f 6= 0. We make the principal
open set Xf into an affine algebraic set as follows: Define a map ψ : Xf → V × C by

ψ(x) = (x, f(x)−1).

This map is injective, and we use it to define the structure of an affine algebraic set on Xf by

Aff(Xf) = {g ◦ ψ : g ∈ P(V × C)}.

Thus the regular functions on Xf are the restrictions to Xf of the functions

p(x1, . . . , xn, f
−1), where p ∈ C[t1, . . . , tn+1].

Here x1, . . . , xn are linear coordinate functions on V .

Exercises for Lecture 1.

1. Show that the homomorphism C× × SL(n,C)→ GL(n,C) given by (λ, g) 7→ λg is surjective.
What is its kernel?

2. Consider the bilinear form Ω(v, w) = det[vw] for v, w ∈ C2.

(a) Show that Ω is skew-symmetric and nondegenerate.

(b) Show that g ∈ GL(2,C) preserves Ω if and only if det(g) = 1.

Hence SL(2,C) = Sp(C2,Ω).

3. Let A be in Mn(C). Define GA = {g ∈ GL(n,C) : gAgt = A}. Set Asymm = 1
2(A + At),

Askew = 1
2(A− At). Show that GA = GAsymm ∩GAskew

.

4. Let A be a finite-dimensional algebra over C. This means that there is a multiplication map
µ : A×A → A which is bilinear (it is not assumed to be associative). Define the automorphism
group of A to be

Aut(A) = {g ∈ GL(A) : gµ(X, Y ) = µ(gX, gY ), for X, Y ∈ A}.

Show that Aut(A) is an algebraic subgroup of GL(A).
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5. Let Ω be a nondegenerate skew-symmetric bilinear form on a finite-dimensional vector space
V . Define GSp(V,Ω) to be all g ∈ GL(V ) for which there is a λ ∈ C× (depending on g) so
that

Ω(gx, gy) = λΩ(x, y) for all x, y ∈ V.

(a) Show that the homomorphism C× × Sp(V,Ω) → GSp(V,Ω) given by (λ, g) 7→ λg is
surjective. What is its kernel?

(b) Show that GSp(V,Ω) is Zariski-closed in GL(V ) and is thus a linear algebraic group.
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Lecture 2. Representations, Connected Groups

Let G be a linear algebraic group. A representation of G is a pair (ρ, V ), where V is a complex
vector space (not necessarily finite-dimensional), and ρ : G → GL(V ) is a group homomorphism.
We say that the representation is regular if dimV <∞ and the functions on G

g 7→ 〈ρ(g)v, v∗〉, (2.1)

which we call matrix coefficients of ρ, are regular, for all v ∈ V and v∗ ∈ V ∗.
For B ∈ End(V ) define the function fρB on G by

fρB(g) = trV (ρ(g)B)

Then (ρ, V ) is regular if and only if fρB is a regular function on G, for all B ∈ End(V ). We set

Eρ = {fρB : B ∈ End(V )}.

(the space of representative functions associated with ρ).
If (ρ, V ) is a regular representation and W ⊂ V is a linear subspace, then we say that W is G-
invariant if ρ(g)w ∈ W for all g ∈ G and w ∈ W . In this case we obtain a representation σ of G
on W by restriction of ρ(g). We also obtain a representation τ of G on the quotient space V/W by
setting τ(g)(v+W ) = ρ(g)v+W .
If (ρ, V ) and (τ,W ) are representations of G, then we say that they are equivalent if there is a
linear bijection T : V →W so that

Tρ(g)T−1 = τ(g) for all g ∈ G.

In this case we write ρ ∼= τ .
We say that a representation (ρ, V ) with V 6= {0} is reducible if there is a G-invariant subspace
W ⊂ V such that W 6= {0} and W 6= V . If not such W exists, we call the representation irreducible.

Examples

1. Let G ⊂ GL(V ) be a linear algebraic group. By definition of Aff(G), the representation ρ(g) = g
on V is regular. We call ρ the defining representation of G.

2. Let (ρ, V ) be a regular representation. Define the contragredient (or dual) representation
(ρ∗, V ∗) by ρ∗(g)v∗ = v∗ ◦ ρ(g−1). Then

Eρ∗ = ι∗Eρ

where (ι∗f)(x) = f(x−1) for f ∈ Aff(G).

3. Let (ρ, V ) and (σ,W ) be regular representations of G. Define the direct sum representation
ρ⊕ σ on V ⊕W by

(ρ⊕ σ)(g)(v⊕w) = ρ(g)v⊕ σ(g)w

for g ∈ G, v ∈ V and w ∈W . Then
Eρ⊕σ = Eρ + Eσ.
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4. Let (ρ, V ) and (σ,W ) be regular representations of G. Define the tensor product representation
ρ⊗ σ on V ⊗W by

(ρ⊗ σ)(g)(v⊗w) = ρ(g)v⊗ σ(g)w

for g ∈ G, v ∈ V and w ∈W . Then

Eρ⊗σ = Span(Eρ · Eσ)

5. Consider the representations L and R of G on Aff(G) given by left and right translations:

L(x)f(y) = f(x−1y), R(x)f(y) = f(yx) for f ∈ Aff(G).

These representations are locally regular: for any regular function f on G,

V (f) = Span{L(x)R(y)f : x, y ∈ G}

is a finite-dimensional subspace of Aff(G) which is invariant under R(G) and L(G).

Proposition 2.1 Suppose that G and H are algebraic subgroups of GL(n,C), and H ⊂ G. Then

H = {g ∈ G : R(g)IH ⊂ IH}.

Connected Groups

Theorem 2.2 Let G be a linear algebraic group. Then G contains a unique subgroup G◦ which is
closed, irreducible, and of finite index in G. Furthermore, G◦ is a normal subgroup and its cosets
in G are both the irreducible components and the connected components of G.

Corollary 2.3 A linear algebraic group is (Zariski) connected if and only if it is irreducible.

Appendix: Algebraic Geometry for Lecture 2.

Irreducible Components of an Algebraic Set

Let V be a finite-dimensional complex vector spaces. Let X ⊂ V be a nonempty algebraic set. We
say thatX is reducible if there are nonempty closed subsets Xi 6= X , i = 1, 2 such that X = X1∪X2.
We say that X is irreducible if it is not reducible.

Lemma 2.4 An algebraic set X is irreducible if and only if IX is a prime ideal (Aff(X) has no
zero divisors).

Lemma 2.5 Let X be an irreducible algebraic set. Every nonempty open subset of X is dense in
X . Furthermore, if Y ⊂ X and Z ⊂ X are nonempty open subsets, then Y ∩ Z is nonempty.

Lemma 2.6 If X is an irreducible algebraic set then so is Xf , for any 0 6= f ∈ Aff(X).

Lemma 2.7 Let V and W be finite-dimensional vector spaces. Suppose X ⊂ V and Y ⊂ W are
irreducible algebraic sets. Then X × Y is an irreducible algebraic set in V ⊕W .
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Lemma 2.8 Suppose f : X → Y is a regular map between affine algebraic sets. Suppose X is
irreducible. Then f(X) is irreducible.

Lemma 2.9 If X is any algebraic set, then there exists a finite collection of irreducible closed sets
Xi such that

X = X1 ∪ · · · ∪Xr and Xi 6⊂ Xj for i 6= j. (2.2)

Furthermore, such a decomposition (2.2) is unique up to a permutation of the indices, and is called
an incontractible decomposition of X . The sets Xi are called the irreducible components of X .

Exercises for Lecture 2.

1. Let ω be a nondegenerate skew-symmetric bilinear form on C2l. Show that det(g) = 1 for all
g ∈ Sp(C2l, ω). (Hint: Consider ω to be an element of

∧2(C2l)∗ and let Ω be the l-fold wedge
power of ω. Show that Ω 6= 0, and hence CΩ =

∧2l(C2l)∗.)

2. Let G = GL(n,C) and let ρ be the defining representation of G on V = Cn.

(a) Define a representation π of G on Mn(C) by π(g)B = gBgt for g ∈ G and B ∈ Mn(C).
Show that (π,Mn(C)) is equivalent to (ρ⊗ ρ, V ⊗ V ). (Hint: Let B = [bij] ∈ Mn(C) be an
n× n matrix. Set T (B) =

∑n
i,j=1 bij ei ⊗ ej, where {ei} is the standard basis for Cn. Show

that ρ⊗2(g)T (B) = T (gBgt).)

(b) Describe the action of G on the symmetric and the skew-symmetric two-tensors in terms
of matrices as in part (a).

3. Let (ρ, V ) be a regular representation of the linear algebraic group G.

(a) Prove that (ρ, V ) is irreducible if and only if the dual representation (ρ∗, V ∗) is irreducible.
(Hint: Let E ⊂ V be a linear subspace. Show that E is G-invariant if and only if E⊥ ⊂ V ∗

is G-invariant.)

(b) Assume that (ρ, V ) is irreducible. Fix v∗ ∈ V ∗ with v∗ 6= 0. For v ∈ V let ϕv ∈ Aff(G)
be the representative function ϕv(g) = 〈v∗, ρ(g)v〉. Let E = {ϕv : v ∈ V } and let T : V → E
be the map Tv = ϕv. Prove that T is a bijective linear map and that Tρ(g) = R(g)T for all
g ∈ G, where R(g)f(x) = f(xg) for f ∈ Aff(G). (Hint: To prove that T is injective, use (a)
to show that ρ∗(G)v∗ spans V ∗.)

Thus every irreducible regular representation of G is equivalent to a subrepresentation of
(R,Aff(G)).

4. Let A be a finite-dimensional associative algebra with unit 1. Let G be the set of all g ∈ A
such that g is invertible in A.

(a) Let f : A → C be given by f(a) = det(La), where La ∈ End(A) is the operator of left
multiplication by a. Show that G is the principal open set Af .

(b) Define Φ : G → GL(A) by Φ(g) = Lg. Show that Φ(G) is a closed linear algebraic
subgroup in GL(A) and that Φ(G) is isomorphic with Af as an algebraic subset. (Hint: To
show that Φ(G) is closed, prove that T ∈ End(A) commutes with all the operators of right
multiplication by elements of A if and only if T = La for some a ∈ A.)
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Lecture 3. Subgroups and Homomorphisms
Group Structures on Affine Varieties

Subgroups of Algebraic Groups

Let G ⊂ GL(V ) be a linear algebraic group.

Lemma 3.1 Let K be a subgroup of G. Then the closure (in the Zariski topology) K of K is a
subgroup, and hence an algebraic subgroup of G. Furthermore, if K contains a non-empty open
subset of K then K is closed.

Regular Homomorphisms of Algebraic Groups

Theorem 3.2 Let φ : G → H be a regular homomorphism of linear algebraic groups. Then
F = Ker(φ) is a closed subgroup of G, and φ(G) is a closed subgroup of H. Hence φ(G) is an
algebraic group. Furthermore, φ(G◦) = φ(G)◦.

Corollary 3.3 Let φ : G → H be a regular homomorphism of linear algebraic groups. Set K =
φ(G). Let ι : K → H be the inclusion map and let ψ : G → K be the homomorphism φ, viewed
as having image K. Then ι is regular and injective, ψ is regular and surjective, and φ factors as
φ = ι ◦ ψ.

Group Structures on Affine Algebraic Sets

Theorem 3.4 Let X be an affine algebraic set. Assume that X has a group structure such that
x, y 7→ xy and x 7→ x−1 are regular mappings. Then there exists a linear algebraic group G and a
group isomorphism Φ : X → G such that Φ also an isomorphism of affine algebraic sets.

Theorem 3.5 Let G and H be linear algebraic groups. Suppose σ : G → H is a bijective regular
homomorphism. Then σ−1 : H → G is regular, and hence G ∼= H as algebraic groups.

Appendix: Algebraic Geometry for Lecture 3.

Dominant Regular Maps of Algebraic Sets

Let X, Y be affine algebraic sets. A map f : X → Y is called dominant if it is regular and f(X) is
dense in Y . This is equivalent to the injectivity of f∗ : Aff(Y )→ Aff(X).

Theorem 3.6 Assume that X, Y are irreducible affine algebraic sets and f : X → Y is a dominant
map. Let M ⊂ X be a nonempty open set. Then f(M) contains a nonempty open subset of Y .

This is proved using the following result on extensions of homomorphisms. Let A be an algebra
with 1 over C. Given 0 6= a ∈ A, we set

Hom(A,C)a = {φ ∈ Hom(A,C) : φ(a) 6= 0}.
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Theorem 3.7 Let B be a commutative algebra over C. Assume 1 ∈ B and B has no zero divisors.
Suppose that A ⊂ B is a subalgebra such that B = A[b1, . . . , bn] for some elements bi ∈ B. Then
given 0 6= b ∈ B, there exists 0 6= a ∈ A such that every φ ∈ Hom(A,C)a extends to ψ ∈ Hom(B,C)b.

Corollary 3.8 Let B be a finitely generated commutative algebra over C having no zero divisors.
Given 0 6= b ∈ B, there exists ψ ∈ Hom(B,C) such that ψ(b) 6= 0.

Theorem 3.9 Let f : X → Y be a regular map between affine algebraic sets. Then f(X) contains
an open subset of f(X).

Rational Maps

Let A be a commutative ring with 1 and without zero divisors. Then A is embedded in its quotient
field Quot(A). The elements of this field are the formal expressions f = g/h, where g, h ∈ A and
h 6= 0, with the usual algebraic operations on fractions. Let X be an irreducible algebraic set. The
algebra A = Aff(X) has no zero divisors, so it has a quotient field. We denote this field by Rat(X)
and call it the field of rational functions on X .
We may view the elements of Rat(X) as functions, as follows. If f ∈ Rat(X), then we say that f
is defined at a point x ∈ X if there exist g, h ∈ Aff(X) with f = g/h and h(x) 6= 0. In this case we
set f(x) = g(x)/h(x). The domain Df of f is the subset of X at which f is defined. It is a dense
open subset of X , since it contains the principal open set Xh.
A map f from X to an algebraic set Y is called rational if φ ◦ f is a rational function on X for all
φ ∈ Aff(Y ). Suppose Y ⊂ Cn and yi is the restriction to Y of the ith linear coordinate function.
Set fi = yi ◦ f . Then f is rational if and only if fi ∈ Rat(X) for i = 1, . . . , n. The domain of a
rational map f is defined as

Df =
⋂

φ∈Aff(Y )

Dφ◦f .

By Lemma 2.5 Df =
⋂n
i=1Dyi◦f is a dense open subset of X .

Lemma 3.10 Suppose X is irreducible and f : X → Y is a rational map. If Df = X then f is a
regular map.

Let A ⊂ B be a subalgebra, and identify Quot(A) with the subfield of Quot(B) generated by A.
If A = Aff(X) for an irreducible variety X , and B = Aff(Xf) for some non-zero f ∈ A, then
B = A[b] ⊂ Quot(A), where b = 1/f . In this example, every ψ ∈ Hom(B, C) such that ψ(b) 6= 0 is
given by evaluation at a point x ∈ Xf , and hence ψ is uniquely determined by its restriction to A.

Theorem 3.11 Let B be a finitely generated algebra over C with no zero divisors. Let A ⊂ B be
a finitely generated subalgebra. Assume that there exists a nonzero element b ∈ B so that every
element of Hom(B,C)b is uniquely determined by its restriction to A. Then B ⊂ Quot(A).

Suppose maps f, g and h satisfy the commutative diagram

M P-h

N
?

f g

�
�
�
��
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Then h is constant on the fibers of f , since f(m) = f(m′) implies h(m) = g(f(m)) = h(m′).
Furthermore, if f is surjective, then g is uniquely determined by f and h. Conversely, given f
and h satisfying these conditions, we can ask for the regularity properties of the map g such that
h = g ◦ f . We weaken the fiber and surjectivity conditions with the aim of obtaining a rational
map g.

Theorem 3.12 Let M,N and P be irreducible affine varieties, and let f : M → N and h : M → P
be dominant regular maps. Assume that there is a non-empty open subset U of M so that f(m) =
f(m′) implies h(m) = h(m′) for m,m′ ∈ U . Then there exists a rational map g : N → P such that
h = g ◦ f .

Exercises for Lecture 3.

1. Let N be the group of matrices [
1 z
0 1

]
, z ∈ C

and let Γ be the subgroup of N consisting of the matrices with z ∈ Z an integer. Prove that
Γ is Zariski-dense in N .

2. Define a multiplication µ on C3 by

µ([x1, x2, x3], [y1, y2, y3]) = [x1 + y1, x2 + y2, x3 + y3 + x1y2]

(a) Prove that µ satisfies the group axioms and that the inversion map is regular.

(b) Let N = (C3, µ) be the linear algebraic group with regular functions C[x1, x2, x3] and
multiplication µ. Let R(y)f(x) = f(µ(x, y)) be the right translation representation of N on
Aff(N ). Let V ⊂ C[x1, x2, x3] be the space spanned by 1, x1, x2, and x3. Show that V is
invariant under R(y), for y ∈ N .

(c) Let ρ(y) = R(y)|V for y ∈ N . Calculate the matrix of ρ(y) relative to the basis
{1, x1, x2, x3} of V . Prove that ρ : N → GL(4,C) is injective, and that N ∼= ρ(N ) as
algebraic groups.

3. Define a multiplication µ on C× × C by

µ([x1, x2], [y1, y2]) = [x1y1, x2 + x1y2]

(a) Prove that µ satisfies the group axioms and that the inversion map is regular.

(b) Let S = (C× × C, µ) be the linear algebraic group with regular functions C[x1, x
−1
1 , x2]

and multiplication µ. Let R(y)f(x) = f(µ(x, y)) be the right translation representation of S
on Aff(S). Let V ⊂ Aff(S) be the space spanned by the functions x1 and x2. Show that V is
invariant under R(y), for y ∈ S.

(c) Let ρ(y) = R(y)|V for y ∈ S. Calculate the matrix of ρ(y) relative to the basis {x1, x2} of
V . Prove that ρ : S → GL(2,C) is injective, and that S ∼= ρ(S) as an algebraic group.

14



Lecture 4. Lie Algebra of an Algebraic Group

Left-invariant Vector Fields

Let G = GL(V ). For any A ∈ End(V ), f ∈ Aff(G) and x ∈ G, define a linear transformation XA

on Aff(G) by

XAf(x) =
d

dt
f(x(I + tA))|t=0, for f ∈ Aff(G), x ∈ G.

Fix a basis {e1, . . . , en} for V , let Eij be the corresponding elementary matrices and let {xij} be
the matrix coordinates. Define ∂/∂xij to be the vector field

∂

∂xij
f(x) =

d

dt
f(x+ tEij)|t=0

on Mn(C). Then

XEijf(x) =
d

dt
f(x+ txEij)|t=0 =

n∑
r=1

xri
∂

∂xrj
f(x) (4.1)

If A =
∑
i,j aijEij with aij ∈ C, then XA is the vector field

XA =
∑
i,j

aijXEij .

The operator XA has the following properties:

XA(f1f2) = (XAf1)f2 + f1(XAf2) for f1, f2 ∈ Aff(G)

(the product rule for differentiation) and

XA(L(g)f) = L(g)(XAf) for f ∈ Aff(G), g ∈ G,

where L(g)f(y) = f(g−1y) is the left representation of G on Aff(G). These two properties say that
XA is a left-invariant vector field on G.

Lemma 4.1 Let G = GL(V ). If A,B ∈ End(V ) then

[XA, XB] = X[A,B].

Furthermore, every left-invariant vector field Y on G is of the form XA for a unique A ∈ End(V ).

For C ∈ End(V ) we have define a function fC on G by

fC(g) = tr(gC), for g ∈ GL(V ).

The functions fC together with (det)−1 generate the algebra Aff(G), as C ranges over End(V ). If
Y is a vector field on G, then

(Y det−1)(g) = −det(g)−2(Y det)(g).

Since det(g) is a polynomial in the linear functions {fC : C ∈ End(V )}, it follows from the product
rule for derivations that Y is completely determined by its action on the functions fC .
We define Lie(GL(V )) = End(V ), viewed as a Lie algebra with Lie bracket [A,B] = AB − BA as
above. If G ⊂ GL(V ) is an algebraic subgroup, we define

Lie(G) = {A ∈ End(V ) : XAf ∈ IG for all f ∈ IG}.
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Proposition 4.2 Let G be an algebraic subgroup of GL(V ). If A,B ∈ Lie(G) and λ ∈ C, then
A+ λB and [A,B] ∈ Lie(G).

Theorem 4.3 Let G be a linear algebraic group. For every g ∈ G the map A 7→ (XA)g is a linear
isomorphism from Lie(G) onto T (G)g. Hence G is a smooth algebraic set and dim Lie(G) = dim G.

Lie Algebras of the Classical Groups

Lemma 4.4 Suppose G ⊂ GL(n,C) is a linear algebraic group. Let z 7→ φ(z) be a rational map
from C to Mn(C) such that φ(0) = I and φ(z) ∈ G for all z ∈ C except possibly for a finite set of
nonzero complex numbers. Then the matrix A = (d/dz)φ(z)|z=0 is in Lie(G).

Special Linear Group

Let G = SL(n,C). Then

Lie(G) = sl(n,C) = {A ∈Mn(C) : tr(A) = 0}.

Orthogonal and Symplectic Groups

Let Γ ∈Mn(C) be nonsingular. Let

GΓ = {g ∈ GL(n,C) : Γ−1gtΓg = I}.

be the subgroup of GL(n,C) which preserves the nondegenerate bilinear form xtΓy on Cn.

Lemma 4.5 Suppose A ∈Mn(C) and det(I−A) 6= 0. Then c(A) ∈ GΓ if and only if AtΓ+ΓA = 0.

Theorem 4.6 The Lie algebra gΓ = Lie(GΓ) consists of all A ∈Mn(C) such that

AtΓ + ΓA = 0. (4.2)

Suppose n = 2l is even. We denote by s0 the l× l matrix

s0 =


0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0


with 1 on the skew diagonal and 0 elsewhere. Set

J+ =

[
0 s0

s0 0

]
, J− =

[
0 s0

−s0 0

]
,

and define the bilinear forms

B(x, y) = (x, J+y), Ω(x, y) = (x, J−y) for x, y ∈ Cn. (4.3)

The form B is nondegenerate and symmetric, and the form Ω is nondegenerate and skew symmetric.
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Corollary 4.7 The Lie algebra so(C2l, B) of SO(C2l, B) consists of all matrices

A =

[
a b
c −s0a

ts0

]

where a ∈ gl(l,C), and b, c are l× l matrices such that

bt = −s0bs0, ct = −s0cs0

( b and c are skew symmetric around the skew diagonal).

Corollary 4.8 The Lie algebra sp(C2l,Ω) of Sp(C2l,Ω) consists of all matrices

A =

[
a b
c −s0a

ts0

]

where a ∈ gl(l,C), and b, c are l× l matrices such that

bt = s0bs0, ct = s0cs0

( b and c are symmetric around the skew diagonal).

Corollary 4.9 The Lie algebra so(C2l+1, B) of SO(C2l+1, B) consists of all matrices

A =

 a w b
u 0 −wts0

c −s0u
t −s0a

ts0


where a ∈ gl(l,C), b, c are l× l matrices such that

bt = −s0bs0, ct = −s0cs0

( b and c are skew symmetric around the skew diagonal), w is a l × 1 matrix (column vector), and
u is an 1× l matrix (row vector).
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Appendix: Algebraic Geometry for Lecture 4.

Tangent Spaces

Suppose X ⊂ Cn is an algebraic set. If x ∈ X , then a tangent vector to X at x is a linear map
v : Aff(X)→ C such that

v(fg) = v(f)g(x) + f(x)v(g) (4.4)

for all f, g ∈ Aff(X). We call the set of all tangent vectors at x the tangent space of X at x. Let
mx ⊂ Aff(X) be the maximal ideal of all functions which vanish at x. Then f − f(x) ∈ mx for any
f ∈ Aff(X), and v(f) = v(f − f(x)). Hence v is determined by its restriction to mx. On the other
hand, by (4.4) we see that v(m2

x) = 0, so v naturally defines an element ṽ ∈ (mx/m2
x)∗. This gives

a natural isomorphism
T (X)x ∼= (mx/m2

x)∗. (4.5)

Vector Fields

A Lie algebra is a vector space g with a bilinear multiplication (called the Lie bracket or commutator)

g× g→ g, x, y 7→ [x, y],

such that [x, y] = −[y, x] (skew-symmetry) and

[x, [y, z]] = [[x, y], z] + [y, [x, z]] (Jacobi identity)

for all x, y, z ∈ g. A derivation of an algebra A is a linear map D : A → A such that D(ab) =
D(a)b+aD(b). If A is commutative and D,D′ are derivations of A, then any linear combination of
D,D′ with coefficients in A is a derivation, and the commutator [D,D′] = DD′−D′D is a derivation.
Thus the derivations of A form a Lie algebra Der(A) and an A-module. When A = Aff(X) where
X is an algebraic set, a derivation of A is called a vector field. We denote by Vect(X) the Lie
algebra of all vector fields on X.
Given L ∈ Vect(X) and x ∈ X , we define Lxf = (Lf)(x) for f ∈ Aff(X). Then Lx ∈ T (X)x, by
the definition of tangent vector. Conversely, if we have a correspondence x 7→ Lx ∈ T (X)x such
that the functions x 7→ Lx(f) are regular for every f ∈ Aff(X), then L is a vector field on X .

Dimension and Smoothness of an Affine Algebraic Set

Let X be an irreducible affine algebraic set. The algebra Aff(X) is finitely generated over C and has
no zero divisors. The following result (the Noether Normalization Lemma) describes the structure
of such algebras:

Lemma 4.10 Let k be a field and B = k[x1, . . . , xn] a finitely generated commutative algebra over
k without zero divisors. Then there exist y1, . . . , yr ∈ B such that
(1) {y1, . . . , yr} is algebraically independent over k;
(2) Every b ∈ B is integral over the subring k[y1, . . . , yr].
The integer r is uniquely determined by properties (1) and (2), and is called the transcendence
degree of B over k. A set {y1, . . . , yr} with properties (1) and (2) is called a transcendence basis
for B over k.
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Let X ⊂ Cn be an algebraic set. We define its dimension dimX as follows: When X is irreducible,
we let dimX be the transcendence degree of the algebra Aff(X). If X is reducible, we let dimX
be the maximum of the dimensions of the irreducible components of X . Let a ∈ X . Then

T (X)a = {ṽ ∈ T (Cn)a : ṽ(IX) = 0}.

Let {f1, . . . , fr} be a generating set of polynomials for the ideal IX and set uj = ṽ(xj − aj). Then
ṽ ∈ T (X)a if and only if

n∑
j=1

uj
∂fi(a)
∂xj

= 0 for i = 1, . . . , r. (4.6)

Hence dimT (X)a = n− rank(J(a)), where J(a) is the r× n Jacobian matrix [∂fi(a)/∂xj].
If X is irreducible, we define

m(X) = min
x∈X

dimT (X)x.

Let X0 = {x ∈ X : dimT (X)x = m(X)}. The points of X0 are called smooth. Since these are the
points at which the matrix J defined above has maximum rank d = n−m(X), X0 is Zariski dense
in X . If X0 = X then X is said to be smooth.
If X is a reducible algebraic set with irreducible components Xi, then we say that X is smooth if
each Xi is smooth. We define m(X) = maxim(Xi) in this case.

Theorem 4.11 Let X be an algebraic set. Then m(X) = dimX .

Exercises for Lecture 4.

1. Show that the homomorphism C× × SL(n,C)→ GL(n,C) given by (λ, g) 7→ λg is surjective.
What is its kernel?

2. Consider the bilinear form Ω(v, w) = det[vw] for v, w ∈ C2.

(a) Show that Ω is skew-symmetric and nondegenerate.

(b) Show that g ∈ GL(2,C) preserves Ω if and only if det(g) = 1.

Hence SL(2,C) = Sp(C2,Ω).

3. Let A be in Mn(C). Define GA = {g ∈ GL(n,C) : gAgt = A}. Set Asymm = 1
2(A + At),

Askew = 1
2(A− At). Show that GA = GAsymm ∩GAskew

.

4. Let A be a finite-dimensional algebra over C. This means that there is a multiplication map
µ : A×A → A which is bilinear (it is not assumed to be associative). Define the automorphism
group of A to be

Aut(A) = {g ∈ GL(A) : gµ(X, Y ) = µ(gX, gY ), for X, Y ∈ A}.

Show that Aut(A) is an algebraic subgroup of GL(A).
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5. Let Ω be a nondegenerate skew-symmetric bilinear form on a finite-dimensional vector space
V . Define GSp(V,Ω) to be all g ∈ GL(V ) for which there is a λ ∈ C× (depending on g) so
that

Ω(gx, gy) = λΩ(x, y) for all x, y ∈ V.

(a) Show that the homomorphism C× × Sp(V,Ω) → GSp(V,Ω) given by (λ, g) 7→ λg is
surjective. What is its kernel?

(b) Show that GSp(V,Ω) is Zariski-closed in GL(V ) and is thus a linear algebraic group.

20



Lecture 5. Lie Algebra Representations
Adjoint Representation

Differential of a Regular Representation

Theorem 5.1 Let G be a linear algebraic group, and let (π, V ) be a regular representation of G.
There is a unique linear map dπ : g→ End(V ) such that

XA(fC ◦ π)(I) = fdπ(A)C(I) for all A ∈ g, C ∈ End(V ). (5.1)

This map is a Lie algebra homomorphism:

dπ([A,B]) = [dπ(A), dπ(B)] for A,B ∈ g.

Furthermore, for f ∈ Aff(GL(V )) and A ∈ Lie(G),

XA(f ◦ π) = (Xdπ(A)f) ◦ π. (5.2)

We call dπ the differential of the representation π.

Examples

1. Let π be the defining representation of G ⊂ GL(n,C). Then dπ(A) = A, for A ∈ g.

2. Let (π, V ) be a regular representation of G. For dual representation (π∗, V ∗) we have

dπ∗(A) = −(dπ(A))t for A ∈ g. (5.3)

3. Let (π1, V1) and (π2, V2) be regular representations of G. Let π = π1 ⊕ π2 be the direct sum
representation on V = V1 ⊕ V2. Then

dπ(X) = dπ1(X)⊕ dπ2(X).

4. Let (π1, V1) and (π2, V2) be regular representations of G and let π = π1 ⊗ π2 be the tensor
product of the representations on V = V1 ⊗ V2. Then

dπ(X) = dπ1(X)⊗ I + I ⊗ dπ2(X). (5.4)

Theorem 5.2 Suppose G is a linear algebraic group with Lie algebra g. Let (π, V ) be a regular
representation of G.
(1) Suppose W ⊂ V is a linear subspace such that π(g)W ⊂W for all g ∈ G. Then dπ(A)W ⊂W
for all A ∈ g.
(2) Assume that G is connected. If W ⊂ V is a linear subspace such that dπ(X)W ⊂ W for all
X ∈ g then π(g)W ⊂W for all g ∈ G.

Proposition 5.3 If π : G → H is a regular homomorphism, then dπ(Lie(G)) ⊂ Lie(H) and dπ
is a Lie algebra homomorphism. Furthermore, if K is a linear algebraic group and ρ : H → K is
another regular homomorphism, then d(ρ ◦ π) = dρ ◦ dπ. In particular, if G = K and ρ ◦ π is the
identity map, then dρ ◦ dπ = identity, so that isomorphic linear algebraic groups have isomorphic
Lie algebras.
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Corollary 5.4 Suppose G and H are algebraic subgroups of GL(n,C).
(1) If G ⊂ H, then Lie(G) ⊂ Lie(H).
(2) If G ⊂ H and (π, V ) is a regular representation of H, then the differential of π|G is dπ|Lie(G).
(3) Lie(G ∩H) = Lie(G) ∩ Lie(H).

Proposition 5.5 Let G be a connected linear algebraic group with Lie algebra g. Suppose σ : G→
GL(n,C) is a regular representation and H ⊂ GL(n,C) is a linear algebraic subgroup with Lie
algebra h such that dσ(g) ⊂ h. Then σ(G) ⊂ H. In particular, if H is connected and dσ(g) = h,
then σ(G) = H.

Differential of the Adjoint Representation

Let G be a linear algebraic group.

Lemma 5.6 Let A ∈ Lie(G) and g ∈ G. Then gAg−1 ∈ Lie(G).

Define Ad(g)A = gAg−1 for g ∈ G and A ∈ Lie(G). Then by Lemma 5.6, Ad(g) : Lie(G)→ Lie(G).
The representation (Ad,Lie(G)) is called the adjoint representation of G. For A,B ∈ Lie(G) we
have

Ad(g)[A,B] = [Ad(g)A,Ad(g)B],

Thus Ad : G→ Aut(Lie(G)).

Theorem 5.7 Let g = Lie(G). The differential of the adjoint representation of G is the represen-
tation ad : g→ End(g) given by

ad(A)(B) = [A,B] for A,B ∈ g. (5.5)

Furthermore, ad(A) is a derivation of g, and hence ad(g) ⊂ Der(g).

Lemma 5.8 Let G be a closed subgroup of the linear algebraic group H. Denote the adjoint rep-
resentations of G and H by AdG and AdH . Then

AdH(g)X = AdG(g)X, for g ∈ G, X ∈ Lie(G). (5.6)

Appendix: Algebraic Geometry for Lecture 5.

Differential of a Regular Map

Let X, Y be algebraic sets and φ : X → Y a regular map. Then the induced map φ∗ : Aff(Y ) →
Aff(X) is an algebra homomorphism. If v ∈ T (X)x then the linear functional f 7→ v(φ∗f), f ∈
Aff(Y ), is a tangent vector at y = φ(x) that we denote by dφx(v). At each point x ∈ X we thus
have a linear map

dφx : T (X)x→ T (Y )φ(x)

which we call the differential of φ at x.
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Differential Criterion for Dominance of a Map

Proposition 5.9 Let X, Y be affine algebraic sets and ψ : X → Y a regular map. Assume Y is
irreducible and dim Y = m. Suppose there exists an algebraically independent set {u1, . . . , um} ⊂
Aff(Y ) such that the set

{ψ∗u1, . . . , ψ
∗um} ⊂ Aff(X)

is also algebraically independent. Then ψ(X) is dense in Y .

Corollary 5.10 Let X ⊂ Y with X, Y irreducible affine algebraic sets. Suppose X is closed in Y
and dimX = dim Y . Then X = Y .

Theorem 5.11 Let X, Y be irreducible affine algebraic sets and ψ : X → Y a regular map. Suppose
there exists a smooth point p of X such that ψ(p) is a smooth point of Y and

dψp : T (X)p→ T (Y )ψ(p)

is bijective. Then ψ(X) is dense in Y .

Lemma 5.12 Let X ⊂ Cn be closed and irreducible and let p ∈ X be a smooth point of X . Then
there exists a open subset U ⊂ X with p ∈ U and regular maps wj : U → Cn for j = 1, . . . , m =
dimX such that

T (X)q =
m⊕
j=1

Cwj(q)

for all q ∈ U .

Corollary 5.13 Let X be an irreducible affine algebraic set. Let K(X) = Quot(Aff(X)) be the
field of rational functions on X . Suppose f ∈ K(X) and Df = 0 for all D ∈ Der(K(X)). Then f
is constant.

Exercises for Lecture 5.

1. Let G and H be linear algebraic groups. Suppose φ : G → H is a surjective regular homo-
morphism such that Ker(φ) is finite. Prove that dφ : Lie(G) → Lie(H) is an isomorphism.
(Hint: Prove that dimG = dimH .)

2. Let Ω be a nondegenerate skew-symmetric form on C2l, and let G = GSp(C2l,Ω) be the
group introduced in the Exercises for Lecture #1. Find Lie(G). (Hint: Use the surjective
homomorphism C× × Sp(C2l,Ω)→ G and the previous exercise.)

3. Let G be a linear algebraic group and let g = Lie(G). Let (π, V ) be a regular representation
of G.

(a) Let B be a G-invariant bilinear form on V . Show that B is g-invariant. (Hint: Consider
the representation of G on V ∗ ⊗ V ∗.)
(b) Let (σ,W ) be another regular representation of G. Set

HomG(V,W ) = {T ∈ Hom(V,W ) : Tπ(g) = σ(g)T for all g ∈ G}
Homg(V,W ) = {T ∈ Hom(V,W ) : Tdπ(A) = dσ(A)T for all A ∈ g}.
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Show that HomG(V,W ) ⊂ Homg(V,W ) and that equality holds if G is connected. (Hint:
Consider the representation V ∗ ⊗W .)

(c) Show that (a) is a special case of (b).

4. Let G be a linear algebraic group. Let Int be the representation of G on Aff(G) given by
Int(g)f(x) = f(g−1xg) for f ∈ Aff(G) (thus Int(g) = L(g)R(g)). Assume that H is a Zariski
closed normal subgroup of G.

(a) Let f ∈ IH . Prove that there is a finite-dimensional subspace V ⊂ IH so that f ∈ V and
Int(g)V ⊂ V .

(b) Set g = Lie(G) and h = Lie(H). Prove that Ad(G)h ⊂ h. (Hint: Use (a) to show that
R(g)XAR(g)−1IH ⊂ IH for all A ∈ h and all g ∈ G.)

(c) Prove that [g, h] ⊂ h, and hence h is an ideal in g. (Hint: By (b), h is an Ad(G)-invariant
subspace of g.)
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Lecture 6. Chevalley-Jordan Decomposition
Quotient Groups

Nilpotent and Unipotent Matrices

A matrix A ∈ Mn(C) is nilpotent if Ak = 0 for some positive integer k. A linear transformation
u ∈Mn(C) is called unipotent if u− I is nilpotent.
Let A ∈Mn(C) be nilpotent. Then An = 0 and we define

expA =
n−1∑
k=0

1
k!
Ak = I + Y,

where Y = A+
1
2!
A2 + · · ·+ 1

(n− 1)!
An−1 is also nilpotent. Hence expA is unipotent. If u = I+Y

is unipotent set

log u =
n−1∑
k=1

(−1)k+1

k
Y k.

The exponential function is a bijective polynomial map from the nilpotent elements in gl(n,C) onto
the unipotent elements in GL(n,C), with polynomial inverse u 7→ logu.

Lemma 6.1 (Taylor’s Formula) Suppose A ∈Mn(C) is nilpotent and f is a regular function on
GL(n,C). Then there exists an integer k so that (XA)kf = 0, and

f(expA) =
k−1∑
m=0

1
m!

(XA)mf(I). (6.1)

Theorem 6.2 Let G ⊂ GL(n,C) be a linear algebraic group.
(1) Let A ∈Mn(C) be a nilpotent matrix. Then A ∈ Lie(G) if and only if expA ∈ G.
(2) Suppose A ∈ Lie(G) is a nilpotent matrix and (ρ, V ) is a regular representation of G. Then
dρ(A) is a nilpotent transformation on V , and

ρ(expA) = exp dρ(A). (6.2)

Semisimple One-Parameter Groups

Let V be a vector space and T ∈ End(V ). For λ ∈ C let

V (T, λ) = {v ∈ V : Tv = λv}.

We say that T is a semisimple transformation if V =
⊕
λ V (T, λ).

Lemma 6.3 Let φ : C× → GL(n,C) be a regular homomorphism. For p ∈ Z let Ep = {v ∈ Cn :
φ(z)v = zpv}. Then

Cn =
⊕
p∈Z

Ep (6.3)

and hence φ(z) is a semisimple transformation. Conversely, given a direct sum decomposition (6.3)
of Cn, define φ(z)v = zpv for z ∈ C×, v ∈ Ep . Then φ is a regular homomorphism.
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Jordan-Chevalley Decomposition

Theorem 6.4 Let G ⊂ GL(n,C) be a linear algebraic group and set g = Lie(G).
(1) If A ∈ g and A = S +N is its additive Jordan decomposition, then S,N ∈ g.
(2) If g ∈ G and g = su is its multiplicative Jordan decomposition, then s, u ∈ G.

Theorem 6.5 Let G ⊂ GL(n,C) be a linear algebraic group with Lie algebra g. Suppose (ρ, V ) is
a regular representation of G.
(1) If A ∈ g and A = S +N is its additive Jordan decomposition, then dρ(S) is semisimple, dρ(N )
is nilpotent, and dρ(A) = dρ(S) +dρ(N ) is the additive Jordan decomposition of dρ(A) in End(V ).
(2) If g ∈ G and g = su is its multiplicative Jordan decomposition in G, then ρ(s) is semisimple,
ρ(u) is unipotent, and ρ(g) = ρ(s)ρ(u) is the multiplicative Jordan decomposition of ρ(g) in GL(V ).

From theorems 6.4 and 6.5 we see that every element g of G has a semisimple component gs and a
unipotent component gu which are independent of the embedding G ⊂ GL(V ), such that g = gsgu.
Likewise, every element Y ∈ g has a semisimple component Ys and a nilpotent component Yn which
are independent of the embedding g ⊂ gl(V ), such that Y = Ys + Yn.
We denote the set of all semisimple elements of G as Gs and the set of all unipotent elements as
Gu. Likewise, we denote the set of all semisimple elements of g as gs and the set of all nilpotent
elements as gn. Since T ∈Mn(C) is nilpotent if and only if Tn = 0, we have

gu = g ∩ {T ∈Mn(C) : Tn = 0}

Gu = G ∩ {g ∈ GL(n,C) : (I − g)n = 0}.
Thus gn is an algebraic subset of End(V ) and Gu is an algebraic subset of GL(V ). It follows from
Theorem 6.2 that the map N 7→ exp(N ) from gu to Gu is an isomorphism of algebraic sets.

Normal Subgroups and Quotient Groups

Suppose G is a linear algebraic group and H ⊂ G is a normal algebraic subgroup. The quotient
G/H is an (abstract) group. To show that it has the structure of a linear algebraic group we need
to construct some representations.

Theorem 6.6 Suppose G is a linear algebraic group and N ⊂ G is an algebraic subgroup.
(1) There exists a regular representation (π, V ) of G and a 1-dimensional subspace V0 ⊂ V so that
N = {g ∈ G : π(g)V0 = V0}.
(2) If N is normal, then there exists a regular representation (φ,W ) of G so that N = Ker(φ).

Let G be a connected algebraic group, and N ⊂ G a normal algebraic subgroup. We define an
algebraic group structure on the abstract group H = G/N by taking a regular representation
(φ,W ) of G such that Ker(φ) = N , whose existence is provided by Theorem 6.6. The group
K = φ(G) ⊂ GL(W ) is algebraic, by Theorem 3.2. As an abstract group, K is isomorphic to G/N
by the map µ such that φ = µ ◦ π, where π : G→ G/N is the quotient map.

G K-
φ

G/N
?

π µ

�
�
�
��
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We define Aff(G/N ) = µ∗Aff(K). This gives G/N the structure of an algebraic group, which a
priori might depend on the choice of the representation φ. To show that this structure is unique,
we establish the following regularity result for homomorphisms.

Theorem 6.7 Suppose that G,H and K are algebraic groups, with G connected. Let ψ : G → H
and φ : G→ K be regular homomorphisms. Assume that ψ is surjective and Ker(ψ) ⊂ Ker(φ). Let
µ : H → K be the map such that φ = µ ◦ ψ. Then µ is a regular homomorphism.

Corollary 6.8 Assume that G,H are connected algebraic groups and that ψ : G→ H is a bijective
regular homomorphism. Then ψ−1 is regular, and hence ψ is an isomorphism of algebraic groups.

We now combine these results to obtain the existence and uniqueness of quotient groups as linear
algebraic groups.

Theorem 6.9 Let G be a connected algebraic group and N a normal algebraic subgroup.
(1) The algebraic group structure on G/N defined by a representation φ with Kerφ = N is inde-
pendent of the choice of φ, and the quotient map π : G→ G/N is regular.
(2) π∗Aff(G/N ) = Aff(G)N , the right N -invariant regular functions on G.

Appendix: Linear and Associative Algebra for Lecture 6.

Jordan Decompositions

Let A ∈Mn(C). Then there exist S,N ∈Mn(C) so that
(1) A = S +N
(2) S is semisimple and N is nilpotent
(3) NS = SN .
Properties (1), (2), (3) uniquely determine N and S. Furthermore, there is a polynomial φ(x) so
that S = φ(A). We write As = S and An = N for the semisimple and nilpotent parts of A and call
A = S +N the additive Jordan decomposition of A.
There is a corresponding multiplicative Jordan decomposition: Let g ∈ GL(n,C). There exist
s, u ∈ GL(n,C) so that
(1) g = su
(2) s is semisimple and u is unipotent
(3) us = su.
Properties (1), (2), (3) uniquely determine u and s. Furthermore, there is a polynomial φ(x) so that
s = φ(g). We write s = gs and u = gu for the semisimple and unipotent factors in the multiplicative
Jordan decomposition of g.

Exercises for Lecture 6.

1. Suppose V and W are finite-dimensional vector spaces over C. Let x ∈ GL(V ) and y ∈
GL(W ) have multiplicative Jordan decompositions x = xsxu and y = ysyu. Prove that the
multiplicative Jordan decomposition of x⊗ y in GL(V ⊗W ) is x⊗ y = (xs ⊗ ys)(xu ⊗ yu).
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2. Suppose A is a finite-dimensional algebra over C (not necessarily associative). For example,
A could be a Lie algebra. Let g ∈ Aut(A) have multiplicative Jordan decomposition g = gsgu
in GL(A). Show that gs and gu are also in Aut(A).

3. Let G = SL(2,C).

(a) Show that {g ∈ G : tr(g)2 6= 4} ⊂ Gs. (Hint: Show that the elements in this set have
distinct eigenvalues.)

(b) Let u(t) =

[
1 t
0 1

]
and v(t) =

[
1 0
t 1

]
for t ∈ C. Show that u(r)v(t) ∈ Gs whenever

rt(4 + rt) 6= 0 and that u(r)v(t)u(r) ∈ Gs whenever rt(2 + rt) 6= 0.

(c) Show that Gs and Gu are not subgroups of G.

(d) Show that every Zariski neighborhood of 1 in G contains unipotent elements, and hence
Gs is not closed in G. (Hint: If f ∈ Aff(G) and f(1) 6= 0 then f(u(t)) is a non-vanishing
polynomial in t.)

4. Let G be a connected linear algebraic group and let Ad : G → GL(g) be the adjoint repre-
sentation of G. Let N = Ker(Ad). The group G/N is called the adjoint group of G.

(a) Suppose g is a simple Lie algebra. Prove that N is finite.

(b) Suppose G = SL(n,C), so that g = sl(n,C). Find N in this case. The group G/N is
denoted by PSL(n,C) (the projective linear group).
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Part 2: Stucture of Classical Groups

Lecture 7. Maximal Tori and Unipotent Generators for Classical Groups

Algebraic Tori

An algebraic torus is an algebraic group T isomorphic to C× × · · · × C× (l factors); the integer l is
the rank of T . If G is a linear algebraic group, then a torus H ⊂ G is maximal if it is not contained
in any larger torus in G.
Suppose now that G is one of the classical groups GL(l,C), SL(l + 1,C), Sp(C2l,Ω), SO(C2l, B) ,
or SO(C2l+1, B). We take as Ω and B the specific bilinear forms used in Lecture 4, Corollaries 4.7,
4.8, and 4.9. Let H be the subgroup of diagonal matrices in G.

(1) When G = SL(l + 1,C) (type Al), then

H = {diag[x1, . . . , xl, (x1 · · ·xl)−1] : xi ∈ C×},

and
Lie(H) = {diag[a1, . . . , al+1] ; ai ∈ C,

∑
ai = 0}.

(2) When G = Sp(C2l,Ω) (type Cl) or G = SO(C2l, B) (type Dl), then

H = {diag[x1, . . . , xl, x
−1
l , . . . , x−1

1 ] : xi ∈ C×},

and
Lie(H) = {diag[a1, . . . , al,−al, . . . ,−a1] ; ai ∈ C}.

(3) When G = SO(C2l+1, B) (type Bl), then

H = {diag[x1, . . . , xl, 1, x−1
l , . . . , x−1

1 ] : xi ∈ C×}

and
Lie(H) = {diag[a1, . . . , al, 0,−al, . . . ,−a1] ; ai ∈ C}.

In all cases H is isomorphic as an algebraic group to the product of l copies of C×, so it is a torus
of rank l. Its Lie algebra is isomorphic to the vector space Cl with all Lie brackets zero. Define
coordinate functions x1, . . . , xl on H as above. Then

Aff(H) = C[x1, . . . , xl, x
−1
1 , . . . , x−1

l ].

For any algebraic group K, a rational character of K is a regular homomorphism χ : K → C×.
Denote by X (K) the set of rational characters of K. It has the natural structure of an abelian
group under pointwise multiplication.

Lemma 7.1 Let T be an algebraic torus of rank l. The group X (T ) is isomorphic to Zl. Further-
more, X (T ) is linearly independent, as a set of functions on H.
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Maximal Tori

Theorem 7.2 Let G be GL(n,C), SL(n,C), SO(Cn, B) or Sp(C2l,Ω) in the form given above, H
the diagonal subgroup in G. Suppose g ∈ G and gh = hg for all h ∈ H. Then g ∈ H.

Corollary 7.3 Let G and H be as in Theorem 7.2. Suppose T ⊂ G is an abelian subgroup (not
assumed to be algebraic). If H ⊂ T then H = T . In particular, H is a maximal torus in G.

Lemma 7.4 Let T be a torus. Then there exists an element t ∈ T so that the subgroup generated
by t is Zariski dense in T .

Theorem 7.5 (Notation as in Theorem 7.2) Every semisimple element of G is G-conjugate to an
element of H. Thus

Gs =
⋃
γ∈G

γHγ−1. (7.1)

Corollary 7.6 Let T be any maximal torus in G. Then there exists g ∈ G so that gTg−1 = H.

From Corollary 7.6, we see that the integer l = dimH does not depend on the choice of a particular
maximal torus in G. We call l the rank of G.

Unipotent Generators for Classical Groups

We begin with the basic case G = SL(2,C). Let N be the subgroup of G consisting of the unipotent
matrices

u(z) =

[
1 z
0 1

]
, z ∈ C

and let N̄ be the subgroup of G consisting of the unipotent matrices

v(z) =

[
1 0
z 1

]
, z ∈ C.

Lemma 7.7 SL(2,C) is generated by N ∪ N̄ .

Theorem 7.8 Let G be one of the groups SL(l + 1,C), SO(2l + 1,C), Sp(l,C), with l ≥ 1, or
SO(2l,C) with l ≥ 2. Then G is generated by its unipotent elements.

Connectedness of Classical Groups

Theorem 7.9 The algebraic groups GL(n,C), SL(n,C), SO(n,C) and Sp(n,C) are connected in
the Zariski topology.

30



Roots with respect to a Maximal Torus

Assume G is a connected classical group of rank l, and set g = Lie(G). Thus G is GL(l,C),
SL(l + 1,C), Sp(C2l,Ω), SO(C2l, B), or SO(C2l+1, B) with B chosen so that the subgroup H of
diagonal matrices in G is a maximal torus of rank l. We write Lie(H) = h. We let x1, . . . , xl be
the coordinate functions on H used in the proof of Theorem 7.2. The group X (H) of rational
characters of H is isomorphic to the additive group Zl (see Lemma 7.1). Here λ = [λ1, . . . , λl] ∈ Zl
corresponds to the character h 7→ hλ, where

hλ =
l∏

k=1

xk(h)λk , for h ∈ H. (7.2)

We denote this character by eλ.
Fix a basis for h∗ as follows:

(1) Let G = GL(l,C). Define the linear functional εi on h by 〈εi, A〉 = ai for A = diag[a1, . . . , al] ∈
h. Then {ε1, . . . , εl} is a basis for h∗.

(2) Let G = SL(l + 1,C). In this case h consists of all diagonal matrices of trace zero. Define εi
as in (1) as a linear functional on the space of diagonal matrices for i = 1, . . . , l + 1. The
restriction of εi to h is then an element of h∗. With an abuse of notation we will continue to
denote this linear functional as εi. The elements of h∗ can be written uniquely as

l+1∑
i=1

λiεi, with λi ∈ C and
l+1∑
i=1

λi = 0.

The functionals
εi −

1
l+ 1

(ε1 + · · ·+ εl+1) for i = 1, . . . , l

give a basis for h∗.

(3) Let G be Sp(C2l,Ω) or SO(C2l, B). Define the linear functionals εi on h by 〈εi, A〉 = ai for
A = diag[a1, . . . , al,−al, . . . ,−a1] ∈ h and i = 1, . . . , l. Then {ε1, . . . , εl} is a basis for h∗.

(4) Let G = SO(C2l+1, B). Define the linear functionals εi on h by

〈εi, A〉 = ai for A = diag[a1, . . . , al, 0,−al, . . . ,−a1] ∈ h and i = 1, . . . , l.

Then {ε1, . . . , εl} is a basis for h∗.

We define P (G) = Span{dθ : θ ∈ X (H)} ⊂ h∗. With the functionals εi defined as above, we then
have

P (G) =
l⊕

k=1

Zεk. (7.3)

For α ∈ h∗ let
gα = {X ∈ g : [A,X ] = 〈α, A〉X for all A ∈ h}.

If α 6= 0 and gα 6= 0 then α is called a root and gα is called a root space. If α is a root then a
nonzero element of gα is called a root vector for α. We call the set Φ of roots the root system of g.

31



Its definition requires fixing a choice of maximal torus, so we write Φ = Φ(g, h) when we want to
make this choice explicit.

General Linear Group: Let G = GL(l,C), and let Ei,j, for 1 ≤ i, j ≤ l, be the usual elementary
matrix which takes the basis vector ej to ei. The roots are

{εi − εj : 1 ≤ i, j ≤ l, i 6= j},

each with multiplicity 1. The root space gλ = CEi,j for λ = εi − εj.
Type C: Let G = Sp(C2l,Ω). Label the basis for C2l as e±1, . . .e±l with e−i = e2l+1−i. Let
Ei,j be the matrix that takes the basis vector ej to ei, where i and j range over ±1, . . . ,±l. Set
Xεi−εj = Ei,j −E−j,−i for 1 ≤ i, j ≤ l, i 6= j. Then Xεi−εj ∈ g is a root vector for the root εi − εj.
Set

Xεi+εj = Ei,−j +Ej,−i, X−εi−εj = E−j,i +E−i,j

for 1 ≤ i < j ≤ l and set X2εi = Ei,−i for 1 ≤ i ≤ l. Then X±(εi+εj ) is a root vector for the root
±(εi + εj) for 1 ≤ i ≤ j ≤ l. This gives the complete set of roots.

Type D: Let G = SO(C2l, B). Label the basis for C2l and define Xεi−εj as in the case of Sp(C2l,Ω).
Then Xεi−εj ∈ g is a root vector for the root εi − εj.

Xεi+εj = Ei,−j − Ej,−i, X−εi−εj = E−j,i −E−i,j for 1 ≤ i < j ≤ l.

Then X±(εi+εj ) ∈ g is a root vector for the root ±(εi + εj). The roots are

±(εi − εj) and ± (εi + εj) for 1 ≤ i < j ≤ l,

each with multiplicity one.

Type B: Let G = SO(C2l+1, B). We label the basis for C2l+1 as

e−l, · · · , e−1, e0, e1, . . . , el,

where e0 = el+1 and e−i = e2l+2−i. Let Ei,j be the matrix that takes the basis vector ej to ei,
where i and j range over 0,±1, . . . ,±l. Then

Xεi−εj = Ei,j − E−j,−i, Xεj−εi = Ej,i − E−i,−j

Xεi+εj = Ei,−j −Ej,−i, X−εi−εj = E−j,i −E−i,j
are root vectors for 1 ≤ i < j ≤ l. Define

Xεi = Ei,0 − E0,−i, X−εi = E0,i −E−i,0

for 1 ≤ i ≤ l. Then X±εi ∈ g is a root vector. The roots of so(C2l+1, B) are

±(εi − εj) and ± (εi + εj) for 1 ≤ i < j ≤ l, ±εk for 1 ≤ k ≤ l,

each with multiplicity one.
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Theorem 7.10 Let G be a classical group and let H ⊂ G be a maximal torus. Let g = Lie(G) and
h = Lie(H) and let Φ = Φ(g, h) be the set of roots of h on g.
(1) If α ∈ Φ then α ∈ P (G), dim gα = 1, and

g = h⊕
∑
α∈Φ

gα.

(2) If α ∈ Φ and cα ∈ Φ for some c ∈ C then c = ±1.
(3) The symmetric bilinear form (X, Y ) = tr(XY ) on g is invariant:

([X, Y ], Z) = −(Y, [X,Z]) for X, Y, Z ∈ g.

(4) Let α, β ∈ Φ and α 6= −β. Then (h, gα) = 0 and (gα, gβ) = 0.
(5) The form (X, Y ) on g is non-degenerate.

Exercises for Lecture 7.

1. (Cayley Parameters) Let Γ be a nonsingular n × n matrix. Assume that either Γ = Γt or
Γ = −Γt. Let G = {g ∈ GL(n,C) : gtΓg = Γ} and let g ⊂ Mn(C) be the Lie algebra of G.
Set

VG = {g ∈ G : det(I + g) 6= 0}, Vg = {X ∈ g : det(I −X) 6= 0}.

For X ∈ Vg define the Cayley transform c(X) = (I +X)(I −X)−1. (Recall that c(X) ∈ G.)

(a) Show that c is a bijection from Vg onto VG.

(b) Show that Vg is invariant under the adjoint action of G on g, and that gc(X)g−1 =
c(gXg−1) for g ∈ G and X ∈ Vg.

(c) Prove that VG is a dense Zariski-open set in G containing I and invariant under inner
automorphisms. (Hint: G is connected.)

2. Let (ρ, V ) be a regular representation of a linear algebraic group G. Suppose W ⊂ V is
invariant under dρ(g).

(a) Let X ∈ g be nilpotent. Show that ρ(expX)W ⊂W by considering the Taylor expansion
of the polynomial t 7→ 〈v∗, ρ(exp tX)v〉 for v∗ ∈ V ∗ and v ∈ V .

(b) Suppose G is generated by unipotent elements. Use (a) to prove that ρ(G)W ⊂W .

3. For 0 ≤ k ≤ 4 let
∧k C4 be the kth exterior power of C4. It has basis ei1 ∧ · · · ∧ eik , where

1 ≤ i1 < · · · < ik ≤ 4 and e1, · · · , e4 is the usual basis for C4. In particular, dim
∧2 C4 = 6

and dim
∧4 C4 = 1. There is a representation of SL(4,C) on

∧k C4:

g · (v1 ∧ · · · ∧ vk) = gv1 ∧ · · · ∧ gvk

for g ∈ SL(4,C) and v1, . . . , vk ∈ C4. The differential of this representation gives the action

X · (v1 ∧ · · · ∧ vk) = Xv1 ∧ · · · ∧ vk + · · ·+ v1 ∧ · · · ∧Xvk
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of X ∈ sl(4,C). For k = 2 we denote this representation by ρ. The wedge product a, b 7→ a∧b
defines a map

∧2 C4 × ∧2 C4 → ∧4 C4. Since
∧4 C4 = CΩ, where Ω = e1 ∧ e2 ∧ e3 ∧ e4, there

is a bilinear form B on
∧2 C4 so that a ∧ b = B(a, b)Ω.

(a) Prove that the form B is symmetric and non-degenerate.

(b) Prove that B(ρ(g)a, ρ(g)b) = B(a, b) and B(dρ(X)a, b) + B(a, dρ(X)b) = 0 for g ∈
SL(4,C), X ∈ sl(4,C) and a, b ∈ ∧2 C4. (Hint: Show that Ω is invariant under SL(4,C) and
use the definition of B in terms of the wedge product.)

(c) Use dρ to obtain a Lie algebra isomorphism sl(4,C) ∼= so(
∧2 C4, B). (Hint: sl(4,C) is a

simple Lie algebra.)

(d) Explain the isomorphism in (c) in terms of the classification of simple Lie algebras by
Dynkin diagrams.

(e) Show that ρ : SL(4,C)→ SO(
∧2 C4, B) is surjective, and Ker(ρ) = {±I}. (Hint: For the

surjectivity, use (c) and the fact that SL(4,C) and SO(
∧2 C4, B) are connected and of the

same dimension. To determine Ker(ρ), use (c) to show that Ad(g) = I for all g ∈ Ker(ρ).)

4. Let B be the symmetric bilinear form on
∧2 C4 and let ρ be the representation of SL(4,C) on∧2 C4 as in the previous exercise. Let

ω = e1 ∧ e4 + e2 ∧ e3 ∈
∧2 C4.

Identify C4 with (C4)∗ by the inner product (x, y) = xty, so that ω can also be viewed as a
skew-symmetric bilinear form on C4. Define L = {a ∈

∧2 C4 : B(a, ω) = 0}.
(a) Prove that ρ(g)L ⊂ L for all g ∈ Sp(C4, ω), and that

∧2 C4 = Cω ⊕ L.

(b) Let β be the restriction of the bilinear form B to L×L. Prove that β is non-degenerate.

(c) Let φ(g) be the restriction of ρ(g) to the subspace L, for g ∈ Sp(C4, ω). Use dφ to obtain
a Lie algebra isomorphism sp(C4, ω) ∼= so(C5, β). (Hint: sp(C4, ω) is a simple Lie algebra.)

(d) Explain the isomorphism in (c) in terms of the classification of simple Lie algebras by
Dynkin diagrams.

(e) Show that φ : Sp(C4, ω) → SO(L, β) is surjective, and Ker(φ) = {±I}. (Hint: For the
surjectivity, use (c) and the fact that Sp(C4, ω) and SO(L, β) are connected and of the same
dimension. To determine Ker(φ), use (c) to show that Ad(g) = I for all g ∈ Ker(φ).)
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Lecture 8. Adjoint Representation and Reductivity of Classical Groups

Representations of sl(2,C)

Let g = sl(2,C). The matrices

e =

[
0 1
0 0

]
, f =

[
0 0
1 0

]
, h =

[
1 0
0 −1

]
are a basis for g and satisfy the commutation relations

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h. (8.1)

Any triple {e, f, h} of non-zero elements in a Lie algebra which satisfies (8.1) will be called a TDS
(three-dimensional simple) triple.

Lemma 8.1 Let (π, V ) be a representation of g (with V possibly infinite-dimensional). Set E =
π(e), F = π(f) and H = π(h).
(1) For all integers k ≥ 1

[H, F k] = −2kF k, [E, F k] = kF k−1(H − k + 1). (8.2)

(2) Suppose 0 6= v0 ∈ V satisfies Hv0 = λ0v0 for some λ0 ∈ C and Ev0 = 0. Set vk = (1/k!)F kv0

for k = 0, 1, 2, . . . . Then

Hvk = (λ0 − 2k)vk, Evk = (λ0 − k + 1)vk−1 . (8.3)

(3) Let v0 and λ0 be as in (2). If λ0 6∈ {0, 1, 2, . . . , k− 1} then the set

{v0, v1, . . . , vk}

is linearly independent. Hence if dimV < ∞ then λ0 = n for some nonnegative integer n and
vn+1 = 0.

Proposition 8.2 (1) Let (π, V ) be a finite-dimensional representation of g = sl(2,C). Then there
exists 0 6= v0 ∈ V and an integer n ≥ 0 such that

π(h)v0 = nv0, π(e)v0 = 0. (8.4)

Define vk = (1/k!) π(f)kv0 for k = 0, 1, . . . , n. Then {v0, . . . , vn} is linearly independent and spans
an irreducible g-invariant subspace W of V . The action of g on W is given by

π(h)vk = (n− 2k)vk
π(f)vk = (k + 1)vk+1, π(e)vk = (n− k + 1)vk−1,

(8.5)

with the convention that v−1 = 0 and vn+1 = 0. In particular, if V is irreducible, then {v0, . . . , vn}
is a basis for V and dim V = n+ 1.
(2) Let n be a nonnegative integer. Let V be an n + 1-dimensional vector space with basis
{v0, v1, . . . , vn}. Then formulas (8.5) define an irreducible representation π of g in which π(h)
is semisimple. The eigenvalues of π(h) are

n, n− 2, . . . ,−n+ 2,−n

and each eigenvalue has multiplicity one.
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Representations of SL(2,C)

Proposition 8.3 Let G = SL(2,C), N the upper-triangular unipotent matrices, and N̄ the lower-
triangular unipotent matrices in G. Let d(a) = diag[a, a−1] for a ∈ C×.
For every integer n ≥ 0 there is a unique (up to equivalence) irreducible representation (ρ, V ) of G
of dimension n+ 1. The semisimple operator ρ(d(a)) has eigenvalues

an, an−2, . . . , a−n+2, a−n.

The space V N of N -fixed vectors is one-dimensional, and ρ(d(a)) acts on it by the scalar an. The
space V N̄ of N̄ -fixed vectors is also one-dimensional, and ρ(d(a)) acts on it by the scalar a−n. The
differential of ρ is the representation π in Proposition 8.2. Every irreducible regular representation
of G is equivalent to one of these representations.

Commutation Relations of Root Spaces

Let G be a classical group and let H ⊂ G be a maximal torus. Let g = Lie(G) and h = Lie(H) and
let Φ = Φ(g, h) be the set of roots of h on g.

Lemma 8.4 For each α ∈ Φ there exist eα ∈ gα and fα ∈ g−α such that the element hα = [eα, fα] ∈
h satisfies 〈α, hα〉 = 2. Hence

[hα, eα] = 2eα, [hα, fα] = −2fα,

so that {eα, fα, hα} is a TDS triple.

Type A: Let α = εi−εj with 1 ≤ i < j ≤ l+1. Set eα = Ei,j and fα = Ej,i. Then hα = Ei,i−Ej,j.

Type B: (a) For α = εi − εj with 1 ≤ i < j ≤ l set eα = Ei,j − E−j,−i and fα = Ej,i − E−i,−j.
Then hα = Ei,i − Ej,j +E−j,−j − E−i,−i.
(b) For α = εi + εj with 1 ≤ i < j ≤ l set eα = Ei,−j − Ej,−i and fα = E−j,i − E−i,j. Then
hα = Ei,i +Ej,j − E−j,−j − E−i,−i.
(c) For α = εi with 1 ≤ i ≤ l set eα = Ei,0 − E0,−i and fα = 2E0,i − 2E−i,0. Then
hα = 2Ei,i − 2E−i,−i.

Type C: (a) For α = εi − εj with 1 ≤ i < j ≤ l set eα = Ei,j − E−j,−i and fα = Ej,i − E−i,−j.
Then hα = Ei,i − Ej,j +E−j,−j − E−i,−i.
(b) For α = εi + εj with 1 ≤ i < j ≤ l set eα = Ei,−j + Ej,−i and fα = E−j,i − E−i,j. Then
hα = Ei,i +Ej,j − E−j,−j − E−i,−i.
(c) For α = 2εi with 1 ≤ i ≤ l set eα = Ei,−i and fα = E−i,i. Then hα = Ei,i −E−i,−i.

Type D: (a) For α = εi − εj with 1 ≤ i < j ≤ l set eα = Ei,j − E−j,−i and fα = Ej,i − E−i,−j.
Then hα = Ei,i − Ej,j +E−j,−j − E−i,−i.
(b) For α = εi + εj with 1 ≤ i < j ≤ l set eα = Ei,−j − Ej,−i and fα = E−j,i − E−i,j. Then
hα = Ei,i +Ej,j − E−j,−j − E−i,−i.
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We call hα the coroot to α. Since the space [gα, g−α] is one-dimensional, hα is uniquely determined
by the properties

hα ∈ [gα, g−α], 〈α, hα〉 = 2.

From the calculations in the proof of Lemma 8.4 we see that

〈β, hα〉 ∈ {0,±1,±2} for all α, β ∈ Φ. (8.6)

For α ∈ Φ we denote by s(α) the algebra spanned by {eα, fα, hα}. It is isomorphic to sl(2,C) under
the map e 7→ eα, f 7→ fα, h 7→ hα. The algebra g becomes a module for s(α) by restricting the
adjoint representation of g to s(α).
Let

R(α, β) = {β + kα : k ∈ Z} ∩Φ,

which we call the α root string through β. The number of elements of a root string is called the
length of the string. Define

Vα,β =
∑

γ∈R(α,β)

gγ .

Then Vα,β is a subspace of g whose dimension is the length of the α root string through β.

Lemma 8.5 For every α, β ∈ Φ with α 6= ±β, the space Vα,β is invariant and irreducible under
ad(s(α)).

Corollary 8.6 If α, β ∈ Φ then β − 〈β, hα〉α ∈ Φ.

Corollary 8.7 If α, β ∈ Φ and α + β ∈ Φ, then [gα, gβ ] = gα+β.

Structure of Classical Root Systems

We call a subset ∆ = {α1, . . . , αl} ⊂ Φ a set of simple roots if every γ ∈ Φ can be written uniquely
as

γ = n1α1 + · · ·+ nlαl, with n1, . . . , nl integers all of the same sign. (8.7)

If ∆ is a set of simple roots, then we define the height of a root β = n1α1 + · · ·+ nlαl (relative to
∆) as

ht(β) = n1 + · · ·+ nl.

The positive roots are then the roots β with ht(β) > 0. A root β is called the highest root of Φ,
relative to a set ∆ of simple roots, if

ht(β) > ht(γ) for all roots γ 6= β.

If such a root exits, it is clearly unique.

Type A (G = SL(l+1,C)): Let αi = εi−εi+1 and ∆ = {α1, . . . , αl}. The associated set of positive
roots is

Φ+ = {εi − εj : 1 ≤ i < j ≤ l+ 1}

and the highest root is
α̃ = ε1 − εl+1 = α1 + · · ·+ αl

37



with ht(α̃) = l.
Type B (G = SO(2l+1,C)): Let αi = εi−εi+1 for 1 ≤ i ≤ l−1 and αl = εl. Take ∆ = {α1, . . . , αl}.
The associated set of positive roots is

Φ+ = {εi − εj , εi + εj : 1 ≤ i < j ≤ l} ∪ {εi : 1 ≤ i ≤ l}.

The highest root is
α̃ = ε1 + ε2 = α1 + 2α2 + · · ·+ 2αl

with ht(α̃) = 2l − 1.
Type C (G = Sp(l,C)): Let αi = εi − εi+1 for 1 ≤ i ≤ l − 1 and αl = 2εl. Take ∆ = {α1, . . . , αl}.
The associated set of positive roots is

Φ+ = {εi − εj, εi + εj : 1 ≤ i < j ≤ l} ∪ {2εi : 1 ≤ i ≤ l}.

The highest root is
α̃ = 2ε1 = 2α1 + · · ·+ 2αl−1 + αl

with ht(α̃) = 2l − 1.
Type D (G = SO(2l,C) with l ≥ 3): Let αi = εi − εi+1 for 1 ≤ i ≤ l− 1 and αl = εl−1 + εl. Take
∆ = {α1, . . . , αl}.

Lemma 8.8 Let Φ be the root system for a classical Lie algebra g of rank l and type A,B, C or
D (in the case of type D assume that l ≥ 3). Let the system of simple roots ∆ ⊂ Φ be chosen as
above. Let Φ+ be the positive roots and let α̃ be the maximal root relative to ∆. Then the following
properties hold:
(1) If α, β ∈ Φ+ and α+ β ∈ Φ, then α+ β ∈ Φ+.
(2) If β ∈ Φ+ and β is not a simple root, then there exist γ, δ ∈ Φ+ so that β = γ + δ.
(3) The highest root α̃ ∈ Φ is of the form

α̃ = n1α1 + · · ·+ nlαl, with ni ≥ 1 for i = 1, . . . , l.

For any β ∈ Φ+ with β 6= α̃ there exists α ∈ Φ+ so that α + β ∈ Φ+.
(4) If α ∈ Φ+ then there exist 1 ≤ i1, i2, . . . , ir ≤ l such that α = α̃ − αi1 − · · · − αir and
α̃− αi1 − · · · − αij ∈ Φ for all 1 ≤ j ≤ r.

Theorem 8.9 Let g be the Lie algebra of one of the groups

SL(l+ 1,C), Sp(C2l,Ω), or SO(C2l+1, B)

with l ≥ 1, or the Lie algebra of SO(C2l, B) with l ≥ 3. Take the set of simple roots ∆ and the
positive roots Φ+ as in Lemma 8.8. The subspaces

n =
⊕
α∈Φ+

gα, n̄ =
⊕
α∈Φ+

g−α

are Lie subalgebras of g which are invariant under ad(h).
The subspace n + n̄ generates g as a Lie algebra. In particular, g = [g, g]. There is a vector space
decomposition

g = n̄ + h + n. (8.8)

Furthermore, n is generated (as a Lie algebra) by the simple root spaces gα1
, . . . , gαl and n̄ is gen-

erated by g−α1
, . . . , g−αl.
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Irreducibility of Adjoint Representation

Theorem 8.10 Let G be one of the groups SL(Cl+1), Sp(C2l), SO(C2l+1) with l ≥ 1 or SO(C2l)
with l ≥ 3. Then the adjoint representation of G is irreducible.

Reductive Groups

Theorem 8.11 Let G be a finite group. Then G is reductive.

Proposition 8.12 Let G be a linear algebraic group. If the identity component G◦ is reductive,
then G is reductive.

Reductivity of Classical Groups

Theorem 8.13 Let G be a classical group. Then G is reductive.

This follows from the corresponding Lie algebra result:

Theorem 8.14 Let g be the Lie algebra of a classical group G, and assume that g is a simple Lie
algebra. Then every finite-dimensional representation (ρ, V ) of g is completely reducible.

Exercises for Lecture 8.

1. Let Eij ∈M3(C) be the usual elementary matrices. Set e = E13, f = E31 and h = E11−E33.

(a) Verify that {e, f, h} is a TDS in sl(3,C).

(b) Let g = Ce + Cf + Ch ∼= sl(2,C) and let U = M3(C). Define a representation ρ of g on
U by ρ(A)X = [A,X ] for A ∈ g and X ∈ M3(C). Prove (without calculation) that ρ(h) is
diagonalizable. Then calculate that ρ(h) has eigenvalues ±2 (multiplicity 1), ±1 (multiplicity
2) and 0 (multiplicity 3). Find all u ∈ U so that ρ(h)u = λu and ρ(e)u = 0, where λ = 0, 1, 2.

(c) Let Vk denote the irreducible (k+ 1)-dimensional representation of g. Show that

U ∼= V2 ⊕ V1 ⊕ V1 ⊕ V0 ⊕ V0

as a g-module. (Hint: Use the results of (b) and Proposition 8.2 of the notes.)

2. Let G = SL(2,C). Let k be a non-negative integer and let Wk be the polynomials in C[x] of
degree at most k. If

g =

[
a b
c d

]
∈ G

and if f ∈Wk then set

σk(g)f(x) = (−cx+ d)kf
(
ax− b
−cx+ d

)
.

(a) Show that σk(g)Wk ⊂Wk and that (σk,Wk) defines a regular representation of G.

(b) Let Vk be the space of homogeneous polynomials of degree k in x1, x2. Let ρk be the
representation of G given by ρ(g)φ(x1, x2) = φ(ax1 + cx2, bx1 + dx2). Find a G isomorphism
between the representations (σk,Wk) and (ρk, Vk).
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3. Let V = C[x]. Define operators E and F on V by

Eφ(x) = −1
2
d2φ(x)
dx2

, Fφ(x) =
1
2
x2φ(x).

Set H = [E, F ].

(a) Show that H = −x d

dx
− 1

2
and that {E, F,H} is a TDS.

(b) Find the space V E = {φ ∈ V : Eφ = 0}.
(c) Let g ⊂ End(V ) be the Lie algebra spanned by E, F,H . Let Veven ⊂ V be the space of
even polynomials, and Vodd ⊂ V be the space of odd polynomials. Show that each of these
spaces is invariant and irreducible under g. (Hint: Use (b) and Lemma 8.1 of the notes.)

(d) Show that V = Veven ⊕ Vodd and that Veven is not equivalent to Vodd as a module for g.
(Hint: Show that the operator H is diagonalizable on Veven and Vodd and find its eigenvalues.)

4. Let G be a classical group. Let Φ be the root system for G, α1, . . . , αl the simple roots, and
Φ+ the positive roots. Verify the following:

(a) For G of type Al, Φ+ \∆ consists of the roots

αi + · · ·+ αj for 1 ≤ i < j ≤ l.

(b) For G of type Bl with l ≥ 2, Φ+ \∆ consists of the roots

αi + · · ·+ αj for 1 ≤ i < j ≤ l,
αi + · · ·+ αj−1 + 2αj + · · ·+ 2αl for 1 ≤ i < j ≤ l.

(c) For G of type Cl with l ≥ 2, Φ+ \∆ consists of the roots

αi + · · ·+ αj for 1 ≤ i < j < l,

αi + · · ·+ αj−1 + 2αj + · · ·+ 2αl−1 + αl for 1 ≤ i < j < l,

2αi + · · ·+ 2αl−1 + αl for 1 ≤ i < l.

(d) For G of type Dl with l ≥ 3, Φ+ \∆ consists of the roots

αi + · · ·+ αj for 1 ≤ i < j < l,

αi + · · ·+ αl for 1 ≤ i < l− 1,
αi + · · ·+ αl−2 + αl for 1 ≤ i < l− 1,

αi + · · ·+ αj−1 + 2αj + · · ·+ 2αl−2 + αl−1 + αl for 1 ≤ i < j < l− 1.
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Part 3: Homogeneous Spaces

Lecture 9. G-spaces, Orbits, and Invariants

Algebraic Group Actions

Let M be a quasiprojective algebraic set. An algebraic action of a linear algebraic group G on M
is a regular map α : G×M →M , written as (g,m) 7→ g ·m, such that

g · (h ·m) = (gh) ·m, 1 ·m = m

for all g, h ∈ G and m ∈M . (Recall that G×M is a quasiprojective algebraic set.)

Theorem 9.1 For every x ∈M , the stabilizer Gx of x is an algebraic subgroup of G and the orbit
G · x is a smooth quasiprojective subset of M .

Corollary 9.2 There exists a point x ∈M so that G · x is closed in M .

Homogeneous G Spaces

We have the following converse to Theorem 9.1. Let H be an algebraic subgroup of an algebraic
group G. By Theorem 6.6 there is a regular representation (π, V ) of G and a point x0 ∈ P(V ) so
that H is the stabilizer of x0. The map g 7→ g · x0 is a bijection from the coset space G/H to the
orbit G · x0. We view G/H as a smooth quasiprojective algebraic set by identifying it with the
orbit G · x0.

Theorem 9.3 (1) The quasiprojective algebraic set structure on G/H is independent of the choice
of the representation π.
(2) The quotient map from G to G/H is regular.
(3) If M is any quasiprojective algebraic set on which G acts algebraically, and x ∈M is such that
H ⊂ Gx, then the map gH 7→ g · x from G/H to the orbit G · x is regular.

Polynomial Invariants

Let G be a linear algebraic group. Suppose (π, V ) is a regular representation of G. We define a
representation ρ of G on the algebra P(V ) of polynomial functions on V by

ρ(g)f(v) = f(g−1v) for f ∈ P(V )

Here we write π(g)v = gv for g ∈ G and v ∈ V when the representation π is understood from the
context.
The finite-dimensional spaces

Pk(V ) = {f ∈ P(V ) : f(zv) = zkf(v) for z ∈ C×}

of homogeneous polynomials of degree k are G-invariant for k = 0, 1, . . . and the restriction ρk of ρ
to Pk(V ) is a regular representation of G.
We denote the space of G-invariant polynomials on V by P(V )G. It is a commutative subalgebra
of P(V ) which we call the algebra of G-invariants.
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Theorem 9.4 Suppose G is a reductive linear algebraic group acting by a regular representation
on a vector space V . Then the algebra P(V )G of G-invariant polynomials on V is finitely-generated
as a C-algebra.

Let {f1, . . . , fn} be a set of generators for P(V )G with n as small as possible. We call {f1, . . . , fn}
a set of basic invariants. Theorem 9.4 asserts that when G is reductive, there always exists a finite
set of basic invariants. Since P(V ) and J = P(V )G are graded algebras, relative to the usual
degree of a polynomial, there is a set of basic invariants with each fi homogeneous, say of degree
di. If we enumerate the fi so that d1 ≤ d2 ≤ · · · then the sequence {di} is uniquely determined
(even though the set of basic invariants is not unique).

Algebraic Quotients

Let G be an algebraic group acting on an affine algebraic variety X . Assume that the algebra
J = Aff(X)G of G-invariant regular functions on X is finitely generated over C (if G is reductive
this is always true, by complete reducibility). This action partitions X into G-orbits, and every
G-invariant function on X is constant on each orbit. An affine variety Y is called the algebraic
quotient of X by G if there is a regular map π : X → Y which is constant on each G-orbit in X ,
with the following universal property: Given any algebraic variety Z and regular map f : X → Z
that is constant on G-orbits, there exists a unique regular map f̃ such that f = f̃ ◦ π.

Theorem 9.5 (1) An algebraic quotient exists and is unique up to isomorphism of affine algebraic
sets. Denote it by X//G.
(2) If G is reductive, then the canonical map π : X → X//G is surjective.

Proof. (1): Let Y be the set of maximal ideals of J . We may identify the points of Y with
the algebra homomorphisms J → C by Hilbert’s Nullstellensatz. This identification gives a map
π : X → Y defined by π(x)(f) = f(x) for f ∈ J . We must show that (Y, π) satisfies the universal
property of an algebraic quotient of X by G.
Let Z be an affine variety and f : X → Z be a regular function that is constant on G-orbits.
Then f∗(Aff(Z)) ⊂ J , by definition. Hence every homomorphism φ : J → C determines a
homomorphism f̃(φ) : Aff(Z)→ C, where f̃ (φ)(h) = φ(h◦ f) for h ∈ Aff(Z). This defines a regular
map f̃ such that f = f̃ ◦ π.)
It is clear that the universal property of a quotient variety uniquely determines it, up to isomor-
phism. Write Y = X//G and call π the canonical map.
(2): Since G is reductive, there is a projection g 7→ g\ from Aff(X) onto the G-invariants Aff(X)G.
To prove that the canonical map is surjective, let m ⊂ J be a maximal ideal. Then m generates
a proper ideal in Aff(X), since any relation

∑
i figi = 1 with fi ∈ m and gi ∈ Aff(X) would give a

relation
∑
fig

\
i ∈ m = 1. By the Hilbert Nullstellensatz there exists x ∈ X so that all the functions

in m vanish at x. Hence π(x) = m. 2
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Appendix: Algebraic Geometry for Lecture 9.

Projective and Quasiprojective Sets

Let V be a complex vector space. The projective space P(V ) associated with V is the set of lines
through 0 (one-dimensional subspaces) in V . For x ∈ V \ {0}, [x] ∈ P(V ) will denote the line
through x. The map p : V \ {0} → P(V ) given by p(x) = [x] is surjective, and p(x) = p(y) if and
only if x = λy for some λ ∈ C×. We denote P(Cn+1) by Pn and for x = (x0, . . . , xn) ∈ Cn+1 we call
{xi} the homogeneous coordinates of [x].
If f(x0, . . . , xn) is a homogeneous polynomial in n+ 1 variables and 0 6= x ∈ Cn+1, set

Af = {[x] ∈ Pn : f(x) = 0}.
The Zariski topology on Pn is obtained by taking as closed sets the intersections

X =
⋂
f∈S

Af ,

where S is any set of homogeneous polynomials on Cn+1. Any such set X will be called a projective
algebraic set The set

p−1(X) ∪ {0} = {x ∈ Cn+1 : f(x) = 0 for all f ∈ S}
is closed in Cn+1 and is called the cone over X .
Every closed set in projective space is definable as the zero locus of a finite collection of homogeneous
polynomials, and the descending chain condition for closed sets is satisfied. Hence every closed set
is a finite union of irreducible closed sets, and any nonempty open subset of an irreducible closed
set M is dense in M .
For i = 0, . . . , n let Uni = {[x] ∈ Pn : xi 6= 0}. Each Uni is an open set in Pn, and every point of Pn

lies in Uni for some i. For [x] ∈ Uni define the inhomogeneous coordinates of [x] to be yj = xj/xi for
j 6= i. The map

πi([x]) = (y0, . . . , ŷi, . . . , yn)

(omit yi) is a bijection between Uni and Cn. It is also a topological isomorphism (where Uni has the
relative Zariski topology from Pn and Cn carries the Zariski topology).
Thus we have a covering by Pn by the n + 1 open sets Uni , each homeomorphic to the affine space
Cn.

Lemma 9.6 Let X ⊂ Pn. Suppose that for all i = 0, 1, . . . , n, X ∩ Ui is the set of zeros of
homogeneous polynomials fij(y0, . . . , ŷi, . . . , yn), where {yk} are the inhomogeneous coordinates on
Ui. Then X is closed in Pn.

A quasiprojective algebraic set is a subset M ⊂ Pn defined by a finite set of equalities and inequalities
on the homogeneous coordinates of the form

fi(x) = 0 for all i = 1, . . . , k and gj(x) 6= 0 for some j = 1, . . . , l

where fi and gj are homogeneous polynomials on Cn+1. In topological terms, M is the intersection
of the closed set

Y = {[x] ∈ Pn : fi(x) = 0 for all i = 1, . . . , k}
and the open set

Z = {[x] ∈ Pn : gj(x) 6= 0 for some j}.
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Products of Projective Sets

We begin with the basic case of projective spaces. Let x and y be homogeneous coordinates on Pm

and Pn. Denote the space of complex matrices of size r × s by Mr×s and view Cr = M1×r as row
vectors. We map Cm+1 × Cn+1 → M(m+1)×(n+1) by (x, y) 7→ xty, where xt is the transpose of x.
The image of (Cm+1 \ {0})× (Cn+1 \ {0}) consists of all rank one matrices, hence it is defined by
the vanishing of all minors of size greater than 1. These minors are homogeneous polynomials in
the matrix coordinates zij of z ∈ M(m+1)×(n+1). Passing to projective space, we have thus obtained
an embedding

Pm × Pn ↪→ P(M(m+1)×(n+1)) = Pmn+m+n (9.1)

with closed image. We take this as the structure of a projective algebraic set on Pm × Pn.
Let X ⊂ Pm and Y ⊂ Pn. The image of X ×Y under the map (9.1) in Pm+n+mn is closed if X and
Y are closed. Also, the image of X × Y is quasiprojective if X and Y are quasiprojective.

Lemma 9.7 Let X be a quasi-projective algebraic set and let

∆ = {(x, x) : x ∈ X} ⊂ X ×X

be the diagonal. Then ∆ is closed.

Ascending Chain Property

Theorem 9.8 (1) Let M,N be irreducible affine algebraic sets, such that M ⊆ N . Then dimM ≤
dimN . If dimM = dimN then M = N .
(2) Let X1 ⊂ X2 ⊂ · · · be an increasing chain of irreducible affine algebraic subsets of an algebraic
set X . Then there exists an index p so that Xj = Xp for j ≥ p.

Exercises for Lecture 9.

1. Let G = SL(2,C) act on C2 by left multiplication as usual. This gives an action on P1(C).
Let H = {diag[z, z−1] : z ∈ C×} be the diagonal subgroup, let N be the subgroup of upper-

triangular unipotent matrices

[
1 z
0 1

]
, z ∈ C, and let B = HN be the upper triangular

subgroup.

(a) Show that G acts transitively on P(C). Find a point whose stabilizer is B.

(b) Show that H has one open dense orbit and two closed orbits on P(C). Show that N has
one open dense orbit and one closed orbit on P(C).

(c) Identify P(C) with the two-sphere S2 by stereographic projection and give geometric
descriptions of the orbits in (b).

2. (Same notation as previous exercise) Let G act on g = {x ∈ M2(C) : tr(x) = 0} by the
adjoint representation Ad(g)x = gxg−1. For µ ∈ C define Xµ = {x ∈ g : tr(x2) = 2µ}. Use
the Jordan canonical form to prove the following.

(a) If µ 6= 0 then Xµ is a G orbit and Xµ
∼= G/H as a G-space.
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(b) If µ = 0 then X0 = {0}∪Y is the union of two G orbits, where Y is the orbit of

[
0 1
0 0

]
.

Show that Y ∼= G/{±1}N and that Y is not closed in g.

3. (Same notation as previous exercise) Let Z = P(g) ∼= P2(C) be the projective space of g, and
let π : g→ Z be the canonical mapping.

(a) Show that G has two orbits on Z, namely Z1 = π(X1) and Z0 = π(Y ).

(b) Find subgroups L1 and L0 of G so that Zi ∼= G/Li as a G space. (Hint: Be careful; from
the previous problem you know that H ⊂ L1 and N ⊂ L0, but these inclusions are proper.)

(c) Prove (without calculation) that one orbit must be closed in Z and one orbit must be
dense in Z. Then calculate dimZi and identify the closed orbit. Find equations defining the
closed orbit.

4. Let G = SL(n,C) and let V be the space of all symmetric quadratic formsA(x) =
∑
i,j aijxixj

in n variables x1, . . . , xn, with n ≥ 2. The group G acts on V via its linear action on
x = [x1, . . . , xn] ∈ Cn. In terms of the symmetric matrix A = [aij], the action is

g · A = (gt)−1Ag−1 (matrix multiplication).

(a) Show that the function D(A) = detA (the discriminant of the form) is G-invariant.

(b) Show that every G-orbit in V contains exactly one of the forms

Qn,c(x) = cx2
1 + x2

2 + · · ·+ x2
n, with c 6= 0

Qr(x) = x2
1 + · · ·+ x2

r , with 0 ≤ r < n.

(Hint: There exists g ∈ GL(n,C) so that (gt)−1Ag−1 is diagonal with all nonzero elements
1.)

(c) Show that P(V )G = C[D]. (Hint: Define s : C → V by s(c) = Qn,c. Given f ∈ P(V )G,
show that when A is non-singular, f(A) = φ(D(A)), where φ is the polynomial f ◦ s.)
(d) Show that V//G ∼= C, with the quotient map π(x) = D(x). Show that the closed G-orbits
are those on which D 6= 0 (non-singular forms) and the point {0}, and the quotient map takes
all the non-closed orbits (the forms of rank r < n) to 0.

(e) Show that the G-invariant polynomials can separate the G orbits of the nonsingular forms,
but cannot separate the orbits of the singular forms. (Hint: Consider the sets D−1(c) for
c ∈ C.)
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Lecture 10. Flag Manifolds and Solvable Groups

Grassmannian Manifolds

Let V be a finite-dimensional vector space, and let
∧k V be the kth exterior power of V . We call

an element of this space a k-vector. Given a k-vector u, we define a linear map

Tu : V → ∧k+1 V

by Tuv = u ∧ v for v ∈ V . Set

V (u) = {v ∈ V : u ∧ v = 0} = Ker(Tu)

(the annihilator of u in V ). The non-zero k-vectors of the form v1 ∧ . . .∧vk, with vi ∈ V , are called
decomposable.

Lemma 10.1 Let dim V = n.
(1) Let 0 6= u ∈ ∧k V . Then dimV (u) ≤ k and Rank(Tu) ≥ n−k. Furthermore, Rank(Tu) = n−k
if and only if u is decomposable.
(2) Suppose u = v1 ∧ . . .∧ vk is decomposable. Then

V (u) = Span{v1, . . . , vk}.

Furthermore, if V (u) = V (w) then w = cu for some c ∈ C×. Hence the subspace V (u) ⊂ V
determines the point [u] ∈ P(

∧k V ).
(3) Let 0 < k < l < n. Suppose 0 6= u ∈ ∧k V and 0 6= w ∈ ∧l V are decomposable. Then
V (u) ⊂ V (w) if and only if Rank(Tu ⊕ Tw) is a minimum, namely n− k.

Denote the set of all k-dimensional subspaces of V by Grassk(V ) (the kth Grassmannian manifold).
Using part (2) of Lemma 10.1, we identify Grassk(V ) with the subset of the projective space P(

∧k V )
corresponding to the decomposable k-vectors.

Proposition 10.2 Grassk(V ) is an irreducible projective algebraic set.

Take V = Cn and let X ⊂ Mn×k(C) be the open subset of matrices of maximal rank k. The
k-dimensional subspaces of V then correspond to the column spaces of matrices x ∈ X . Since
x, y ∈ X have the same column space if and only if x = yg for some g ∈ GL(k,C), we may view
Grassk(V ) as the space of orbits of GL(k,C) on X . That is, we introduce the equivalence relation
x ∼ y if x = yg; then Grassk(V ) is the set of equivalence classes.
For J = (i1, . . . , ik) with 1 ≤ i1 < · · · < ik ≤ n, let

ξJ (x) = det

 xi11 · · · xi1k
...

. . .
...

xik1 · · · xikk


be the minor determinant formed from rows i1, . . . , ik of x ∈Mn×k(C). Set

XJ = {x ∈Mn×k(C) : ξJ(x) 6= 0}.
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As J ranges over all
(n
k

)
increasing k-tuples the sets XJ cover X . The homogeneous polynomials ξJ

are the so-called Plücker coordinates on X (they are the restriction to X of the homogeneous linear
coordinates on

∧k Cn relative to the standard basis). Under right multiplication they transform by

ξJ(xg) = ξJ (x) detg, g ∈ GL(k,C),

so the ratios of the Plücker coordinates are rational functions on Grassk(V ).
Every matrix in XJ is equivalent (under the right GL(k,C) action) to a matrix in the affine-linear
subspace

AJ = {x ∈Mn×k(C) : xipq = δpq for p, q = 1, . . . , k}.

Clearly if x, y ∈ AJ and x ∼ y then x = y. Furthermore, ξJ = 1 on AJ and the k(n− k) matrix
coordinates {xpq : p /∈ J} are the restrictions to AJ of certain Plücker coordinates. In particular,
dim Grassk(Cn) = (n− k)k.
Suppose that ω is a bilinear form on V (either symmetric or skew-symmetric). A subspace W ⊂ V
is isotropic relative to ω if ω(x, y) = 0 for all x, y ∈ W . The quadric grassmannian Ik(V ) is the
subset of Grassk(V ) consisting of all isotropic subspaces. Then Ik(V ) is closed in Grassk(V ), and
hence is a projective algebraic set.

Flag Manifolds for Classical Groups

Let 0 < k1 < · · · < kp < dimV be integers, and set k = (k1, . . . , kp). Let Flagk(V ) consist of all
nested chains V1 ⊂ · · · ⊂ Vp ⊂ V of subspaces with dimVi = ki. We can view Flagk(V ) as a subset
of the projective algebraic set

Grassk(V ) = Grassk1(V )× · · · ×Grasskp(V ).

By part (3) of Lemma 10.1, Flagk(V ) is closed in Grassk(V ), since each inclusion V (u) ⊂ V (w)
between subspaces of V is defined by the vanishing of suitable minors in the matrix for Tu ⊕ Tw.
The group GL(V ) acts on Grassk(V ). Fix a basis {ei : i = 1, . . . , n} for V and set Vi =
span{e1, . . . , eki}. Then Flagk(V ) is the orbit of the flag xk = {Vi}. The isotropy group Pk of
xk consists of the block upper-triangular matrices A1 · · · ∗

...
. . .

...
0 · · · Ap+1


where Ai ∈ GL(mi,C), with m1 = k1, m2 = k2 − k1, . . . , mp+1 = n− kp.
Let G ⊂ GL(n,C) be a classical group, in the matrix realization used in Theorem 7.2. Let H be
the diagonal subgroup of G. Set b = h + n, where h = Lie(H) and

n =
⊕
α∈Φ+

gα

(recall that n consists of strictly upper triangular matrices). Denote by Nn(C) the group of all n×n
upper triangular unipotent matrices.
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Theorem 10.3 Let G be a connected classical group. There is a projective algebraic set XG on
which G acts algebraically and transitively with the following properties.
(1) There is a point x0 ∈ XG so that the stabilizer B = Gx0 has Lie algebra b.
(2) The group B = H ·N , with N connected, unipotent and normal in B.
(3) Lie(N ) = n and N = G ∩Nn(C).

G = GL(n,C) or SL(n,C):
Let XA be the set of all full flags {Vi}ni=1, dimVi = i. Let x0 = {V 0

i } with V 0
i = Span{e1, . . . , ei},

where e1, . . . , en is the standard basis for Cn.

G = Sp(l,C) or SO(n,C), n = 2l:
Let X be the set of all isotropic flags {Vi}li=1, with dimVi = i and Vi an isotropic subspace relative
to the bilinear form defining G.

G = SO(n,C), n = 2l + 1:
Let XG be the set of all flags {Vi}l+1

i=1 such that dimVi = i and Vi is isotropic for i = 1, . . . , l.

In all cases B is the group of all upper triangular matrices in G and N is the group of all unipotent
upper triangular matrices in G.

Solvable Groups

Let G be an (abstract) group. We say that G is solvable if there exists a series of subgroups

G = G0 ⊃ G1 ⊃ · · · ⊃ Gd ⊃ Gd+1 = {1}

with Gi+1 a normal subgroup of Gi and Gi/Gi+1 commutative, for i = 0, 1, . . . , d.
The commutator subgroup D(G) of a group G is the group generated by the set of commutators
{xyx−1y−1 : x, y ∈ G}. If G1 is a normal subgroup of G, then G/G1 is commutative if and only if
G1 ⊃ D(G). It follows that G is solvable if and only if G 6= D(G) and D(G) is solvable.
Define the derived series {Dn(G)} of G inductively by

D0(G) = G, Dn+1(G) = D(Dn(G)).

Then G is solvable if and only if Dn+1(G) = {1} for some n. In this case, the smallest such n is
called the solvable length of G.
The archetypical example of a solvable group is the subgroup, Bn, of upper triangular matrices in
GL(n,C) the we have already encountered in connection with the flag manifold. To see this we
observe that the upper triangular matrices, Nn, with ones on the main diagonal form a normal
subgroup of Bn such that Bn/Nn is isomorphic with the group of diagonal matrices. We set Nn,r

equal to the subgroup of Nn consisting of elements such that the second through the r-th diagonal
are zero. Then Nn,r is normal in Bn for r ≥ 2 and Nn,r/Nn,r+1 is abelian. The isotropy group of
any full flag in Cn is conjugate in GL(n,C) to Bn and hence is solvable.
We also note that if S is solvable and if H ⊂ S is a subgroup then H is solvable. For example, let
G ⊂ GL(n,C) be a connected classical group. Then the subgroup B in Theorem 10.3 is contained
in the isotropy group of a full flag and hence is solvable.

Proposition 10.4 Assume G is a connected algebraic group. Then D(G) is closed and connected.
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Exercises for Lecture 10.

1. Let G = SL(2,C) × SL(2,C). Let ρ be the representation of G on M2 = M2(C) given by
ρ(g, h)z = gzht and let B be the symmetric bilinear form on M2 such that B(z, z) = 2 det(z).

(a) Find Ker(ρ) and prove that ρ(G) = SO(M2, B) (Hint: Compare dim(G) and
dim(SO(M2, B).)

(b) Use (a) to prove that so(4,C) ∼= sl(2,C)⊕ sl(2,C).

2. (Notation as in previous exercise) Let π : C2 × C2 → M2 by π(x, y) = xyt. Identify P3 with
P(M2) and let π̃ : P1×P1 → P3 be the map induced by π (the standard imbedding of Pm×Pn
in Pmn+m+n).

(a) Show that the image of π̃ is {[z] : z ∈ M2 \ {0} and det(z) = 0}.
(b) Let G act on P1 × P1 by the natural action on C2 × C2 and let G act on P3 by the
representation ρ on M2. Show that π̃ intertwines the G actions.

(c) Show that G has two orbits on P3 and describe the closed orbit.

3. (Notation as in previous exercise) Consider the subspaces V1 = CE11 + CE12 and V2 =
CE11 + CE21 of M2, where Eij are the usual elementary matrices.

(a) Show that Vi are totally isotropic for the bilinear form B.

(b) Let Bi = {g ∈ G : ρ(g)Vi = Vi} for i = 1, 2. Describe B1, B2 and B = B1 ∩B2 in matrix
form.

(c) Show that B = H ·N where H is a maximal torus in G and N is a connected unipotent
normal subgroup of B.

4. Let X = {x ∈ M4×2(C) : rank(x) = 2}. For J = (i1, i2) with 1 ≤ i1 < i2 ≤ 4 let
XJ = {x ∈ X : ξJ(x) 6= 0}, where

ξJ(x) = det

[
xi11 xi12

xi21 xi22

]

is the Plücker coordinate corresponding to J.

(a) Let A{1,2} = {x ∈ X : xij = δij for 1 ≤ i, j ≤ 2}. Calculate the restrictions of the Plücker
coordinates to A{1,2}.

(b) Let GL(2,C) act by right multiplication on X . Show that X{1,2} is invariant under
GL(2,C) and A{1,2} is a cross-section for the GL(2,C) orbits.

(c) Let π : X → Grass2(C4) map x to its orbit under GL(2,C). Let GL(4,C) act by left
multiplication on X and hence also on Grass2(C4). Show that this action is transitive and
calculate the stabilizer of π([ e1 e2 ]), where ei are the standard basis vectors for C4.
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Lecture 11. Borel Subgroups

Lie-Kolchin Theorem

A single linear transformation on Cn can always be put into upper-triangular form by a suitable
choice of basis. The same is true for a connected solvable algebraic group.

Theorem 11.1 Let G be a connected solvable linear algebraic group, and let (π, V ) be a regular
representation of G. Then there exists a flag

V = V1 ⊃ V2 ⊃ · · · ⊃ Vn ⊃ Vn+1 = {0}

and regular homomorphisms χi : G→ C× for i = 1, . . .χn so that for v ∈ Vi,

π(g)v ≡ χi(g)v mod Vi+1.

Corollary 11.2 Assume G ⊂ GL(V ) is connected and solvable. There exists a basis for V so that
the elements of G are upper triangular matrices and the elements of D(G) have ones along the
main diagonal relative to this basis. In particular, D(G) is unipotent.

We have the following geometric generalization of the Lie-Kolchin theorem.

Theorem 11.3 (Borel Fixed-Point Theorem) Let S be a connected solvable group that acts
algebraically on a projective variety X . Then there exists a point x0 ∈ X such that s · x0 = x0 for
all s ∈ S.

Existence and Conjugacy of Borel Subgroups

A Borel subgroup of an algebraic group G is a maximal connected solvable subgroup.

Theorem 11.4 Let G be a connected linear algebraic group. Then G contains a Borel subgroup B,
and all other Borel subgroups of G are conjugate to B. The homogeneous space G/B is a projective
variety. Furthermore, if S is any connected solvable subgroup of G such that G/S is a projective
variety, then S is a Borel subgroup.

Example. Let G be a connected classical group and let B be the connected solvable subgroup
in Theorem 10.3. The quotient space X = G/B is a projective variety, and hence B is a Borel
subgroup.

Theorem 11.5 Let G be a connected linear algebraic group and B a fixed Borel subgroup of G.
Then

G =
⋃
x∈G

xBx−1.

Thus every element of G is contained in a Borel subgroup.

Remark. When G is GL(n,C) this theorem is just the assertion that any (nonsingular) matrix can
be conjugated into upper-triangular form.
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Appendix: Algebraic Geometry for Lecture 11.

Let M be an irreducible affine set. Suppose U ⊂M is an open subset. Define the regular functions
on U to be the restrictions to U of rational functions f ∈ Rat(M) such that Df ⊃ U . Replacing U
by a point x ∈ M , we define the local ring Ox at x to consist of all rational functions on M that
are defined at x. Clearly Ox is a subalgebra of Rat(M), and Ox =

⋃
x∈V OM(V ), where V runs

over all open sets containing x.
This notion of regular function has two key properties:

(restriction) If U ⊂ V are open subsets of M and f ∈ OM (V ), then f |U ∈ OM (U).

(locality) Suppose f : U → C and for every x ∈ U there exists φ ∈ Ox with φ = f on some open
neighborhood of x. Then f ∈ OM (U).

Lemma 11.6 Suppose X is a quasiprojective algebraic set. There is a finite open covering

X =
⋃
α∈A

Uα

with the following properties:
(1) There are irreducible affine algebraic sets Mα and homeomorphisms φα : Uα →Mα for α ∈ A.
(2) The maps φβ ◦ φ−1

α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ) are regular, for all α, β ∈ A.

Let X be a quasiprojective algebraic set. We define the local ring Ox at x ∈ X by carrying over
the local rings of the affine open sets Uα via the maps φα:

Ox = φ∗α(Oφα(x)), for x ∈ Uα.

If x ∈ Uα ∩ Uβ then Ox is the same, whether we use φα or φβ, by the last statement in Lemma
11.6. For any open set U ⊂ X we can now define the ring OX(U) of regular functions on U using
the local rings, just as in the affine case: a continuous function f : U → C is regular if for each
x ∈ U there exists g ∈ Ox so that f = g on an open neighborhood of x. One then verifies that the
restriction and locality properties hold for the rings OX(U).
Let X, Y be quasiprojective. A map φ : X → Y will be called regular if φ is continuous and for
all open sets U ⊂ Y , φ∗(O(U)) ⊂ O(φ−1(U)). When X, Y are affine, this agrees with our earlier
definition.

Lemma 11.7 Let X, Y, Z be quasiprojective. A map z 7→ (f(z), g(z)) from Z to X × Y is regular
if and only if f : Z → X and g : Z → Y are regular.

Proposition 11.8 Suppose X, Y are quasiprojective algebraic sets. Let φ : X → Y be regular.
Then

Γφ = {(x, φ(x)) : x ∈ X}
(the graph of φ) is closed in X × Y .

Corollary 11.9 Let X be a quasi-projective algebraic set and φ : X → X a regular map. Then the
fixed-point set

{x ∈ X : φ(x) = x}
is closed in X .
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We denote by C[X ] = OX(X) the ring of functions that are everywhere regular on X .

Theorem 11.10 Let X be an irreducible projective algebraic set. Then C[X ] = C.

Corollary 11.11 If X is an irreducible projective algebraic set which is also isomorphic to an
affine algebraic set, then X is a single point.

A map φ : X → Y between quasiprojective algebraic sets is defined to be regular if φ∗Oφ(x) ⊂ Ox
for all x ∈ X . When X and Y are affine, this is consistent with the earlier terminology, by Lemma
3.10.
Theorems 3.6 and 3.9 are also valid when X, Y are quasiprojective algebraic sets. Furthermore, if f
is a rational map between affine algebraic sets, then the open set Df is a quasiprojective algebraic
set, and f : Df → Y is a regular map in this new sense. Thus Theorem 3.12 is also valid for
quasiprojective algebraic sets.
If X is quasiprojective and x ∈ X , we define dimx(X) = dimT (Uα)x, where x ∈ Uα as in Lemma
11.6. It is easy to see that dimx(X) only depends on the local ring Ox (cf. Theorem 4.11). We set

dimX = min
x∈X

dimx(X).

It is clear from this definition of dimension that Theorem 9.8 holds for quasi-projective algebraic
sets. Just as in the affine case, a point x ∈ X is called simple if dimx(X) = dimX . When X is
irreducible, the simple points form a dense open set. If every point of X is simple then X is said
to be smooth or nonsingular.

Theorem 11.12 Let X, Y be quasiprojective sets with X projective. Let p(x, y) = y for (x, y) ∈
X × Y . If C ⊂ X × Y is closed then p(C) is closed in Y .

Corollary 11.13 Let X be projective and f : X → Y be a regular map with Y quasiprojective.
Then f(X) is closed in Y .

Exercises for Lecture 11.

1. Let X = C2 \ {0} with its structure as a quasiprojective algebraic set. Then X = X1 ∪X2,
where X1 = C× × C and X2 = C × C× are affine open subsets. Also f ∈ O(X) (the ring of
regular functions on X) if and only if f |Xi ∈ Aff(Xi) for i = 1, 2.

(a) Prove that O(X) = C[x1, x2], where xi are the coordinate functions on C2. (Hint: Let
f ∈ O(X). Write f |X1 as a polynomial in x1, x

−1
1 , x2 and write f |X2 as a polynomial in

x1, x2, x
−1
2 . Then compare these expressions on X1 ∩X2.)

(b) Prove that X is not a projective algebraic set. (Hint: Consider O(X).)

(c) Prove that X is not an affine algebraic set. (Hint: By (a) there is a homomorphism
f 7→ f(0) of O(X).)

(d) Let G = SL(2,C) and N the upper-triangular unipotent matrices in G. Prove that
G/N ∼= C2 \ {0}, with G acting as usual on C2. (Hint: Find a vector in C2 whose stabilizer
is N .)
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2. Let G = GL(n,C), H = Dn the diagonal matrices in G, N the upper-triangular unipotent
matrices, and B = HN . Let X be the space of all flags in Cn.

(a) Suppose x = {V1 ⊂ V2 ⊂ · · · ⊂ Vn} is a flag that is invariant under H . Prove that there
is a permutation σ ∈ Sn so that

Vi = Span{eσ(1), . . . , eσ(i)} for i = 1, . . . , n.

(Hint: H is reductive and its action on Cn is multiplicity-free.)

(b) Suppose the flag x in (a) is also invariant under N . Prove that σ(i) = i for all i. (Hint:
Use induction on i.)

(c) Prove that if g ∈ G and gBg−1 = B, then g ∈ B. (Hint: By (a) and (b), B has exactly
one fixed point on X = G/B.)

3. Let G be a connected algebraic group and B ⊂ G a Borel subgroup. Let P ⊂ G be a closed
subgroup.

(a) Suppose that G/P is a projective algebraic set. Prove that there exists g ∈ G such that
gBg−1 ⊂ P . (Hint: B has a fixed point on G/P .)

(b) Suppose that B ⊂ P . Prove that G/P is a projective algebraic set. (Hint: Consider the
natural map G/B → G/P .)

4. Let G be a classical group. Let B be the upper-triangular (Borel) subgroup of G, and H the
diagonal subgroup of G. Suppose P ⊂ G is a closed subgroup such that B ⊂ P .

(a) Prove that Lie(P ) is of the form

b +
∑
α∈S

g−α (∗)

where b = Lie(B) and S ⊂ Φ+ (the positive roots of g). (Hint : Lie(P ) is invariant under
Ad(H).)

(b) Let S ⊂ Φ+ be any subset and let {α1, . . . , αl} be the simple roots in Φ+. Prove that the
subspace defined by (∗) is a Lie algebra if and only if S satisfies the properties

(P1) If α, β ∈ S and α + β ∈ Φ+, then α+ β ∈ S.
(P2) If β ∈ S and β − αi ∈ Φ+ then β − αi ∈ S.

(Hint : b is generated by h and {gαi : i = 1, . . . , l}.)
(c) Let R be any subset of the simple roots, and define SR to be all the positive roots β so
that no elements of R occur in β. Show that SR satisfies (P1) and (P2). Conversely, if S
satisfies (P1) and (P2), let R be the set of simple roots that do not occur in any β ∈ S.
Prove that S = SR.

(d) Let G = GL(n,C). Use (c) to determine all subsets S of Φ+ that satisfy (P1) and (P2).
(Hint: Use Exercise #4 from Lecture 8.)

(e) For each subset S found in (d), show that there is a closed subgroup P ⊃ B with Lie(P )
given by (∗). (Hint: Show that S corresponds to a partition of n and consider the corre-
sponding block decomposition of G.)
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Part 4: Irreducible Representations

Lecture 12. Weyl Group and Weight Lattice

Weyl Group of a Classical Group

Let G be a connected classical group and let H be a maximal torus in G. Define the normalizer of
H in G to be

NormG(H) = {g ∈ G : ghg−1 ∈ H for all h ∈ H},

and define the Weyl group WG = NormG(H)/H . Since all maximal torii of G are conjugate,
the group WG is uniquely defined (as an abstract group) by G, and it acts (by conjugation) as
automorphisms of H .
Since H is abelian, there is a natural homomorphism φ : WG → Aut(H) given by φ(sH)h = shs−1

for s ∈ NormG(H). This homomorphism gives an action of WG on the character group X (H),
where for θ ∈ X (H) the character s · θ is defined by

s · θ(h) = θ(s−1hs), for h ∈ H.

Writing θ = eλ for λ ∈ P (G), we can describe this action as

s · eλ = es·λ,

where 〈s · λ, x〉 = 〈λ,Ad(s)−1x〉 for x ∈ h. This defines a linear action of WG on h∗.

Theorem 12.1 WG is a finite group and the representation of WG on h∗ is faithful.

For σ ∈ Sn let sσ ∈ GL(n,C) be the matrix such that

sσei = eσ(i) for i = 1, . . . , n.

This is the usual representation of Sn on Cn as permutation matrices.

Suppose G = GL(n,C). Then H is the group of all n × n diagonal matrices. Every coset in WG

is of the form sσH for some σ ∈ Sn. Hence WG
∼= Sn. The action of σ ∈ Sn on the diagonal

coordinate functions x1, . . . , xn for H is σ · xi = xσ−1(i).

Let G = SL(n,C). Then H consists of all diagonal matrices of determinant 1 and WG
∼= Sn.

Next, consider the case G = Sp(C2l,Ω), with Ω as in (4.3). Let s0 ∈ GL(2l,C) be the matrix for
the permutation (1, l)(2, l − 1)(3, l − 2) · · ·. For σ ∈ Sl let sσ ∈ GL(l,C) be the corresponding
permutation matrix.Clearly stσ = s−1

σ , so if we define

π(σ) =

[
sσ 0
0 s0sσs0

]
,

then π(σ) ∈ G and hence π(σ) ∈ NormG(H). Consider the transpositions (i, 2l + 1 − i) in S2l,
where 1 ≤ i ≤ l. Set e−i = e2l+1−i, where {ei} is the standard basis for C2l. Define τi ∈ GL(2l,C)
by

τiei = e−i , τie−i = −ei , τiek = ek for k 6= i,−i.
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Given F ⊂ {1, . . . , l}, define
τF =

∏
i∈F

τi ∈ NormG(H).

Then the H-cosets of the elements {τF} form an abelian subgroup Tl ∼= (Z/2Z)l of WG. The action
of τF on the coordinate functions x1, . . . , xl for H is xi 7→ x−1

i for i ∈ F and xj 7→ xj for j /∈ F .

Lemma 12.2 For G = Sp(C2l,Ω), the subgroup Tl ⊂ WG is normal, and WG is the semidirect
product of Tl and π̄(Sl). The action of WG on the coordinate functions for Aff(H) is by xi 7→ x±1

σ(i)

(i = 1, . . . , l), for every permutation σ and choice ±1 of exponents.

Now consider the case G = SO(C2l+1, B), with the symmetric form B having 1s on the skew-
diagonal and 0s elsewhere. For σ ∈ Sl define

φ(σ) =

 sσ 0 0
0 1 0
0 0 s0sσs0

 .
Then φ(σ) ∈ G and hence φ(σ) ∈ NormG(H). Obviously φ(σ) ∈ H if and only if σ = 1, so again
we have an injective homomorphism φ̄ : Sl → WG.
We can construct other elements of WG by the same method as for the symplectic group. Set

e−i = e2l+2−i for i = 1, . . . , l+ 1.

For each transposition (i, 2l+ 2− i) in S2l+1, where 1 ≤ i ≤ l, we define γi ∈ GL(2l+ 1,C) by

γiei = e−i , γie−i = ei , γie0 = −e0,

γiek = ek for k 6= i, 0,−i.

Then γi ∈ NormG(H). Furthermore, γ2
i ∈ H and γiγj = γjγi if 1 ≤ i, j ≤ l. Given F ⊂ {1, . . . , l},

we define
γF =

∏
i∈F

γi ∈ NormG(H).

Then the H-cosets of the elements {γF} form an abelian subgroup Tl ∼= (Z/2Z)l of WG. The action
of γF on the coordinate functions x1, . . . , xl for Aff(H) is the same as that of τF for the symplectic
group.

Lemma 12.3 Let G = SO(C2l+1, B). The subgroup Tl ⊂WG is normal, and WG is the semidirect
product of Tl and φ̄(Sl). The action of WG on the coordinate functions for Aff(H) is by xi 7→ x±1

σ(i)

(i = 1, . . . , l), for every permutation σ and choice ±1 of exponents.

Finally, we consider the case G = SO(C2l, B), with B as in (4.3). For σ ∈ Sl define π(σ) as in the
symplectic case. Then π(σ) ∈ NormG(H). Obviously π(σ) ∈ H if and only if σ = 1, so we have an
injective homomorphism π̄ : Sl →WG. The automorphism of H induced by σ ∈ Sl is the same as
for the symplectic group.
Set

e−i = e2l+1−i for i = 1, . . . , l.
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For each transposition (i, 2l+ 1− i) in S2l, where 1 ≤ i ≤ l, we define βi ∈ GL(2l,C) by

βiei = e−i , βie−i = ei , βiek = ek for k 6= i,−i.

Then βi ∈ O(C2l, B). Given F ⊂ {1, . . . , l}, define

βF =
∏
i∈F

βi.

If card(F ) is even, then det βF = 1 and hence βF ∈ NormG(H). Thus the H cosets of the elements
{βF : card(F ) even } form an abelian subgroup Rl of WG.

Lemma 12.4 Let G = SO(C2l, B). The subgroup Rl ⊂ WG is normal, and WG is the semidirect
product of Rl and π̄(Sl). The action of WG on the coordinate functions for Aff(H) is by xi 7→ x±1

σ(i)

(i = 1, . . . , l), for every permutation σ and choice ±1 of exponents with an even number of sign
changes.

Root Reflections

Let G be a connected classical group and let h be the Lie algebra of the maximal torus H of G.
Let Φ ⊂ h∗ be the roots and ∆ the simple roots of g relative to the choice Φ+ of positive roots. For
each α ∈ Φ let hα ∈ [gα, g−α] be the coroot to α.
Define the root reflection sα : h∗ → h∗ by

sα(β) = β − 〈β, hα〉α, for β ∈ h
∗.

We can also write the formula for sα as

sα(β) = β − 2(β, α)
(α, α)

α.

The linear transformation sα satisfies

sα(α) = −α, sα(β) = β if 〈β, hα〉 = 0.

Thus s2
α = I . It can be described geometrically as the reflection through the hyperplane (hα)⊥.

Note that the roots α and −α define the same reflection.

Lemma 12.5 Let W = NormG(H)/H be the Weyl group of G. Identify W with a subgroup of
GL(h∗) by the natural action of W on X (H).
(1) For every α ∈ Φ there exists w ∈W such that w acts on h∗ by the reflection sα.
(2) W ·∆ = Φ
(3) W is generated by the reflections {sα : α ∈ ∆}.
(4) If w ∈W and wΦ+ = Φ+ then w = 1.
(5) There exists a unique element w0 ∈W such that w0Φ+ = −Φ+.
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Weight Lattice of a Classical Group

Proposition 12.6 Let g = sl(2,C) and let {e, f, h} be a TDS triple which is a basis for g. Let
(ρ, V ) be a finite-dimensional g-module and set V e = Ker(ρ(e)).
(1) ρ(h) is diagonalizable with integral eigenvalues, while ρ(e) and ρ(f) are nilpotent.
(2) The eigenvalues of ρ(h) on V e are all non-negative.
(3) If v ∈ V e and ρ(h)v = 0 then ρ(f)v = 0.
(4) V = V e ⊕ ρ(f)V .

Let G be a connected classical group. Fix a maximal torus H in G and let g = Lie(G), h = Lie(H).
Let

z(g) = {Z ∈ g : [X,Z] = 0 for all X ∈ g}
be the center of g. Then z(g) ⊂ h. Let Φ ⊂ h∗ be the roots of H on g.

Theorem 12.7 Let (π, V ) be a finite-dimensional representation of g. For µ ∈ h∗ set

V (µ) = {v ∈ V : π(Y )v = 〈µ, Y 〉v for all Y ∈ h}.

(1) Suppose V (µ) 6= 0. Then 〈µ, hα〉 ∈ Z for all α ∈ Φ, where hα is the coroot to α.
(2) Suppose π(Z) is diagonalizable for all Z ∈ z(g). Then

V =
⊕
µ∈h∗

V (µ).

Hence π(Y ) is diagonalizable for every Y ∈ h.

We define the weight lattice for g as

P (g) = {µ ∈ h
∗ : 〈µ, hα〉 ∈ Z for all α ∈ Φ}.

If V is a g-module and V (µ) 6= 0, then we say that µ is a weight of V . In this case µ ∈ P (g) by
Theorem 12.7. For example, the weights of the adjoint representation are Φ ∪ {0}.
Clearly P (g) is an additive subgroup of h∗. We define the root lattice Q(g) to be the additive
subgroup of h∗ generated by Φ. Thus Q(g) ⊂ P (g).

Lemma 12.8 The lattices P (g) and Q(g) are invariant under the Weyl group W .

We also denote by sα ∈ GL(h) the transpose of the root reflection for α; it acts by

sαY = Y − 〈α, Y 〉hα

for Y ∈ h.

Proposition 12.9 Let (π, V ) be a finite-dimensional representation of g. For α ∈ Φ let {eα, fα, hα}
be a TDS triple associated with α, and define

τα = exp(π(eα)) exp(−π(fα)) exp(π(eα)) ∈ GL(V ).

Then
(1) ταπ(Y )τ−1

α = π(sαY ) for Y ∈ h,
(2) ταV (µ) = V (sαµ) for all µ ∈ h∗,
(3) dimV (µ) = dimV (s · µ) for all s ∈W .
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Fundamental Weights and Dominant Weights

Let ∆ = {α1, . . . , αl} ⊂ Φ+ be the simple roots in Φ+ and denote by Hi the coroot to αi , as in
Lemma 8.8. Let z(g) be the center of g. Then

h = z(g)⊕ (h ∩ [g, g])

Thus we may identify z(g)∗ with the subspace of h∗ that annihilates h ∩ [g, g]. Since {H1, . . . , Hl}
is a basis for h ∩ [g, g], there is a unique set {$1, . . . , $l} ⊂ h∗ such that

〈$i, Hj〉 = δij for i, j = 1, . . . , l and $i ⊥ z(g).

Then
P (g) = z(g)∗ ⊕ {n1$1 + · · ·+ nl$l : ni ∈ Z}. (12.1)

The weights $1, . . . , $l will be called the fundamental weights for g.
We now give the fundamental weights for each type of classical group in terms of the weights {εi}.
Type A: (G = SL(l+ 1,C))

$i = ε1 + · · ·+ εi −
i

l + 1
(ε1 + · · ·+ εl+1) for 1 ≤ i ≤ l.

Type B: (G = SO(2l+ 1,C))

$i = ε1 + · · ·+ εi for 1 ≤ i ≤ l − 1, $l =
1
2

(ε1 + · · ·+ εl)

Type C: (G = Sp(l,C))
$i = ε1 + · · ·+ εi for 1 ≤ i ≤ l.

Type D: (G = SO(2l,C), with l ≥ 2)

$i = ε1 + · · ·+ εi for 1 ≤ i ≤ l− 2,

$l−1 =
1
2

(ε1 + · · ·+ εl−1 − εl), $l =
1
2

(ε1 + · · ·+ εl−1 + εl).

Since the functionals εi are weights of the defining representation of G, we have εi ∈ P (g) for
i = 1, . . . , l. Thus P (G) ⊂ P (g). For g of type A or C all the fundamental weights are in P (G), so

P (G) = P (g) (G = SL(n,C) or Sp(n,C)).

However, for G = SO(2l+ 1,C) we have

$i ∈ P (G) for 1 ≤ i ≤ l − 1, 2$l ∈ P (G),

but $l /∈ P (G). For G = SO(2l,C) we have

$i ∈ P (G) for 1 ≤ i ≤ l − 2, m$l−1 + n$l ∈ P (G) if m+ n ∈ 2Z,
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but $l−1 and $l are not in P (G). Thus

P (g)/P (G) ∼= Z/2Z when G = SO(n,C).

This means that for the orthogonal groups in odd (resp. even) dimensions there is no single-valued
character χ on the maximal torus whose differential is $l (resp. $l−1 or $l). We will resolve this
difficulty in Lecture 17 with the construction of the groups Spin(n,C) and the spin representations.

Define the dominant weights for g (relative to the given choice of positive roots) to be

P++(g) = {µ ∈ P (g) : 〈µ,Hi〉 ≥ 0 for i = 1, . . . , l}.

From (12.1) we see that
P++(g) = z(g) + N$1 + · · ·+ N$l .

where N = {0, 1, 2, . . .}. We say that µ ∈ P++(g) is regular if 〈µ,Hi〉 > 0 for i = 1, . . . , l. This is
equivalent to

µ = ζ + n1$1 + · · ·+ nl$l, with ζ ∈ z(g)∗ and ni ≥ 1 for all i.

We define the dominant weights for G to be

P++(G) = P (G) ∩ P++(g).

Then P++(G) = P++(g) when G is SL(n,C) or Sp(n,C).

The definition of dominant weight depends on a choice of the system Φ+ of positive roots. We now
prove that any weight can be transformed into a unique dominant weight by the action of the Weyl
group. This means that the dominant weights give a cross-section for the orbits of the Weyl group
on the weight lattice.

Proposition 12.10 For every λ ∈ P (g) there is µ ∈ P++(g) and s ∈ W such that λ = s · µ. The
weight µ is uniquely determined by λ. If µ is regular, then s is uniquely determined by λ and hence
the orbit W · µ has |W | elements.
For each type of classical group the dominant weights are given in terms of the weights {εi} as
follows:
(1) Let G = GL(n,C) or SL(n,C). Then P++(g) consists of all weights

µ = k1ε1 + · · ·+ knεn with k1 ≥ k2 ≥ · · · ≥ kn and ki − ki+1 ∈ Z. (12.2)

(2) Let G = SO(2l+ 1,C). Then P++(g) consists of all

µ = k1ε1 + · · ·+ klεl with k1 ≥ k2 ≥ · · · ≥ kl ≥ 0. (12.3)

Here 2ki and ki − kj are integers for all i, j.
(3) Let G = Sp(l,C). Then P++(g) consists of all µ satisfying (12.3) with ki integers for all i.
(4) Let G = SO(2l,C), l ≥ 2. Then P++(g) consists of all

µ = k1ε1 + · · ·+ klεl with k1 ≥ · · · ≥ kl−1 ≥ |kl|. (12.4)

Here 2ki and ki − kj are integers for all i, j.
The weight µ is regular when all inequalities in (12.2), (12.3) or (12.4) are strict.
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Exercises for Lecture 12.

1. Let g = sl(2,C) with standard basis {e, f, h}. Let (ρ,W ) be a finite dimensional representation
of g. For k ∈ Z set f(k) = dim{w ∈W : ρ(h)w = kw}.
(a) Show that f(k) = f(−k).

(b) Let geven(k) = f(2k) and godd(k) = f(2k + 1). Show that geven and godd are unimodal
functions from Z to N. Here a function φ is called unimodal if there exists k0 such that
φ(a) ≤ φ(b) for all a < b ≤ k0 and φ(a) ≥ φ(b) for all k0 ≤ a < b.

(c) Suppose f(0) = f(2) = 4, f(1) = f(3) = 2, f(4) = 2, f(6) = 1 and f(k) = 0 for other
positive integers k. What is dim Kerρ(e)? What are the irreducible g submodules in W?

2. Let G ⊂ GL(n,C) be a classical group and let Φ be the root system of G. Set V =
∑n
i=1 Rεi.

Give V the inner product (· | ·) so that (εi|εj) = δij .

(a) Show that (α|α), for α ∈ Φ, is 1, 2 or 4, and that at most two distinct lengths occur.
(The system Φ is called simply-laced when all roots have the same length, because the Dynkin
diagram has no double lines in this case.)

(b) Let α, β ∈ Φ with (α|α) = (β|β). Show that there exists w ∈ WG so that w · α = β. (If
G = SO(2l,C) assume that l ≥ 3.)

3. Let G = SL(3,C), H the diagonal matrices in G, and let V = C3 ⊗ C3.

(a) Find the weights of H on V . Express the weights in terms of ε1, ε2, ε3 and for each weight
determine its multiplicity. Verify that the weight multiplicities are invariant under the Weyl
group W of G.

(b) Verify that each Weyl group orbit in the set of weights of V contains exactly one dominant
weight. Find the extreme dominant weights β (those such that β+α is not a weight, for any
positive root α).

(c) Write the weights of V in terms of the fundamental weights {$1, $2} and plot the set
of weights in the h∗ plane. Indicate multiplicities and W-orbits in the plot. (Show that
||$1|| = ||$2|| and that the angle between $1 and $2 is 60◦. Note that ε1 + ε2 + ε3 = 0 on
h∗.)

(d) V decomposes intoG-invariant subspaces V = V+⊕V−, where V+ consists of the symmetric
2-tensors, and V− is the skew-symmetric 2-tensors. Determine the weights and multiplicities
of V± and verify that the weight multiplicities are invariant under W .

4. Let G = Sp(C4,Ω), where Ω =

[
0 s0

−s0 0

]
and s0 has antidiagonal 1 as usual. Let H be

the diagonal matrices in G, and let V =
∧2 C4.

(a) Find all the weights of H on V . Express the weights in terms of ε1, ε2 and for each weight
determine its multiplicity (note that ε3 = −ε2 and ε4 = −ε1 as elements of h∗). Verify that
the weight multiplicities are invariant under the Weyl group W of G.

(b) Verify that each Weyl group orbit in the set of weights of V contains exactly one dominant
weight. Find the extreme dominant weights β (those such that β+α is not a weight, for any
positive root α).
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(c) Write the weights of V in terms of the fundamental weights {$1, $2} and plot the set
of weights in the h∗ plane. Indicate multiplicities and W orbits in the plot. (Show that
||$2||2 = 2||$1|| and that the angle between $1 and $2 is 45◦ relative to a W-invariant inner
product on h∗.
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Lecture 13. Highest Weight Theory

Extreme Vectors and Highest Weights

Let G be a classical group whose Lie algebra is semisimple. We fix a set Φ+ of positive roots and
the associated triangular decomposition

g = n̄ + h + n

as in Theorem 8.9. We set b = h + n and call b a Borel subalgebra of g. We have

[b, b] = n, [h, n] = n.

Let P (g) be the weight lattice and P++(g) the dominant weights (relative to the choice of Φ+).
If (π, V ) is a finite-dimensional representation of g, then V has a weight-space decomposition

V =
⊕

µ∈P (g)

V (µ), (13.1)

where V (µ) = {v ∈ V : π(Y )v = µ(Y )v for all Y ∈ h}. We denote by

X (V ) = {µ ∈ P (g) : V (µ) 6= 0}
the set of weights of the g-module V .
Let {α1, . . . , αl} be the simple roots in Φ+ and let Q+(g) = Nα1 + · · ·+ Nαl be the semigroup
generated by the positive roots. We define a partial order on P (g) by

λ ≺ µ if λ = µ− β for some β ∈ Q+(g) \ {0}.
Let (π, V ) be a representation of g (not necessarily finite-dimensional). A non-zero vector v0 ∈ V
is called b-extreme if π(b)v0 ⊂ Cv0. A vector v0 ∈ V is g-cyclic if V is spanned by v0 together with
the vectors π(x1) · · ·π(xp)v0, where xi ∈ g and p = 1, 2, . . ..

Proposition 13.1 Let (π, V ) be a finite-dimensional representation of g.
(1) A vector v0 is b-extreme if and only if π(n)v0 = 0 and there exists µ ∈ P++(g) such that
π(H)v0 = 〈µ,H〉v0 for all H ∈ h.
(2) The b-extreme vectors in V span the subspace

V n = {v ∈ V : π(n)v = 0}.
(3) Suppose µ is a maximal element of X (V ) relative to the partial order ≺. Then µ is dominant
and V (µ) ⊂ V n. In particular, V n 6= 0.
(4) Suppose v0 ∈ V is b-extreme of weight µ and is cyclic under g. Then π is irreducible, V (µ) =
Cv0, and X (V ) ⊂ µ−Q+(g).

Theorem 13.2 (Highest Weight) Suppose (π, V ) is an irreducible finite-dimensional represen-
tation of g. Then V has a unique highest weight µ such that λ ≺ µ for all other weights λ of V .
One has µ ∈ P++(g) and dim V (µ) = 1. A nonzero vector v0 ∈ V (µ) is called a highest weight
vector of V . If U is another irreducible finite-dimensional g-module with highest weight µ, then
U ∼= V .

The definition of highest weight depends on the choice of a set of positive roots. However, the
elements of P++(g) are in one-to-one correspondence with the Weyl group orbits in P (g). Thus
every irreducible finite-dimensional representation of g corresponds to a unique WG-orbit in Pg,
namely the orbit of the highest weight.
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Commuting Algebra and n-invariants

If V is a g-module we set

V n = {v ∈ V : X · v = 0 for all X ∈ n}.

Lemma 13.3 Let V be a finite-dimensional g-module. Then V is irreducible if and only if
dimV n = 1.

Let V be a finite-dimensional g-module. We shall apply the theorem of the highest weight to
obtain the following decomposition of the commuting algebra Endg(V ) as a direct sum of full
matrix algebras. Note that if T ∈ Endg(V ) then it preserves V n and it preserves the weight space
decomposition

V n =
⊕
µ∈S

V n(µ).

Here S = {µ ∈ P++(g) : V n(µ) 6= 0}. By Theorem 13.2 we can label the equivalence classes of
irreducible g-modules by their highest weights. For each µ ∈ S choose an irreducible representation
(πµ, V µ) with highest weight µ.

Theorem 13.4 The map φ(T ) = T |V n gives an algebra isomorphism

Endg(V ) ∼=
⊕
µ∈S

End(V n(µ)). (13.2)

For every µ ∈ S the space V n(µ) is an irreducible module for Endg(V ) and distinct values of µ
give inequivalent modules for Endg(V ). Under the joint action of g and Endg(V ) the space V
decomposes as

V ∼=
⊕
µ∈S

V µ ⊗ V n(µ), (13.3)

where V µ is the irreducible g-module with highest weight µ.

Appendix: Linear and Associative Algebra for Lecture 13.

Representations of Associative Algebras

Let cA be an associative algebra over C with identity 1.

Lemma 13.5 (Schur) If (ρ, V ) and (τ ,W ) are finite-dimensional irreducible representations of
cA, then

dim HomA(V,W ) =

{
1 if (ρ, V ) ∼= (τ ,W )
0 otherwise.

Let (ρ, V ) be a finite-dimensional representation of A. We say that V is completely reducible as an A
module if for every A-invariant subspace W ⊂ V there exists a complementary invariant subspace
U ⊂ V such that V = W ⊕ U . If U is a finite-dimensional irreducible A-module, we denote by [U ]
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the equivalence class of all A-modules equivalent to U . Let Â be the set of all equivalence classes
of finite-dimensional irreducible A-modules.
Suppose that V is a completely reducible A-module. For each ξ ∈ Â we define

V(ξ) =
∑

U⊂V, [U ]=ξ

U,

where the subspaces U are invariant and irreducible under A and furnish representations of A in
the equivalence class ξ. We call V(ξ) the ξ-isotypic subspace of V .
For each ξ ∈ Â fix a module Eξ in the class ξ. There is a linear map

Sξ : HomA(Eξ, V )⊗ Eξ → V, Sξ(u⊗ w) = u(w)

for u ∈ HomA(Eξ, V ) and w ∈ Eξ. If we make HomA(Eξ, V ) ⊗ Eξ into an A-module with action
x · (u⊗w) = u⊗ (x ·w) for x ∈ A, then Sξ is an A-intertwining map. If 0 6= u ∈ HomA(Eξ, V ) then
Schur’s Lemma implies that u(Eξ) is an irreducible A-submodule of V isomorphic to Eξ. Hence

Sξ(HomA(Eξ, V )⊗Eξ) ⊂ V(ξ)

for every ξ ∈ Â.

Proposition 13.6 Let V be a completely reducible A-module. Let

V = V1 ⊕ · · · ⊕ Vd (13.4)

be any decomposition with each Vi invariant and irreducible. Then

V(ξ) =
⊕

[Vj ]=ξ

Vj (13.5)

for all ξ ∈ Â, and hence
V =

⊕
ξ∈Â

V(ξ). (13.6)

The map Sξ gives an A-module isomorphism

HomA(Eξ, V )⊗ Eξ ∼= V(ξ)

for each ξ ∈ Â.

We call (13.6) the primary decomposition of V . The cardinality mV (ξ) of the set {j : [Vj] = ξ} is
called the multiplicity of ξ in V . We have

mV (ξ) = dim HomA(Eξ, V ) = dim HomA(V, Eξ).
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Simple Associative Algebras

An associative algebra A is called simple if the only two-sided ideals in A are 0 and A.

Theorem 13.7 (Wedderburn) The algebra End(V ) is simple for every finite dimensional com-
plex vector space V . Conversely, if A is any finite dimensional simple algebra over C with unit,
then there is a finite dimensional complex vector space V such that A ∼= End(V ).

Theorem 13.8 (Burnside) Let (ρ, V ) be an irreducible representation of an associative algebra
A. If dimV is finite and ρ(A) 6= 0 then ρ(A) = End(V ).

Proposition 13.9 Up to equivalence, the only irreducible representation of End(V ) is the repre-
sentation τ on V given by τ(x)v = xv.

Theorem 13.10 Let A = End(V ) and suppose (ρ,W ) is a finite-dimensional representation of A.
Then dimW = m dimV , where m = dim HomA(V,W ), and there exists a linear bijection

T : W → V m, with Tw = (v1, . . . , vm),

such that Tρ(x)w = (xv1, . . . , xvm) for x ∈ A and w ∈W . Hence W is equivalent to the A-module
HomA(V,W )⊗ V , where x ∈ A acts by x · (u⊗ v) = u⊗ (xv) for u ∈ HomA(V,W ) and v ∈ V .

Semisimple Associative Algebras

A finite-dimensional associative algebra A with unit is said to be semisimple if it is the direct sum
of simple algebras. Throughout this section we assume that A is semisimple with unit 1A. By
Wedderburn’s theorem, there exist finite-dimensional vector spaces V λ, with λ running over some
finite set L, and an algebra isomorphism

Φ : A
∼=−→
⊕
λ∈L

End(V λ). (13.7)

Conversely, every direct sum of matrix algebras is semisimple.
The isomorphism Φ in (13.7) gives representations (πλ, V λ) of A, where πλ(x) is the restriction of
Φ(x) to V λ for x ∈ A.

Proposition 13.11 The representations (πλ, V λ) are irreducible and mutually inequivalent. Every
irreducible representation of A is equivalent to some πλ.

An arbitrary representation of A can be described as follows.

Proposition 13.12 Let A be given by (13.7) and suppose (ρ,W ) is a finite-dimensional represen-
tation of A. Set Uλ = HomA(V λ,W ) for λ ∈ Â and define a linear map

S :
⊕
λ∈Â

Uλ ⊗ V λ →W, S(
∑
λ∈Â

uλ ⊗ vλ) =
∑
λ∈Â

uλ(vλ).

Then S is an A-module isomorphism and

S−1ρ(x)S =
⊕
λ∈Â

IUλ ⊗ πλ(x). (13.8)
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Double Commutant Theorem

Let V be a finite dimensional vector space. For any subset S ⊂ End(V ) we define

Comm(S) = {x ∈ End(V ) : xs = sx for all s ∈ S}

and call it the commutant of S. We observe that Comm(S) is an associative algebra with unit IV .
Suppose now that A ⊂ End(V ) is a semisimple algebra with IV ∈ A. Set B = Comm(A). The
vector space A⊗ B is an associative algebra under the multiplication

(a⊗ b)(a′⊗ b′) = aa′ ⊗ bb′,

and A (resp. B) is isomorphic to the subalgebra A⊗ 1 (resp. 1⊗B) of A⊗ B.
By Proposition 13.12 there is an A-module isomorphism

V ∼=
r⊕
i=1

Vi ⊗ Ui (13.9)

where Vi is an irreducible A-module, Vi 6∼= Vj for i 6= j and Ui = HomA(Vi, V ). Under this
isomorphism

A ∼=
r⊕
i=1

End(Vi)⊗ IUi . (13.10)

We now use this isomorphism to obtain the basic dual relationship between the algebras A and
Comm(A).

Theorem 13.13 (Double Commutant) Let V be a finite-dimensional vector space and A ⊂
End(V ) a semisimple algebra. Then the algebra B = Comm(A) is semisimple and Comm(B) = A.
Furthermore, relative to the isomorphisms (13.9), (13.10), one has

B ∼=
r⊕
i=1

IVi ⊗ End(Ui). (13.11)

Hence the subspaces Vi⊗Ui are irreducible and mutually inequivalent representations of the algebra
A⊗ B.

We can view (13.9) in two ways: as a decomposition of V into isotypic subspaces for A (where the
representation Vi occurs with multiplicity dimUi), or as a decomposition of V into isotypic subspaces
for B (where the representation Ui occurs with multiplicity dimVi). This dual point of view sets
up a correspondence between irreducible representations of A and irreducible representations of B,
where Vi is paired with Ui.

Exercises for Lecture 13.

1. Let g = sl(3,C). Fix the positive roots Φ+ = {ε1 − ε2, ε2 − ε3, ε1 − ε3} as usual. Let π = ad
be the adjoint representation on g.
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(a) Express the highest weight λ of π in terms of the fundamental weights $1 and $2. What
is the highest weight vector?

(b) Find all β ∈ P++(g) of the form β = λ − γ, where γ ∈ Q+(g). (Here P++(g) are the
dominant weights, and Q+(g) are the sums of positive roots.) Verify that for every such β,
the corresponding weight space gβ 6= 0.

(c) Find the orbit W · β of each weight β in (b), where W is the Weyl group of g. Verify that
the union of these orbits is the set of weights of π.

(d) Plot the set of weights of π as points in the h∗ plane. Observe that this set is in the
convex hull of the orbit W · λ of the highest weight.

2. Let g = sp(2,C). Fix the positive roots Φ+ = {ε1 − ε2, ε1 + ε2, 2ε1, 2ε2} as usual. Let π = ad
be the adjoint representation on g. Carry out parts (a), (b), (c), (d) of the previous exercise
in this case.

3. Let g = sp(2,C). Suppose (π, V ) is the irreducible representation of g with highest weight
ρ = $1 +$2 (the smallest regular dominant weight).

(a) Show that there is exactly one β ∈ P++(g) of the form β = ρ− γ, where 0 6= γ ∈ Q+(g).
Show that Vβ 6= 0 and find a spanning set for it. (Hint : Use the representation theory of
sl(2,C) and the action of U(g) on the highest weight vector.)

(b) Find the orbits W · ρ and W · β, where W is the Weyl group of g.

(c) Plot the weights of π in the h∗ plane. Observe that all the weights are contained in the
convex hull of the orbit W · ρ of the highest weight.

(d) The Weyl dimension formula implies that dimV = 2|Φ
+| = 16. Use this result to determine

the dimension of the weight space Vβ in (a).

4. Let g be the Lie algebra of a classical group of rank l and let $1, . . . , $l be the fundamental
weights. Suppose λ = m1$1 + · · ·+ ml$l is the highest weight of an irreducible g-module
V . Let λ∗ be the highest weight of the dual module V ∗. Use the formula λ∗ = −w0 · λ
(w0(Φ+ = −Φ+) and the results of Lecture 12 to show that λ∗ is given as follows:

Type Al: λ∗ = ml$1 +ml−1$2 + · · ·+m2$l−1 +m1$l

Type Bl or Cl: λ∗ = λ

Type Dl: λ∗ =

{
λ if l is even
m1$1 + · · ·+ml−2$l−2 +ml$l−1 +ml−1$l if l is odd.
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Part 5: Invariant Theory and Irreducible Representations

Lecture 14. Invariants for Classical Groups

First Fundamental Theorem of Invariants

Let G be a reductive linear algebraic group and (ρ, V ) a regular representation of G. For each
positive integer k, let

V k = V ⊕ · · · ⊕ V︸ ︷︷ ︸
k copies

.

(This should not be confused with the k-fold tensor power V ⊗k =
⊗k V .) Likewise, let (V ∗)k be

the sum of k copies of V ∗. Given positive integers k and m, consider the algebra P((V ∗)k × V m)
of polynomials with k covector arguments (elements of V ∗) and m vector arguments (elements of
V ). The induced action of G on P((V ∗)k × V m) is

g · f(v∗1, . . . , v
∗
k, v1, . . . , vm)

= f(v∗1 ◦ ρ(g), . . . , v∗k ◦ ρ(g), ρ(g−1)v1, . . . , ρ(g−1)vn).

We shall refer to a description of (finite) generating sets for P((V ∗)k × V m)G, for all k,m, as a
First Fundamental Theorem (FFT) for the pair (G, ρ). Here the emphasis is on an explicit listing of
generating sets; the existence of a finite generating set of invariants (for each k,m) is a consequence
of Theorem 9.4. In this lecture we will state the FFT when G is a classical group and V is its
defining representation.
Since P((V ∗)k × V m)G ⊃ P((V ∗)k × V m)GL(V ), a FFT for GL(V ) gives some information about
invariants for the group ρ(G), so we first consider this case. The key observation is that GL(V )-
invariant polynomials on (V ∗)k × V m come from the following geometric construction.
There are natural isomorphisms

(V ∗)k ∼= Hom(V,Ck), V m ∼= Hom(Cm, V ).

Here the direct sum v∗1 ⊕ · · · ⊕ v∗k of k covectors corresponds to the linear map

v 7→ [〈v∗1, v〉, . . . , 〈v∗k, v〉]

from V to Ck, while the direct sum v1 ⊕ · · · ⊕ vm of m vectors corresponds to the linear map

[c1, . . . , cm] 7→ c1v1 + · · ·+ cmvm

from Cm to V . This gives an algebra isomorphism

P((V ∗)k × V m) ∼= P(Hom(V,Ck)× Hom(Cm, V ))

with the action of g ∈ GL(V ) on f ∈ P(Hom(V,Ck)×Hom(Cm, V )) becoming

g · f(x, y) = f(xρ(g−1), ρ(g)y), x ∈ X, y ∈ Y. (14.1)

We denote the vector space of k ×m complex matrices as Mk,m. Define a map

µ : Hom(V,Ck)×Hom(Cm, V )→Mk,m
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by µ(x, y) = xy (composition of linear transformations). Then

µ(xρ(g−1), ρ(g)y) = xρ(g)−1ρ(g)y = µ(x, y)

for g ∈ G and x ∈ X, y ∈ Y . The induced homomorphism µ∗ on P(Mk,m) has range in the
GL(V )-invariant polynomials:

µ∗ : P(Mk,m)→ P(Hom(V,Ck)×Hom(Cm, V ))GL(V ),

where, as usual, µ∗(f) = f ◦ µ for f ∈ P(Mk,m). Thus if we let zij = µ∗(xij) be the image of the
matrix entry function xij on Mk,m, then zij is the contraction of the ith covector position with the
jth vector position:

zij(v∗1, . . . , v
∗
k, v1, . . . , vm) = 〈v∗i , vj〉.

Theorem 14.1 (polynomial FFT for GL(V )) The map

µ∗ : P(Mk,m)→ P((V ∗)k × V m)GL(V )

is surjective. Hence P((V ∗)k×V m)GL(V ) is generated (as an algebra) by the contractions {〈v∗i , vj〉 :
i = 1, . . . , m, j = 1, . . . , k}.

Consider now the orthogonal or symplectic groups acting in their defining representations. Here we
obtain the invariant polynomials by the following modification of the geometric construction used
for GL(V ).
Let V = Cn and define the symmetric form

(x, y) =
∑
i

xiyi for x, y ∈ Cn. (14.2)

Write On for the orthogonal group for this form. Thus g ∈ On if and only if gtg = In. Let
SMk be the vector space of k × k complex symmetric matrices B (so B = Bt). Define a map
τ : Mn,k → SMk by τ(X) = X tX . Then

τ(gX) = X tgtgX = τ(X) for g ∈ On and X ∈Mn,k.

Hence τ∗(f)(gX) = τ∗(f)(X) for f ∈ P(SMk), so we obtain an algebra homomorphism

τ∗ : P(SMk)→ P(V k)On

For example, given v1, . . . , vk ∈ Cn, we can form the n× k matrix

X = [v1, . . . , vk] ∈Mn,k

(we always take Cn to consist of column vectors with n components). Then X tX is the k × k
symmetric matrix with entries (vi, vj). Hence under the map τ∗ the matrix entry function xij on
SMk pulls back to the On-invariant quadratic polynomial

τ∗(xij)(v1, . . . , vk) = (vi, vj)

on (Cn)k (the contraction of the ith and jth vector position using the symmetric form).
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When n is even, let Jn be the n× n block-diagonal matrix

Jn =


κ 0 · · · 0
0 κ · · · 0
...

...
. . .

...
0 0 · · · κ

 , κ =

[
0 1
−1 0

]
.

Define the skew-symmetric form
ω(x, y) = (x, Jny) (14.3)

for x, y ∈ Cn and let Spn be the invariance group of this form. Thus g ∈ Spn if and only if
gtJng = Jn. Let AMk be the vector space of k × k complex skew-symmetric matrices A (so
At = −A). Define a map

γ : Mn,k → AMk

by γ(X) = X tJnX . Then

γ(gX) = X tgtJngX = γ(X) for g ∈ Spn and X ∈Mn,k.

Hence γ∗(f)(gX) = γ∗(f)(X) for f ∈ P(AMk), so we obtain an algebra homomorphism

γ∗ : P(AMk)→ P(V k)Spn .

As in the orthogonal case, given v1, . . . , vk ∈ Cn, we form the matrix X = [v1, . . . , vk] ∈Mn,k. Then
the skew-symmetric k × k matrix X tJnX has entries (vi, Jnvj). Hence the matrix entry function
xij on AMk pulls back to the Spn-invariant quadratic polynomial

γ∗(xij)(v1, . . . , vk) = ω(vi, vj)

(the contraction of the ith and jth positions, i 6= j, using the skew form).

Theorem 14.2 (polynomial FFT for On and Spn)
(1) The homomorphism

τ∗ : P(SMk)→ P((Cn)k)On

is surjective. Hence P((Cn)k)On is generated (as an algebra) by the orthogonal contractions
{(vi, vj) : 1 ≤ i ≤ j ≤ k}.
(2) Suppose n is even. The homomorphism

γ∗ : P(AMk)→ P((Cn)k)Spn

is surjective. Hence P((Cn)k)Spn is generated (as an algebra) by the symplectic contractions
{ω(vi, vj) : 1 ≤ i < j ≤ k}.

Corollary 14.3 (1) Let G = On and V = Cn. Then P((V ∗)k×V m)G is generated (as an algebra)
by the quadratic polynomials

(vi, vj), (v∗p, v
∗
q), 〈v∗p, vi〉, for 1 ≤ i, j ≤ m and 1 ≤ p, q ≤ k.

(2) Let G = Spn and V = Cn (with n even). Then P((V ∗)k × V m)G is generated (as an algebra)
by the quadratic polynomials

ω(vi, vj), ω(v∗p, v
∗
q), 〈v∗p, vi〉, for 1 ≤ i, j ≤ m and 1 ≤ p, q ≤ k.
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Tensor Invariants and Schur Duality

Let GL(V ) act on V by the defining representation ρ, and let ρ∗ be the dual representation on V ∗.
For all integers k,m ≥ 0 we have the representations ρk = ρ⊗k on V ⊗k and ρ∗m = ρ∗⊗k on V ∗⊗m.
Since there is a natural isomorphism

(V ∗)⊗m ∼= (V ⊗m)∗

as GL(V ) modules, we may view ρ∗m as acting on (V ⊗m)∗. We set ρk,m = ρ⊗k ⊗ ρ∗⊗m, acting on
V ⊗k ⊗ (V ⊗m)∗.
To obtain the tensor form of the FFT for GL(V ), we must find an explicit spanning set for the
space of GL(V ) invariants in V ⊗k ⊗ (V ⊗m)∗. For x ∈ V ⊗k ⊗ (V ⊗m)∗ and λ ∈ C× we have

ρk,m(λI)x = λk−mx.

Hence there are no invariants if k 6= m, so we only need to consider the representation ρk,k on
V ⊗k ⊗ (V ⊗k)∗.
Recall that when W is a finite-dimensional vector space, then W ⊗W ∗ ∼= End(W ) as a GL(W )
module, where w ⊗ w∗ gives the linear transformation

u 7→ 〈w∗, u〉w.

We apply this to the case W = V ⊗k. The action of g ∈ GL(V ) on End(V ⊗k) is given by

T 7→ ρk(g)Tρk(g)−1.

Thus the space of GL(V ) invariants in End(V ⊗k) is the commutant of the set of operators ρk(GL(V ))
.
Let Sk be the group of permutations of {1, 2, . . . , k}. Define a representation σk of Sk on V ⊗k by

σk(s)(v1 ⊗ · · · ⊗ vk) = vs−1(1) ⊗ · · · ⊗ vs−1(k).

Theorem 14.4 (Schur Duality) Set A = ρk(C[GL(V )]) and B = σk(C[Sk]). Then Comm(B) =
A and Comm(A) = B.

We now apply this result to obtain the tensor version of the FFT for GL(V ). Let e1, . . . , en be
a basis for V and let e∗1, . . . , e

∗
n be the dual basis for V ∗. For a multi-index I = (i1, . . . , ik) with

1 ≤ ij ≤ n, set |I | = k and
eI = ei1 ⊗ · · · ⊗ eik .

The elements eI form a basis for
⊗k V as I ranges over the finite set of all such multi-indices. For

s ∈ Sk and I = (i1, . . . , ik) we set

s · (i1, . . . , ik) = (is−1(1), . . . , is−1(k)).

Then we have σk(s)eI = es·I . Let Ξ be the set of all ordered pairs (I, J) of multi-indices with
|I | = |J| = k. The set

{eI ⊗ e∗J : (I, J) ∈ Ξ}
is a basis for V ⊗k ⊗ (V ⊗k)∗.
For s ∈ Sk define a tensor Cs of type (k, k) by

Cs =
∑
|I|=k

es·I ⊗ e∗I . (14.4)
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Theorem 14.5 Let G = GL(V ). The space of G-invariants in V ⊗k ⊗ V ∗⊗k is spanned by the
tensors {Cs : s ∈ Sk}.

Tensor Invariants for Orthogonal and Symplectic Groups

Let G ⊂ GL(V ) be the group leaving invariant a nondegenerate bilinear form ω (which we assume
is either symmetric or skew-symmetric). Since V ∼= V ∗ as a G-module via the form ω, we only
need to consider tensor invariants in (V ⊗m)G when m = 1, 2, . . .. Clearly there are no invariants if
m is odd, since −I ∈ G, so we may assume that m = 2k is even.
The GL(V ) isomorphism V ∗ ⊗ V ∼= End(V ) and the G-module isomorphism V ∼= V ∗ combine to
give a G-module isomorphism

T : V ⊗2k ∼= End(V ⊗k) (14.5)

which we take in the following explicit form: If u = v1 ⊗ · · · ⊗ v2k with vi ∈ V , then T (u) is the
linear transformation

T (u)(x1⊗ · · · ⊗ xk) = ω(x1, v2)ω(x2, v4) · · ·ω(xk, v2k)v1 ⊗ v3 · · · ⊗ v2k−1

for xi ∈ V . That is, we use the invariant form to change each v2i into a covector, pair it with
v2i−1 to get a rank-one linear transformation on V , and then take the tensor product of these
transformations to get T (u). We extend ω to a nondegenerate bilinear form on V ⊗k for every k by

ω(x1 ⊗ · · · ⊗ xk, y1 ⊗ · · · ⊗ yk) =
k∏
i=1

ω(xi, yi).

Then we can write the formula for T as

T (v1 ⊗ · · · ⊗ v2k)x = ω(x, v2⊗ v4 · · · ⊗ v2k) v1 ⊗ v3 ⊗ · · · ⊗ v2k−1

for x ∈ V ⊗k.
The identity operator I⊗kV on V ⊗k is G-invariant, of course. We can express this operator in tensor
form as follows. Fix a basis {fp} for V and let {fp} be the dual basis for V relative to the invariant
form ω:

ω(fp, fq) = δpq.

Set θ =
∑n
p=1 fp ⊗ fp (where n = dimV ). Then T (θ) = IV . Hence the 2k-tensor

θk = θ ⊗ · · · ⊗ θ︸ ︷︷ ︸
k

=
∑

p1,...,pk

fp1 ⊗ fp1 ⊗ · · · ⊗ fpk ⊗ fpk

satisfies T (θk) = I⊗kV . It follows that θk is G-invariant. Since the action of G on V ⊗2k commutes
with the action of S2k , the tensors σ2k(s)θk are also G-invariant, for any s ∈ S2k . The first
fundamental theorem asserts that all G-invariant tensors are linear combinations of these tensors.

Theorem 14.6 Let G be O(V ) or Sp(V ). Then [V ⊗m]G = 0 if m is odd, and

[V ⊗2k]G = Span{σ2k(s)θk : s ∈ S2k}.
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Exercises for Lecture 14.

In all these problems G = GL(n,C), V = Cn = Mn×1 with left G action, and V ∗ = M1×n with
right G action.

1. Let X = Mk×n ×Mn×m and Y = Mk×m. Let G act on X by g · (x, y) = (xg−1, gy). Map
µ : X → Y by matrix multiplication: µ(x, y) = xy.

(a) Assume that n ≥ min(k, n), so µ is surjective. Prove that (µ, Y ) is the algebraic quotient
X//G. (Hint: Use the first fundamental theorem of invariant theory for G to prove that
µ∗ : P(Y )→ P(X)G is bijective. Note that X ∼= (V ∗)k × V m as a G module.)

(b) Let n be arbitrary. Let K = GL(k,C) × GL(m,C) act on X and on Y by matrix
multiplication: (g, h) · (u, v) = (gu, vh−1) and (g, h) · y) = gyh−1 for (g, h) ∈ K, (u, v) ∈ X ,
and y ∈ Y . Let I = Ker(µ∗), where µ∗ : P(Y ) → P(X). Prove that I is invariant under K
and that P(X)G ∼= P(Y )/I. (Hint: Show that K commutes with the action of G on X and
that the map µ is K equivariant.)

2. For v ∈ V and v∗ ∈ V ∗, let T (v ⊗ v∗) = vv∗ ∈ Mn. This defines the canonical isomorphism
u 7→ T (u) between V ⊗V ∗ and Mn. Let Tk = T⊗k be the canonical isomorphism (V⊗V ∗)⊗k →
(Mn)⊗k. Let g ∈ G act on x ∈Mn by g · x = gxg−1.

(a) Show that Tk intertwines the action of G on (V ⊗ V ∗)⊗k and (Mn)⊗k.

(b) Let σ ∈ Sk be a cyclic permutation m1 → m2 → · · · → mk → mk+1 = m1. Let
Cσ : (V ⊗ V ∗)⊗k → C be the G-invariant contraction

Cσ(v1 ⊗ v∗1 ⊗ · · · ⊗ vk ⊗ v∗k) =
k∏
j=1

〈v∗mj , vmj+1〉

Set Xj = T (vj ⊗ v∗j ). Prove that

Cσ(v1 ⊗ v∗1 ⊗ · · · ⊗ vk ⊗ v∗k) = tr(Xm1Xm2 · · ·Xmk).

(Hint: Note that for X ∈Mn, one has T (v∗ ⊗Xv) = XT (v∗⊗ v) and tr(T (v∗⊗ v)) = v∗v.)

(c) Let σ ∈ Sk be a product of disjoint cyclic permutations c1, . . . , cr, where ci is the cycle
m1,i → m2,i → · · · → mpi,i → m1,i. Let Cσ : (V ⊗ V ∗)⊗k → C be the G-invariant contraction

Cσ(v1 ⊗ v∗1 ⊗ · · · ⊗ vk ⊗ v∗k) =
r∏
i=1

pi∏
j=1

〈v∗mj,i , vmj+1,i〉

Set Xj = T (vj ⊗ v∗j ). Prove that

Cσ(v1 ⊗ v∗1 ⊗ · · · ⊗ vk ⊗ v∗k) =
r∏
i=1

tr(Xm1,iXm2,i · · ·Xmpi,i
).

3. (a) Use the previous exercise to find a basis for the G-invariant linear functionals on M⊗2
n

(assume n ≥ 2).

(b) Prove that there are no nonzero skew-symmetricG invariant bilinear forms on Mn. (Hint:
Use the result in (a) and the projection from (Mn)⊗2 onto (Mn)∧2.)
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4. (a) Find a spanning set for the G-invariant linear functionals on M⊗3
n .

(b) Define ω(X1, X2, X3) = tr([X1, X2]X3) for Xi ∈Mn. Prove that ω is skew-symmetric and
G invariant.

(c) Prove that ω is the unique G invariant skew-symmetric linear functional on M⊗3
n , up to a

scalar multiple. (Hint: Use the result in (a) and the projection from (Mn)⊗3 onto (Mn)∧3.)
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Lecture 15. Skew-Duality for Classical Groups

Representations on Exterior Algebras

We now use the FFT for a classical group G to find the commuting algebra of G on the exterior
algebra of its defining representation.
We denote by ρ the representation of GL(V ) on

∧
V :

ρ(g)(v1 ∧ · · · ∧ vp) = gv1 ∧ · · · ∧ gvp

for g ∈ GL(V ) and vi ∈ V . It is easy to check from the definition of interior and exterior products
that

ρ(g)ε(v)ρ(g−1) = ε(gv), ρ(g)ι(v∗)ρ(g−1) = ι((gt)−1v∗). (15.1)

We define the skew Euler operator E on
∧
V by

E =
d∑
j=1

ε(fj)ι(f∗j ),

where d = dimV and {f1, . . . , fd} is a basis for V with dual basis {f∗1 , . . . , f∗d}.

Lemma 15.1 The operator E commutes with GL(V) and acts by the scalar k on
∧k V . Hence E

does not depend on the choice of basis for V . If T ∈ End(
∧
V ) and T :

∧k V → ∧k+p V for all k,
then [E, T ] = pT .

As a particular case of the commutation relations in Lemma 15.1, we have

[E, ε(v)] = ε(v), [E, ι(v∗)] = −ι(v∗) for v ∈ V and v∗ ∈ V ∗. (15.2)

Now suppose G ⊂ GL(V ) is an algebraic group. The action of G on V extends to regular represen-
tations on V ⊗m and on

∧
V . Denote by Qk the projection from

∧
V onto

∧k V . Then Qk commutes
with G and we may identify Hom(

∧l V, ∧k V ) with the subspace of EndG(
∧
V ) consisting of the

operators QkAQl, where A ∈ EndG(
∧
V ) (these are the G-intertwining operators that map

∧l V
to
∧k V and are zero on

∧r V for r 6= l). Thus

EndG(
∧
V ) =

⊕
0≤l,k≤d HomG(

∧l V,∧k V ).

Let T (V ) be the tensor algebra over V and let P : T (V )→ ∧
V be the projection operator:

Pu =
1
m!

∑
s∈Sm

sgn(s)σm(s)u for u ∈ V ⊗m.

Then we have
HomG(

∧l V, ∧k V ) = {PRP : R ∈ HomG(V ⊗l, V ⊗k)}. (15.3)

We now use these results and the FFT to find generators for EndG(
∧
V ) when G ⊂ GL(V ) is a

classical group.
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General Linear Group

Theorem 15.2 Let G = GL(V ). Then EndG(
∧
V ) is generated by the skew Euler operator E.

Corollary 15.3 In the decomposition
∧
V =

⊕n
p=1

∧p V , where n = dimV , the summands are
irreducible and mutually inequivalent GL(V )-modules.

Orthogonal and Symplectic Groups

Now let Ω be a non-degenerate bilinear form on V that is either symmetric or skew-symmetric. Let
G be the subgroup of GL(V ) that preserves Ω. In order to pass from the FFT for G to a description
of the commutant of G in End(

∧
V ), we need to introduce some operators on the tensor algebra

over V .
Define C : V ⊗m → V ⊗(m+2) by

Cu = θ ⊗ u for u ∈ V ⊗m,

where θ ∈ (
⊗2 V )G is the invariant 2-tensor corresponding to the bilinear form Ω. Define C∗ :

V ⊗m → V ⊗(m−2) by

C∗(v1 ⊗ · · · ⊗ vm) = Ω(vm−1, vm)v1 ⊗ · · · ⊗ vm−2.

Clearly C and C∗ commute with the action of G.
For v∗ ∈ V ∗ define κ(v∗) : V ⊗m → V ⊗(m−1) by evaluation on the first tensor place:

κ(v∗)(v1 ⊗ · · · ⊗ vm) = 〈v∗, v1〉v2 ⊗ · · · ⊗ vm.

For v ∈ V define µ(v) : V ⊗m → V ⊗(m+1) by left tensor multiplication:

µ(v)(v1 ⊗ · · · ⊗ vm) = v ⊗ v1 ⊗ · · · ⊗ vm.

For v ∈ V let v] ∈ V ∗ be defined by

〈v], w〉 = Ω(v, w) for all w ∈ V.

Then v 7→ v] is G-module isomorphism. We extend Ω to a bilinear form on V ⊗k for all k. Then

Ω(Cu, w) = Ω(u, C∗w), Ω(µ(v)u, w) = Ω(u, κ(v])w).

The intertwining operators for G on tensor spaces have the following form.

Lemma 15.4 Let G be O(V,Ω) (if Ω is symmetric) or Sp(V,Ω) (if Ω is skew-symmetric). Then
the space HomG(V ⊗l, V ⊗k) is zero if k + l is odd. If k + l is even, this space is spanned by the
operators σk(s)Aσl(t), where s ∈ Sk, t ∈ Sl and A is one of the following operators:
(1) CB with B ∈ HomG(V ⊗l, V ⊗(k−2)).
(2) BC∗ with B ∈ HomG(V ⊗(l−2), V ⊗k).
(3)

∑d
p=1 µ(fp)Bκ(f∗p ) with B ∈ HomG(V ⊗(l−1), V ⊗(k−1)) (here d = dimV ).

In (3) {fp} is any basis for V and {f∗p } is the dual basis for V ∗.

From this lemma, we obtain the commuting algebra of G.
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Theorem 15.5 Assume the form Ω is symmetric and G = O(V,Ω). Then EndG(
∧
V ) is generated

by the skew Euler operator E.

Corollary 15.6 (Ω symmetric) In the decomposition
∧
V =

⊕d
p=1

∧p V , the summands are irre-
ducible and mutually inequivalent O(V,Ω)-modules.

Now assume that dimV = 2n and Ω is skew-symmetric. Let G = Sp(V,Ω) and define

X = −1
2
PC∗P, Y =

1
2
PCP.

These operators on
∧
V commute with the action of G, since C, C∗ and P commute with G on

tensor space.

Lemma 15.7 One has the commutation relations

[Y, ε(v)] = [X, ι(v∗)] = 0, [Y, ι(v])] = ε(v), [X, ε(v)] = ι(v])

for v ∈ V and v∗ ∈ V ∗. Furthermore,

[E, Y ] = 2Y, [E,X ] = −2X, and [Y,X ] = E − nI.

Define
g
′ = Span{X, Y, E − nI}.

From Lemma 15.7 we see that g′ is a Lie algebra isomorphic to sl(2,C).

Theorem 15.8 (Ω skew-symmetric) The commutant of G = Sp(V,Ω) in End(
∧
V ) is generated

by g′.

Corollary 15.9 (G = Sp(V,Ω)) There is a canonical decomposition

∧
V ∼=

n⊕
k=0

Vn−k ⊗Hk, (15.4)

as a (G, g′)-module, where dim V = 2n and Vk is the irreducible g′-module of dimension k + 1.
Here Hk is an irreducible G module and Hk 6∼= Hl for k 6= l.

Lemma 15.10 The space HomG(
∧l V, ∧k V ), for k+ l an even integer, is spanned by operators of

the following forms:
(1) Y Q with Q ∈ HomG(

∧l V, ∧k−2 V ).
(2) QX with Q ∈ HomG(

∧l−2 V,
∧k V ).

(3)
∑2n
p=1 ε(fp)Qι(f

∗
p ) with Q ∈ HomG(

∧l−1 V,
∧k−1 V ). Here {fp} is any basis for V and {f∗p } is

the dual basis for V ∗.
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Appendix: Linear and Associative Algebra for Lecture 15.

Interior and Exterior Product Operators

Let V be a finite-dimensional vector space and
∧• V the exterior algebra over V . For v ∈ V and

v∗ ∈ V ∗ we have the exterior product operator ε(v) and the interior product operator ι(v∗) on
∧• V

that act by

ε(v)u = v ∧ u,

ι(v∗)(v1 ∧ · · · ∧ vk) =
k∑
j=1

(−1)j−1〈v∗, vj〉 v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vk

for u ∈
∧
V and vi ∈ V (here v̂j means to omit vj). Note that ε(v) :

∧p V → ∧p+1 V and
ι(v∗) :

∧p V → ∧p−1 V . Also

ι(v∗)(w ∧ u) = (ι(v∗)w) ∧ u+ (−1)kw ∧ (ι(v∗)u) for w ∈ ∧k V, u ∈ ∧ V.
Define the anti-commutator

{a, b} = ab+ ba

for elements a, b of an associative algebra. Then the exterior product and interior product operators
satisfy the canonical anti-commutation relations

{ε(x), ε(y)}= 0, {ι(x∗), ι(y∗)} = 0, {ε(x), ι(x∗)} = 〈x∗, x〉I (15.5)

for x, y ∈ V and x∗, y∗ ∈ V ∗. Interchanging V and V ∗, we also have the exterior and interior
multiplication operators ε(v∗) and ι(v) on

∧• V ∗ for v ∈ V and v∗ ∈ V ∗. They satisfy

ε(v∗) = ι(v∗)t, ι(v) = ε(v)t (15.6)

Exercises for Lecture 15.

1. Let G = O(V, B), where B is a symmetric bilinear form on V (assume dim V ≥ 3). Let {ei}
be a basis for V such that B(ei, ej) = δij.

(a) Let R ∈
(
V ⊗4

)G. Show that there are constants a, b, c ∈ C so that

R =
∑
i,j,k,l

{aδijδkl + bδikδjl + cδilδjk} ei ⊗ ej ⊗ ek ⊗ el

(Hint: Determine all the two-partitions of {1, 2, 3, 4}).
(b) Use (a) to find a basis for the space

[
S2(V )⊗ S2(V )

]G. (Hint: Symmetrize relative to
tensor positions 1, 2 and positions 3, 4.)

(c) Use (b) to show that dim EndG(S2(V )) = 2 and that S2(V ) decomposes into the sum of
two inequivalent irreducible G modules. (Hint: S2(V ) ∼= S2(V )∗ as G modules.)

(d) Find the dimensions of the irreducible modules in (c). (Hint : There is an obvious irre-
ducible submodule in S2(V ).)
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2. Let G = O(V, B) as in the previous exercise.

(a) Use part (a) of the previous exercise to find a basis for the space
[∧2 V ⊗ ∧2 V

]G
. (Hint:

Skew-symmetrize relative to tensor positions 1, 2 and positions 3, 4.)

(b) Use (a) to show that dim EndG(
∧2 V ) = 1 and hence

∧2 V is irreducible under G. (Hint:∧2 V ∼=
∧2 V ∗ as G modules.)

3. Let G = Sp(V,Ω), where Ω is a nonsingular skew form on V (assume dimV ≥ 4 is even). Let
{fi} and {f j} be bases for V such that Ω(fi, f j) = δij .

(a) Show that
(
V ⊗4

)G is spanned by the tensors∑
i,j

fi ⊗ f i ⊗ fj ⊗ f j,
∑
i,j

fi ⊗ fj ⊗ f i ⊗ f j,
∑
i,j

fi ⊗ fj ⊗ f j ⊗ f i.

(b) Use (a) to find a basis for the space
[∧2 V ⊗∧2 V

]G
. (Hint: Skew-symmetrize relative

to tensor positions 1, 2 and positions 3, 4.)

(c) Use (b) to show that dim EndG(
∧2 V ) = 2 and that

∧2 V decomposes into the sum of two
inequivalent irreducible G modules. (Hint:

∧2 V ∼=
∧2 V ∗ as a G-module.)

(d) Find the dimensions of the irreducible modules in (c). (Hint : There is an obvious irre-
ducible submodule in

∧2 V .)

4. Let G = Sp(V,Ω) as in the previous exercise.

(a) Use part (a) of the previous exercise to find a basis for the space
[
S2(V )⊗ S2(V )

]G.
(Hint: Symmetrize relative to tensor positions 1, 2 and positions 3, 4.)

(b) Use (a) to show that dim EndG(S2(V )) = 1 and hence S2(V ) is irreducible under G.
(Hint: S2(V ) ∼= S2(V )∗ as a G-module.)
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Lecture 16. Tensor Models for Irreducible Representations

Fundamental Representations

Let G be a classical group whose Lie algebra g is semisimple. The irreducible finite-dimensional
representations of g are parameterized by their highest weights. We shall prove that for every
µ ∈ P++(g), there exists an irreducible finite-dimensional g-module V with highest weight µ. We
begin with the so-called fundamental representations. The elements of P++(g) are of the form

n1$1 + · · ·+ nl$l, with ni ∈ N,

where $1, . . . , $l are the fundamental weights. An irreducible finite-dimensional representation
of g whose highest weight is $k for some k is called a fundamental representation . We now
prove the existence of the fundamental representations by giving explicit models for them (for the
orthogonal groups this construction will be completed in Lecture 18 with the construction of the
spin representations).

Special Linear Group

We construct the fundamental representations when G is SL(n,C). Let (σr,
∧r Cn) be the rth

exterior power of the defining representation of G on Cn, for r = 1, 2, . . . , n.

Theorem 16.1 Let G = SL(n,C). The representation σr on the rth exterior power
∧r Cn is

regular, irreducible and has highest weight $r for 1 ≤ r < n.

Remark. For r = n the space
∧n Cn is one-dimensional and σn is the trivial representation of

SL(n,C).

Special Orthogonal Group

Let G = SO(n,C). Let σ1 be the defining representation of G on Cn and denote by σr the
representation of G on the rth exterior power

∧r Cn.

Theorem 16.2 (1) Let n = 2l + 1 ≥ 3 be odd. For 1 ≤ r ≤ l, (σr,
∧r Cn) is an irreducible

representation of SO(n,C) with highest weight $r for r ≤ l− 1 and highest weight 2$l for r = l.

(2) Let n = 2l ≥ 4 be even.
(a) For 1 ≤ r ≤ l − 1, (σr,

∧r Cn) is an irreducible representation of SO(n,C) with highest weight
$r for r ≤ l− 2 and highest weight $l−1 +$l for r = l − 1.
(b) For r = l, the space

∧l Cn is irreducible under the action of O(n,C). As a module for SO(n,C)
it decomposes into the sum of two irreducible representations with highest weights 2$l−1 and 2$l.

Symplectic Group

Let G = Sp(C2l,Ω), where Ω is a non-degenerate symplectic form. We recall the decomposition of∧
C2l under G (Corollary 15.9). Let θ ∈ (

∧2 V )G be the G-invariant skew 2-tensor corresponding
to Ω. Let Y be the operator of exterior multiplication by 1

2θ, and let X = −Y ∗ (adjoint operator
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relative to the skew-bilinear form on
∧
V obtained from Ω). Set H = lI − E, where E is the

skew-Euler operator. Then

[H,X ] = 2X, [H, Y ] = −2Y, [X, Y ] = H

by Lemma 15.7. Set g′ = Span{X, Y,H}. Then g′ ∼= sl(2,C) and g′ generates the commuting
algebra EndG(

∧
V ), by Theorem 15.8.

We say that an element u ∈
∧
C2l is Ω-harmonic if Xu = 0. Let H(

∧
C2l, Ω) be the space of

Ω-harmonic elements in
∧
C2l. Since X :

∧p C2l → ∧2p−2 C2l, an element u is Ω-harmonic if and
only if each homogeneous component of u is Ω-harmonic. Thus

H(
∧
C2l, Ω) =

⊕
p≥0H(

∧ pC2l,Ω),

where H(
∧p C2l, Ω) = {u ∈

∧p C2l : Xu = 0}. Because X commutes with G, the spaces
H(
∧p C2l, Ω) are G-invariant.

Theorem 16.3 (1) If p > l then H(
∧p C2l, Ω) = 0.

(2) Let Vk be the irreducible g′-module of dimension k + 1. Then∧
C2l ∼=

⊕l
p=0

{
Vl−p ⊗H(

∧p C2l, Ω)
}

(16.1)

as a (g′, G)-module.
(3) If 1 ≤ p ≤ l, then H(

∧p C2l, Ω) is an irreducible G-module with highest weight $p.

Corollary 16.4 The map C[θ] ⊗ H(
∧
C2l, Ω) → ∧

C2l given by f(θ) ⊗ u 7→ f(θ) ∧ u (exterior
multiplication) is a G-module isomorphism. Thus∧k C2l =

⊕[k/2]
p=0 θ

p ∧ H(
∧k−2p C2l, Ω). (16.2)

Hence
∧k C2l is multiplicity-free as a G-module and has highest weights $k−2p for p = 0, 1, . . . , [k/2].

Corollary 16.5 For k = 1, . . . , l one has dimH(
∧k C2l, Ω) =

(2l
k

)
−
( 2l
k−2

)
.

We can describe the space H(
∧p C2l, Ω) in another way. Let vi ∈ C2l. Call v1 ∧ · · ·∧ vr an isotropic

r-vector if Ω(vi, vj) = 0 for i, j = 1, . . . , r.

Proposition 16.6 For p = 1, . . . , l the space H(
∧p C2l, Ω) is spanned by the isotropic p-vectors.

Cartan Product

Now that we have constructed the fundamental representations of g (with three exceptions in
the case of the orthogonal groups), we show how to obtain more irreducible representations by
decomposing tensor products of representations already constructed.
Given finite-dimensional representations (ρ, U) and (σ, V ) of g, we can form the tensor product
(ρ⊗ σ, U ⊗ V ) of these representations. The weight spaces of ρ⊗ σ are

(U ⊗ V )(ν) =
∑

λ+µ=ν

U(λ)⊗ V (µ). (16.3)

In particular, for ν ∈ Pg we have

dim(U ⊗ V )(ν) =
∑

λ+µ=ν

dimU(λ) dimV (µ) (16.4)
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Proposition 16.7 Let (πλ, V λ) and (πµ, V µ) be finite dimensional irreducible representations of g

with highest weights λ, µ ∈ P++(g).
(1) Fix highest weight vectors vλ ∈ V λ and vµ ∈ V µ. Then the g-cyclic subspace U ⊂ V λ ⊗ V µ

generated by vλ ⊗ vµ is an irreducible g-module with highest weight λ+ µ.
(2) If ν occurs as the highest weight of a g-submodule of V λ ⊗ V µ then ν � λ+ µ.
(3) The irreducible representation (πλ+µ, V λ+µ) occurs with multiplicity one in V λ ⊗ V µ.

We call the submodule U in (1) of Proposition 16.7 the Cartan product of the representations
(πλ, V λ) and (πµ, V µ).

Corollary 16.8 (1) The set of highest weights of irreducible finite-dimensional g-modules is closed
under addition.
(2) Suppose G is connected and has Lie algebra g. If πλ and πµ are differentials of irreducible regular
representations of G, then the Cartan product of πλ and πµ is the differential of an irreducible
regular representation of G with highest weight λ+ µ.
(3) The set of highest weights of irreducible regular G-modules is closed under addition.

Theorem 16.9 Let G be the group SL(V ), Sp(V ) or SO(V ) (in the last case assume dim V > 2).
For every dominant weight µ ∈ P++(G) there exists an integer k so that V ⊗k contains an irreducible
G-module with highest weight µ. Hence every irreducible regular representation of G occurs in the
tensor algebra of V .

Irreducible Representations of GL(n,C)

We shall extend the theorem of the highest weight to the group G = GL(n,C). Recall from Lecture
#7 that P++(G) consists of all weights

µ = m1ε1 + · · ·+mnεn, m1 ≥ · · · ≥ mn, mi ∈ Z. (16.5)

Define the dominant weights
λi = ε1 + · · ·+ εi (16.6)

for i = 1, . . . , n. Note that the restriction of λi to the diagonal matrices of trace zero is the
fundamental weight $i of sl(n,C) for i = 1, . . . , n− 1. If µ is given by (16.5) then

µ = (m1 −m2)λ1 + (m2 −m3)λ2 + · · ·+ (mn−1 −mn)λn−1 +mnλn.

Hence P++(G) consists of all weights

µ = k1λ1 + · · ·+ knλn, ki ∈ Z, k1 ≥ 0, . . . , kn−1 ≥ 0.

The restriction of µ to the diagonal matrices of trace zero is the weight

µ0 = (m1 −m2)$1 + (m2 −m3)$2 + · · ·+ (mn−1 −mn)$n−1. (16.7)

Theorem 16.10 Let G = GL(n,C) and let µ be given by (16.5). Then there exists a unique
irreducible regular representation (π, V ) of G such that
(1) the restriction of π to SL(n,C) has highest weight µ0 given by (16.7);
(2) π(zIn) = zm1+···+mnIV for z ∈ C×.
Furthermore, the representation (π̌, V ), where π̌(g) = π(gt)−1, is equivalent to the dual representa-
tion (π∗, V ∗).
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Lecture 17. Spinors

Clifford Algebras

Let V be a finite-dimensional complex vector space with a symmetric bilinear form β (for the
moment we allow β to be degenerate). A Clifford algebra for (V, β) is an associative algebra
Cliff(V, β) with unit 1 over C and a linear map

γ : V → Cliff(V, β)

satisfying the following properties:

(C1) {γ(x), γ(y)}= β(x, y)1 for x, y ∈ V , where {a, b} = ab+ ba is the anticommutator of a, b.

(C2) γ(V ) generates Cliff(V, β) as an algebra.

(C3) Given any complex associative algebra A with unit and a linear map φ : V → A such that
{φ(x), φ(y)}= β(x, y)1, there exists an associative algebra homomorphism

φ̃ : Cliff(V, β)→ A

such that φ = φ̃ ◦ γ:

V A-
φ

Cliff(V, β)
?

γ φ̃

�
�
�
��

Using the tensor algebra over V , one proves that an algebra satisfying properties (C1), (C2), and
(C3) exists and is unique (up to isomorphism).
Let Cliffk(V, β) be the span of 1 and the operators

γ(a1) · · ·γ(ap) for ai ∈ V and p ≤ k.

The subspaces Cliffk(V, β), for k = 0, 1, . . ., give a filtration of the Clifford algebra:

Cliffk(V, β) ·Cliffm(V, β) ⊂ Cliffk+m(V, β)

Let {vi : i = 1, . . . , n} be a basis for V . Since {γ(vi), γ(vj)} = β(vi, vj), we see from (C1) that
Cliffk(V, β) is spanned by 1 and the products

γ(vi1) · · ·γ(vip), i1 < i2 < · · ·< ip

for p ≤ k. In particular, we have

Cliff(V, β) = Cliffn(V, β), n = dimV.

and dim Cliff(V, β) ≤ 2dimV .
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The linear map v 7→ −γ(v) satisfies (C3), so it extends to an algebra homomorphism

α : Cliff(V, β)→ Cliff(V, β)

such that
α(γ(v1) · · ·γ(vk)) = (−1)kγ(v1) · · ·γ(vk).

Obviously α2(u) = u for all u ∈ Cliff(V, β). Hence α is an automorphism, which we call the main
involution of Cliff(V, β). There is a decomposition

Cliff(V, β) = Cliff+(V, β)⊕Cliff−(V, β),

where Cliff+(V, β) is spanned by products of an even number of elements of V , Cliff−(V, β) is
spanned by products of an odd number of elements of V , and α acts by ±1 on Cliff±(V, β).

Spaces of Spinors

Let V be a finite-dimensional complex vector space with nondegenerate symmetric bilinear form β.
Let S be a complex vector space and let γ : V → End(S) be a linear map. We say that (S, γ) is a
space of spinors for (V, β) if

(S1) {γ(x), γ(y)}= β(x, y)I for all x, y ∈ V .

(S2) The only subspaces of S that are invariant under γ(V ) are 0 and S.

If (S, γ) is a space of spinors, then the map γ extends to an irreducible representation

γ̃ : Cliff(V, β)→ End(S),

and every irreducible representation of Cliff(V, β) arises this way. Since Cliff(V, β) is a finite-
dimensional algebra, a space of spinors for (V, β) must also be finite-dimensional.
If (γ, S) and (γ ′, S ′) are spaces of spinors for (V, β) then (S, γ) is said to be isomorphic to (S ′, γ ′)
if there exists a linear bijection T : S → S ′ such that Tγ(v) = γ ′(v)T for all v ∈ V .

Theorem 17.1 Let n = dimV .
(1) If n is even then up to isomorphism there is exactly one space of spinors (γ, S) for (V, β) and
dimS = 2n/2.
(2) If n is odd, then up to isomorphism there are two spaces of spinors for (V, β) and they are each
of dimension 2[n/2] .

Structure of Clifford Algebras

Proposition 17.2 Suppose dimV = n is even. Let (S, γ) be a space of spinors for (V, β). Then
(End(S), γ) is a Clifford algebra for (V, β). Thus Cliff(V, β) is a simple algebra of dimension 2n.
The map γ : V → Cliff(V, β) is injective. For any basis {v1, . . . , vn} of V the set of all ordered
products

γ(vi1) · · ·γ(vip) 1 ≤ i1 < . . . < ip ≤ n (17.1)

(empty product = 1) is a basis for Cliff(V, β).
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Before considering the Clifford algebra for an odd-dimensional space, we introduce another model
for the spin spaces which is useful for calculations. Assume that dimV = 2l is even. Take the
β-isotropic spaces W , W ∗ and the basis e±i for V as above. Set

Ui =
∧
Ce−i = C1⊕ Ce−i

for i = 1, . . . , l. Then Ui is a graded algebra with ordered basis {1, e−i} and relation e2
−i = 0. Since

W ∗ = Ce−1 ⊕ · · · ⊕ Ce−l, there is an isomorphism of graded algebras∧•(W ∗) ∼= U1⊗̂ · · · ⊗̂Ul (skew-commutative tensor product). (17.2)

If we ignore the algebra structure and consider
∧
W ∗ as a vector space, we have an isomorphism∧

W ∗ ∼= U1 ⊗ · · · ⊗ Ul. Hence

End(
∧
W ∗) ∼= End(U1)⊗ · · · ⊗ End(Ul) (17.3)

(algebra isomorphism). Notice that in this isomorphism the factors on the right mutually commute.
To describe the operators γ(x) in this tensor product model, let J = {j1, . . . , jp} with 1 ≤ j1 < · · · <
jp ≤ l. Under the isomorphism (17.2) the element e−j1 ∧ . . .∧e−jp corresponds to uJ = u1⊗· · ·⊗ul,
where

ui =

{
e−i if i ∈ J
1 if i /∈ J.

We have

e−i ∧ e−j1 ∧ . . . ∧ e−jp =

{
0 if i ∈ J

(−1)re−j1 ∧ . . .∧ e−i ∧ . . .∧ e−jp if i /∈ J,
where r is the number of indices in J that are less than i. Thus the exterior multiplication operator
ε(e−i) acts on the basis {uJ} by

A−i = H ⊗ · · · ⊗H ⊗
[

0 0
1 0

]
︸ ︷︷ ︸
ith place

⊗I ⊗ · · · ⊗ I,

where H =

[
1 0
0 −1

]
, I is the 2 × 2 identity matrix and we enumerate the basis for Ui in the

order 1, e−i. On the other hand,

ι(ei)(e−j1 ∧ . . .∧ e−jp) =

{
(1)re−j1 ∧ . . .∧ ê−i ∧ . . . ∧ e−jp if i ∈ J

0 if i /∈ J.

Thus the interior product operator ι(ei) acts on the basis {uJ} by

Ai = H ⊗ · · · ⊗H ⊗
[

0 1
0 0

]
︸ ︷︷ ︸
ith place

⊗I ⊗ · · · ⊗ I.

It is easy to check that the operators {A±i} satisfy the canonical anticommutation relations (the
factors of H in the tensor product ensure that AiAj = −AjAi). This gives a direct proof that
S = U1 ⊗ · · · ⊗ Ul together with the map e±i 7→ A±i furnishes a space of spinors for (V, β).
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When dimV = 2l+ 1 is odd, set

A0 = H ⊗ · · · ⊗H (l factors).

Then A2
0 = 1 and A0A±i = −A±iA0 for i = 1, . . . , l. Hence we can obtain models for the spinor

spaces (S, γ±) by seting S = U1 ⊗ · · · ⊗ Ul, with e±i acting by A±i and e0 acting by ±A0.

Proposition 17.3 Suppose dimV = 2l+ 1 is odd. Let (S, γ+) and (S, γ−) be the two inequivalent
spaces of spinors for (V, β), and let

γ : V → End(S)⊕ End(S), γ(v) = γ+(v)⊕ γ−(v).

Then (End(S)⊕End(S), γ) is a Clifford algebra for (V, β). Thus Cliff(V, β) is a semisimple algebra
and is the sum of two simple ideals of dimension 2n−1. The map γ : V → Cliff(V, β) is injective.
For any basis {v1, . . . , vn} of V the set of all ordered products

γ(vi1) · · ·γ(vip) 1 ≤ i1 < . . . < ip ≤ n

(empty product = 1) is a basis for Cliff(V, β).

Let V be odd-dimensional. Decompose V = W ⊕ Ce0 ⊕W ∗ as above. Set V0 = W ⊕W ∗ and let
β0 be the restriction of β to V0. Recall that Cliff+(V, β) is the subalgebra of Cliff(V, β) spanned by
the products of an even number of elements of V .

Lemma 17.4 There is an algebra isomorphism

Cliff(V0, β0) ∼= Cliff+(V, β)

Hence Cliff+(V, β) is a simple algebra.

Exercises for Lecture 17.

1. Let V = W ⊕W ∗ be an even-dimensional space, and β a bilinear form on V for which W
and W ∗ are β-isotropic and in duality.

(a) Let (S, γ) be a space of spinors for (V, β). Show that
⋂
w∗∈W∗ Ker(γ(w∗)) is one-

dimensional.

(b) Let S ′ =
∧
W and for w ∈ W , w∗ ∈ W ∗ define γ ′(w + w∗) = ε(w) + ι(w∗) on S ′, where

ε(w) is the exterior product operator and ι(w∗) is the interior product operator. Show that
(S ′, γ ′) is a space of spinors for (V, β).

(c) Fix 0 6= u ∈ ∧lW , where l = dimW . Show that there is a unique spinor-space isomor-
phism T from (

∧
W ∗, γ) to (

∧
W, γ ′) such that T (1) = u. Here γ(w+w∗) = ι(w) + ε(w∗) and

γ ′ is the map in (b).

(d) Let {e1, . . . , el} be a basis for W and {e−1, . . . , e−l} a basis for W ∗ such that β(ei, e−j) =
δij. For J = {1 ≤ j1 < · · · < jp ≤ l} set eJ = ej1 ∧ · · · ∧ ejp and e−J = e−j1 ∧ · · · ∧ e−jp . Let
T be the map in (c) defined using u = e1 ∧ · · · ∧ el. Prove that T (e−J ) = (−1)q−peJc , where
q = j1 + · · ·+ jp and Jc is the complement to J in {1, . . . , l}, arranged in increasing order.
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2. Let V be a complex vector space with a symmetric bilinear form β. Let {e1, . . . , en} be a
basis for V such that β(ei, ej) = δij .

(a) Show that if i, j, k are distinct, then

eiejek = ejekei = ekeiej ,

where the product is in the Clifford algebra for (V, β).

(b) Show that if A = [aij] is a symmetric n× n matrix, then
n∑

i,j=1

aij ei ej =
1
2

tr(A)

(product in the Clifford algebra for (V, β)).

(c) Show that if A = [aij] is a skew-symmetric n× n matrix, then
n∑

i,j=1

aij ei ej = 2
∑

1≤i<j≤n
aij ei ej

(product in the Clifford algebra for (V, β)).

3. Let (V, β) and e1, . . . , en be as in the previous exercise. Let Rijkl ∈ C for 1 ≤ i, j, k, l≤ n be
such that

(i) Rijkl = Rklij,

(ii) Rjikl = −Rijkl,
(iii) Rijkl +Rkijl + Rjkil = 0.

(a) Show that
∑
Rijkleiejekel = (1/2)

∑
Rijji , where the multiplication of the ei is in the

Clifford algebra for (V, β). (Hint : Use part (a) of the previous exercise to show that for each
l, the sum over distinct triples i, j, k is zero. Then use the anticommutation relations to show
that the sum with i = j is also zero. Finally, use part (b) of the previous exercise to simplify
the remaining sum.)

(b) Let g be a Lie algebra and B a symmetric non-degenerate bilinear form on g such that
B([x, y], z) = −B(y, [x, z]). Let e1, ..., en be an orthonormal basis of g relative to B. Show
that Rijkl = B([ei, ej], [ek, el]) satsifies (i), (ii), and (iii).

4. Let V = Cn and let β(x, y) = xty for x, y ∈ V .

(a) Show that when n ≥ 3, the polynomial x2
1 + · · ·+x2

n in the commuting variables x1, . . . , xn
cannot be factored into a product of linear factors with coefficients in C.

(b) Show that x2
1 + · · ·+ x2

n = 2(x1e1 + · · ·+ xnen)2 when the multiplication on the right is
done in the Clifford algebra Cliff(Cn, β) and e1, . . . , en is a β-orthonormal basis for Cn.

(c) Let (S, γ) be a space of spinors for (Cn, β). Consider the Laplace operator ∆ =
1
2

∑n
i=1(∂/∂xi)2 acting on P(Cn, S) (polynomial functions with values in S). Show that ∆

can be factored as D2, where

D = γ(e1)
∂

∂x1
+ · · ·+ γ(en)

∂

∂xn

(D is called the Dirac operator).
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Lecture 18. Spin Representations

Embedding so(V ) in Cliff(V )

For a, b ∈ V define Ra,b ∈ End(V ) by

Ra,bv = β(b, v)a− β(a, v)b.

Since
β(Ra,bx, y) = β(b, x)β(a, y)− β(a, x)β(b, y) = −β(x, Ra,by),

we have Ra,b ∈ so(V, β).

Lemma 18.1 so(V, β) = Span{Ra,b : a, b ∈ V }.

Since Ra,b is a skew-symmetric bilinear function of the vectors a, b, it defines a linear map

R :
∧

2V → so(V, β), a ∧ b 7→ Ra,b.

This map is easily seen to be injective, and by Lemma 18.1 it is surjective. We calculate that

[Ra,b, Rx,y] = RRa,bx,y +Rx,Ra,by (18.1)

for a, b, x, y ∈ V , which shows that R intertwines the representation of so(V, β) on
∧2 V with the

adjoint representation of so(V, β).

Lemma 18.2 Define a linear map φ : so(V, β)→ Cliff2(V, β) by

φ(Ra,b) =
1
2

[γ(a), γ(b)], for a, b ∈ V.

Then φ is an injective Lie algebra homomorphism, and

[φ(X), γ(v)] = γ(Xv). (18.2)

for X ∈ so(V, β) and v ∈ V .

Spin Representations of so(V )

Assume V is even dimensional and fix a decomposition

V = W ⊕W ∗

with W and W ∗ maximal β-isotropic subspaces. Let (C•(W ), γ) be the space of spinors defined in
the proof of Theorem 17.1. Define the even and odd spin spaces

C+(W ) =
⊕
p even

Cp(W ), C−(W ) =
⊕
p odd

Cp(W ).

Then
γ(v) : C±(W )→ C∓(W ), for v ∈ V, (18.3)
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so the action of γ(V ) interchanges the even and odd spin spaces. Denote by γ̃ the extension of γ
to a representation of Cliff(V, β) on C•(W ).
Let φ : so(V, β)→ Cliff(V, β) be the Lie algebra homomorphism in Lemma 18.2. Set

π(X) = γ̃(φ(X)), for X ∈ so(V, β).

Since φ(X) is an even element in the Clifford algebra, (18.3) implies that π(X) preserves the even
and odd subspaces C±(W ). We define

π±(X) = π(X)|C±(W )

and call π± the half-spin representations of so(V, β). Notice that the labeling of these representations
by ± depends on a particular choice of the space of spinors. In both cases the representation space
has dimension 2l−1, when dim V = 2l.

Proposition 18.3 (dimV = 2l) The representations π± of so(V, β) are irreducible and have highest
weights $± = 1

2(ε1 + · · ·+ εl−1 ± εl). The weights of π± are

1
2

(±ε1 ± · · · ± εl) (18.4)

(with an even number of minus signs for π+ and an odd number of minus signs for π−), and each
weight has multiplicity one.

Now assume dimV = 2l+ 1. Fix a decomposition

V = W ⊕ Ce0 ⊕W ∗

with W and W ∗ maximal β-isotropic subspaces, as above. Let (C•(W ), γ+) be the space of spinors
defined in the proof of Theorem 17.1. Define a representation of so(V, β) on C•(W ) by

π = γ̃+ ◦ φ,

where φ : so(V, β) → Cliff(V, β) is the homomorphism in Lemma 18.2 and γ̃+ is the canonical
extension of γ+ to a representation of Cliff(V, β) on C•(W ). We call π the spin representation of
so(V, β). The representation space has dimension 2l when dimV = 2l + 1.

Proposition 18.4 (dimV = 2l + 1) The spin representation of so(V, β) is irreducible and has
highest weight $l = 1

2(ε1 + · · ·+ εl−1 + εl). The weights of the spin representation are

1
2

(±ε1 ± · · · ± εl) (18.5)

and each weight has multiplicity one.
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Spin Groups

On Cliff(V, β) there is the main anti-automorphism τ (‘transpose’) that acts by

τ(γ(v1) · · ·γ(vp)) = γ(vp) · · ·γ(v1), for vi ∈ V.

We define the conjugation u 7→ u∗ on Cliff(V, β) by

u∗ = τ(α(u)),

where α is the main involution. For v1, . . . , vp ∈ V we have

(γ(v1) · · ·γ(vp))∗ = (−1)pγ(vp) · · ·γ(v1).

In particular,

γ(v)∗ = −γ(v), γ(v)γ(v)∗ = −1
2
β(v, v) for v ∈ V .

Suppose v is non-isotropic and normalized so that β(v, v) = −2. Then

γ(v)γ(v)∗ = γ(v)∗γ(v) = 1,

so we see that γ(v) is an invertible element of Cliff(V, β) with γ(v)−1 = γ(v)∗. Furthermore, for
y ∈ V we can use the Clifford relations to write

α(γ(v))γ(y)γ(v)∗ = γ(v)γ(y)γ(v) = (β(v, y)− γ(y)γ(v))γ(v)
= γ(y) + β(v, y)γ(v) = γ(svy),

where svy = y + β(v, y)v is the orthogonal reflection through the hyperplane (v)⊥. Thus the
(twisted) conjugation

γ(y) 7→ α(γ(v))γ(y)γ(v)∗

on the Clifford algebra corresponds to the reflection sv on V .
In general, we define

Pin(V, β) = {x ∈ Cliff(V, β) : x · x∗ = 1 and α(x)γ(V )x∗ = γ(V )}.

Since Cliff(V, β) is finite-dimensional, the condition x · x∗ = 1 implies that x is invertible, with
x−1 = x∗. Thus Pin(V, β) is a subgroup of the group of invertible elements of Cliff(V, β). The
defining conditions are given by polynomial equations in the components of x, so Pin(V, β) is an
algebraic group. The calculation above shows that γ(v) ∈ Pin(V, β) when v ∈ V and β(v, v) = −2.

Theorem 18.5 There is a unique regular homomorphism

π : Pin(V, β)→ O(V, β)

such that α(x)γ(v)x∗ = γ(π(x)v) for v ∈ V and x ∈ Pin(V, β). Furthermore, π is surjective and
Ker(π) = ±1.

Since O(V, β) is generated by reflections, the surjectivity of the map π furnishes an alternate
description of the Pin group:
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Corollary 18.6 The elements −1 and γ(v), with v ∈ V and β(v, v) = −2, generate the group
Pin(V, β).

Finally, we introduce the spin group. Assume dimV ≥ 3. Define

Spin(V, β) = Pin(V, β)∩Cliff+(V, β).

Let l = [dimV/2]. When dimV is even, we fix a β-isotropic basis {e1, . . . , el, e−1, . . . , e−l} for V
with

β(ei, ej) = δi+j (18.6)

for i, j = ±1, . . . ,±l. If dimV is odd, we take a basis {e0, e1, . . . , el, e−1, . . . , e−l} for V so that
(18.6) holds for i, j = 0,±1, . . . ,±l. For i = 1, . . . , l and z ∈ C×, define

ci(z) = zγ(ei)γ(e−i) + z−1γ(e−i)γ(ei).

For z = [z1, . . . , zl] ∈ (C×)l set c(z) = c1(z1) · · ·cl(zl).

Lemma 18.7 The map z 7→ c(z) is a regular injective homomorphism from (C×)l to Spin(V, β).

Let H ⊂ SO(V, β) be the maximal torus that is diagonalized by the β-isotropic basis {ei} for V .
Define

H̃ = {c(z) : z ∈ (C×)l}.
Then H̃ is a torus of rank l in Spin(V, β), by Lemma 18.7.

Theorem 18.8 The group Spin(V, β) is the identity component of the group Pin(V, β), and

π : Spin(V, β)→ SO(V, β)

is surjective with Ker(π) = {±1}. One has H̃ = π−1(H) and

π(c(z)) =

{
diag[z2

1 , . . . , z
2
l , z
−2
l , . . . , z−2

1 ] (dimV = 2l),
diag[z2

1 , . . . , z
2
l , 1, z

−2
l , . . . , z−2

1 ] (dimV = 2l + 1).

Hence H̃ is a maximal torus in Spin(V, β) and every semisimple element of Spin(V, β) is conjugate
to an element of H̃.

Theorem 18.9 The Lie algebra of Spin(V, β) is φ(so(V, β)), where φ is the isomorphism of Lemma
18.2.

Corollary 18.10 Let P be the weight lattice of so(V, β). For λ ∈ P++ there is an irreducible
regular representation of Spin(V, β) and so(V, β) with highest weight λ.

Exercises for Lecture 18.

1. (a) Show that Spin(3,C) ∼= SL(2,C) and the spin representation is the representation on C2.
(Hint: Consider the adjoint representation of SL(2,C).)

(b) Show that Spin(5,C) ∼= Sp(C4) and the spin representation is the defining representation
of Sp(C4). (Hint: Use Exercise # 4 from Lecture 7.)
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2. (a) Show that Spin(4,C) ∼= SL(2,C)× SL(2,C) and the half-spin representations are the two
representations (x, y) 7→ x and (x, y) 7→ y on C2.

(b) Show that Spin(6,C) ∼= SL(4,C) and the half-spin representations are the representation
of SL(4,C) on C4 and its dual. (Hint: Use Exercise #3 of Lecture 7.)

3. Let V = Cn with nondegenerate bilinear form β. Let C = Cliff(V, β) and identify V with
γ(V ) ⊂ C by the canonical map γ. Let α be the automorphism of C such that α(v) = −v for
v ∈ V , let τ be the antiautomorphism of C such that τ(v) = v for v ∈ V , and let x 7→ x∗ be
the antiautomorphism α ◦ τ of C. Define the norm function ∆ : C → C by ∆(x) = x∗x. Let
L = {x ∈ C : ∆(x) ∈ C}.
(a) Show that λ+ v ∈ L for all λ ∈ C and v ∈ V .

(b) Show that if x, y ∈ L and λ ∈ C then λx ∈ L and

∆(xy) = ∆(x)∆(y), ∆(τ(x)) = ∆(α(x)) = ∆(x∗) = ∆(x).

Hence xy ∈ L and L is invariant under τ and α. Prove that x ∈ L is invertible if and only if
∆(x) 6= 0. In this case x−1 = ∆(x)−1x∗ and ∆(x−1) = 1/∆(x).

(c) Let Γ(V, β) ⊂ L be the set of all products w1 · · ·wk, where wj ∈ C + V and ∆(wj) 6= 0
for all 1 ≤ j ≤ k (k arbitrary). Prove that Γ(V, β) is a group (under multiplication) that is
stable under α and τ .

(d) Prove that if g ∈ Γ(V, β) then α(g)(C + V )g∗ = C + V . (Γ(V, β) is called the Clifford
group; note that it contains Pin(V, β).)

4. Let g be the Lie algebra of a classical group. Assume that g = n + h + n is simple. Let
l = dim h be the rank of g and let B(X, Y ) = tr(XY ) for X, Y ∈ g. Then B is a nondegenerate
symmetric form on g, and ad : g −→ so(g, B).

(a) Set W = n+u, where u is a maximal B-isotropic subspace in h. Show that W is a maximal
B-isotropic subspace of g. Note that the weights of ad(h) on W are the positive roots with
multiplicity one and 0 with multiplicity [l/2].

(b) Let π be the spin representation of so(g, B) if l is odd or either of the half-spin represen-
tations of so(g, B) if l is even. Show that the representation π ◦ ad of g is 2[l/2] copies of the
irreducible representation of g with highest weight ρ = $1 + · · ·+ $l. ( Hint: Use (a) and
Propositions 18.3 and 18.4 to show that ρ is the only highest weight of π ◦ ad and that it
occurs with multiplicity 2[l/2]. Now apply Theorem 13.4.)
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Part 6: Representations on Spaces of Regular Functions

Lecture 19. Multiplicity Free Spaces

Isotypic Decomposition of Aff(X)

Let X be an affine algebraic set on which the reductive algebraic group G acts regularly. We denote
by ρX the associated representation of G on Aff(X), given by

ρX(g)f(x) = f(g−1x), for f ∈ Aff(X).

This representation is locally regular: for any finite-dimensional subspace U ⊂ Aff(X), the G-
invariant space

C[G]U =
∑
g∈G

ρX(g)U

that it generates is finite-dimensional, and the representation of G on C[G]U is regular.
Let Ĝ denote the set of equivalence classes of irreducible regular finite-dimensional representations
of G. For ω ∈ Ĝ let (πω, Vω) be a representation in the class ω. Let (ρ, E) be a locally-regular
representation of G, for example the representation (ρX ,Aff(X)) as above. Denote by E(ω) the sum
of all the G-irreducible subspaces V of E such that ρ|V is in the class ω.

Proposition 19.1 One has E =
⊕
ω∈Ĝ

E(ω).

Let ω ∈ Ĝ. We can decompose the isotypic subspace E(ω) as a direct sum of irreducible representa-
tions in the class ω (usually in a non-unique way). The number of summands (which can be finite
or infinite) is uniquely determined and is called the multiplicity of ω in E, denoted as multρ(ω). A
linear G-intertwining map T : Vω → E is called a covariant of type ω for the representation (ρ, E).
We denote the space of all covariants of type ω by HomG(ω, ρ). It is a G-module with trivial action.

Lemma 19.2 Let ω ∈ Ĝ. The map T ⊗ v 7→ T (v) for T ∈ HomG(ω, ρ) and v ∈ Vω gives a
G-module isomorphism

HomG(ω, ρ)⊗ Vω ∼= E(ω). (19.1)

In particular,
multρ(ω) = dim HomG(ω, ρ). (19.2)

We say that (ρ, E) is multiplicity-free if multρ(ω) ≤ 1 for all ω ∈ Ĝ. When (ρX ,Aff(X)) is
multiplicity-free, where X is an affine G-space, we also say that X is a multiplicity-free G-space.
Now suppose that G is a connected classical group. Fix a Borel subgroup B = HN of G, with H
a maximal torus in G and N the unipotent radical of B. Taking G ⊂ GL(n,C), we can always
conjugate G so that H consists of the diagonal matrices in G and N consists of the upper-triangular
unipotent matrices in G. Write P (G) ⊂ h∗ for the weight lattice of G and P++(G) for the dominant
weights, relative to the system of positive roots determined by N . For λ ∈ P (G) we denote by
h 7→ hλ the corresponding character of H . We extend this to a character of B by setting (hn)λ = hλ

for h ∈ H and n ∈ N .
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Recall from Theorem 13.2 that an irreducible representation (π, V ) of G is completely determined
(up to equivalence) by its highest weight, relative to the subgroup B. The subspace V N of N -fixed
vectors in V is one-dimensional, and H acts on it by a character h 7→ hλ where λ ∈ P++(G). For
each such λ we fix a model (πλ, V λ) for the irreducible representation with highest weight λ, and
we fix a non-zero highest weight vector vλ ∈ (V λ)N . Let Aff(X)N be the space of N -fixed regular
functions on X . For every regular character b 7→ bλ of B, let Aff(X)N(λ) be the N -fixed regular
functions f of weight λ:

ρX(b)f = bλf for b ∈ B. (19.3)

We can then describe the G-isotypic decomposition of Aff(X) as follows.

Theorem 19.3 For λ ∈ P++(G), the isotypic subspace of type πλ in Aff(X) is the span of
ρX(G)Aff(X)N(λ). This subspace is isomorphic to V λ ⊗ Aff(X)N(λ) as a G-module, with action
πλ(g)⊗ 1. Thus

Aff(X) ∼=
⊕

λ∈P++(G)

V λ ⊗ Aff(X)N(λ)

This theorem shows that the G-multiplicities in Aff(X) are the dimensions of the spaces Aff(X)N(λ).
We have Aff(X)N(λ) ·Aff(X)N(µ) ⊂ Aff(X)N(λ+µ) under pointwise multiplication. Hence the set

S(X) = {λ ∈ P++(G) : Aff(X)N(λ) 6= 0} (the spectrum of X)

is an additive semigroup that completely determines the G-isotypic decomposition of Aff(X).

Multiplicities and B-Orbits

We now obtain a geometric condition for an affine G-space X to be multiplicity free. For a subgroup
M ⊂ G and x ∈ X we write Mx = {m ∈M : m · x = x} for the isotropy group at x. Note that if
m = Lie(M), then the Lie algebra of Mx is

mx = {Y ∈ m : dρ(Y )x = 0}.

(Here dρ denotes the differential of the representation ρ of G on Aff(X). For Y ∈ g the operator
dρ(Y ) is a vector field on X , and dρ(Y )x is the corresponding tangent vector at x. When X is a
vector space and the G-action is linear, then dρ(Y )x = dρ(Y )x.)

Theorem 19.4 Let X be an irreducible affine G-space. Suppose there is a point x0 ∈ X such that
B · x0 is open in X (this is equivalent to the condition dim b = dimX + dim bx0). Then
(1) X is multiplicity-free as a G-space.
(2) If λ ∈ S(X) then hλ = 1 for all h ∈ Hx0.

B-eigenfunctions for Linear Actions

Let (σ,X) be a regular representation of G. Let ρ(g)f(x) = f(σ(g−1)x) be the corresponding
representation of G on P(X).
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Theorem 19.5 Assume there is an x0 ∈ X with σ(B)x0 open in X . Let

H0 = {h ∈ H : h · x0 = x0}.

Let E(X) be the set of all irreducible polynomials f ∈ P(X) such that f is a B-eigenfunction and
f(x0) = 1. Then the following holds.
(1) The set E(X) = {f1, . . . , fk} is finite with k ≤ dim(H/H0), where the polynomial fi has B-
weight λi and is homogeneous of degree di. Furthermore, the set of weights {λ1, . . . , λk} is linearly
independent over Q and hλi = 1 for all h ∈ H0.
(2) The B-eigenfunctions f ∈ P(X), normalized by f(x0) = 1, are the functions

fm =
k∏
i=1

fmii (19.4)

with m = (m1, . . . , mk) ∈ Nk arbitrary.
(3) For r ≥ 0 the space Pr(X) of homogeneous polynomials of degree r decomposes under G as

Pr(X) =
⊕
λ

V λ,

where the sum is over all λ =
∑
miλi with r =

∑
dimi, and V λ is the irreducible G-module

generated by fm.

Corollary 19.6 The algebra P(X)N ∼= C[f1, . . . , fk] is a polynomial ring with generators E(X).

Exercises for Lecture 19.

1. Suppose the reductive group G acts linearly on a vector space V . The group C× acts on P(V )
via scalar multiplication on V , and commutes with G. Hence one has a representation of the
group G× C× on P(V ). Prove that the isotypic decomposition of P(V ) under G× C× is

P(V ) =
⊕
k≥0

⊕
ω∈Ĝ

Pk(V )(ω)

where Pk(V )(ω) is the ω-isotypic component in the homogeneous polynomials of degree k.

2. Let G = SL(n,C) acting on X = Cn by the defining representation (n ≥ 2). Let B be the
Borel subgroup of upper-triangular matrices in G and H the subgroup of diagonal matrices
in G.

(a) Let x0 = en. Show that Bx0 is Zariski open in Cn and find the stabilizer Hx0.

(b) Let λ ∈ P++(G). Show that hλ = 1 for all h ∈ Hx0 if and only if λ = k$n−1 for some
k ∈ N, where $n−1 is the highest weight of the representation of G on (Cn)∗.

(c) Show that the only irreducible normalized B eigenfunction on Cn is f(x) = xn and the G
spectrum of X is {k$n−1 : k ∈ N}.
(d) Show that the space Pk(Cn) is an irreducible G module with highest weight k$n−1.
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3. Let G = Sp(C2n,Ω), where Ω is the bilinear form with matrix

[
0 s0

−s0 0

]
(where s0 has 1

on the antidiagonal, 0 elsewhere). Take as Borel subgroup B the upper-triangular matrices
in G with maximal torus H the diagonal matrices in G.

(a) Show that the action of G on C2n is multiplicity-free. (Hint : Consider the B-orbit of
e1 + e2n.)

(b) Show that there is one irreducible B-eigenfunction. namely x2n. (Hint : Calculate the
stabilizer of e1 + e2n in H .)

(c) Show that for k ≥ 1 the space Pk(C2n) is irreducible under G, with highest weight k$1

and highest weight eigenfunction (x2n)k.

4. Let G = SO(Cn, ω) with n ≥ 3, where the symmetric form ω has matrix with 1 on the
antidiagonal and 0 elsewhere. Let Q(x) = ω(x, x) be the G-invariant quadratic form on Cn.
Take as Borel subgroup B the upper-triangular matrices in G with maximal torus H the
diagonal matrices in G.

(a) Show that the action of C× × G on Cn is multiplicity-free, where C× acts by scalar
multiplication. (Hint : Consider the C× × B-orbit of x0 = e1 + en when n is even, or x0 =
e1 + el+1 + en when n = 2l + 1 is odd.)

(b) Show that the irreducible C× × B-eigenfunctions are xn and Q. (Hint : Calculate the
stabilizer in C× ×H of the vector x0 in (a).)

(c) Show that for r ≥ 1

Pr(Cn) =
⊕

k+2m=r

QmV k$1 (k ≥ 0, m ≥ 0),

where V k$1 is the G cyclic subspace generated by (xn)k and is an irreducible representation
of highest weight k$1.
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Lecture 20. Maximal Parabolic Subgroups and Multiplicity Free Spaces

Maximal Parabolic Subalgebras

Let g be a simple Lie algebra over C. Fix a Cartan subalgebra h and a set Φ+ of positive roots of
h on g. Let ∆ be the simple roots in Φ+. Fix an element α0 ∈ ∆ and set ∆0 = ∆ \ {α0}. Then
there exists a unique element H0 ∈ h such that

〈α0, H0〉 = 1, 〈α,H0〉 = 0 for all α ∈ ∆0.

Set Φ0 = {γ ∈ Φ : 〈γ,H0〉 = 0} and Ψ = {β ∈ Φ+ : 〈H0, β〉 > 0}. Then Φ0 consists of
all roots that do not contain α0, and Ψ consists of all positive roots that contain α0. Define
h0 = Span{hα : α ∈ ∆0}, a = CH0, and

m = h0 +
∑
γ∈Φ0

gγ , p+ =
∑
β∈Ψ

gβ , p− =
∑
β∈Ψ

g−β .

Then g = p+ + m + a + p− (direct sum of vector spaces) and m + a + p+ is the maximal parabolic
subalgebra associated with the subset {α0} of ∆.

Proposition 20.1
(1) The subalgebra m + a is reductive with center a and semisimple derived algebra m. The Dynkin
diagram for m is obtained by removing the vertex for α0 from the diagram for g.
(2) The subalgebras p+ and p− are nilpotent, and m+a normalizes p±. Also p− ∼= (p+)∗ as a module
for m + a.
(3) Let α̃ be the highest positive root. Suppose α0 ∈ ∆ appears in α̃ with coefficient 1. Then
[p+, p+] = 0 and p+ is the irreducible m module with highest weight α̃|h0

. Furthermore, adH0 has
eigenvalues ±1, with eigenspaces p±.

Proof.
(1): h0 is a Cartan subalgebra of m. The root system of m is the restrictions of Φ0 to h0.
(2): This is clear from the root space decomposition; the Killing form gives the duality between p+

and p−.
(3): If β ∈ Ψ, then β = c0α0 + · · · with c0 ≥ 1. But β ≤ α̃ (in the partial order defined by
the positive roots). Hence c0 = 1. This shows that ad(H0) = 1 on p+. Also, if β, γ ∈ Ψ then
β + γ = 2α0 + · · ·, so β + γ /∈ Φ. Thus [p+, p+] = 0.
To prove irreducibility of p+, suppose 0 6= V ⊂ p+ is invariant under ad m. Then V ∗ ⊂ p− is also
m invariant. Since [p+, p−] is contained in the zero eigenspace of J, which is a + m, it follows that
V ∗ + a + m + V is an ideal in g. But g is simple, so V = p+. The α̃ root space is in p+. Since it is
annihilated by ad gβ for all β ∈ Φ+, it is the highest weight space for p+ as an m module. 2

Classical Examples

For each of the four types of classical simple Lie algebras we give the Dynkin diagram with the
coefficients of α̃ written above each vertex. We determine m and p+ for all the maximal parabolic
subalgebras defined by simple roots α0 having coefficient 1 in α̃.
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Type Al (g = sl(n,C), with n = l+ 1 ≥ 2): The Dynkin diagram is

1

.............................................

ε1−ε2

.................................................................................................................................

1

.............................................

ε2−ε3

.................................................................................................... . . . ....................................................................................................

1

.............................................

εl−εl+1

We may take α0 = εp − εp+1 for any 1 ≤ p ≤ l. Then

H0 =

[
q
nIp 0
0 − p

nIq

]
, where p+ q = n

(here Ip is the p × p identity matrix). Removing α0 from the Dynkin diagram, we obtain the
diagram for m = slp ⊕ slq. In matrix form, m is block diagonal, corresponding to H0.
We have Ψ = {εi − εp+j : 1 ≤ i ≤ p and 1 ≤ j ≤ q}. The Cartan subalgebra of m is h0

∼= hp ⊕ hq,
where hp consists of diagonal matrices in slp. The root εi− εp+j restricts to εi on hp and to −εj on
hq. In this case α̃ = ε1− εn and α̃|h0

= $1⊕$q−1 (the first fundamental weight of slp and the last
fundamental weight of slq). Thus

p+
∼= Cp ⊗ (Cq)∗ ∼= Mp×q

as an m module (left multiplication by slp and right multiplication by slq).

Type Bl (g = so(Cn, B), with n = 2l + 1 ≥ 7): We take the bilinear form B to have antidiagonal
1, as usual, and h the diagonal matrices in g. The Dynkin diagram is

1

.............................................

ε1−ε2

.................................................................................................................................

2

.............................................

ε2−ε3

.................................................................................................... . . . ....................................................................................................

2

.............................................

εl−1−εl

.................................................................................................................................................................................................................................................. ......
...........

....
.....................

2

.............................................

εl

The only choice for α0 is ε1 − ε2. Then

H0 = diag[1, 0, . . . , 0,−1].

Removing α0 from the Dynkin diagram, we obtain the diagram for m = son−2. We have Ψ =
{ε1} ∪ {ε1 − εj : 2 ≤ j ≤ l}. The Cartan subalgebra of m is

h0 = {diag[0, x2, . . . , xl, 0,−xl, . . . ,−x2, 0]},

so ε1 restricts to 0 on h0. Thus h0 has weights 0, ±εj (with j = 2, . . . , l) on p+, each with multiplicity
one. In this case α̃ = ε1 + ε2 and α̃|h0

= $1, the first fundamental weight of m. Hence p+
∼= Cn−2

is the defining representation for son−2.

Type Cl (g = sp(Cn,Ω),with n = 2l ≥ 4): We take the bilinear form Ω to have matrix

[
0 s0

−s0 0

]
,

where s0 has 1 on the antidiagonal. We take h as the diagonal matrices in g. The Dynkin diagram
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is

2

.............................................

ε1−ε2

.................................................................................................................................

2

.............................................

ε2−ε3

.................................................................................................... . . . ....................................................................................................

2

.............................................

εl−1−εl

.............................................................................................................................................................................................................................................................

..........
.....................

1

.............................................

2εl

The only choice for α0 is 2εl. Then

H0 =

[
1
2I 0
0 −1

2I

]

Removing α0 from the Dynkin diagram, we obtain the diagram for m ∼= sl(l,C). In matrix form, m

consists of the block diagonal matrices

X =

[
A 0
0 −s0A

ts0

]
, A ∈ sl(l,C).

We have Ψ = {εi + εj : 1 ≤ i ≤ j ≤ l}. The Cartan subalgebra h0 of m consists of all X with
A diagonal. In this case α̃ = 2ε1 and α̃|h0

= 2$1, where $1 is the first fundamental weight of m.
Hence p+

∼= SMl(C) (the l× l symmetric matrices) as an m module. In matrix form, p+ consists of
all matrices [

0 s0Zs0

0 0

]
, Z ∈ SMl(C)

and the action of m on p+ is by Z 7→ AZ + ZAt, for A ∈ sl(l,C).

Type Dl (g = so(Cn, B), with n = 2l ≥ 8): We take the bilinear form B to have matrix

[
0 s0

s0 0

]
.

We take h as the diagonal matrices in g. The Dynkin diagram is

1

.............................................

ε1−ε2

.................................................................................................................................

2

.............................................

ε2−ε3

.................................................................................................... . . . ....................................................................................................

2

.............................................

εl−2−εl−1

..................
.................

..................
..................

.................
..................

.................
..................

....

.................................................................................................................................................

1

............................................. εl−1+εl

1

............................................. εl−1−εl

There are three choices for α0. Consider first the case α0 = εl−1 + εl. Then, just as for type Cl,

H0 =

[
1
2I 0
0 −1

2I

]

Removing α0 from the Dynkin diagram, we obtain the diagram for m ∼= sl(l,C). As in the type Cl
case, m consists of the block diagonal matrices

X =

[
A 0
0 −s0A

ts0

]
, A ∈ sl(l,C).
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However, now we have Ψ = {εi+εj : 1 ≤ i < j ≤ l}, since 2εi is not a root. The Cartan subalgebra
h0 consists of all X as above with A diagonal. In this case α̃ = ε1 + ε2 and so α̃|h0

= $2, the
second fundamental weight of m. Hence p+

∼= AMl(C) (the l× l skew-symmetric matrices) as an m

module. In matrix form, p+ consists of all[
0 s0Zs0

0 0

]
, Z ∈ AMl(C).

The action of m on p+ is by Z 7→ AZ + ZAt, for A ∈ sl(l,C).
The choice α0 = εl−1 − εl gives a pair (m, p+) isomorphic to (sl(l,C), AMl(C)), since there is an
outer automorphism of g that interchanges εl and −εl.
Finally, consider the choice α0 = ε1 − ε2. Then

H0 = diag[1, 0, . . . , 0,−1],

just as for Type B. Removing α0 from the Dynkin diagram, we obtain the diagram for m = son−2.
We have Ψ = {ε1 ± εj : 2 ≤ j ≤ l}. The Cartan subalgebra

h0 = {diag[0, x2, . . . , xl,−xl, . . . ,−x2, 0]},
so ε1 = 0 on h0. Thus h0 has weights ±εj (with j = 2, . . . , l) on p+, each with multiplicity one.
In this case α̃|h0

= $1, the first fundamental weight of m. Hence p+
∼= Cn−2 is the defining

representation for son−2, as for Type B.

Remarks. Among the five exceptional simple Lie algebras, only E6 and E7 have simple roots with
coefficient 1 in α̃. ForE6 there are two such roots, which are interchanged by an outer automorphism
(just as for Dl). Thus there is one pair (m, p+) associated with E6, up to isomorphism. Here
m = so10. For E7 there is a unique simple root with coefficient 1 in α̃. In this case m is of type E6.

Multiplicity Free Spaces from Hermitian Symmetric Spaces

Let g = p− + a + m + p+ as in Proposition 20.1. We assume that the simple root α0 occurs with
coefficient 1 in the highest root. Let G be the adjoint group of g, and let K ⊂ G be a connected
subgroup with Lie algebra m + a. Then p+ is a K module.

Theorem 20.2 The space p+ is multiplicity free for K.

This result has many important applications to geometry, function theory, and representation
theory for the following reason. Set k = m + a and p = p+ + p−. Then g = k + p is the complexified
Cartan decomposition associated with a Hermitian symmetric space X = G0/K0 of noncompact
type. Here K0 is the compact real form of K and G0 is a noncompact real form of G. The space
X can be holomorphically embedded in the complex vector space p+ as a bounded, convex open
set (the Harish-Chandra embedding), with the action of K0 on X becoming the linear action of
Ad(K0) on p+.
Theorem 20.2 was first obtained by L.K. Hua when X is a classical bounded domain (Cartan
domain) by elaborate calculations involving integration on compact groups. It was proved in
general by W. Schmid by a lengthy root system argument. A much simpler proof was later given
by K. Johnson, using a mixture of general invariant theory results and case-by-case arguments. In
our treatment we use the geometric criterion (Theorem 19.4) for multiplicity free actions together
with Theorem 19.5 to obtain a basis of highest weight vectors. We give full details for three of the
four types of classical domains. The remaining case (m = son−2) we leave as an exercise.
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Decomposition of P(Mp×q) under GLp ×GLq

Let G = GL(p,C)×GL(q,C) and let Mp×q be the p×q complex matrices. Let ρ be the representation
of G on P(Mp×q) given by

ρ(y, z)f(x) = f(y−1xz) for f ∈ P(Mp×q), (y, z) ∈ G

In GL(n,C) we have the subgroups Dn of invertible diagonal matrices, Nn of upper-triangular
unipotent matrices, N̄n of lower-triangular unipotent matrices. We set Bn = DnNn and B̄n =
DnN̄n. We extend a regular character χ of Dn to a character of Bn (resp. B̄n) by χ(hu) = χ(vh) =
χ(h) for h ∈ Dn, u ∈ Nn and v ∈ N̄n. A weight µ =

∑n
i=1 µiεi of Dn is called nonnegative if µi ≥ 0

for all i. The weight µ is dominant if µ1 ≥ µ2 ≥ · · · ≥ µn.
When µ is dominant, we denote by (πµn, Fµn ) the irreducible representation of GL(n,C) with highest
weight µ. If µ is dominant and nonnegative, we set

|µ| =
∑

µi (the size of µ).

In this case it is convenient to extend µ to a dominant weight of Dl for all l > n by setting µi = 0
for all integers i > n. We define

depth(µ) = min{k : µk+1 = 0}.

Thus we may view µ as a dominant integral weight of GL(l,C) for any l ≥ depth(µ). If µ is a
nonnegative dominant weight of depth k, then

µ = m1λ1 + · · ·+mkλk

with λi = ε1 + · · ·+ εi and m1, . . . , mk strictly positive integers.
The irreducible finite-dimensional regular representations of G = GL(p,C)×GL(q,C) are all given
as outer tensor products (πµp ⊗̂πνq , Fµp ⊗ F νq ). For i = 1, . . . ,min{p, q} we denote by ∆i the ith
principal minor on Mp,q. We denote by P(Mp,q)N̄p×Nq the subspace of polynomials on Mp,q that
are fixed by left translations by N̄p and right translations by Nq.

Theorem 20.3 The space of homogeneous polynomials on Mp×q of degree d decomposes under the
representation ρ of GL(p,C)×GL(q,C) as a multiplicity-free sum

Pd(Mp×q) ∼=
⊕

(F νp )∗ ⊗ F νq (20.1)

with the sum over all nonnegative dominant weights ν of size d and depth(ν) ≤ r, where r =
min{p, q}. Furthermore,

P(Mp×q)N̄p×Nq = C[∆1, . . . ,∆r] (20.2)

is a polynomial ring on r algebraically independent generators.

Decomposition of S(S2(V )) under GL(V )

Let G = GL(n,C) and let SMn be the space of symmetric n× n complex matrices. We let G act
on SMn by g, x 7→ (gt)−1xg−1. Let ρ be the associated representation of G on P(SMn):

ρ(g)f(x) = f(gtxg) for f ∈ P(SMn).
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Note that SMn
∼= S2(Cn)∗ (the symmetric bilinear forms on Cn) as a G-module relative to this

action, where a matrix x ∈ SMn corresponds to the symmetric bilinear form

βx(u, v) = utxv for u, v ∈ Cn.

Thus
P(SMn) ∼= P(S2(Cn)∗) ∼= S(S2(Cn))

as a G-module.

Theorem 20.4 The space of homogeneous polynomials on SMn of degree r decomposes under
GL(n,C) in a multiplicity-free sum

Pr(SMn) ∼=
⊕

Fµn (20.3)

with the sum over all nonnegative dominant weights µ =
∑
i µiεi of size r such that µi ∈ 2N for all

i. Furthermore,
P(SMn)Nn = C[∆̃1, . . . , ∆̃n], (20.4)

where ∆̃i denotes the restriction of the ith principal minor to the space of symmetric matrices. The
functions ∆̃1, . . . , ∆̃n are algebraically independent.

Decomposition of S(
∧2(V )) under GL(V )

Let G = GL(n,C) and let AMn be the space of skew-symmetric n×n matrices. Let G act on AMn

by g, x 7→ (gt)−1xg−1 and let
ρ(g)f(x) = f(gtxg)

be the associated representation of G on P(AMn). Note that AMn
∼=
∧2((Cn)∗) (the skew-

symmetric bilinear forms on Cn) as a G-module relative to this action, just as in the case of
symmetric matrices and symmetric bilinear forms. Thus we have

P(AMn) ∼= P(
∧2(Cn)∗) ∼= S(

∧2 Cn)

as a G-module. Let Pfi be the ith principal Pfaffian on AMn for i = 1, . . . , k, where k = [n/2].

Theorem 20.5 The space of homogeneous polynomials on AMn of degree r decomposes under
GL(n,C) as a multiplicity-free sum

Pr(AMn) ∼=
⊕

Fµn

with the sum over all nonnegative dominant integral weights µ =
∑
µiεi such that |µ| = r and

µ2i−1 = µ2i for i = 1, . . . , k and µ2k+1 = 0 (20.5)

(the last equation only applies if n is odd). Furthermore,

P(AMn)Nn = C[Pf1, . . . ,Pfk]

and the functions Pf1, . . . ,Pfk are algebraically independent.
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Appendix: Linear and Associative Algebra for Lecture 20.

Gauss Decomposition

Let Mk be the space of k × k complex matrices, and Mk,n the space of k × n complex matrices.
Let Nn denote the group of upper triangular matrices n× n matrices with diagonal entries 1, N̄k

the group of lower triangular k × k matrices with diagonal entries 1, and Dk,n the k × n matrices
x = [xij] with xij = 0 for i 6= j.
For x ∈Mk,n define the principal minors

∆i(x) = det

 x11 · · · x1i
...

. . .
...

xi1 · · · xii


for i = 1, . . . ,min{k, n}. It is also convenient to define ∆0(x) = 1.

Lemma 20.6 Suppose x ∈Mk,n satisfies

∆i(x) 6= 0 for i = 1, . . . ,min{k, n}.

Then there are matrices ū ∈ N̄k, u ∈ Nn and h ∈ Dk,n such that

x = ūhu. (20.6)

The matrix h is uniquely determined by x and its nonzero entries are hii = ∆i(x)/∆i−1(x). If
k = n then the matrices ū and u are also uniquely determined by x.

Factorization of Symmetric Matrices

Lemma 20.7 Suppose x ∈Mn is a symmetric matrix and ∆i(x) 6= 0 for i = 1, . . . , n. Then there
exists an upper-triangular matrix b ∈ Mn such that x = btb. The matrix b is uniquely determined
by x up to left multiplication by a diagonal matrix with entries ±1.

Factorization of Skew-symmetric Matrices

Let A = [aij] be a skew-symmetric 2n× 2n matrix. Given 2n vectors x1, . . . , x2n ∈ C2n, define

FA(x1, . . . , x2n) =
1

n!2n
∑
s∈S2n

sgn(s)
n∏
i=1

(xs(2i−1), Axs(2i)),

where (x, Ay) = xtAy is the skew-symmetric bilinear form associated to A. Then FA is a skew-
symmetric multilinear function of x1, . . . , x2n. Hence there is a complex number Pfaff(A) (called
the Pfaffian of A) such that

FA(x1, . . . , x2n) = Pfaff(A) det[x1, . . . , x2n]. (20.7)

In particular, taking xi = ei, the standard basis for C2n, we have

Pfaff(A) =
1

n!2n
∑
s∈S2n

sgn(s)
n∏
i=1

as(2i−1),s(2i), (20.8)
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since det[e1, . . . , e2n] = 1.
Let g ∈ GL(2n,C). Then

Pfaff(gtAg) = det gPfaff(A). (20.9)

Let A and B be a skew-symmetric matrices of sizes 2k × 2k and 2n× 2n, respectively. Then

Pfaff(

(
A 0
0 B

)
) = Pfaff(A)Pfaff(B). (20.10)

Let A = [aij] be skew-symmetric n × n matrix. For k = 1, . . . , [n/2] define the truncated matrix
A(k) to be the 2k × 2k matrix [aij]1≤i,j≤2k. Set

Pfk(A) = Pfaff(A(k)). (20.11)

Then Pfk is a homogeneous polynomial of degree k in the variables aij , for 1 ≤ i < j ≤ 2k, that we
will call the kth principal Pfaffian of A.
Let Bn ⊂ GL(n,C) be the subgroup of upper-triangular matrices b = [bij] (so bij = 0 for i > j).
For b ∈ Bn and A any n× n matrix, one has

(btAb)(k) = bt(k)A(k)b(k),

where b(k) = [bij]1≤i,j≤2k. Hence if A is skew-symmetric, (20.9) gives

Pfk(btAb) = ∆2k(b)Pfk(A), (20.12)

where ∆2k(b) = det(b(k)) is the principal minor of b of order 2k.
We have the following analog of Lemma 20.7 for skew-symmetric matrices. For n = 2k even, define
the n× n skew-symmetric matrix Jn = J ⊕ · · · ⊕ J (k summands), where

J =

(
0 1
−1 0

)
.

For n = 2k + 1 odd define the n× n skew-symmetric matrix Jn = J ⊕ · · · ⊕ J ⊕ 0 (k copies of J).

Lemma 20.8 Let A be a skew-symmetric n × n matrix. Assume that Pfk(A) 6= 0 for k =
1, . . . , [n/2]. Then there exists b ∈ Bn so that A = btJnb.

Corollary 20.9 Let A be a skew-symmetric 2n× 2n matrix. Then

(Pfaff(A))2 = detA.

Exercises for Lecture 20.

1. Let g be a semisimple Lie algebra with Cartan subalgebra h, root system Φ. Fix positive
roots Φ+. Let ∆ ⊂ Φ+ be the simple roots, and for α ∈ ∆ let hα ∈ h be the coroot to α. Fix
λ ∈ P++(g) and define Φ0 = {α ∈ Φ : 〈λ, hα〉 = 0} and S = Φ0 ∩∆.

(a) Write λ = n1$1 + · · ·+ nl$l, where $i is the ith fundamental weight and ni ∈ N. Show
that S = {αi : ni = 0}.

104



(b) Set Ψ = {α ∈ Φ+ : 〈λ, hα〉 > 0 for all α ∈ Sλ}, h0 = Span{hα : α ∈ Φ0}, and a = {h ∈
h : 〈α, h〉 = 0 for all α ∈ S}. Let

m = h0 +
∑
α∈Φ0

gα, u =
∑
β∈Ψ

gβ , ū =
∑
β∈Ψ

g−β .

Thus g = ū + m + a + u. Show that m + a normalizes u and ū, that a is the center of m + a,
and that m is a semisimple Lie algebra with Dynkin diagram corresponding to S. Thus
pλ = m + a + u is the parabolic subalgebra of g corresponding to the subset ∆ \ S of simple
roots. In particular, p$i = m + a + u is the maximal parabolic subalgebra corresponding to
{αi}.

2. (Same notation as previous exercise). Suppose V λ is the irreducible g module with highest
weight λ. Let vλ be a highest weight vector in V λ.

(a) Prove that pλ is the stabilizer of the line [vλ] in P(V λ). (Hint: First check that pλ stabilizes
[vλ]. Then use the representation theory of sl2 to show that g−βvλ 6= 0 if β ∈ Ψ, and hence
pλ is the full stabilizer of [vλ].)

(b) Let G be a connected group with Lie algebra g and Borel subgroup B corresponding to
the choice Φ+ of positive roots. Assume that λ ∈ P++(G) so that V λ is a G module. Let
P ⊂ G be the stabilizer of [vλ] in P(V λ). Prove that Lie(P ) = pλ and that the G orbit of [vλ]
is closed in P(V λ). (Hint: P contains B, so G/P is a projective variety.)

(c) Let X be the Zariski-closure of the orbit G · vλ. Then X is a G-invariant affine variety
in V λ, called a highest vector variety. Show that X = G · vλ ∪ {0} and that X is invariant
under multiplication by C×. (Hint : Use (b) to show that X is the cone over a closed subset
of P(V λ).)

3. Let G, V λ and X be as in the previous exercise.

(a) Show that X is a multiplicity-free G-space. (Hint : Let B̄ = HN̄ be the Borel subgroup
opposite to B. Show that B̄ has an open orbit on X .)

(b) Let Aff(X)(n) be the restrictions to X of the homogeneous polynomials of degree n on
V λ. Show that the isotypic decomposition of Aff(X) as a G module is

Aff(X) =
⊕
n∈N

Aff(X)(n)

and Aff(Xλ)(n) is an irreducible G-module isomorphic to (V nλ)∗. (Hint : Let fλ(x) = 〈v∗λ, x〉
for x ∈ Xλ, where v∗λ is the lowest weight vector in (V λ)∗. Show that fnλ is a B̄ eigenfunction of
weight −nλ for the representation ρX , and hence (V nλ)∗ ⊆ Aff(X)(n) for all positive integers
n. Now use Theorem 19.4 to show that if µ occurs as a B̄-extreme weight in Aff(Xλ), then µ
is proportional to λ.)

4. Let G = SO(Cn, ω), n ≥ 3 (take the matrix for ω with 1 on antidiagonal, 0 elsewhere). Let
X = {x ∈ Cn : ω(x, x) = 0} be the set of ω-isotropic vectors (the nullcone).

(a) Show that X is the Zariski closure of the orbit G · e1.

(b) Show that X is multiplicity free as a G space. (Hint: The vector e1 is the highest weight
vector for G.)

(c) Find the decomposition of Aff(X) as a G-module. (Hint: Use the previous exercise.)
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