Corrections to

Representations and Invariants of the Classical Groups by Roe Goodman and Nolan R. Wallach (1999 paperback printing)

Revised May 24, 2002
p.25, 1.10 REPLACE: We denote by s_{0}

BY: We denote by s_{l}
p.25, 1.11 (display) REPLACE: s_{0} BY: s_{l}
p.25, 1.13 REPLACE:

$$
J_{+}=\left[\begin{array}{cc}
0 & s_{0} \\
s_{0} & 0
\end{array}\right], \quad J_{+}=\left[\begin{array}{cc}
0 & s_{0} \\
-s_{0} & 0
\end{array}\right]
$$

BY:

$$
J_{+}=\left[\begin{array}{cc}
0 & s_{l} \\
s_{l} & 0
\end{array}\right], \quad J_{+}=\left[\begin{array}{cc}
0 & s_{l} \\
-s_{l} & 0
\end{array}\right]
$$

p.25, 1.-10 REPLACE: $s_{0} a^{t} s_{0}$ BY: $s_{l} a^{t} s_{l}$
p.25, l.-7 REPLACE:

$$
A=\left[\begin{array}{cc}
a & b \\
c & -s_{0} a^{t} s_{0}
\end{array}\right]
$$

BY:

$$
A=\left[\begin{array}{cc}
a & b \\
c & -s_{l} a^{t} s_{l}
\end{array}\right]
$$

p. 25, 1.-6 REPLACE: such that $b^{t}=-s_{0} b s_{0}$ and $c^{t}=-s_{0} c s_{0}$

BY: such that $b^{t}=-s_{l} b s_{l}$ and $c^{t}=-s_{l} c s_{l}$
p.25, 1.-3 REPLACE:

$$
A=\left[\begin{array}{cc}
a & b \\
c & -s_{0} a^{t} s_{0}
\end{array}\right]
$$

BY:

$$
A=\left[\begin{array}{cc}
a & b \\
c & -s_{l} a^{t} s_{l}
\end{array}\right]
$$

Corrections to Representations and Invariants ... (Revised May 24, 2002) 2
p. 25, 1.-2 REPLACE: such that $b^{t}=s_{0} b s_{0}$ and $c^{t}=s_{0} c s_{0}$

BY: such that $b^{t}=s_{l} b s_{l}$ and $c^{t}=s_{l} c s_{l}$
p.26, 1.6 REPLACE:

$$
S=\left[\begin{array}{ccc}
0 & 0 & s_{0} \\
0 & 1 & 0 \\
s_{0} & 0 & 0
\end{array}\right]
$$

BY:

$$
S=\left[\begin{array}{ccc}
0 & 0 & s_{l} \\
0 & 1 & 0 \\
s_{l} & 0 & 0
\end{array}\right]
$$

p.26, 1.12 REPLACE:

$$
A=\left[\begin{array}{ccc}
a & w & b \\
u & 0 & -w^{t} s_{0} \\
c & -s_{0} u^{t} & -s_{0} a^{t} s_{0}
\end{array}\right],
$$

BY:

$$
A=\left[\begin{array}{ccc}
a & w & b \\
u & 0 & -w^{t} s_{l} \\
c & -s_{l} u^{t} & -s_{l} a^{t} s_{l}
\end{array}\right]
$$

p.26, 1.13 REPLACE: such that $b^{t}=-s_{0} b s_{0}$ and $c^{t}=-s_{0} c s_{0}$

BY: such that $b^{t}=-s_{l} b s_{l}$ and $c^{t}=-s_{l} c s_{l}$
p.30, 1.14 REPLACE: $f_{C}(g)$ BY: $f_{C}^{\pi}(g)$
p.30, 1.16 REPLACE: $f_{d \pi(A) C}(g)$ BY: $f_{d \pi(A) C}^{\pi}(g)$
p.31, l.-7 and -8 REPLACE:

$$
X_{d \sigma(A)} f=X_{A}(f \circ \sigma)=X_{d \pi(A)}(f \circ \rho)=X_{d \rho(d \pi(A))} f
$$

Hence $d \sigma(A)=d \rho(d \pi(A))$.
BY:

$$
X_{d \sigma(A)} f^{\sigma}=X_{A}(f \circ \sigma)=X_{d \pi(A)}(f \circ \rho)=X_{d \rho(d \pi(A))}(f \circ \rho) .
$$

Now evaluate at I to see that $d \sigma(A)=d \rho(d \pi(A))$.
p.32, 1.7 REPLACE: $\quad\{(A,-A): A \in \mathfrak{g} \cap \mathfrak{h}\}$

BY: $\{(A, A): A \in \mathfrak{g} \cap \mathfrak{h}\}$

Corrections to Representations and Invariants ... (Revised May 24, 2002) 3
p.32, 1.24 REPLACE: Now assume $d \sigma(\mathfrak{g})=\mathfrak{h}$.

BY: Now assume $d \sigma(\mathfrak{g})=\mathfrak{h}$ and H is connected.
p.40, end of line 1 The last word should be Hint:
p.40, end of line 3 The last word should be "that"
p.45, 1.-10 REPLACE: $\left\{g \in G: g g^{t}=I\right\}$

BY: $\left\{g \in \mathrm{GL}(n, \mathbb{C}): g g^{t}=I\right\}$
p.49, l.-10 REPLACE:

Exercis (REMAINDER OF LINE DISAPPEARED IN TYPSETTING)
BY:
Exercise \# 4 in Appendix A). However, in the case of algebraic groups, Theorem
p.94, 1.6 REPLACE: Let $s_{0} \in \operatorname{GL}(2 l, \mathbb{C})$
$\mathrm{BY}:$ Let $s_{l} \in \mathrm{GL}(l, \mathbb{C})$
p.94, 1.10 REPLACE:

$$
\pi(\sigma)=\left[\begin{array}{cc}
s_{\sigma} & 0 \\
0 & s_{0} s_{\sigma} s_{0}
\end{array}\right]
$$

BY:

$$
\pi(\sigma)=\left[\begin{array}{cc}
s_{\sigma} & 0 \\
0 & s_{l} s_{\sigma} s_{l}
\end{array}\right]
$$

p.95, 1.8 REPLACE:

$$
\phi(\sigma)=\left[\begin{array}{ccc}
s_{\sigma} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & s_{0} s_{\sigma} s_{0}
\end{array}\right]
$$

BY:

$$
\phi(\sigma)=\left[\begin{array}{ccc}
s_{\sigma} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & s_{l} s_{\sigma} s_{l}
\end{array}\right],
$$

p.155, 1.10 REPLACE: for all $x \in F$.

By: for all $x \in F$. (Hint: Use Proposition 3.4.7.)

Corrections to Representations and Invariants ... (Revised May 24, 2002) 4
p.170, 1.12 REPLACE: if $\phi \in \mathcal{J}$ then there exist

BY: if $\phi \in \mathcal{J}_{+}$then there exist
p.174, l. -7 REPLACE: induction that $\mathcal{H} \cdot\left(\mathcal{P} \mathcal{J}_{+}\right)$contains all polynomials BY: induction that $\mathcal{H} \cdot\left(1+\mathcal{P} \mathcal{J}_{+}\right)$contains all polynomials
p.175, 1.7 REPLACE: 4.1.4(1), which contradicts

BY: 4.1.4, which contradicts
p.183, l.-7 display REPLACE:

$$
u Z w=\left[\begin{array}{cc}
I_{r} & O_{r, m-r} \\
O_{m-r, r} & O_{m-r}
\end{array}\right]
$$

BY:

$$
u Z w=\left[\begin{array}{cc}
I_{r} & O_{r, m-r} \\
O_{k-r, r} & O_{k-r, m-r}
\end{array}\right]
$$

p.183, l. -5 display REPLACE:

$$
X=\left[\begin{array}{cc}
I_{r} & O_{r, m-r} \\
O_{m-r, r} & O_{k-r}
\end{array}\right], \quad Y=\left[\begin{array}{cc}
I_{r} & O_{r, n-r} \\
O_{n-r, r} & O_{n-r}
\end{array}\right],
$$

BY:

$$
X=\left[\begin{array}{cc}
I_{r} & O_{r, n-r} \\
O_{k-r, r} & O_{k-r, n-r}
\end{array}\right], \quad Y=\left[\begin{array}{cc}
I_{r} & O_{r, m-r} \\
O_{n-r, r} & O_{n-r, m-r}
\end{array}\right],
$$

p.184, l.-8 display REPLACE:

$$
X=\left[\begin{array}{cc}
J_{r} & O_{r, k-r} \\
O_{k-r, r} & O_{n-r, k-r}
\end{array}\right] g .
$$

BY:

$$
X=\left[\begin{array}{cc}
J_{r} & O_{r, k-r} \\
O_{n-r, r} & O_{n-r, k-r}
\end{array}\right] g .
$$

p.189, 1.10 display REPLACE: $\prod_{j=1}^{k} y_{j}^{q_{j}}$ BY: $\prod_{j=1}^{m} y_{j}^{q_{j}}$
p.189, 1.13 REPLACE: $z=\left(v_{1}, \ldots, v_{k}, v_{1}^{*}, \ldots, v_{k}^{*}\right)$

BY: $\quad z=\left(v_{1}, \ldots, v_{k}, v_{1}^{*}, \ldots, v_{m}^{*}\right)$
p.198, l.-7 REPLACE: representation on \mathbb{C}^{n} BY: representation on V
p.198, 1. $-5 \quad$ REPLACE: space $\mathcal{P}^{[p, q]}\left(V^{k} \otimes\left(V^{*}\right)^{m}\right)^{\operatorname{GL}(V)}$

BY: space $\mathcal{P}^{[p, q]}\left(V^{k} \oplus\left(V^{*}\right)^{m}\right)^{\mathrm{GL}(V)}$
p.198, 1. -3 REPLACE: acts on $\mathcal{P}^{[p, q]}\left(V^{k} \otimes\left(V^{*}\right)^{m}\right)$ BY: acts on $\mathcal{P}^{[p, q]}\left(V^{k} \oplus\left(V^{*}\right)^{m}\right)$
p.198, l. -1 display REPLACE: $\quad \mathcal{P}^{[p, q]}\left(V^{k} \otimes\left(V^{*}\right)^{m}\right)^{\mathrm{GL}(V)}=0$

BY: $\quad \mathcal{P}^{[p, q]}\left(V^{k} \oplus\left(V^{*}\right)^{m}\right)^{\mathrm{GL}(V)}=0$
p.199, 1.2 display REPLACE: $\quad \mathcal{P}^{[p, q]}\left(V^{k} \otimes\left(V^{*}\right)^{m}\right)^{\operatorname{GL}(V)}$

BY: $\quad \mathcal{P}^{[p, q]}\left(V^{k} \oplus\left(V^{*}\right)^{m}\right)^{\mathrm{GL}(V)}$
p.199, 1.4 REPLACE: complete contractions C_{s} BY: complete contractions λ_{s}
p.199, 1.6 display REPLACE: C_{s} BY: λ_{s}
p.199, 1.9 display REPLACE: C_{s} BY: λ_{s}
p.227, l.-1 REPLACE: general Capelli problem."

BY: general "Capelli problem."
p.254, l.-17 to l.-14 REPLACE:

Suppose for the sake \ldots impossible. Hence $V_{k}=\mathcal{H}^{k}\left(\mathbb{C}^{n}\right)$.
BY:
We next prove (3). The intertwining property is easily checked (here it is understood that in $V^{k} \otimes \mathcal{H}^{k}\left(\mathbb{C}^{n}\right), \mathfrak{g}^{\prime}$ acts only on V^{k} and G acts only on $\left.\mathcal{H}^{k}\left(\mathbb{C}^{n}\right)\right)$. Suppose $\sum \psi_{j}\left(r^{2}\right) f_{j}=0$. We may assume that $\left\{f_{j}\right\}$ is linearly independent and by homogeneity that $\psi_{j}\left(r^{2}\right)=c_{j} r^{2}$. This immediately implies $c_{j}=0$, proving injectivity of the map. From (3) and Theorem 4.5.12 it follows that $\mathcal{H}^{k}\left(\mathbb{C}^{n}\right)$ is an irreducible G-module. Hence $V_{k}=\mathcal{H}^{k}\left(\mathbb{C}^{n}\right)$.

Corrections to Representations and Invariants ... (Revised May 24, 2002) 6
p.254, l.-7 REPLACE:

Statement (3) follows from (1) and (2) and Theorem 4.5.12. To prove (4) we only

BY:
To prove (4), we only
p.257, l.-3 REPLACE: of size r such that BY: of size $2 r$ such that
p.258, 1.18 REPLACE: \quad it has degree $|\mu| \quad$ BY: \quad it has degree $|\mu| / 2$
p.259, 1.5 REPLACE: such that $|\mu|=r$ and BY: such that $|\mu|=2 r$ and
p.272, l.-1 REPLACE: $\quad \epsilon\left(x^{*}\right) \epsilon\left(y^{*}\right)=-\epsilon\left(x^{*}\right) \epsilon\left(y^{*}\right) \quad$ BY: $\quad \epsilon\left(x^{*}\right) \epsilon\left(y^{*}\right)=-\epsilon\left(y^{*}\right) \epsilon\left(x^{*}\right)$
p.273, change displayed formula numbers:
(4.5.5) \longrightarrow (6.5.5)
(4.5.6) \longrightarrow (6.5.6)
(4.5.7) \longrightarrow (6.5.7)
(4.5.8) $\longrightarrow(6.5 .8)$

p.275, change displayed formula number:

p.276, change displayed formula numbers:
(4.5.10) $\longrightarrow(6.5 .10)$
$(4.5 .11) \longrightarrow(6.5 .11)$
p.304, l.-9 REPLACE: $\quad \pi$ BY: π^{λ}
p.340, l. -16 REPLACE: $\gamma s_{0} \gamma^{t}=I_{2 l} \quad$ BY: $\quad \gamma s_{2 l} \gamma^{t}=I_{2 l}$
p.340, $1-15$ REPLACE: where s_{0} is the matrix BY: where $s_{2 l}$ is the matrix

Corrections to Representations and Invariants ... (Revised May 24, 2002) 7
p.340, l-14 REPLACE: corresponding to s_{0} as in BY: corresponding to $s_{2 l}$ as in
p.340, l-12 REPLACE:

$$
\gamma g \gamma^{-1}\left(\gamma g \gamma^{-1}\right)^{t}=\gamma g s_{0} g^{t} \gamma^{t}=\gamma s_{0} \gamma^{t}=I_{2 l}
$$

BY:

$$
\gamma g \gamma^{-1}\left(\gamma g \gamma^{-1}\right)^{t}=\gamma g s_{2 l} g^{t} \gamma^{t}=\gamma s_{2 l} \gamma^{t}=I_{2 l} .
$$

p.340, l-9 REPLACE: defined by the equation $g^{t} g=I$. BY: defined by the equation $g^{t} g=I_{2 l}$.
p.342, l.-12 REPLACE: invariant volume forms on $K / T, T$, and K, respectively BY: invariant volume forms on $T, K / T$, and K, respectively
p.371, l.6 REPLACE: (published by CAN, Amsterdam, 1992).

BY: (available at http://young.sp2mi.univ-poitiers.fr/~marc/LiE)
p.376, 1.9 REPLACE: representation $\left(\sigma_{k}^{\lambda}, G^{\lambda}\right)$ BY: representation $\left(\sigma^{\lambda}, G^{\lambda}\right)$
p.377, l.-3 REPLACE: λ^{*} BY: λ^{T}
p.377, 1.-2 REPLACE: $\quad \lambda_{1}^{*} \geq \lambda_{2}^{*} \quad$ BY: $\quad \lambda_{1}^{\mathrm{T}} \geq \lambda_{2}^{\mathrm{T}}$
p.377, l.-1 REPLACE: λ_{j}^{*} BY: λ_{j}^{T}
p.378, 1.1, l.2, and 1.4 REPLACE: λ^{*} BY: $\lambda^{T} \quad$ (4 REPLACEMENTS)
p.384, 1.10 REPLACE:
(1) The multiplicities $m_{\pi, \pi^{\prime}}$ in (9.2.1) are either 0 or 1 ,

BY:
(1) The multiplicities $m_{\pi, \pi^{\prime}}$ are either 0 or 1 and each $\pi \in \widehat{K}$ (resp. $\pi^{\prime} \in \widehat{K}^{\prime}$) occurs at most once in (9.2.1).
p.384, l.-3 REPLACE:
$G \times G^{\prime}$ on Y is also multiplicity free.
BY:
$\left(\rho(G), \rho\left(G^{\prime}\right)\right)$ on Y is a dual reductive pair.
p.385, 1.8 REPLACE: for $f \in \mathcal{P}(X)$ BY: for $f \in \mathcal{P}^{d}(X)$
p.385, l.-1 REPLACE:

This shows that $\mathcal{P}^{d}(X)$ is multiplicity-free for $G \times G^{\prime}$
BY:
This shows that $\left(G, G^{\prime}\right)$ acts as a dual pair on $\mathcal{P}^{d}(X)$.
p.386, 1.5 REPLACE: Thus Y is multiplicity free for $K \times K^{\prime}$.

BY: Thus $\left(K, K^{\prime}\right)$ acts as a dual pair on Y.
p.386, 1.10 and 1.11 REPLACE:

As a $\left(G \times G^{\prime}\right)$-module, Y is also multiplicity free, since
BY:
We have $\left(G, G^{\prime}\right)$ acting as a dual pair on Y, since
p.386, l.-1 REPLACE: $V_{(\tau)}$ BY: V_{τ}
p.394, 1.7 REPLACE: λ^{*} BY: λ^{T}
p.394, 1.9 REPLACE:
$e_{1} \otimes e_{2} \otimes \cdots \otimes e_{\lambda_{1}^{*}} \otimes e_{1} \otimes e_{2} \otimes \cdots \otimes e_{\lambda_{2}^{*}} \otimes \cdots \otimes e_{1} \otimes e_{2} \otimes \cdots \otimes e_{\lambda_{q}^{*}}$
BY:
$e_{1} \otimes e_{2} \otimes \cdots \otimes e_{\lambda_{1}^{\mathrm{T}}} \otimes e_{1} \otimes e_{2} \otimes \cdots \otimes e_{\lambda_{2}^{\mathrm{T}}} \otimes \cdots \otimes e_{1} \otimes e_{2} \otimes \cdots \otimes e_{\lambda_{q}^{\mathrm{T}}}$
p.394, 1.10 REPLACE: λ_{1}^{*} BY: λ_{1}^{T}

Corrections to Representations and Invariants ... (Revised May 24, 2002) 9
p.394, 1.11 REPLACE: $\lambda_{1}^{*}+1, \ldots, \lambda_{2}^{*}$

BY: $\quad \lambda_{1}^{\mathrm{T}}+1, \ldots, \lambda_{2}^{\mathrm{T}}$
p.394, 1.12 REPLACE: $\omega_{\lambda_{1}^{*}} \otimes \omega_{\lambda_{2}^{*}} \otimes \cdots \otimes \omega_{\lambda_{q}^{*}}$,

BY: $\quad \omega_{\lambda_{1}^{\mathrm{T}}} \otimes \omega_{\lambda_{2}^{\mathrm{T}}} \otimes \cdots \otimes \omega_{\lambda_{q}^{\mathrm{T}}}$,
p.403, 1.7 REPLACE: λ^{*} BY: λ^{T} (2 REPLACEMENTS)
p.403, 1.8 REPLACE: $\operatorname{Col}\left(A^{*}\right) \quad \mathrm{BY}: \operatorname{Col}\left(A^{\mathrm{T}}\right)$
p.403, 1.12 and 1.13 REPLACE:
suppose $\lambda=\lambda^{*}$. Prove that $\sigma^{\lambda}(s)=0$ for all odd permutations $s \in \mathfrak{S}_{k}$. BY:
suppose $\lambda=\lambda^{\mathrm{T}}$. Prove that $\chi^{\lambda}(s)=0$ for all odd permutations $s \in \mathfrak{S}_{k}$, where χ^{λ} is the character of σ^{λ}.
p.418, l.-3 REPLACE: $\mu_{1} \geq \cdots \geq \mu_{n}$ BY: $\mu_{1} \geq \cdots \geq \mu_{n} \geq 0$
p.434, 1.11 REPLACE:

$$
\mathcal{H}_{r}^{\otimes k}=\left\{u \in \mathcal{T}_{r}^{\otimes k}: u \cdot u=0 \text { for all } u \in \mathcal{B}_{k, r+1}(V, \omega)\right\}
$$

BY:

$$
\mathcal{H T}_{r}^{\otimes k}=\left\{u \in \mathcal{T}_{r}^{\otimes k}: z \cdot u=0 \text { for all } z \in \mathcal{B}_{k, r+1}(V, \omega)\right\}
$$

p.436, equation (10.3.4) REPLACE:

$$
1 \leq m(r, \lambda) \leq \operatorname{dim}\left(G^{\lambda}\right)|\mathcal{M}(k, r)|
$$

BY:

$$
\operatorname{dim}\left(G^{\lambda}\right) \leq m(r, \lambda) \leq \operatorname{dim}\left(G^{\lambda}\right)|\mathcal{M}(k, r)|
$$

p.436, 1. -8 REPLACE: Let $r \geq 0$ BY: Let $r>0$

Corrections to Representations and Invariants . . (Revised May 24, 2002) 10
p.487, l. -5 and l.-6 REPLACE:
and

$$
\left.\frac{d}{d t}\left(y^{-1} \theta(y)(I+t \theta(B)) y(I+t B)\right)\right|_{t=0}=\operatorname{Ad}\left(y^{-1}\right) \theta(B)+B
$$

BY:
whereas the curve $t \mapsto y(I+t B)$ is tangent to Q at y provided

$$
0=\left.\frac{d}{d t}\left(y^{-1} \theta(y)(I+t \theta(B)) y(I+t B)\right)\right|_{t=0}=\operatorname{Ad}\left(y^{-1}\right) \theta(B)+B
$$

p.502, 1.17 REPLACE:
algebraic groups by Theorem ??.
BY:
algebraic groups by Corollary 11.1.3.
p.502, 1.-5 REPLACE:

$$
\left(\exp y X_{0}\right) g\left(\exp -y X_{0}\right)=t \exp \left[\left(t^{-\alpha}-1\right) y+z X_{0}\right]
$$

BY:

$$
\left(\exp y X_{0}\right) g\left(\exp -y X_{0}\right)=t \exp \left[\left(\left(t^{-\alpha}-1\right) y+z\right) X_{0}\right]
$$

p.544, l. -4 REPLACE: $G=\operatorname{SO}\left(\mathbb{C}_{n}, B\right)$

BY: $\quad G=\mathrm{SO}\left(\mathbb{C}^{n}, B\right)$
p.561, 1.18 REPLACE: $\quad \theta(g)=J g J^{-1}$. BY: $\quad \theta=\theta_{n, n}$ as in Type AIII.
p.566, l. -15 REPLACE: set $\mathcal{J}=\left\{f_{\text {top }}: f \in \mathcal{I}\right\}$. BY: set $\mathcal{J}=\operatorname{span}\left\{f_{\text {top }}: f \in \mathcal{I}\right\}$.
p.566, 1.-11 REPLACE: It is even easier to prove that \mathcal{J} is closed under addition. BY: By definition \mathcal{J} is closed under addition.
p.567, 1.13 REPLACE: $\quad\left\{f_{\text {top }}: f \in \mathcal{I}_{c}\right\}$. BY: $\operatorname{span}\left\{f_{\text {top }}: f \in \mathcal{I}_{c}\right\}$.
p.599, l.-7 REPLACE: Theorem 13.3.1 BY: Theorem A.3.1
p.600, 1.5 REPLACE: /6, Theorem 14 BY: §6, Theorem 14
p.600, l.-2 REPLACE: Proposition 13.3.2 BY: Proposition A.3.2
p.601, l.-12 REPLACE: Theorem 13.3.3 BY: Theorem A.3.3
p.601, l.-5 REPLACE: Lemma 13.3.4 BY: Lemma A.3.4
p.603, l.-15 REPLACE: Corollary 13.3.5 BY: Corollary A.3.5
p.604, $\mathbf{1 . 9}$ REPLACE: Proposition 13.3.6 BY: Proposition A.3.6
p.605, l.-3 REPLACE: Lemma 13.4.1 BY: Lemma A.4.1
p.607, l.-10 REPLACE: Lemma 13.4.2 BY: Lemma A.4.2
p.608, l.-12 REPLACE: Lemma 13.4.3 BY: Lemma A.4.3
p.609, 1.17 REPLACE: Lemma 13.4.4 BY: Lemma A.4.4
p.609, 1.21 REPLACE: Proposition 13.4.5 BY: Proposition A.4.5
p.609, l.-3 REPLACE: Corollary 13.4.6 BY: Corollary A.4.6
p.610, l.5 REPLACE: Theorem 13.4.7 BY: Theorem A.4.7
p.610, l.-16 REPLACE: Corollary 13.4.8 BY: Corollary A.4.8
p.611, l.11 REPLACE: Ch. I, / 5.2, Theorem 3 BY: Ch. I.5.2, Theorem 3
p.611, l.-7 REPLACE: Theorem 13.4.9 BY: Theorem A.4.9
p.611, l.-4 REPLACE: Corollary 13.4.10 BY: Corollary A.4.10

General Typesetting Error: The ligature "fi" (as in the words: define, finite, field, fixed, satisfied, first, suffices, find) was omitted on the following pages: $15-32,226,227,273-275,278,279,598-611$

