Corrections to

Representations and Invariants of the Classical Groups by Roe Goodman and Nolan R. Wallach
 (1999 paperback printing)

Revised January 18, 2002
p.25, $\mathbf{1 . 1 0}$ Replace: We denote by s_{0}

BY: We denote by s_{l}
p.25, 1.11 (display) REPLACE: s_{0} BY: s_{l}
p.25, 1.13 REPLACE:

$$
J_{+}=\left[\begin{array}{cc}
0 & s_{0} \\
s_{0} & 0
\end{array}\right], \quad J_{+}=\left[\begin{array}{cc}
0 & s_{0} \\
-s_{0} & 0
\end{array}\right],
$$

BY:

$$
J_{+}=\left[\begin{array}{cc}
0 & s_{l} \\
s_{l} & 0
\end{array}\right], \quad J_{+}=\left[\begin{array}{cc}
0 & s_{l} \\
-s_{l} & 0
\end{array}\right],
$$

p.25, 1.-10 REPLACE: $s_{0} a^{t} s_{0}$ BY: $s_{l} a^{t} s_{l}$
p.25, 1.-7 REPLACE:

$$
A=\left[\begin{array}{cc}
a & b \\
c & -s_{0} a^{t} s_{0}
\end{array}\right],
$$

BY:

$$
A=\left[\begin{array}{cc}
a & b \\
c & -s_{l} a^{t} s_{l}
\end{array}\right],
$$

p. 25, 1.-6 REPLACE: such that $b^{t}=-s_{0} b s_{0}$ and $c^{t}=-s_{0} c s_{0}$ BY: such that $b^{t}=-s_{l} b s_{l}$ and $c^{t}=-s_{l} c s_{l}$
p.25, 1.-3 REPLACE:

$$
A=\left[\begin{array}{cc}
a & b \\
c & -s_{0} a^{t} s_{0}
\end{array}\right],
$$

BY:

$$
A=\left[\begin{array}{cc}
a & b \\
c & -s_{l} a^{t} s_{l}
\end{array}\right],
$$

p. 25, 1.-2 REPLACE: such that $b^{t}=s_{0} b s_{0}$ and $c^{t}=s_{0} c s_{0}$ BY: such that $b^{t}=s_{l} b s_{l}$ and $c^{t}=s_{l} c s_{l}$

p.26, 1.6 REPLACE:

$$
S=\left[\begin{array}{ccc}
0 & 0 & s_{0} \\
0 & 1 & 0 \\
s_{0} & 0 & 0
\end{array}\right]
$$

BY:

$$
S=\left[\begin{array}{ccc}
0 & 0 & s_{l} \\
0 & 1 & 0 \\
s_{l} & 0 & 0
\end{array}\right]
$$

p.26, 1.12 Replace:

$$
A=\left[\begin{array}{ccc}
a & w & b \\
u & 0 & -w^{t} s_{0} \\
c & -s_{0} u^{t} & -s_{0} a^{t} s_{0}
\end{array}\right],
$$

BY:

$$
A=\left[\begin{array}{ccc}
a & w & b \\
u & 0 & -w^{t} s_{l} \\
c & -s_{l} u^{t} & -s_{l} a^{t} s_{l}
\end{array}\right],
$$

p.26, 1.13 REPLACE: such that $b^{t}=-s_{0} b s_{0}$ and $c^{t}=-s_{0} c s_{0}$ BY: such that $b^{t}=-s_{l} b s_{l}$ and $c^{t}=-s_{l} c s_{l}$
p.40, end of line 1 The last word should be Hint:
p.40, end of line 3 The last word should be "that"
p.49, line - 10 REPLACE:

Exercis (remainder of line disappeared in typsetting)
BY:
Exercise \# 4 in Appendix A). However, in the case of algebraic groups, Theorem
p.94, 1.6 REPLACE: Let $s_{0} \in \operatorname{GL}(2 l, \mathbb{C})$

BY: Let $s_{l} \in \mathrm{GL}(l, \mathbb{C})$
p.94, 1.10 REPLACE:

$$
\pi(\sigma)=\left[\begin{array}{cc}
s_{\sigma} & 0 \\
0 & s_{0} s_{\sigma} s_{0}
\end{array}\right]
$$

BY:

$$
\pi(\sigma)=\left[\begin{array}{cc}
s_{\sigma} & 0 \\
0 & s_{l} s_{\sigma} s_{l}
\end{array}\right]
$$

p.95, 1.8 REPLACE:

$$
\phi(\sigma)=\left[\begin{array}{ccc}
s_{\sigma} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & s_{0} s_{\sigma} s_{0}
\end{array}\right]
$$

BY:

$$
\phi(\sigma)=\left[\begin{array}{ccc}
s_{\sigma} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & s_{l} s_{\sigma} s_{l}
\end{array}\right]
$$

p.170, 1.12 REPLACE: if $\phi \in \mathcal{J}$ then there exist BY: if $\phi \in \mathcal{J}_{+}$then there exist
p.174, l. -7 Replace: induction that $\mathcal{H} \cdot\left(\mathcal{P} \mathcal{J}_{+}\right)$contains all polynomials BY: induction that $\mathcal{H} \cdot\left(1+\mathcal{P} \mathcal{J}_{+}\right)$contains all polynomials
p.175, 1.7 REPLACE:
4.1.4(1), which contradicts

BY:
4.1.4, which contradicts
p.183, l. -7 display REPLACE:

$$
u Z w=\left[\begin{array}{cc}
I_{r} & O_{r, m-r} \\
O_{m-r, r} & O_{m-r}
\end{array}\right]
$$

BY:

$$
u Z w=\left[\begin{array}{cc}
I_{r} & O_{r, m-r} \\
O_{k-r, r} & O_{k-r, m-r}
\end{array}\right]
$$

p.183, l.-5 display REPLACE:

$$
X=\left[\begin{array}{cc}
I_{r} & O_{r, m-r} \\
O_{m-r, r} & O_{k-r}
\end{array}\right], \quad Y=\left[\begin{array}{cc}
I_{r} & O_{r, n-r} \\
O_{n-r, r} & O_{n-r}
\end{array}\right],
$$

BY:

$$
X=\left[\begin{array}{cc}
I_{r} & O_{r, n-r} \\
O_{k-r, r} & O_{k-r, n-r}
\end{array}\right], \quad Y=\left[\begin{array}{cc}
I_{r} & O_{r, m-r} \\
O_{n-r, r} & O_{n-r, m-r}
\end{array}\right],
$$

p.184, l. -8 display REPLACE:

$$
X=\left[\begin{array}{cc}
J_{r} & O_{r, k-r} \\
O_{k-r, r} & O_{n-r, k-r}
\end{array}\right] g .
$$

BY:

$$
X=\left[\begin{array}{cc}
J_{r} & O_{r, k-r} \\
O_{n-r, r} & O_{n-r, k-r}
\end{array}\right] g .
$$

p.189, 1.10 display REPLACE: $\prod_{j=1}^{k} y_{j}^{q_{j}}$

BY: $\prod_{j=1}^{m} y_{j}^{q_{j}}$
p.189, 1.13 REPLACE: $z=\left(v_{1}, \ldots, v_{k}, v_{1}^{*}, \ldots, v_{k}^{*}\right)$

BY: $\quad z=\left(v_{1}, \ldots, v_{k}, v_{1}^{*}, \ldots, v_{m}^{*}\right)$
p.198, l. -7 REPLACE: representation on \mathbb{C}^{n}

BY: representation on V
p.198, 1. $-5 \quad$ REPLACE: \quad space $\mathcal{P}^{[p, q]}\left(V^{k} \otimes\left(V^{*}\right)^{m}\right)^{\mathrm{GL}(V)}$ BY: space $\mathcal{P}^{[p, q]}\left(V^{k} \oplus\left(V^{*}\right)^{m}\right)^{\mathrm{GL}(V)}$
p.198, 1.-3 REPLACE: acts on $\mathcal{P}^{[p, q]}\left(V^{k} \otimes\left(V^{*}\right)^{m}\right)$ BY: acts on $\mathcal{P}^{[p, q]}\left(V^{k} \oplus\left(V^{*}\right)^{m}\right)$
p.198, l.-1 display REPLACE: $\quad \mathcal{P}[p, q]\left(V^{k} \otimes\left(V^{*}\right)^{m}\right)^{\operatorname{GL}(V)}=0$

BY: $\quad \mathcal{P}^{[p, q]}\left(V^{k} \oplus\left(V^{*}\right)^{m}\right)^{\mathrm{GL}(V)}=0$
p.199, 1.2 display REPLACE: $\quad \mathcal{P}^{[p, q]}\left(V^{k} \otimes\left(V^{*}\right)^{m}\right)^{\mathrm{GL}(V)}$

BY: $\mathcal{P}^{[p, q]}\left(V^{k} \oplus\left(V^{*}\right)^{m}\right)^{\mathrm{GL}(V)}$
p.199, 1.4 REPLACE: complete contractions C_{s} BY: complete contractions λ_{s}
p.199, 1.6 display REPLACE: C_{s} BY: λ_{s}
p.199, 1.9 display REPLACE: C_{s}

BY: λ_{s}
p.227, l.-1 REPLACE: general Capelli problem." BY: general "Capelli problem."
p.257, l. - 3 Replace: of size r such that BY: of size $2 r$ such that
p.258, 1.18 REPLACE: it has degree $|\mu|$

BY: it has degree $|\mu| / 2$
p.259, 1.5 REPLACE: such that $|\mu|=r$ and BY: such that $|\mu|=2 r$ and
p.272, l.-1 REPLACE: $\quad \epsilon\left(x^{*}\right) \epsilon\left(y^{*}\right)=-\epsilon\left(x^{*}\right) \epsilon\left(y^{*}\right)$ BY: $\epsilon\left(x^{*}\right) \epsilon\left(y^{*}\right)=-\epsilon\left(y^{*}\right) \epsilon\left(x^{*}\right)$
p.273, change displayed formula numbers:

p.275, change displayed formula number:

p.276, change displayed formula numbers:
$(4.5 .10) \longrightarrow(6.5 .10)$
p.340, l.-16 REPLACE:

$$
\gamma s_{0} \gamma^{t}=I_{2 l}
$$

BY:

$$
\gamma s_{2 l} \gamma^{t}=I_{2 l}
$$

p.340, $1-15$ REPLACE: where s_{0} is the matrix BY: where $s_{2 l}$ is the matrix
p.340, l-14 REPLACE: corresponding to s_{0} as in BY: corresponding to $s_{2 l}$ as in
p.340, l-12 REPLACE:

$$
\gamma g \gamma^{-1}\left(\gamma g \gamma^{-1}\right)^{t}=\gamma g s_{0} g^{t} \gamma^{t}=\gamma s_{0} \gamma^{t}=I_{2 l} .
$$

BY:

$$
\gamma g \gamma^{-1}\left(\gamma g \gamma^{-1}\right)^{t}=\gamma g s_{2 l} g^{t} \gamma^{t}=\gamma s_{2 l} \gamma^{t}=I_{2 l} .
$$

p.340, $1-9$ REPLACE: defined by the equation $g^{t} g=I$.

BY: defined by the equation $g^{t} g=I_{2 l}$.
p.342, 1.-12 REPLACE: invariant volume forms on $K / T, T$, and K, respectively BY: invariant volume forms on $T, K / T$, and K, respectively
p.434, 1.11 REPLACE:

$$
\mathcal{H \mathcal { L }}_{r}^{\otimes k}=\left\{u \in \mathcal{T}_{r}^{\otimes k}: u \cdot u=0 \text { for all } u \in \mathcal{B}_{k, r+1}(V, \omega)\right\}
$$

BY:

$$
\mathcal{H}_{r}^{\otimes k}=\left\{u \in \mathcal{T}_{r}^{\otimes k}: z \cdot u=0 \text { for all } z \in \mathcal{B}_{k, r+1}(V, \omega)\right\}
$$

p.436, equation (10.3.4) REPLACE:

$$
1 \leq m(r, \lambda) \leq \operatorname{dim}\left(G^{\lambda}\right)|\mathcal{M}(k, r)|
$$

BY:

$$
\operatorname{dim}\left(G^{\lambda}\right) \leq m(r, \lambda) \leq \operatorname{dim}\left(G^{\lambda}\right)|\mathcal{M}(k, r)|
$$

p.436, l.-8 REPLACE: Let $r \geq 0$ BY: Let $r>0$
p.487, 1.-5 and l.-6 REPLACE:
and

$$
\left.\frac{d}{d t}\left(y^{-1} \theta(y)(I+t \theta(B)) y(I+t B)\right)\right|_{t=0}=\operatorname{Ad}\left(y^{-1}\right) \theta(B)+B
$$

BY:
whereas the curve $t \mapsto y(I+t B)$ is tangent to Q at y provided

$$
0=\left.\frac{d}{d t}\left(y^{-1} \theta(y)(I+t \theta(B)) y(I+t B)\right)\right|_{t=0}=\operatorname{Ad}\left(y^{-1}\right) \theta(B)+B .
$$

p.502, 1.17 REPLACE:
algebraic groups by Theorem ??.
BY:
algebraic groups by Corollary 11.1.3.
p.502, l.-5 REPLACE:

$$
\left(\exp y X_{0}\right) g\left(\exp -y X_{0}\right)=t \exp \left[\left(t^{-\alpha}-1\right) y+z X_{0}\right]
$$

BY:

$$
\left(\exp y X_{0}\right) g\left(\exp -y X_{0}\right)=t \exp \left[\left(\left(t^{-\alpha}-1\right) y+z\right) X_{0}\right]
$$

p.544, 1. -4 REPLACE: $G=\operatorname{SO}\left(\mathbb{C}_{n}, B\right)$

BY: $G=\mathrm{SO}\left(\mathbb{C}^{n}, B\right)$
p.566, l. -15 REPLACE: set $\mathcal{J}=\left\{f_{\text {top }}: f \in \mathcal{I}\right\}$.

BY: set $\mathcal{J}=\operatorname{span}\left\{f_{\text {top }}: f \in \mathcal{I}\right\}$.
p.566, 1. -11 Replace: It is even easier to prove that \mathcal{J} is closed under addition. BY: By definition \mathcal{J} is closed under addition.
p.567, 1.13 REPLACE: $\left\{f_{\text {top }}: f \in \mathcal{I}_{c}\right\}$.

BY: $\operatorname{span}\left\{f_{\text {top }}: f \in \mathcal{I}_{c}\right\}$.
p.600, 1.5 REPLACE: $/ 6$, Theorem 14

BY: §6, Theorem 14
p.611, 1.11 REPLACE:

Ch. I, / 5.2, Theorem 3
BY:
Ch. I.5.2, Theorem 3
General Typesetting Error: The ligature " fi " (as in the words: define, finite, field, fixed, satisfied, first, suffices, find) was omitted on the following pages:
15-32, 226, 227, 273-275, 278, 279, 598-611

