Corrections to

REPRESENTATIONS AND INVARIANTS OF THE CLASSICAL GROUPS by Roe Goodman and Nolan R. Wallach (1999 paperback printing)

Revised August 30, 2002

p.v (Table of Contents): §1.2 begins on page 18

p.v (Table of Contents): §1.3 begins on page 35

p.25, **l.10** REPLACE: We denote by s_0

BY: We denote by s_l

 $\mathbf{p.25}$, $\mathbf{l.11}$ (display) REPLACE: s_0 BY: s_l

p.25, **l.13** REPLACE:

$$J_{+} = \begin{bmatrix} 0 & s_0 \\ s_0 & 0 \end{bmatrix}, \qquad J_{+} = \begin{bmatrix} 0 & s_0 \\ -s_0 & 0 \end{bmatrix},$$

BY:

$$J_{+} = \begin{bmatrix} 0 & s_{l} \\ s_{l} & 0 \end{bmatrix}, \qquad J_{+} = \begin{bmatrix} 0 & s_{l} \\ -s_{l} & 0 \end{bmatrix},$$

p.25, **l.-10** REPLACE: $s_0 a^t s_0$ BY: $s_l a^t s_l$

p.25, **l.-7** REPLACE:

$$A = \left[\begin{array}{cc} a & b \\ c & -s_0 a^t s_0 \end{array} \right],$$

BY:

$$A = \left[\begin{array}{cc} a & b \\ c & -s_l a^t s_l \end{array} \right],$$

p. 25, l.-6 REPLACE: such that $b^t = -s_0 b s_0$ and $c^t = -s_0 c s_0$

BY: such that $b^t = -s_l b s_l$ and $c^t = -s_l c s_l$

p.25, l.-3 REPLACE:

$$A = \left[\begin{array}{cc} a & b \\ c & -s_0 a^t s_0 \end{array} \right],$$

BY:

$$A = \left[\begin{array}{cc} a & b \\ c & -s_l a^t s_l \end{array} \right],$$

p. 25, l.-2 REPLACE: such that $b^t = s_0 b s_0$ and $c^t = s_0 c s_0$

BY: such that $b^t = s_l b s_l$ and $c^t = s_l c s_l$

p.26, l.6 REPLACE:

$$S = \left[\begin{array}{ccc} 0 & 0 & s_0 \\ 0 & 1 & 0 \\ s_0 & 0 & 0 \end{array} \right].$$

BY:

$$S = \left[\begin{array}{ccc} 0 & 0 & s_l \\ 0 & 1 & 0 \\ s_l & 0 & 0 \end{array} \right].$$

p.26, **l.12** REPLACE:

$$A = \begin{bmatrix} a & w & b \\ u & 0 & -w^t s_0 \\ c & -s_0 u^t & -s_0 a^t s_0 \end{bmatrix},$$

BY:

$$A = \begin{bmatrix} a & w & b \\ u & 0 & -w^t s_l \\ c & -s_l u^t & -s_l a^t s_l \end{bmatrix},$$

p.26, l.13 REPLACE: such that $b^t = -s_0 b s_0$ and $c^t = -s_0 c s_0$

BY: such that $b^t = -s_l b s_l$ and $c^t = -s_l c s_l$

p.30, l.14 REPLACE: $f_C(g)$ BY: $f_C^{\pi}(g)$

p.30, l.16 REPLACE: $f_{d\pi(A)C}(g)$ BY: $f_{d\pi(A)C}^{\pi}(g)$

p.31, l.-7 and -8 REPLACE:

$$X_{d\sigma(A)}f = X_A(f \circ \sigma) = X_{d\pi(A)}(f \circ \rho) = X_{d\rho(d\pi(A))}f.$$

Hence $d\sigma(A) = d\rho(d\pi(A))$.

BY:

$$X_{d\sigma(A)}f^{\sigma} = X_A(f \circ \sigma) = X_{d\pi(A)}(f \circ \rho) = X_{d\rho(d\pi(A))}(f \circ \rho).$$

Now evaluate at I to see that $d\sigma(A) = d\rho(d\pi(A))$.

p.32, **l.7** REPLACE: $\{(A, -A) : A \in \mathfrak{g} \cap \mathfrak{h}\}$

BY: $\{(A,A): A \in \mathfrak{g} \cap \mathfrak{h}\}$

p.32, **l.24** REPLACE: Now assume $d\sigma(\mathfrak{g}) = \mathfrak{h}$.

BY: Now assume $d\sigma(\mathfrak{g}) = \mathfrak{h}$ and H is connected.

p.40, end of line 1 The last word should be Hint:

p.40, end of line 3 The last word should be "that"

 $\textbf{p.45, l.-10} \ \text{Replace:} \ \{g \in G : gg^t = I\}$

BY: $\{g \in \mathrm{GL}(n,\mathbb{C}) : gg^t = I\}$

p.48, l.14 REPLACE: Theorem D.2.7 BY: Theorem D.2.8

p.48, **l.-3** ADD SENTENCE: Hence det $g \in \mathbb{R}$.

p.49, **l.-10** REPLACE:

Exercis (REMAINDER OF LINE DISAPPEARED IN TYPSETTING)

BY:

Exercises A.1.7, # 6). However, in the case of algebraic groups, Theorem

p.94, l.6 REPLACE: Let $s_0 \in GL(2l, \mathbb{C})$

BY: Let $s_l \in \mathrm{GL}(l,\mathbb{C})$

p.94, **l.10** REPLACE:

$$\pi(\sigma) = \left[\begin{array}{cc} s_{\sigma} & 0 \\ 0 & s_{0}s_{\sigma}s_{0} \end{array} \right],$$

BY:

$$\pi(\sigma) = \left[\begin{array}{cc} s_{\sigma} & 0 \\ 0 & s_{l} s_{\sigma} s_{l} \end{array} \right],$$

p.95, l.8 REPLACE:

$$\phi(\sigma) = \begin{bmatrix} s_{\sigma} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & s_0 s_{\sigma} s_0 \end{bmatrix},$$

BY:

$$\phi(\sigma) = \begin{bmatrix} s_{\sigma} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & s_{l}s_{\sigma}s_{l} \end{bmatrix},$$

p.155, **l.10** REPLACE: for all $x \in F$.

BY: for all $x \in F$. (HINT: Use Proposition 3.4.7.)

p.170, **l.12** REPLACE: if $\phi \in \mathcal{J}$ then there exist

BY: if $\phi \in \mathcal{J}_+$ then there exist

p.174, l.-7 REPLACE: induction that $\mathcal{H} \cdot (\mathcal{P} \mathcal{J}_+)$ contains all polynomials

BY: induction that $\mathcal{H} \cdot (1 + \mathcal{P} \mathcal{J}_+)$ contains all polynomials

 $\mathbf{p.175}$, $\mathbf{l.7}$ REPLACE: 4.1.4(1), which contradicts

BY: 4.1.4, which contradicts

p.183, l.–7 display REPLACE:

$$uZw = \left[\begin{array}{cc} I_r & O_{r,m-r} \\ O_{m-r,r} & O_{m-r} \end{array} \right]$$

BY:

$$uZw = \begin{bmatrix} I_r & O_{r,m-r} \\ O_{k-r,r} & O_{k-r,m-r} \end{bmatrix}$$

p.183, l.-5 display REPLACE:

$$X = \begin{bmatrix} I_r & O_{r,m-r} \\ O_{m-r,r} & O_{k-r} \end{bmatrix}, \quad Y = \begin{bmatrix} I_r & O_{r,n-r} \\ O_{n-r,r} & O_{n-r} \end{bmatrix},$$

BY:

$$X = \begin{bmatrix} I_r & O_{r,n-r} \\ O_{k-r,r} & O_{k-r,n-r} \end{bmatrix}, \quad Y = \begin{bmatrix} I_r & O_{r,m-r} \\ O_{n-r,r} & O_{n-r,m-r} \end{bmatrix},$$

p.184, l.-8 display REPLACE:

$$X = \begin{bmatrix} J_r & O_{r,k-r} \\ O_{k-r,r} & O_{n-r,k-r} \end{bmatrix} g.$$

BY:

$$X = \begin{bmatrix} J_r & O_{r,k-r} \\ O_{n-r,r} & O_{n-r,k-r} \end{bmatrix} g.$$

p.189, l.10 display REPLACE: $\prod_{j=1}^k y_j^{q_j}$ BY: $\prod_{j=1}^m y_j^{q_j}$

p.189, l.13 REPLACE: $z = (v_1, \dots, v_k, v_1^*, \dots, v_k^*)$

BY: $z = (v_1, \dots, v_k, v_1^*, \dots, v_m^*)$

p.198, l.-7 REPLACE: representation on \mathbb{C}^n BY: representation on V

p.198, l.-5 REPLACE: space $\mathcal{P}^{[p,q]}(V^k \otimes (V^*)^m)^{\mathrm{GL}(V)}$

BY: space $\mathcal{P}^{[p,q]}(V^k \oplus (V^*)^m)^{\mathrm{GL}(V)}$

p.198, l.-3 REPLACE: acts on $\mathcal{P}^{[p,q]}(V^k \otimes (V^*)^m)$

BY: acts on $\mathcal{P}^{[p,q]}(V^k \oplus (V^*)^m)$

p.198, l.-1 display REPLACE: $\mathcal{P}^{[p,q]}(V^k \otimes (V^*)^m)^{\mathrm{GL}(V)} = 0$

BY: $\mathcal{P}^{[p,q]}(V^k \oplus (V^*)^m)^{GL(V)} = 0$

p.199, l.2 display REPLACE: $\mathcal{P}^{[p,q]}(V^k \otimes (V^*)^m)^{\mathrm{GL}(V)}$

BY: $\mathcal{P}^{[p,q]}(V^k \oplus (V^*)^m)^{\mathrm{GL}(V)}$

p.199, l.4 REPLACE: complete contractions C_s BY: complete contractions λ_s

p.199, l.6 display REPLACE: C_s BY: λ_s

p.199, l.9 display Replace: C_s by: λ_s

p.227, l.-1 REPLACE: general Capelli problem."

BY: general "Capelli problem."

p.254, l.-17 to l.-14 REPLACE:

Suppose for the sake ... impossible. Hence $V_k = \mathcal{H}^k(\mathbb{C}^n)$.

BY:

We next prove (3). The intertwining property is easily checked (here it is understood that in $V^k \otimes \mathcal{H}^k(\mathbb{C}^n)$, \mathfrak{g}' acts only on V^k and G acts only on $\mathcal{H}^k(\mathbb{C}^n)$). Suppose $\sum \psi_j(r^2)f_j = 0$. We may assume that $\{f_j\}$ is linearly independent and by homogeneity that $\psi_j(r^2) = c_j r^2$. This immediately implies $c_j = 0$, proving injectivity of the map. From (3) and Theorem 4.5.12 it follows that $\mathcal{H}^k(\mathbb{C}^n)$ is an irreducible G-module. Hence $V_k = \mathcal{H}^k(\mathbb{C}^n)$.

p.254, l.-7 REPLACE:

Statement (3) follows from (1) and (2) and Theorem 4.5.12. To prove (4) we only

BY:

To prove (4), we only

p.257, l.-3 REPLACE: of size r such that BY: of size 2r such that

p.258, l.18 REPLACE: it has degree $|\mu|$ BY: it has degree $|\mu|/2$

p.259, l.5 REPLACE: such that $|\mu| = r$ and BY: such that $|\mu| = 2r$ and

p.272, l.-1 REPLACE: $\epsilon(x^*)\epsilon(y^*) = -\epsilon(x^*)\epsilon(y^*)$ BY: $\epsilon(x^*)\epsilon(y^*) = -\epsilon(y^*)\epsilon(x^*)$

p.273, change displayed formula numbers:

$$(4.5.5) \longrightarrow (6.5.5)$$

$$(4.5.6) \longrightarrow (6.5.6)$$

$$(4.5.7) \longrightarrow (6.5.7)$$

$$(4.5.8) \longrightarrow (6.5.8)$$

p.275, change displayed formula number:

$$(4.5.9) \longrightarrow (6.5.9)$$

p.276, change displayed formula numbers:

$$(4.5.10) \longrightarrow (6.5.10)$$

$$(4.5.11) \longrightarrow (6.5.11)$$

p.304, l.-9 REPLACE: π BY: π^{λ}

p.340, l.-16 REPLACE: $\gamma s_0 \gamma^t = I_{2l}$ BY: $\gamma s_{2l} \gamma^t = I_{2l}$

p.340, l-15 REPLACE: where s_0 is the matrix

BY: where s_{2l} is the matrix

p.340, l-14 REPLACE: corresponding to s_0 as in

BY: corresponding to s_{2l} as in

p.340, l-12 REPLACE:

$$\gamma g \gamma^{-1} (\gamma g \gamma^{-1})^t = \gamma g s_0 g^t \gamma^t = \gamma s_0 \gamma^t = I_{2l}.$$

BY:

$$\gamma g \gamma^{-1} (\gamma g \gamma^{-1})^t = \gamma g s_{2l} g^t \gamma^t = \gamma s_{2l} \gamma^t = I_{2l}.$$

p.340, **l**–9 REPLACE: defined by the equation $g^t g = I$.

BY: defined by the equation $g^t g = I_{2l}$.

p.342, **l.**-12 REPLACE: invariant volume forms on K/T, T, and K, respectively BY: invariant volume forms on T, K/T, and K, respectively

p.371, l.6 REPLACE: (published by CAN, Amsterdam, 1992).

BY: (available at http://young.sp2mi.univ-poitiers.fr/~marc/LiE)

p.376, l.9 REPLACE: representation $(\sigma_k^{\lambda}, G^{\lambda})$ BY: representation $(\sigma^{\lambda}, G^{\lambda})$

p.377, **l.-3** REPLACE: λ^* BY: λ^T

p.377, **l.-2** REPLACE: $\lambda_1^* \geq \lambda_2^*$ BY: $\lambda_1^{\mathrm{T}} \geq \lambda_2^{\mathrm{T}}$

p.377, **l.-1** REPLACE: λ_i^* BY: λ_i^{T}

p.378, l.1, l.2, and l.4 REPLACE: λ^* BY: λ^T (4 REPLACEMENTS)

p.384, **l.10** REPLACE:

(1) The multiplicities $m_{\pi,\pi'}$ in (9.2.1) are either 0 or 1,

BY:

(1) The multiplicities $m_{\pi,\pi'}$ are either 0 or 1 and each $\pi \in \widehat{K}$ (resp. $\pi' \in \widehat{K}'$) occurs at most once in (9.2.1).

p.384, **l.-3** REPLACE:

 $G \times G'$ on Y is also multiplicity free.

BY:

 $(\rho(G), \rho(G'))$ on Y is a dual reductive pair.

p.385, **l.8** REPLACE: for $f \in \mathcal{P}(X)$ BY: for $f \in \mathcal{P}^d(X)$

p.385, **l.-1** REPLACE:

This shows that $\mathcal{P}^d(X)$ is multiplicity-free for $G \times G'$

BY:

This shows that (G, G') acts as a dual pair on $\mathcal{P}^d(X)$.

p.386, l.5 REPLACE: Thus Y is multiplicity free for $K \times K'$.

BY: Thus (K, K') acts as a dual pair on Y.

p.386, l.10 and l.11 REPLACE:

As a $(G \times G')$ -module, Y is also multiplicity free, since

BY:

We have (G, G') acting as a dual pair on Y, since

p.386, l.-1 REPLACE: $V_{(\tau)}$ BY: V_{τ}

p.394, **l.7** REPLACE: λ^* BY: λ^T

p.394, **l.9** REPLACE:

$$e_1 \otimes e_2 \otimes \cdots \otimes e_{\lambda_1^*} \otimes e_1 \otimes e_2 \otimes \cdots \otimes e_{\lambda_2^*} \otimes \cdots \otimes e_1 \otimes e_2 \otimes \cdots \otimes e_{\lambda_q^*}$$

BY:

$$e_1 \otimes e_2 \otimes \cdots \otimes e_{\lambda_1^{\mathsf{T}}} \otimes e_1 \otimes e_2 \otimes \cdots \otimes e_{\lambda_2^{\mathsf{T}}} \otimes \cdots \otimes e_1 \otimes e_2 \otimes \cdots \otimes e_{\lambda_a^{\mathsf{T}}}$$

p.394, l.10 REPLACE: λ_1^* BY: λ_1^T

p.394, l.11 REPLACE: $\lambda_1^* + 1, \dots, \lambda_2^*$

BY: $\lambda_1^T + 1, \dots, \lambda_2^T$

p.394, l.12 REPLACE: $\omega_{\lambda_1^*} \otimes \omega_{\lambda_2^*} \otimes \cdots \otimes \omega_{\lambda_q^*}$,

BY: $\omega_{\lambda_1^{\mathrm{T}}} \otimes \omega_{\lambda_2^{\mathrm{T}}} \otimes \cdots \otimes \omega_{\lambda_a^{\mathrm{T}}}$,

p.403, **l.7** REPLACE: λ^* BY: λ^T (2 REPLACEMENTS)

p.403, **l.8** REPLACE: $Col(A^*)$ BY: $Col(A^T)$

p.403, l.12 and l.13 REPLACE:

suppose $\lambda = \lambda^*$. Prove that $\sigma^{\lambda}(s) = 0$ for all odd permutations $s \in \mathfrak{S}_k$.

BY:

suppose $\lambda = \lambda^{\mathrm{T}}$. Prove that $\chi^{\lambda}(s) = 0$ for all odd permutations $s \in \mathfrak{S}_k$, where χ^{λ} is the character of σ^{λ} .

p.418, l.-3 REPLACE: $\mu_1 \ge \cdots \ge \mu_n$

BY:
$$\mu_1 \ge \cdots \ge \mu_n \ge 0$$

p.434, l.11 REPLACE:

$$\mathcal{H}\mathcal{T}_r^{\otimes k} = \{ u \in \mathcal{T}_r^{\otimes k} : u \cdot u = 0 \text{ for all } u \in \mathcal{B}_{k,r+1}(V,\omega) \}$$

BY:

$$\mathcal{H}\mathcal{T}_r^{\otimes k} = \{ u \in \mathcal{T}_r^{\otimes k} : z \cdot u = 0 \text{ for all } z \in \mathcal{B}_{k,r+1}(V,\omega) \}$$

p.436, equation (10.3.4) REPLACE:

$$1 \le m(r,\lambda) \le \dim(G^{\lambda})|\mathcal{M}(k,r)|$$

BY:

$$\dim(G^{\lambda}) \le m(r,\lambda) \le \dim(G^{\lambda})|\mathcal{M}(k,r)|$$

p.436, l.–8 REPLACE: Let $r \ge 0$ BY: Let r > 0

p.487, l.-5 and l.-6 REPLACE:

and

$$\frac{d}{dt}(y^{-1}\theta(y)(I + t\theta(B))y(I + tB))|_{t=0} = \text{Ad}(y^{-1})\theta(B) + B.$$

BY:

whereas the curve $t \mapsto y(I + tB)$ is tangent to Q at y provided

$$0 = \frac{d}{dt}(y^{-1}\theta(y)(I + t\theta(B))y(I + tB))|_{t=0} = \operatorname{Ad}(y^{-1})\theta(B) + B.$$

p.502, l.17 REPLACE:

algebraic groups by Theorem ??.

BY:

algebraic groups by Corollary 11.1.3.

 $\mathbf{p.502}$, $\mathbf{l.}-5$ REPLACE:

$$(\exp yX_0)g(\exp -yX_0) = t \exp[(t^{-\alpha} - 1)y + zX_0].$$

BY:

$$(\exp yX_0)g(\exp -yX_0) = t \exp[((t^{-\alpha} - 1)y + z)X_0].$$

p.544, l.-4 REPLACE: $G = SO(\mathbb{C}_n, B)$

BY:
$$G = SO(\mathbb{C}^n, B)$$

p.561, l.18 REPLACE: $\theta(g) = JgJ^{-1}$.

BY: $\theta = \theta_{n,n}$ as in Type AIII.

p.566, **l.**-15 REPLACE: set $\mathcal{J} = \{f_{\text{top}} : f \in \mathcal{I}\}.$ BY: set $\mathcal{J} = \text{span}\{f_{\text{top}} : f \in \mathcal{I}\}.$

p.566, **l.**-11 REPLACE: It is even easier to prove that \mathcal{J} is closed under addition. BY: By definition \mathcal{J} is closed under addition.

p.567, l.13 REPLACE: $\{f_{\text{top}}: f \in \mathcal{I}_c\}$. BY: $\text{span}\{f_{\text{top}}: f \in \mathcal{I}_c\}$.

p.597, change displayed formula numbers: $(4.5.1) \longrightarrow (A.3.1)$ $(4.5.2) \longrightarrow (A.3.2)$

 $\mathbf{p.598}$, $\mathbf{l.15}$ Change displayed formula number: (4.5.3) to: (A.3.3)

 $\mathbf{p.599}$, $\mathbf{l.}$ -12 Change displayed formula number: (4.5.4) to: (A.3.4)

p.599, l.-7 REPLACE: Theorem 13.3.1 BY: Theorem A.3.1

 $\mathbf{p.599}$, $\mathbf{l.-4}$ CHANGE DISPLAYED FORMULA NUMBER: (4.5.5) TO: (A.3.5)

p.600, **l.5** REPLACE: /6, Theorem 14 BY: §6, Theorem 14

p.600, l.11 CHANGE DISPLAYED FORMULA NUMBER: (4.5.6) TO: (A.3.6)

p.600, l.-8 CHANGE DISPLAYED FORMULA NUMBER: (4.5.7) TO: (A.3.7)

p.600, l.-2 REPLACE: Proposition 13.3.2 BY: Proposition A.3.2

p.601, l.12 CHANGE DISPLAYED FORMULA NUMBER: (4.5.8) TO: (A.3.8)

p.601, **l.-12** REPLACE: Theorem 13.3.3 BY: Theorem A.3.3

p.601, **l.-5** REPLACE: Lemma 13.3.4 BY: Lemma A.3.4

p.602, 1.7 CHANGE DISPLAYED FORMULA NUMBER: (4.5.9) TO: (A.3.9)

 $\mathbf{p.602}$, $\mathbf{l.12}$ CHANGE DISPLAYED FORMULA NUMBER: (4.5.10) TO: (A.3.10)

p.603, l.-15 REPLACE: Corollary 13.3.5 BY: Corollary A.3.5

p.604, l.5 Change displayed formula number: (4.5.11) to: (A.3.11)

p.604, l.9 REPLACE: Proposition 13.3.6 BY: Proposition A.3.6

p.605, l.-3 REPLACE: Lemma 13.4.1 BY: Lemma A.4.1

p.606, l.-3 REPLACE: view $\mathbb{C}^r = \mathbb{M}_{1 \times r}$ as row vectors. We

BY: view \mathbb{C}^r as $r \times 1$ matrices. We

p.607, l.5 CHANGE DISPLAYED FORMULA NUMBER: (4.5.1) TO: (A.4.1)

p.607, l.9 REPLACE: on \mathbb{C}^m and \mathbb{C}^n that BY: on \mathbb{C}^{m+1} and \mathbb{C}^{n+1} that

p.607, l.-10 REPLACE: Lemma 13.4.2 BY: Lemma A.4.2

p.608, l.-12 REPLACE: Lemma 13.4.3 BY: Lemma A.4.3

p.609, **l.17** REPLACE: Lemma 13.4.4 BY: Lemma A.4.4

p.609, l.21 REPLACE: Proposition 13.4.5 BY: Proposition A.4.5

p.609, l.-3 REPLACE: Corollary 13.4.6 BY: Corollary A.4.6

p.610, l.5 REPLACE: Theorem 13.4.7 BY: Theorem A.4.7

p.610, l.-16 REPLACE: Corollary 13.4.8 BY: Corollary A.4.8

p.611, **l.11** REPLACE: Ch. I, / 5.2, Theorem 3 BY: Ch. I.5.2, Theorem 3

p.611, l.4 REPLACE: called *simple* if BY: called *smooth* if

p.611, l.5 REPLACE: the simple points BY: the smooth points

p.611, **l.-7** REPLACE: Theorem 13.4.9 BY: Theorem A.4.9

p.611, **l.-4** REPLACE: Corollary 13.4.10 BY: Corollary A.4.10

p.620, l.-11 REPLACE: $\rightarrow W$ BY: $\rightarrow W^{\otimes p}$

p.649, **l.-10** REPLACE: (Section A.1.5) BY: (Section A.1.6)

```
p.649, l.-9 REPLACE: set of regular points BY: set of smooth points
p.650, l.10 REPLACE: (Corollary A.3.3) BY: (Theorem A.1.18)
```

p.651, l.4 REPLACE: (Submanifolds) BY: (Open submanifolds)

p.655, l.-6 REPLACE: (Example 5 of Section D.1.1)BY: (Example 6 of Section D.1.1)

p.658, formula D.1.4 REPLACE: $|\varphi|\omega$ BY: $\varphi\omega$

p.661, l.2 REPLACE: is regular (Propositon 1.2.3)

BY: is smooth (Theorem 1.2.3)

p.661, **l.14** REPLACE: D.1.2, #4). BY: D.1.4, #4).

p.663, l.-1 REPLACE: chart containing (1) BY: chart containing 1)

General Typesetting Error: The ligature "fi" (as in the words: define, finite, field, fixed, satisfied, first, suffices, find) was omitted on the following pages:

15-32, 226, 227, 273-275, 278, 279, 598-611

The ligature "fl" was also omitted on some pages (as in the word *influential* on page 227, line -9).