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Riemannian Connection and Curvature Tensor

(M, g) – smooth (pseudo) Riemannian manifold:
nondegenerate bilinear form gp on tangent space Tp(M)
(Riemannian if gp positive definite)
C(M) – smooth functions T(M) – smooth vector fields
Riemannian connection:
X ∈ T(M) acts as covariant derivative ∇X on tensor fields:

I ∇ϕXY = ϕ∇XY ∇X (ϕY ) = X (ϕ)Y +∇XY

for ϕ ∈ C(M) and Y ∈ T(M)
∇ uniquely determined from g by requiring

I covariant constant metric tensor:
X (g(Y ,Z )) = g(∇XY ,Z ) + g(Y ,∇XZ )

I zero torsion: ∇XY −∇Y X = [X ,Y ]
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Curvature tensor field Rp(x , y) ∈ End(TpM) = TpM ⊗ (TpM)∗ :

Rp(x , y)z =
(
∇X∇Y Z −∇Y∇XZ −∇[X ,Y ]Z

)
p

I Only depends on Xp = x , Yp = y , and Zp = z (tensorial)
(unlike Lie derivative θ(X ) – not tensorial)

I Measures failure of X 7→ ∇X to be Lie algebra homomorphism

Algebraic Symmetries of the curvature tensor:

(C1) Rp(x , y) = −Rp(y , x), so Rp :
∧2 Tp(M)→ End(Tp(M))

(C2) Rp(x , y)∗ = −Rp(x , y) (∗ via gp), so Rp(x , y) ∈ Lie(O(gp))

(C3) Jacobi identity for T(M) + zero torsion =⇒ Bianchi identity:
Rp(x , y)z + Rp(y , z)x + Rp(z , x)y = 0
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The Space of Curvature Tensors

Fix p ∈ M. Let E = (TpM)C ∼= E ∗ (via Q = (gp)C)
Define Riemann-Christoffel curvature tensor R ∈

⊗4 E ∼=
⊗4 E ∗:

R(v ,w , x , y) = Q(Rp(v ,w)x , y) for v ,w , x , y ∈ E

Program: Study subspace Curv(E ) ⊂
⊗4 E of tensors with

algebraic symmetries (C1) + (C2) + (C3).
Let R ∈ Curv(E ), σ = permutation representation of S4 on

⊗4 E

I (C1) + (C2) + (C3) =⇒ σ(12)R = −R, σ(34)R = −R,
σ(13)σ(24)R = R =⇒ R ∈ S2(

∧2 E )

I S2(
∧2 E ) is invariant under the Bianchi operator

b = 1
3(I +σ(123)+σ(123)2) = 1

3(I +σ(13)σ(12)+σ(23)σ(12))

Hence Curv(E ) = Ker(b) ∩ S2(
∧2 E )
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Curv(E ) as GL(E ) module

I Range(b) ∩ S2(
∧2 E ) =

∧4 E (irreducible for GL(E ))
I b2 = b =⇒ S2(

∧2 E ) = Curv(E )⊕
(∧4 E

)
(second summand zero if dim E < 4)

I dim Curv(Cn) = 1
12 n2(n + 1)(n − 1) (?)

Fix Q-orthonormal basis e1, . . . , en for E ∼= Cn (n ≥ 2)
Let λ = [λ1, . . . , λk ] ∈ Nk , λ1 ≥ · · · ≥ λk > 0 (k ≤ n)
Fλn = irreducible GL(n,C) representation, highest weight λ

Theorem
Curv(Cn) ∼= F

[2,2]
n is an irreducible GL(n,C) module.

Proof.
High wt vector R = (e1 ∧ e2)⊗ (e1 ∧ e2) =⇒ F

[2,2]
n ⊂ Curv(Cn).

Weyl dim. formula + (?) =⇒ dim F
[2,2]
n = dim Curv(Cn)
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Curvature and Young Symmetrizers

Young tableau A (k boxes) has row group and column group
Young symmetrizer: pA ∈ EndGL(n,C)(

⊗k Cn)
(alternate over column group)·(symmetrize over row group)

Weyl module: Range pA is an irreducible GL(n,C) module,
highest weight λ = shape(A)

Corollary

Curv(Cn) = Range pA where A =
1 3

2 4

Proof.
pA = 1

12

{(
1− σ(12)

)(
1− σ(34)

)}
·
{(

1 + σ(13)
)(

1 + σ(24)
)}

I Range(pA) ∼= F
[2,2]
n (shape(A) = [2, 2])

I Range(pA) ⊂ S2(
∧2 Cn)
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Orthogonal Decomposition of Curvature Tensors

Let R ∈ Curv(Cn).
Ricci curvature:

RicQ(R)(v ,w) =
∑n

i=1 R(ei , v , ei ,w)

I Ricci contraction operator RicQ : S2(
∧2 Cn)→ S2(Cn)

I RicQ intertwines O(Q) actions on Curv(Cn) and S2(Cn)

I RicQ is the only nonzero contraction operator on S2(
∧2 Cn)

Scalar curvature:

sQ(R) = trQ(RicQ(R)) =
∑n

i , j=1 R(ei , ej , ei , ej)

R 7→ sQ(R) gives O(Q) intertwining operator sQ : Curv(Cn)→ C
(trivial O(Q) module)
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Construct O(Q) intertwining operator S2(Cn)→ S2(
∧2 Cn):

I S2(Cn) ∼= Q -symmetric linear maps of Cn (Q ↔ I )

I S2(
∧2 Cn) ∼= Q ⊗ Q -symmetric linear maps of

∧2 Cn

Given A,B ∈ S2(Cn), define linear map A©∧ B on
∧2 Cn:

(A©∧ B)(v ∧ w) = Av ∧ Bw + Bv ∧ Aw for v ,w ∈ Cn

I A©∧ B ∈ S2(
∧2 Cn)

I A©∧ B satisfies Bianchi identity, so A©∧ B ∈ Curv(Cn)

I RicQ(A©∧ Q) = trQ(A)Q + (n − 2)A (??)

n = 2:

I dim Curv(C2) = 1

I R = 1
4sQ(R) Q©∧ Q

I RicQ(R) = 1
2sQ(R)Q
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Assume n ≥ 3. Given R ∈ Curv(Cn), set

A = 1
n−2

{
RicQ(R)− 1

n sQ(R)Q
}
∈ S2(Cn)

C = R − A©∧ Q − γsQ(R)Q©∧ Q ∈ Curv(Cn) (γ = 1
n(2n−1))

The normalizing constants are chosen so that

I trQ(A) = 0
I RicQ(C ) = 0 by (??)

R = γsQ(R)Q©∧ Q + A©∧ Q + C

= scalar part + traceless Ricci part + Weyl part (? ? ?)

Representation-theoretic description of decomposition (? ? ?)

Define Weyl conformal curvature tensors:
WeylQ(Cn) = {C ∈ Curv(Cn) : RicQ(C ) = 0}

Q-harmonic (traceless) symmetric two-tensors:

H2
sym(Cn,Q) = {A ∈ S2(Cn) : trQ(A) = 0}
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Properties of H2
sym(Cn,Q):

I Irreducible under SO(Q) (Cartan component of Cn ⊗ Cn)

I Highest weight 2$1 (n 6= 4) or 2($1 +$2) (n = 4)

I Dimension = 1
2n(n + 1)− 1 = 1

2(n + 2)(n − 1)

I H2
sym(Cn,Q) ↪→ Curv(Cn) by A 7→ A©∧ Q

Theorem
The space of curvature tensors decomposes under O(Q) as

Curv(Cn) = C(Q©∧ Q)⊕
(
H2

sym(Cn,Q)©∧ Q
)
⊕WeylQ(Cn)

Hence dim WeylQ(Cn) = 1
12n(n + 1)(n + 2)(n − 3).

In particular, Ricci curvature determines curvature when n = 3.

Proof.
Formula (??) =⇒ the sum (? ? ?) is direct =⇒ dimension formula
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The Space of Weyl Curvature Tensors

Goal:
Show WeylQ(Cn) is irreducible under O(Q) (n ≥ 4)
Method:
Find a highest weight vector and use Weyl dimension formula.

Take Q-isotropic basis for Cn:
fk = 1√

2

(
ek +

√
−1en+1−k

)
, f−k = 1√

2

(
ek −

√
−1en+1−k

)
for k = 1, . . . , l (l =

⌊
n
2

⌋
) (For n odd: f0 = el+1)

Let Fk = Span{f1, . . . , fk} for k = 1, . . . , l (Q-isotropic subspace)
Take Borel subgroup B ⊂ SO(Q) as stabilizer of isotropic flag

F1 ⊂ F2 ⊂ · · · ⊂ Fl

(include Fl+1 = Span{f0, f1, . . . , fl} when n odd)
$1, . . . , $l fundamental highest weights for so(Q)
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Set C0 = (f1 ∧ f2)⊗ (f1 ∧ f2) ∈ S2(
∧2 Cn)

I C0 ∈WeylQ(Cn)

I C0 is a B eigenvector of weight 2$2 (if n > 4)
or 4$1 (if n = 4)

I Vn = Span SO(Q) · C0 is irreducible under SO(Q) (theorem of
the highest weight)

Theorem
Assume n > 4. WeylQ(Cn) is irreducible under SO(Q) and has
highest weight 2$2.

Proof.
Have Vn ⊂WeylQ(Cn), and Weyl dimension formula =⇒

dim Vn = 1
12n(n + 1)(n + 2)(n − 3) = dim WeylQ(Cn)
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Assume n = 4:
Special feature: so4

∼= sl2 ⊕ sl2 (semisimple)
Let τ ∈ O(C4,Q) fix f±1 and interchange f2 ↔ f−2 (det τ = −1)
Set C0 = τ · w = (f1 ∧ f−2)⊗ (f1 ∧ f−2) ∈WeylQ(C4)

I C0 eigenvector for B of weight 4$2

I V 4 = τ · V4 ⊂WeylQ(C4) is irreducible under SO(Q)

Theorem
WeylQ(C4) = V4 ⊕ V 4 and is irreducible under O(C4,Q).

Proof.
τ : V4 ↔ V 4 and dim V4 = dim V 4 = 5 while dim WeylQ(C4) = 10
V4 ∩ V 4 = 0 (inequivalent for SO(Q))

Note: Likewise,
∧2 C4 is irreducible under O(Q), but decomposes

under SO(Q) with highest weights 2$1 and 2$2.
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Conformal Change of Metric Tensor

Replace g by g̃ = e2f g where f ∈ C(M).
Orthogonal group O(g) = O(g̃) is unchanged.

Problem: Determine the change in the Weyl, traceless Ricci, and
scalar parts of the Riemann curvature tensor.

New Riemannian connection:

∇̃XY = ∇XY + Φ(X ,Y ) with Φ(X ,Y ) = Φ(Y ,X ) ∈ T(M)

Explicit formula:

Φ(X ,Y ) = df (X )Y + df (Y )X − g(X ,Y )Df (Df = gradg f )

[Follows from e−2f X (e2f g(Y ,Z )) = g(∇̃XY ,Z ) + g(Y , ∇̃XZ )
and cyclic permutation of X ,Y ,Z .]

Roe Goodman Curvature Tensors and Representations



Riemannian Connection and Curvature Tensor
The Space of Curvature Tensors

Orthogonal Decomposition of Curvature Tensors
The Space of Weyl Curvature Tensors

Conformal Change of Metric Tensor
Further Topics

New Curvature Tensor:

R̃ = e2f R − e2f Q©∧ A with A ∈ S2(Cn) ∼= S2(Cn)∗ via Q
Explicit formula:

A = D2f − df ⊗ df + 1
2 |Df |2Q (long calculation)

where D2f (X ,Y ) = XY (f )− (∇XY )(f ) (Q-Hessian of f )
|Df |2 = Q(Df ,Df )

Conclusion: Under conformal change of metric g → e2f g

I Weyl part of the curvature is multiplied by e2f .

I Traceless Ricci curvature is modified by adding term

(n − 2)D2f − (n − 2)(df ⊗ df ) + n−2
n

{
∆f + |Df |2

}
Q

where ∆f = − trQ(D2f ) is the Q-Laplacian.

I Scalar curvature is multiplied by e2f plus term

e2f
{

2(n − 1)∆f − (n − 1)(n − 2)|Df |2
}
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Further Topics

I Spaces of Covariant Derivatives ∇R,∇2R, . . .
Decomposition as representation spaces for orthogonal group
(Kulkarni, Strichartz)

I Structure of Weyl Tensors

I n = 4: Petrov (1954) n > 4: Coley et al. (2004)
Important for study of gravity waves

I Problem: Describe classification in terms of structure of orbits
of G = SO(n,Q) on V = WeylQ(Cn).

I Highest weight vector orbit: X = G · C0 = G · C0 ∪ {0} ⊂ V
X is a multiplicity-free G space (Vinberg–Popov)
X/C× = G/P with P = maximal parabolic ←→ $2

I Find other G orbits on V and orbit invariants (Strichartz)
n = 4: Use classical invariant theory of binary quartics
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Hermann Weyl:

“The wish to understand what really is the mathematical
substance behind the formal apparatus of relativity theory led me
to the study of representations and invariants of groups.”

Relativity theory as a stimulus in mathematical research (1949)
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