Corrections to

REPRESENTATIONS AND INVARIANTS OF THE CLASSICAL GROUPS by Roe Goodman and Nolan R. Wallach (1999 paperback printing)

Revised January 18, 2002

p.25, l.10 REPLACE: We denote by s_0 BY: We denote by s_l

p.25, l.11 (display) REPLACE: s_0 BY: s_l

p.25, l.13 REPLACE:

$$J_{+} = \begin{bmatrix} 0 & s_{0} \\ s_{0} & 0 \end{bmatrix}, \qquad J_{+} = \begin{bmatrix} 0 & s_{0} \\ -s_{0} & 0 \end{bmatrix},$$

BY:

$$J_{+} = \begin{bmatrix} 0 & s_l \\ s_l & 0 \end{bmatrix}, \qquad J_{+} = \begin{bmatrix} 0 & s_l \\ -s_l & 0 \end{bmatrix},$$

p.25, l.-10 REPLACE: $s_0 a^t s_0$ BY: $s_l a^t s_l$

p.25, l.-7 REPLACE:

$$A = \left[\begin{array}{cc} a & b \\ c & -s_0 a^t s_0 \end{array} \right],$$

BY:

$$A = \left[\begin{array}{cc} a & b \\ c & -s_l a^t s_l \end{array} \right],$$

p. 25, l.-6 REPLACE: such that $b^t = -s_0 b s_0$ and $c^t = -s_0 c s_0$ BY: such that $b^t = -s_l b s_l$ and $c^t = -s_l c s_l$

p.25, l.-3 REPLACE:

$$A = \left[\begin{array}{cc} a & b \\ c & -s_0 a^t s_0 \end{array} \right],$$

BY:

$$A = \left[\begin{array}{cc} a & b \\ c & -s_l a^t s_l \end{array} \right],$$

p. 25, 1.-2 REPLACE: such that $b^t = s_0 b s_0$ and $c^t = s_0 c s_0$ BY: such that $b^t = s_l b s_l$ and $c^t = s_l c s_l$ p.26, l.6 REPLACE:

BY:

$$S = \begin{bmatrix} 0 & 0 & s_0 \\ 0 & 1 & 0 \\ s_0 & 0 & 0 \end{bmatrix}.$$
$$S = \begin{bmatrix} 0 & 0 & s_l \\ 0 & 1 & 0 \\ s_l & 0 & 0 \end{bmatrix}.$$

p.26, l.12 Replace:

BY:

$$A = \begin{bmatrix} a & w & b \\ u & 0 & -w^{t}s_{0} \\ c & -s_{0}u^{t} & -s_{0}a^{t}s_{0} \end{bmatrix},$$

$$A = \begin{bmatrix} a & w & b \\ u & 0 & -w^{t}s_{l} \\ c & -s_{l}u^{t} & -s_{l}a^{t}s_{l} \end{bmatrix},$$

p.26, l.13 REPLACE: such that $b^t = -s_0 b s_0$ and $c^t = -s_0 c s_0$ BY: such that $b^t = -s_l b s_l$ and $c^t = -s_l c s_l$

p.40, end of line 1 The last word should be HINT:

p.40, end of line 3 The last word should be "that"

p.49, line -10 REPLACE:

Exercis (REMAINDER OF LINE DISAPPEARED IN TYPSETTING)

BY:

Exercise # 4 in Appendix A). However, in the case of algebraic groups, Theorem

p.94, l.6 REPLACE: Let $s_0 \in GL(2l, \mathbb{C})$

BY: Let $s_l \in \operatorname{GL}(l, \mathbb{C})$

p.94, l.10 REPLACE:

$$\pi(\sigma) = \left[\begin{array}{cc} s_{\sigma} & 0\\ 0 & s_0 s_{\sigma} s_0 \end{array} \right],$$

BY:

$$\pi(\sigma) = \left[\begin{array}{cc} s_\sigma & 0 \\ 0 & s_l s_\sigma s_l \end{array} \right],$$

p.95, 1.8 REPLACE:

$$\phi(\sigma) = \begin{bmatrix} s_{\sigma} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & s_0 s_{\sigma} s_0 \end{bmatrix},$$

BY:

$$\phi(\sigma) = \left[\begin{array}{ccc} s_{\sigma} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & s_l s_{\sigma} s_l \end{array} \right],$$

p.170, l.12 REPLACE: if $\phi \in \mathcal{J}$ then there exist

BY: if $\phi \in \mathcal{J}_+$ then there exist

p.174, l.-7 REPLACE: induction that $\mathcal{H} \cdot (\mathcal{P}\mathcal{J}_+)$ contains all polynomials BY: induction that $\mathcal{H} \cdot (1 + \mathcal{P}\mathcal{J}_+)$ contains all polynomials

p.175, l.7 REPLACE:

4.1.4(1), which contradicts

BY:

4.1.4, which contradicts

p.183, l.-7 display REPLACE:

$$uZw = \left[\begin{array}{cc} I_r & O_{r,m-r} \\ O_{m-r,r} & O_{m-r} \end{array}\right]$$

BY:

$$uZw = \begin{bmatrix} I_r & O_{r,m-r} \\ O_{k-r,r} & O_{k-r,m-r} \end{bmatrix}$$

p.183, l.-5 display REPLACE:

$$X = \begin{bmatrix} I_r & O_{r,m-r} \\ O_{m-r,r} & O_{k-r} \end{bmatrix}, \quad Y = \begin{bmatrix} I_r & O_{r,n-r} \\ O_{n-r,r} & O_{n-r} \end{bmatrix},$$

BY:

$$X = \begin{bmatrix} I_r & O_{r,n-r} \\ O_{k-r,r} & O_{k-r,n-r} \end{bmatrix}, \quad Y = \begin{bmatrix} I_r & O_{r,m-r} \\ O_{n-r,r} & O_{n-r,m-r} \end{bmatrix},$$

p.184, l.-8 display REPLACE:

$$X = \begin{bmatrix} J_r & O_{r,k-r} \\ O_{k-r,r} & O_{n-r,k-r} \end{bmatrix} g.$$

BY:

$$X = \left[\begin{array}{cc} J_r & O_{r,k-r} \\ O_{n-r,r} & O_{n-r,k-r} \end{array} \right] g.$$

p.189, l.10 display REPLACE: $\prod_{j=1}^{k} y_j^{q_j}$

BY:
$$\prod_{j=1}^m y_j^{q_j}$$

- **p.189, l.13** REPLACE: $z = (v_1, \ldots, v_k, v_1^*, \ldots, v_k^*)$ BY: $z = (v_1, \ldots, v_k, v_1^*, \ldots, v_m^*)$
- **p.198, l.**-7 REPLACE: representation on \mathbb{C}^n BY: representation on V
- **p.198, l.**-5 REPLACE: space $\mathcal{P}^{[p,q]}(V^k \otimes (V^*)^m)^{\mathrm{GL}(V)}$ BY: space $\mathcal{P}^{[p,q]}(V^k \oplus (V^*)^m)^{\mathrm{GL}(V)}$
- **p.198, l.**-3 REPLACE: acts on $\mathcal{P}^{[p,q]}(V^k \otimes (V^*)^m)$ BY: acts on $\mathcal{P}^{[p,q]}(V^k \oplus (V^*)^m)$
- **p.198, l.**-1 display REPLACE: $\mathcal{P}^{[p,q]}(V^k \otimes (V^*)^m)^{\mathrm{GL}(V)} = 0$ BY: $\mathcal{P}^{[p,q]}(V^k \oplus (V^*)^m)^{\mathrm{GL}(V)} = 0$
- **p.199, l.2 display** REPLACE: $\mathcal{P}^{[p,q]}(V^k \otimes (V^*)^m)^{\mathrm{GL}(V)}$ BY: $\mathcal{P}^{[p,q]}(V^k \oplus (V^*)^m)^{\mathrm{GL}(V)}$
- **p.199, l.4** REPLACE: complete contractions C_s BY: complete contractions λ_s
- p.199, l.6 display REPLACE: C_s BY: λ_s
- p.199, l.9 display REPLACE: C_s BY: λ_s
- p.227, l.-1 REPLACE: general Capelli problem." BY: general "Capelli problem."
- **p.257**, **l.**–3 REPLACE: of size r such that of size 2r such that BY:
- **p.258, l.18** REPLACE: it has degree $|\mu|$ BY: it has degree $|\mu|/2$
- **p.259, 1.5** REPLACE: such that $|\mu| = r$ and BY: such that $|\mu| = 2r$ and

p.272, l.-1 REPLACE:
$$\epsilon(x^*)\epsilon(y^*) = -\epsilon(x^*)\epsilon(y^*)$$

By: $\epsilon(x^*)\epsilon(y^*) = -\epsilon(y^*)\epsilon(x^*)$

p.273, change displayed formula numbers:

 $(4.5.5) \longrightarrow (6.5.5)$ $(4.5.6) \longrightarrow (6.5.6)$ $(4.5.7) \longrightarrow (6.5.7)$ $(4.5.8) \longrightarrow (6.5.8)$ p.275, change displayed formula number:

 $(4.5.9) \longrightarrow (6.5.9)$

p.276, change displayed formula numbers:

- $(4.5.10) \longrightarrow (6.5.10)$
- $(4.5.11) \longrightarrow (6.5.11)$

p.340, l.–16 REPLACE:

BY:

$$\gamma s_0 \gamma^t = I_{2l}$$

$$\gamma s_{2l} \gamma^t = I_{2l}$$

p.340, l-15 REPLACE: where s_0 is the matrix

BY: where s_{2l} is the matrix

p.340, l-14 REPLACE: corresponding to s_0 as in

BY: corresponding to s_{2l} as in

p.340, 1–12 REPLACE:

$$\gamma g \gamma^{-1} (\gamma g \gamma^{-1})^t = \gamma g s_0 g^t \gamma^t = \gamma s_0 \gamma^t = I_{2l}$$

BY:

$$\gamma g \gamma^{-1} (\gamma g \gamma^{-1})^t = \gamma g s_{2l} g^t \gamma^t = \gamma s_{2l} \gamma^t = I_{2l}.$$

p.340, l-9 REPLACE: defined by the equation $g^t g = I$.

BY: defined by the equation $g^t g = I_{2l}$.

p.342, **l.**-12 REPLACE: invariant volume forms on K/T, T, and K, respectively BY: invariant volume forms on T, K/T, and K, respectively

p.434, l.11 REPLACE:

$$\mathcal{H}\mathcal{T}_r^{\otimes k} = \{ u \in \mathcal{T}_r^{\otimes k} : u \cdot u = 0 \text{ for all } u \in \mathcal{B}_{k,r+1}(V,\omega) \}$$

BY:

$$\mathcal{H}\mathcal{T}_r^{\otimes k} = \{ u \in \mathcal{T}_r^{\otimes k} : z \cdot u = 0 \text{ for all } z \in \mathcal{B}_{k,r+1}(V,\omega) \}$$

p.436, equation (10.3.4) REPLACE:

 $1 \le m(r,\lambda) \le \dim(G^{\lambda})|\mathcal{M}(k,r)|$

BY:

$$\dim(G^{\lambda}) \le m(r,\lambda) \le \dim(G^{\lambda})|\mathcal{M}(k,r)|$$

p.436, l.-8 REPLACE: Let $r \ge 0$ BY: Let r > 0

p.487, **l.**–5 and **l.**–6 REPLACE:

and

$$\frac{d}{dt}(y^{-1}\theta(y)(I+t\theta(B))y(I+tB))|_{t=0} = \operatorname{Ad}(y^{-1})\theta(B) + B.$$

BY:

whereas the curve $t \mapsto y(I + tB)$ is tangent to Q at y provided

$$0 = \frac{d}{dt}(y^{-1}\theta(y)(I + t\theta(B))y(I + tB))|_{t=0} = \mathrm{Ad}(y^{-1})\theta(B) + B.$$

p.502, **l.17** REPLACE:

algebraic groups by Theorem ??.

BY:

algebraic groups by Corollary 11.1.3.

p.502, **l.**–5 REPLACE:

$$(\exp yX_0)g(\exp -yX_0) = t\exp[(t^{-\alpha} - 1)y + zX_0]$$

BY:

$$(\exp yX_0)g(\exp -yX_0) = t\exp[((t^{-\alpha} - 1)y + z)X_0]$$

- **p.544, l.**-4 REPLACE: $G = SO(\mathbb{C}_n, B)$ By: $G = SO(\mathbb{C}^n, B)$
- **p.566, l.**-15 REPLACE: set $\mathcal{J} = \{f_{top} : f \in \mathcal{I}\}$. BY: set $\mathcal{J} = \text{span}\{f_{top} : f \in \mathcal{I}\}$.
- **p.566, l.**-11 REPLACE: It is even easier to prove that \mathcal{J} is closed under addition. BY: By definition \mathcal{J} is closed under addition.
- **p.567, l.13** REPLACE: $\{f_{\text{top}} : f \in \mathcal{I}_c\}$. BY: span $\{f_{\text{top}} : f \in \mathcal{I}_c\}$.
- **p.600, l.5** REPLACE: /6, Theorem 14

BY: §6, Theorem 14

p.611, l.11 REPLACE:

Ch. I, / 5.2, Theorem 3

BY:

Ch. I.5.2, Theorem 3

General Typesetting Error: The ligature "fi" (as in the words: define, finite, field, fixed, satisfied, first, suffices, find) was omitted on the following pages:

 $15\text{-}32,\,226,\,227,\,273\text{-}275,\,278,\,279,\,598\text{-}611$