Corrections to

Representations and Invariants of the Classical Groups by Roe Goodman and Nolan R. Wallach (1998 hard-cover edition)

Revised January 18, 2002
Note: Most of the following corrections are incorporated into the 1999 (paperback) printing.
p.15, l. -14 to $1 .-8$ (proof of assertion (2)) REPLACE:

We may assume that ... this proves (2).
BY:
The point evaluations $\left\{\delta_{x}\right\}_{x \in X}$ span V^{*}. Choose $x_{i} \in X$ so that $\left\{\delta_{x_{1}}, \ldots, \delta_{x_{q}}\right\}$ is a basis for V^{*} and let $\left\{g_{1}, \ldots, g_{q}\right\}$ be the dual basis for V. Then we can write

$$
R(x) g_{j}=\sum_{i=1}^{q} c_{i j}(x) g_{i}
$$

for $x \in X$. Since

$$
c_{i j}(x)=\left\langle R(x) g_{j}, \delta_{x_{i}}\right\rangle=g_{j}\left(x_{i} x\right),
$$

we see that $x \mapsto c_{i j}(x)$ is a regular function on X. This proves (2).
p.15, 1.-3 REPLACE: $\left\{f_{1}, \ldots, f_{m}\right\} \subset \rho^{*} \operatorname{Aff}(G) \quad$ BY: $\quad\left\{f_{1}, \ldots, f_{n}\right\} \subset \Phi^{*} \operatorname{Aff}(G)$

p.16, 1.1 to 1.26 REPLACE :

The following theorem shows that ...
(Statement and proof of Theorem 1.1.14)
...so σ^{-1} is regular (see Section A.4.3).
BY:

Example

Let B be a bilinear form on \mathbb{C}^{n}. We define a multiplication $*_{B}$ on \mathbb{C}^{n+1} by

$$
\left[\begin{array}{c}
x \\
\lambda
\end{array}\right] *_{B}\left[\begin{array}{c}
y \\
\mu
\end{array}\right]=\left[\begin{array}{c}
x+y \\
\lambda+\mu+B(x, y)
\end{array}\right]
$$

for $x, y \in \mathbb{C}^{n}$ and $\lambda, \mu \in \mathbb{C}$. From the bilinearity of B we calculate easily that this multiplication is associative. Since

$$
\left[\begin{array}{l}
x \\
\lambda
\end{array}\right] *_{B}\left[\begin{array}{c}
-x \\
-\lambda+B(x, x)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right],
$$

we conclude that $*_{B}$ defines a group structure on \mathbb{C}^{n+1} with 0 as the identity element. Multiplication and inversion are regular maps, so by Theorem 1.1.13 there is a linear algebraic group G_{B} with $\operatorname{Aff}\left(G_{B}\right) \cong \operatorname{Aff}\left(\mathbb{C}^{n+1}\right)$ as a \mathbb{C}-algebra and $G_{B} \cong\left(\mathbb{C}^{n+1}, *_{B}\right)$ as a group.
We can use the proof of Theorem 1.1.13 to obtain an explicit matrix realization of G_{B}. Let $f_{i}(x)=x_{i}$ for $x \in \mathbb{C}^{n+1}$ and let $g_{i} \in\left(\mathbb{C}^{n}\right)^{*}$ for $i=1, \ldots, n$ be the linear functionals such that

$$
B(x, y)=\sum_{i=1}^{n} f_{i}(x) g_{i}(y)
$$

for $x, y \in \mathbb{C}^{n}$. Let $f_{0}(x)=1$ for all $x \in \mathbb{C}^{n+1}$. For $f \in \operatorname{Aff}\left(\mathbb{C}^{n+1}\right)$ and $y \in \mathbb{C}^{n+1}$ let $R(y) f(x)=f\left(x *_{B} y\right)$. From the definition of the multiplication $*_{B}$ we have $R(y) f_{0}=f_{0}, R(y) f_{i}=f_{i}+f_{i}(y)$ for $1 \leq i \leq n$, and

$$
R(y) f_{n+1}=f_{n+1}+f_{n+1}(y)+\sum_{i=1}^{n} g_{i}(y) f_{i}
$$

(we define $g_{i}(y)=g_{i}(\bar{y})$, where \bar{y} is the projection of y onto \mathbb{C}^{n}). Thus the $(n+2)$ dimensional subspace V of $\operatorname{Aff}\left(\mathbb{C}^{n+1}\right)$ spanned by the functions f_{0}, \ldots, f_{n+1} is invariant under $R(y)$. Let $\Phi(y)$ be the restriction of $R(y)$ to V. Then $\Phi(y)$ has the matrix

$$
\left[\begin{array}{ccccc}
1 & f_{1}(y) & \cdots & f_{n}(y) & f_{n+1}(y) \\
0 & 1 & \cdots & 0 & g_{1}(y) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & g_{n}(y) \\
0 & 0 & \cdots & 0 & 1
\end{array}\right]
$$

relative to the ordered basis $\left\{f_{0}, f_{1}, \ldots, f_{n+1}\right\}$ for V. Since f_{i} and g_{i} are linear functions and $\left\{f_{i}(y)\right\}$ are the coordinates of y, it is clear that $G_{B}=\Phi\left(\mathbb{C}^{n+1}\right)$ is a closed subgroup of $\mathrm{GL}(n+2, \mathbb{C})$ that is isomorphic to $\left(\mathbb{C}^{n+1}, *_{B}\right)$ as a group and as an affine algebraic set.
p.25, 1.10 replace: We denote by s_{0}

BY: We denote by s_{l}
p.25, 1.11 (display) REPLACE: s_{0} BY: s_{l}
p.25, 1.13 Replace:

$$
J_{+}=\left[\begin{array}{cc}
0 & s_{0} \\
s_{0} & 0
\end{array}\right], \quad J_{+}=\left[\begin{array}{cc}
0 & s_{0} \\
-s_{0} & 0
\end{array}\right],
$$

BY:

$$
J_{+}=\left[\begin{array}{cc}
0 & s_{l} \\
s_{l} & 0
\end{array}\right], \quad J_{+}=\left[\begin{array}{cc}
0 & s_{l} \\
-s_{l} & 0
\end{array}\right]
$$

p.25, 1.-10 REPLACE: $s_{0} a^{t} s_{0}$ BY: $s_{l} a^{t} s_{l}$
p.25, 1.-7 REPLACE:

$$
A=\left[\begin{array}{cc}
a & b \\
c & -s_{0} a^{t} s_{0}
\end{array}\right],
$$

BY:

$$
A=\left[\begin{array}{cc}
a & b \\
c & -s_{l} a^{t} s_{l}
\end{array}\right]
$$

p. 25, 1.-6 REPLACE: such that $b^{t}=-s_{0} b s_{0}$ and $c^{t}=-s_{0} c s_{0}$ BY: such that $b^{t}=-s_{l} b s_{l}$ and $c^{t}=-s_{l} c s_{l}$
p.25, 1.-3 REPLACE:

$$
A=\left[\begin{array}{cc}
a & b \\
c & -s_{0} a^{t} s_{0}
\end{array}\right],
$$

BY:

$$
A=\left[\begin{array}{cc}
a & b \\
c & -s_{l} a^{t} s_{l}
\end{array}\right]
$$

p. 25, 1.-2 REPLACE: such that $b^{t}=s_{0} b s_{0}$ and $c^{t}=s_{0} c s_{0}$

BY: such that $b^{t}=s_{l} b s_{l}$ and $c^{t}=s_{l} c s_{l}$
p.26, 1.6 REPLACE:

$$
S=\left[\begin{array}{ccc}
0 & 0 & s_{0} \\
0 & 1 & 0 \\
s_{0} & 0 & 0
\end{array}\right]
$$

BY:

$$
S=\left[\begin{array}{ccc}
0 & 0 & s_{l} \\
0 & 1 & 0 \\
s_{l} & 0 & 0
\end{array}\right]
$$

p.26, 1.12 Replace:

$$
A=\left[\begin{array}{ccc}
a & w & b \\
u & 0 & -w^{t} s_{0} \\
c & -s_{0} u^{t} & -s_{0} a^{t} s_{0}
\end{array}\right],
$$

BY:

$$
A=\left[\begin{array}{ccc}
a & w & b \\
u & 0 & -w^{t} s_{l} \\
c & -s_{l} u^{t} & -s_{l} a^{t} s_{l}
\end{array}\right],
$$

p.26, 1.13 REPLACE: such that $b^{t}=-s_{0} b s_{0}$ and $c^{t}=-s_{0} c s_{0}$

BY: such that $b^{t}=-s_{l} b s_{l}$ and $c^{t}=-s_{l} c s_{l}$
p.31, l. -8 to l. -1 Replace printed text by:
$X_{A} \mathcal{I}_{G} \subset \mathcal{I}_{G}$. Write $\sigma=\left.\pi\right|_{G}$ and take $f=f_{C} \circ \pi$ for $C \in \operatorname{End}(V)$. Then $X_{A}\left(f_{C} \circ\right.$ $\sigma)(I)=X_{A}\left(f_{C} \circ \pi\right)(I)$, and hence $d \sigma(A)=d \pi(A)$ by (1.2.9).
(3): Write $\mathfrak{g}=\operatorname{Lie}(G)$ and $\mathfrak{h}=\operatorname{Lie}(H)$. By (1), $\operatorname{Lie}(G \cap H) \subset \mathfrak{g} \cap \mathfrak{h}$. Let $X=G \times H$ and define $\varphi: X \rightarrow \operatorname{GL}(n, \mathbb{C})$ by $\varphi(g, h)=g h^{-1}$. Set $Y=\overline{\varphi(X)}$ and $F_{y}=\varphi^{-1}\{y\}$. Then $F_{g h^{-1}}=\{(g z, h z): z \in G \cap H\}$, and hence $\operatorname{dim} F_{g h^{-1}}=\operatorname{dim}(G \cap H)$ for all $(g, h) \in X$. Since $\operatorname{Ker} d \varphi_{(1,1)}=\{(A,-A): A \in \mathfrak{g} \cap \mathfrak{h}\}$ and $d \varphi_{(g, h)}=d L_{g} d R_{h^{-1}} d \varphi_{(1,1)}$, we have $\operatorname{dim} \operatorname{Ker} d \varphi_{(g, h)}=\operatorname{dim}(\mathfrak{g} \cap \mathfrak{h})$ for all $(g, h) \in X$. Proposition A.3.6 now implies that $\operatorname{dim}(G \cap H)=\operatorname{dim}(\mathfrak{g} \cap \mathfrak{h})$, hence $\operatorname{Lie}(G \cap H)=\mathfrak{g} \cap \mathfrak{h}$.
p.30, l. -4 Replace: Corollary A.3.6 BY: Corollary A.3.5
p.32, 1. -2 REPLACE: $=[\operatorname{Ad}(g) A, \operatorname{Ad}(g) A], \quad B Y: \quad=[\operatorname{Ad}(g) A, \operatorname{Ad}(g) B]$,
p.39, l. -15 REPLACE: \mathfrak{g}_{u} BY: \mathfrak{g}_{n}
p.39, l.-13 REPLACE:
subset of $\operatorname{End}(V)$ and G_{u} is an algebraic subset of GL($\left.V\right)$.
BY:
subset of $M_{n}(\mathbb{C})$ and G_{u} is an algebraic subset of $\operatorname{GL}(n, \mathbb{C})$.
p.39, l. -4 and l. -3 REPLACE:

Decompose \mathbb{C}^{n} into spaces $W_{\lambda}=\left\{w \in \mathbb{C}^{n}:(H-\lambda I)^{p} w=0\right.$ for some $\left.p\right\}$. Show that $X W_{\lambda} \subset W_{\lambda+2}$.)

BY:
Show that $\left[H, X^{k}\right]=2 k X^{k}$. Then consider the eigenvalues of $\operatorname{ad} H$ on $\left.M_{n}(\mathbb{C}).\right)$

p.44, 1.9 REPLACE:

Hence ρ^{-1} is regular by Theorem 1.1.14.
BY:
Clearly $\rho^{*}(\operatorname{Aff}(H))=\operatorname{Aff}(G)$, so ρ^{-1} is regular.
p.49, 1.4 (Exercise \#1) REPLACE:

1. Check the assertion in (1.4.2) above.

BY:

1. Define a real form $\operatorname{Sp}(p, q)$ of $\operatorname{Sp}(p+q, \mathbb{C})$ analogous to the real form $\mathrm{U}(p, q)$ of $\mathrm{GL}(p+q, \mathbb{C})$.

p.49, 1.7 and 1.8 (Exercise \#3) REPLACE:

Let $\psi \in \operatorname{End}\left(\mathbb{C}^{2 n}\right)$ act by

$$
\psi\left[z_{1}, \ldots, z_{n}, z_{n+1}, \ldots, z_{2 n}\right]=\left[\bar{z}_{n+1}, \ldots, z_{2 n},-\bar{z}_{1}, \ldots,-\bar{z}_{n}\right]
$$

BY:
Let ψ be the real linear transformation of $\mathbb{C}^{2 n}$ defined by

$$
\psi\left[z_{1}, \ldots, z_{n}, z_{n+1}, \ldots, z_{2 n}\right]=\left[\bar{z}_{n+1}, \ldots, \bar{z}_{2 n},-\bar{z}_{1}, \ldots,-\bar{z}_{n}\right]
$$

p.51, formula (2.1.1) REPLACE: $\prod_{k=1}^{n}$ BY: $\prod_{k=1}^{l}$
p.66, l.-7 REPLACE:
$\sigma_{k}(g) f(x)=(-c x+d)^{k} f\left(\frac{a x-b}{-c x+d}\right)$.
BY:
$\sigma_{k}(g) f(x)=(c x+a)^{k} f\left(\frac{d x+b}{c x+a}\right)$.
p.68, 1.10 REPLACE: $\quad P(G)=\operatorname{Span}\{d \theta: \theta \in \mathcal{X}(H)\} \quad$ BY: $\quad P(G)=\{d \theta: \theta \in \mathcal{X}(H)\}$
p.77, Figure 2.2 REPLACE: $\quad \varepsilon_{l}-\varepsilon_{l+1} \quad$ BY: $\quad \varepsilon_{l-1}-\varepsilon_{l}$
p.77, l. -13 and -12 REPLACE:
as in Type A,
BY:
and $\varepsilon_{i}+\varepsilon_{l}=\alpha_{i}+\cdots+\alpha_{l}$,
p.78, Figure 2.3 REPLACE: $\varepsilon_{l}-\varepsilon_{l+1}$ BY: $\varepsilon_{l-1}-\varepsilon_{l}$
p.82, l. -17 REPLACE:
$\alpha_{i}+\cdots+\alpha_{j} \quad$ for $1 \leq i<j<l$
BY:
$\alpha_{i}+\cdots+\alpha_{j} \quad$ for $1 \leq i<j \leq l$
p.94, 1.6 REPLACE: Let $s_{0} \in \operatorname{GL}(2 l, \mathbb{C})$

BY: Let $s_{l} \in \operatorname{GL}(l, \mathbb{C})$
p.94, 1.10 REPLACE:

$$
\pi(\sigma)=\left[\begin{array}{cc}
s_{\sigma} & 0 \\
0 & s_{0} s_{\sigma} s_{0}
\end{array}\right]
$$

BY:

$$
\pi(\sigma)=\left[\begin{array}{cc}
s_{\sigma} & 0 \\
0 & s_{l} s_{\sigma} s_{l}
\end{array}\right]
$$

p.95, 1.8 REPLACE:

$$
\phi(\sigma)=\left[\begin{array}{ccc}
s_{\sigma} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & s_{0} s_{\sigma} s_{0}
\end{array}\right],
$$

BY:

$$
\phi(\sigma)=\left[\begin{array}{ccc}
s_{\sigma} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & s_{l} s_{\sigma} s_{l}
\end{array}\right],
$$

p.95, l. -14 REPLACE: $\quad \mathrm{O}(2 l+1, \mathbb{C}) \quad$ BY: $\quad \mathrm{O}(B, \mathbb{C})$
p.169, l.-14 REPLACE:

From Theorem 3.3.6 we have a
BY:
From Proposition 3.1.6 we have the
p.170, 1.12 Replace: if $\phi \in \mathcal{J}$ then there exist BY: if $\phi \in \mathcal{J}_{+}$then there exist
p.172, 1.7 REPLACE:

$$
\sigma_{I}-x_{1}=\sigma_{1}-x_{1}=x_{2}+\cdots+x_{n}
$$

BY:

$$
\sigma_{I}-x^{I}=\sigma_{1}-x_{1}=x_{2}+\cdots+x_{n}
$$

p.172, 1.-14 REPLACE: $\quad f(x)-a_{I} \sigma^{I} \quad$ BY: $\quad f(x)-a \sigma^{I}$
p.174, 1.-7 REPLACE: induction that $\mathcal{H} \cdot\left(\mathcal{P} \mathcal{J}_{+}\right)$contains all polynomials BY: induction that $\mathcal{H} \cdot\left(1+\mathcal{P} \mathcal{J}_{+}\right)$contains all polynomials
p.175, 1.7 REPLACE:
4.1.4(1), which contradicts

BY:
4.1.4, which contradicts
p.176, 1.2 REPLACE: $\quad g=0 . \square \quad$ BY: $\quad g=0$.
p.180, 1.14 REPLACE: $\quad \rho\left(g^{-1}\right) v_{n} \quad$ BY: $\quad \rho\left(g^{-1}\right) v_{m}$
p.181, 1.2 REPLACE: $\quad f\left(x \rho\left(g^{-1}\right), \rho(g) y\right), \quad x \in X, \quad y \in Y . \quad$ BY: $\quad f\left(x \rho\left(g^{-1}\right), \rho(g) y\right)$.
p.181, 1.7 Replace: for $g \in G$ and $x \in X, y \in Y$. BY: for $g \in \operatorname{GL}(V)$.
p.181, l. -15 REPLACE: $\quad i=1, \ldots, m, j=1, \ldots, k \quad$ BY: $\quad i=1, \ldots, k, j=1, \ldots, m$
p.182, l. -5 REPLACE: $\quad i \neq j \quad$ BY: $\quad i<j$
p.183, l. -7 display REPLACE:

$$
u Z w=\left[\begin{array}{cc}
I_{r} & O_{r, m-r} \\
O_{m-r, r} & O_{m-r}
\end{array}\right]
$$

BY:

$$
u Z w=\left[\begin{array}{cc}
I_{r} & O_{r, m-r} \\
O_{k-r, r} & O_{k-r, m-r}
\end{array}\right]
$$

Corrections to Representations and Invariants ... (Revised January 18, 2002)
p.183, l.-5 display REPLACE:

$$
X=\left[\begin{array}{cc}
I_{r} & O_{r, m-r} \\
O_{m-r, r} & O_{k-r}
\end{array}\right], \quad Y=\left[\begin{array}{cc}
I_{r} & O_{r, n-r} \\
O_{n-r, r} & O_{n-r}
\end{array}\right],
$$

BY:

$$
X=\left[\begin{array}{cc}
I_{r} & O_{r, n-r} \\
O_{k-r, r} & O_{k-r, n-r}
\end{array}\right], \quad Y=\left[\begin{array}{cc}
I_{r} & O_{r, m-r} \\
O_{n-r, r} & O_{n-r, m-r}
\end{array}\right],
$$

p.184, l.-8 display REPLACE:

$$
X=\left[\begin{array}{cc}
J_{r} & O_{r, k-r} \\
O_{k-r, r} & O_{n-r, k-r}
\end{array}\right] g .
$$

BY:

$$
X=\left[\begin{array}{cc}
J_{r} & O_{r, k-r} \\
O_{n-r, r} & O_{n-r, k-r}
\end{array}\right] g .
$$

p.184, 1.-3 REPlace: (SFT, Free Case) By: (SFT, Free Case) Let $V=\mathbb{C}^{n}$.
p.184, l. -2 REPLACE: $\quad \operatorname{dim} V \geq \min (k, m) \quad$ BY: $\quad n \geq \min (k, m)$
p.185, l.6, 1.7, 1.10 REPLACE: $\left(\mathbb{C}^{n}\right)^{k} \quad$ BY: $\quad V^{k}$
p.189, 1.10 display REPLACE: $\prod_{j=1}^{k} y_{j}^{q_{j}}$

BY: $\prod_{j=1}^{m} y_{j}^{q_{j}}$
p.189, 1.13 REPLACE: $z=\left(v_{1}, \ldots, v_{k}, v_{1}^{*}, \ldots, v_{k}^{*}\right)$

BY: $\quad z=\left(v_{1}, \ldots, v_{k}, v_{1}^{*}, \ldots, v_{m}^{*}\right)$
p.198, 1.-7 REPLACE: representation on \mathbb{C}^{n}

BY: representation on V
p.198, l. -5 REPLACE: space $\mathcal{P}^{[p, q]}\left(V^{k} \otimes\left(V^{*}\right)^{m}\right)^{\mathrm{GL}(V)}$ BY: space $\mathcal{P}^{[p, q]}\left(V^{k} \oplus\left(V^{*}\right)^{m}\right)^{\mathrm{GL}(V)}$
p.198, 1.-3 REPLACE: acts on $\mathcal{P}^{[p, q]}\left(V^{k} \otimes\left(V^{*}\right)^{m}\right)$ BY: acts on $\mathcal{P}^{[p, q]}\left(V^{k} \oplus\left(V^{*}\right)^{m}\right)$
p.198, l.-1 display REPLACE: $\quad \mathcal{P}^{[p, q]}\left(V^{k} \otimes\left(V^{*}\right)^{m}\right)^{\mathrm{GL}(V)}=0$

BY: $\quad \mathcal{P}^{[p, q]}\left(V^{k} \oplus\left(V^{*}\right)^{m}\right)^{\mathrm{GL}(V)}=0$
p.199, 1.2 display REPLACE: $\quad \mathcal{P}^{[p, q]}\left(V^{k} \otimes\left(V^{*}\right)^{m}\right)^{\mathrm{GL}(V)}$

BY: $\quad \mathcal{P}^{[p, q]}\left(V^{k} \oplus\left(V^{*}\right)^{m}\right)^{\mathrm{GL}(V)}$
p.199, 1.4 REPLACE: complete contractions C_{s}

BY: complete contractions λ_{s}
p.199, 1.6 display REPLACE: C_{s}

BY: λ_{s}
p.199, 1.9 display Replace: C_{s}

BY: λ_{s}
p.211, 1.7 REPLACE: $\quad E M=M \quad$ BY: $\quad E M \subset M$
p.211, l. -5 Replace: $\quad \operatorname{Span}\{\rho(G) u\}=Z_{\lambda} \quad$ BY: $\quad \operatorname{Span}\{\rho(G) f\}=Z_{\lambda}$
p.211, 1.-1 REPLACE: $u \in \mathcal{R}^{G} \quad$ BY: $\quad r \in \mathcal{R}^{G}$
p.218, l.-10 REPLACE:
$\left(V^{k}\right)^{*}$ dual to the coordinates $x_{i j}$ on V^{k}.
BY:
V^{*} dual to the coordinates $x_{i j}$ on V.
p.219, 1.13 REPLACE: $\rho(g) D_{i j} \rho\left(g^{-1}\right)$ BY: $\rho(g) \Delta_{i j} \rho\left(g^{-1}\right)$
p.224, 1.9 REPLACE: $\xi^{*} \in V^{*} \quad$ BY: $\xi \in V^{*}$
p. 226 between 1.5 and 1.6 InSERT:

4.5.8 Exercises

1. Let $G=\operatorname{GL}(n, \mathbb{C})$ and $V=M_{n, p}(\mathbb{C}) \oplus M_{n, q}(\mathbb{C})$. Let $g \in G$ act on V by $g \cdot(x \oplus y)=$ $g x \oplus\left(g^{t}\right)^{-1} y$ for $x \in M_{n, p}(\mathbb{C})$ and $y \in M_{n, q}(\mathbb{C})$. Note that the columns x_{i} of x transform as vectors in \mathbb{C}^{n} and the columns y_{j} of y transform as covectors in $\left(\mathbb{C}^{n}\right)^{*}$.
(a) Let \mathfrak{p}_{-}be the subspace of $\mathbb{D}(V)$ spanned by the operators of multiplication by $\left(x_{i}\right)^{t} \cdot y_{j}$ for $1 \leq i \leq p, 1 \leq j \leq q$. Let \mathfrak{p}_{+}be the subspace of $\mathbb{D}(V)$ spanned by the operators $\Delta_{i j}=\sum_{r=1}^{n} \frac{\partial}{\partial x_{r i}} \frac{\partial}{\partial y_{r j}}$ for $1 \leq i \leq p, 1 \leq j \leq q$. Prove that $\mathfrak{p}_{ \pm} \subset \mathbb{D}(V)^{G}$.
(b) Let \mathfrak{k} be the subspace of $\mathbb{D}(V)$ spanned by the operators $E_{i j}^{(x)}+\frac{k}{2} \delta_{i j}$ (with $1 \leq$ $i, j \leq p$) and $E_{i j}^{(y)}+\frac{k}{2} \delta_{i j}$ (with $1 \leq i, j \leq q$), where $E_{i j}^{(x)}$ is defined by equation (4.5.27) and $E_{i j}^{(y)}$ is similarly defined with $x_{i j}$ replaced by $y_{i j}$. Prove that $\mathfrak{k} \subset \mathbb{D}(V)^{G}$.
(c) Prove the commutation relations $[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k},\left[\mathfrak{k}, \mathfrak{p}_{ \pm}\right]=\mathfrak{p}_{ \pm},\left[\mathfrak{p}_{-}, \mathfrak{p}_{+}\right] \subset \mathfrak{k}$.
(d) Set $\mathfrak{g}^{\prime}=\mathfrak{p}_{-}+\mathfrak{k}+\mathfrak{p}_{+}$. Prove that \mathfrak{g}^{\prime} is isomorphic to $\mathfrak{g l}(p+q, \mathbb{C})$, and that $\mathfrak{k} \cong \mathfrak{g l}(p, \mathbb{C}) \oplus \mathfrak{g l}(q, \mathbb{C})$.
(e) Prove that $\mathbb{D}(V)^{G}$ is generated by \mathfrak{g}^{\prime}. (Hint: Use Theorems 4.2.1 and 4.5.16. Note that there are four possibilities for contractions to obtain G-invariant polynomials on $V \oplus V^{*}$: (1) vector and covector in V; (2) vector and covector in $V^{*} ;(3)$ vector from
V and covector from V^{*}; (4) covector from V and vector from V^{*}. Show that the contractions of types (1) and (2) furnish symbols for bases of $\mathfrak{p}_{ \pm}$, and that contractions of type (3) and (4) furnish symbols for a basis of \mathfrak{k}.)

p.226, 1.7 REPLACE:

The finiteness result in Theorem 4.1.1, due to Hilbert, was a major
BY:
Theorem 4.1.1 (the proof given is due to Hurwitz) was a major
p.227, 1.-1 REPLACE: general Capelli problem."

BY: general "Capelli problem."
p.237, 1.10 REPLACE: $\quad p=0,1, \ldots,[k / 2] . \quad$ BY: $\quad p=0,1, \ldots,[k / 2]\left(\right.$ where $\left.\varpi_{0}=0\right)$.
p.237, 1.12 REPLACE: $\bigoplus_{k=0}^{[2 l-p]}$ BY: $\bigoplus_{k=0}^{l-p}$
p.243, 1.2 REPLACE: If we choose $-\Phi_{+} \quad$ BY: If we choose $-\Phi^{+}$
p.249, 1.9 REPLACE: $z^{m_{1}+\cdots m_{n}} \quad$ BY: $\quad z^{m_{1}+\cdots+m_{n}}$
p.250, 1.8 REPLACE: $\mathrm{O}(n, \mathbb{C})$ BY: $\mathrm{O}(B, \mathbb{C})$
p.254, l.-13 Replace:

We can choose $g_{1} \in G$ so that $G=G^{\circ} \cup g_{1} G^{\circ}$ and $\rho\left(g_{1}\right) \varphi^{k}= \pm \varphi^{k}$
BY:
We can choose $g_{0} \in G$ so that $G=G^{\circ} \cup g_{0} G^{\circ}$ and $\rho\left(g_{0}\right) \varphi^{k}=\varphi^{k}$
p.255, 1.-8 REPLACE: $\quad \sum \mu_{i}$ BY: $\sum i \mu_{i}$
p.256, 1.9 REPLACE: $\quad \operatorname{depth}(\mu) \leq r \quad$ BY: $\quad \operatorname{depth}(\nu) \leq r$
p.257, l.-3 REPLACE: of size r such that BY: of size $2 r$ such that
p.258, 1.18 REPLACE: \quad it has degree $|\mu| \quad$ BY: it has degree $|\mu| / 2$
p.259, 1.5 Replace: such that $|\mu|=r$ and BY: such that $|\mu|=2 r$ and
p.270, 1.-3 REPLACE: $\quad 2 \gamma\left(v_{i}\right)^{2}=\beta\left(v_{i}, v_{i}\right) \quad$ BY: $\quad\left\{\gamma\left(v_{i}\right), \gamma\left(v_{j}\right)\right\}=\beta\left(v_{i}, v_{j}\right)$
p.272, l.-1 REPLACE: $\quad \epsilon\left(x^{*}\right) \epsilon\left(y^{*}\right)=-\epsilon\left(x^{*}\right) \epsilon\left(y^{*}\right)$

BY: $\epsilon\left(x^{*}\right) \epsilon\left(y^{*}\right)=-\epsilon\left(y^{*}\right) \epsilon\left(x^{*}\right)$
p.273, 1.12 REPLACE:

We combine them into a linear map
BY:
When $\operatorname{dim} V$ is even, we combine these operators to obtain a linear map

Corrections to Representations and Invariants ... (Revised January 18, 2002) 10
p.274, 1.1 REPLACE:

Let $\left\{e_{1}, \ldots, e_{k}\right\}$ be a basis for W, where $k=n / 2$, and let $\left\{e_{-1}, \ldots, e_{-k}\right\}$ be the basis BY:
Let $\left\{e_{1}, \ldots, e_{l}\right\}$ be a basis for W, where $l=n / 2$, and let $\left\{e_{-1}, \ldots, e_{-l}\right\}$ be the basis p.274, 1.3 REPLACE: with $1 \leq j_{1}<\cdots<j_{p} \leq k \quad$ BY: \quad with $1 \leq j_{1}<\cdots<j_{p} \leq l$

p.275, 1.2,1.3,1.4 REPLACE:

Since the range of T is spanned by 2^{l} vectors and $\operatorname{dim}\left(\wedge W^{*}\right)=2^{l}$, we conclude that T is bijective.

BY:
We will prove that $T \gamma\left(w+w^{*}\right)=\gamma^{\prime}\left(w+w^{*}\right) T$ for $w \in W$ and $w^{*} \in W^{*}$. This will imply that $\operatorname{Ker} T=0$, since $\gamma\left(W+W^{*}\right)$ acts irreducibly, and hence that $\operatorname{dim} Z=1$.
p.276, l. - 1 REPLACE: $\quad(1)^{r} e_{j_{1}} \wedge \cdots \quad$ BY: $\quad(-1)^{r} e_{j_{1}} \wedge \cdots$
p.277, 1.7 REPLACE: $\quad \operatorname{dim} V=2 l+1$ is odd, \quad BY: $\quad \operatorname{dim} V=2 l+1$ is odd with $l \geq 1$, p.277, l.-9 REPLACE:

We use the tensor-product model
BY:
Let $l \geq 1$ (the case $\operatorname{dim} V=1$ is left to the reader) and use the model
p.278, 1.-7 REPLACE: dimension $2^{\operatorname{dim} V}$, BY: dimension $2^{\operatorname{dim} V_{0}}$, p.279, 1.12 REPLACE: $\quad\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right)^{2} \quad$ BY: $\quad 2\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right)^{2}$ p.279, 1.16 REPLACE: $\quad \sum_{i=1}^{n} \quad$ BY: $\quad \frac{1}{2} \sum_{i=1}^{n}$
p.279, l. -13 REPLACE: $\quad\left(2 \sum R_{i j j i}\right) I \quad$ BY: $\quad(1 / 2) \sum R_{i j j i}$
p.279, l.-11 REPLACE: algbera BY: algebra
p.281, 1.6 REPLACE: $\quad[\phi(X), \lambda(v)] \quad$ BY: $\quad[\phi(X), \gamma(v)]$
p.281, 1.-1 REPLACE: spin representation BY: space of spinors
p.284, l.-15 REPLACE: dominant weight BY: highest weight
p.285, 1. -12 REPLACE: $\quad c: V \rightarrow \operatorname{Cliff}(V, \beta) \quad$ BY: $\quad \gamma: V \rightarrow \operatorname{Cliff}(V, \beta)$
p.286, 1.4 REPLACE: $\quad \rho\left(x_{1}\right)=0 \quad$ BY: $\quad \widetilde{\gamma}\left(x_{1}\right)=0$
p.286, 1.5 REPLACE: $\quad \rho\left(x_{1}\right)$ BY: $\widetilde{\gamma}\left(x_{1}\right)$
p.286, 1.8 REPLACE:
$\rho_{ \pm}\left(x_{1}\right)= \pm \mu I$ for some $\mu \in \mathbb{C}$.
BY:
$\widetilde{\gamma}_{ \pm}\left(x_{1}\right)=\mu_{ \pm} I$ for some $\mu_{ \pm} \in \mathbb{C}$.

Corrections to Representations and Invariants ... (Revised January 18, 2002) 11
p.286, 1.9 REPLACE:
$\rho_{ \pm}\left(e_{0}\right)$ is invertible, so $\mu=0$.
BY:
$\widetilde{\gamma}_{ \pm}\left(e_{0}\right)$ is invertible, so $\mu_{ \pm}=0$.
p.286, 1.18 REPLACE:

Hence $\mathrm{O}(V, \beta)$ is generated by reflections.
BY:
(3) $\mathrm{O}(V, \beta)$ is generated by reflections.
p.286, 1.-5 REPLACE:
a product of reflections.
BY:
a product of reflections, proving (3).
p.288, 1.-15 and l.-14 REPLACE:

These subalgebras are spanned by elements of the form $R_{x, y}$ where $x, y \in V$ satisfy BY:
By Lemma 6.2 .1 these subalgebras are spanned by elements $R_{x, y}$ where $x, y \in V$ satisfy
p.288, 1.-5 REPLACE:
$=\frac{1}{2} \beta(y, y) \beta(x, z) \gamma(x)$,
BY:
$=\frac{1}{2} \beta(y, y) \beta(x, z) \gamma(x)=0$,
p.288, l.-3 REPLACE:
$u(t) \gamma(z) u(-t)=\gamma(z)+t[\gamma(x) \gamma(y), \gamma(z)]+\frac{t^{2}}{2} \beta(y, y) \beta(x, z) \gamma(x)$
BY:

$$
u(t) \gamma(z) u(-t)=\gamma(z)+t[\gamma(x) \gamma(y), \gamma(z)]
$$

p.288, l.-2 REPLACE:
$=\gamma(z)+t \gamma\left(R_{x, y} z\right)+\frac{t^{2}}{2} \beta(y, y) \beta(x, z) \gamma(x)$
BY:

$$
=\gamma(z)+t \gamma\left(R_{x, y} z\right)
$$

p.294, l.-6 REPLACE:
(g) $\operatorname{Spin}(5,1)^{\circ} \cong \operatorname{SU}(1,3)$.

BY:
(g) $\operatorname{Spin}(5,1)^{\circ} \cong \operatorname{SU}^{*}(4) \cong \operatorname{SL}(2, \mathbb{H})$ (see 1.4.6, Exercise \# 3).

Corrections to Representations and Invariants ... (Revised January 18, 2002) 12
p.333, 1.3 REPLACE: $Q \in \Phi^{+} \quad$ BY: $\quad Q \subset \Phi^{+}$
p.336, l.-7 REPLACE:
for every $Q \subset \Phi^{+}$and has multiplicity one.
BY:
for every $Q \subset \Phi^{+}$.
p.340, l.-16 REPLACE:

$$
\gamma s_{0} \gamma^{t}=I_{2 l}
$$

BY:

$$
\gamma s_{2 l} \gamma^{t}=I_{2 l}
$$

p.340, $1-15$ REPLACE: where s_{0} is the matrix BY: where $s_{2 l}$ is the matrix
p.340, l-14 REPLACE: corresponding to s_{0} as in BY: corresponding to $s_{2 l}$ as in
p.340, l-12 REPLACE:

$$
\gamma g \gamma^{-1}\left(\gamma g \gamma^{-1}\right)^{t}=\gamma g s_{0} g^{t} \gamma^{t}=\gamma s_{0} \gamma^{t}=I_{2 l} .
$$

BY:

$$
\gamma g \gamma^{-1}\left(\gamma g \gamma^{-1}\right)^{t}=\gamma g s_{2 l} g^{t} \gamma^{t}=\gamma s_{2 l} \gamma^{t}=I_{2 l} .
$$

p.340, $1-9$ Replace: defined by the equation $g^{t} g=I$.

BY: defined by the equation $g^{t} g=I_{2 l}$.
p.354, l.-1 REPLACE: irreducible \mathfrak{g}-module BY: irreducible \mathfrak{h}-module p.434, 1.11 REPLACE:

$$
\mathcal{H T}_{r}^{\otimes k}=\left\{u \in \mathcal{T}_{r}^{\otimes k}: u \cdot u=0 \text { for all } u \in \mathcal{B}_{k, r+1}(V, \omega)\right\}
$$

BY:

$$
\mathcal{H \mathcal { T }}_{r}^{\otimes k}=\left\{u \in \mathcal{T}_{r}^{\otimes k}: z \cdot u=0 \text { for all } z \in \mathcal{B}_{k, r+1}(V, \omega)\right\}
$$

p.436, equation (10.3.4) REPLACE:

$$
1 \leq m(r, \lambda) \leq \operatorname{dim}\left(G^{\lambda}\right)|\mathcal{M}(k, r)|
$$

BY:

$$
\operatorname{dim}\left(G^{\lambda}\right) \leq m(r, \lambda) \leq \operatorname{dim}\left(G^{\lambda}\right)|\mathcal{M}(k, r)|
$$

p.436, 1.-8 REPLACE: Let $r \geq 0$ BY: Let $r>0$
p.467, l.-3 REPLACE: $\quad \operatorname{Aff}(G / N) \quad$ BY: $\quad \pi^{*} \operatorname{Aff}(G / N)$

Corrections to Representations and Invariants ... (Revised January 18, 2002) 13
p.467, l. -1 REPLACE: translates if f BY: translates of f
p.485, l.-4 REPLACE: $\quad X_{A}$ BY: X_{G}
p.486, l. - 4 REPLACE: $\quad V_{i} \subset V_{i-1} \quad$ BY: $\quad V_{i}^{0} \subset V_{i-1}^{0}$
p.487, l.-5 and l.-6 REPLACE:
and

$$
\left.\frac{d}{d t}\left(y^{-1} \theta(y)(I+t \theta(B)) y(I+t B)\right)\right|_{t=0}=\operatorname{Ad}\left(y^{-1}\right) \theta(B)+B .
$$

BY:
whereas the curve $t \mapsto y(I+t B)$ is tangent to Q at y provided

$$
0=\left.\frac{d}{d t}\left(y^{-1} \theta(y)(I+t \theta(B)) y(I+t B)\right)\right|_{t=0}=\operatorname{Ad}\left(y^{-1}\right) \theta(B)+B .
$$

p.492, l. -12 REPLACE: $\quad \operatorname{Sp}(\omega) \quad$ BY: $\quad \operatorname{Sp}\left(\mathbb{C}^{2 n}, \omega\right)$
p.500, 1.15 REPLACE:
and distinct regular homomorphisms
BY:
and regular homomorphisms
p.500, l.-10 REPLACE:

Then we have distinct regular characters
BY:
Then we have regular characters
p.500, l. -10 REPLACE: $\cdots \supset V_{r}$ with BY: $\cdots \supset V_{r} \supset V_{r+1}=\{0\}$ with
p.501, 1.5 REPLACE:

Given $v \in V_{r}, x \in \mathcal{D}(G)$, and $g \in G$ we have
BY:
If $v \in V$ and $\pi(x) v=\theta_{r}(x) v$ for all $x \in \mathcal{D}(G)$, then
p.501, 1.7 and 1.8 REPLACE:

Thus $\pi(g) v \in V_{r}$. since π is an irreducible representation, this implies that $V=V_{r}$. We conclude that $r=1$ and $\pi(x)=\theta_{1}(x) I$ for all $x \in \mathcal{D}(G)$.

BY:
Thus $\pi(x) v=\theta_{r}(x) v$ for all $v \in V$ and $x \in \mathcal{D}(G)$, since the space of vectors with this property contains $V_{r} \neq 0$ and is G-invariant. Write $\theta_{r}=\theta$.
p.501, 1.9, l.13, and 1.14 REPLACE: θ_{1} BY: θ
p.502, 1.8 REPLACE: element BY: elements

Corrections to Representations and Invariants ... (Revised January 18, 2002) 14
p.502, 1.-5 REPLACE:

$$
\left(\exp y X_{0}\right) g\left(\exp -y X_{0}\right)=t \exp \left[\left(t^{-\alpha}-1\right) y+z X_{0}\right] .
$$

BY:

$$
\left(\exp y X_{0}\right) g\left(\exp -y X_{0}\right)=t \exp \left[\left(\left(t^{-\alpha}-1\right) y+z\right) X_{0}\right] .
$$

p.504, 1.13 to 1.17 REPLACE:

Proof of Theorem 11.3.7 We may take G to be a closed subgroup of GL(n, \mathbb{C}). Let X be the projective variety of full flags in \mathbb{C}^{n}. Let B be a Borel subgroup of G of maximum dimension. Then Theorem 11.3.8 implies that the set

$$
Y=\{x \in X: b x=x \text { for all } b \in B\}
$$

is nonempty. Fix $y \in Y$ and set $\mathcal{O}=G \cdot y$. Set $Z=\overline{\mathcal{O}}$ (Zariski closure in X).
BY:
Proof of Theorem 11.3.7 Let B be a Borel subgroup of G of maximum dimension. By Theorem 11.1.1 there is a representation (π, V) of G and a point $y \in \mathbb{P}(V)$ so that B is the stabilizer of y. Set $X=\mathbb{P}(V)$ and $\mathcal{O}=G \cdot y \subset X$. Then $G / B \cong \mathcal{O}$ as a quasi-projective set. Set $Z=\overline{\mathcal{O}}$ (Zariski closure in X).
p.505, 1.10 REPLACE: $\quad y \cdot(g B)-y g B \quad$ BY: $y \cdot(g B)=y g B$
p.505, 1.15 REPLACE: $\quad \phi_{k}(x)=x^{k} \quad$ BY: $\quad \Phi_{k}(x)=x^{k}$
p.505, 1.16 REPLACE: $\quad G(k) \subset G(k+1) \quad$ BY: $\quad G\left(2^{k}\right) \subset G\left(2^{k+1}\right)$
p.515, 1.10 Replace: Theorem A.3.4 BY: Theorem A.3.3
p.527, l. -7 Replace: Theorem A.3.4 BY: Theorem A.3.3
p.532, 1.15 to l. 19 (Exercise \#1) REPLACE:

1. Let L be a reductive group, and set $G=L \times L$. Let $K=\{(g, g): g \in L\}$ be the diagonal embedding of L in G. Show that (G, K) is a spherical pair. (Hint: The irreducible representations of G are of the form $\pi=\sigma \widehat{\otimes} \mu$, where σ and μ are irreducible representations of L. Use Schur's Lemma to show that the K-spherical representations of G are the representations $\pi=\sigma \widehat{\otimes} \sigma^{*}$.)
BY:
2. Use Theorem 12.2 .1 to show that the following spaces are multiplicity-free:
(a) $G=\mathrm{GL}(n) \times \mathrm{GL}(k), X=M_{n, k}(\mathbb{C}),(g, h) \cdot x=g x h^{-1}$. (Hint: Lemma B.2.8.)
(b) $G=\mathrm{GL}(n), X=S M_{n}(\mathbb{C}), g \cdot x=g x g^{t}$. (Hint: Lemma B.2.9.)
(c) $G=\operatorname{GL}(n), X=A M_{n}(\mathbb{C}), g \cdot x=g x g^{t}$. (Hint: Lemma B.2.10.)
p.534, 1.16 REPLACE: $\quad \tau(g)=\left(g^{-t}\right)^{-1} \quad$ BY: $\quad \tau(g)=\left(\bar{g}^{t}\right)^{-1}$
p.538, 1.8 REPLACE: Theorem A.3.4 BY: Theorem A.3.3

Corrections to Representations and Invariants ... (Revised January 18, 2002) 15
p.540, 1.23 REPLACE: note that $l=n-1$ is odd. BY: note that $l=2 n-1$ is odd.
p.550, l.-1 REPLACE:

Type AII: $\left\{\varpi_{2}, \varpi_{4}, \ldots, \varpi_{l}\right\} \quad(p=l / 2)$,
BY:
Type AII: $\left\{\varpi_{2}, \varpi_{4}, \ldots, \varpi_{l-1}\right\} \quad(p=(l-1) / 2)$,
p.558, l.-13 DELETE: Then
p.566, 1.4 and 1.5 REPLACE: $\quad T_{f, j} \quad$ BY: $\quad T_{j, f}$
p.566, 1.8 REPLACE: $\quad \mathcal{V}(f) \neq 0 \quad$ BY: $\quad \mathcal{V}(\mathcal{I}(f)) \neq\{0\}$
p.582, 1.8 to 1.17 replace statement and proof of Lemma A.1.3 by:

Lemma A.1.3 An element $b \in B$ is integral over A if and only if there exists a finitely-generated A-submodule $C \subset B$ such that $b \cdot C \subset C$.

Proof. Let b satisfy (A.1.2). Then $A[b]=A \cdot 1+A \cdot b+\cdots+A \cdot b^{n-1}$ is a finitelygenerated A-submodule, so we may take $C=A[b]$. Conversely, suppose C exists as stated and is generated by $\left\{x_{1}, \ldots, x_{n}\right\}$ as an A-module. Since $b x_{i} \in C$, there are elements $a_{i j} \in A$ so that

$$
b x_{i}-\sum_{j=1}^{n} a_{i j} x_{j}=0 \quad \text { for } i=1, \ldots, n .
$$

Since $x_{i} \neq 0$ and B has no zero divisors, the determinant of the coefficient array of the x_{i} must vanish. This determinant is a monic polynomial in b, with coefficients in A. Hence b is integral over A.

p.582, 1.20 to 1.23 REPLACE:

The submodule $A[b]$ of B is therefore also finitely generated, for any $b \in B$, and hence b is integral over A.

BY:
Now apply Lemma A.1.3 with $C=B$.
p.587, 1.2 REPLACE: but f_{1} not vanishing BY: but f_{i} not vanishing
p.587, 1.3 Replace: and $X \neq X_{1}$. BY: and $X \neq X_{i}$.
p.588, 1.9 REPLACE: $\quad \widetilde{v}(x) / f(x)=0 . \quad$ BY: $\quad \widetilde{v}(x) / f(x)^{k}=0$.
p.592, 1.1 Replace: Let $\phi \in \operatorname{Aff}(X)$. BY: Let $\phi \in \operatorname{Aff}(Y)$.
p.592, 1.6 REPLACE: all $\phi \in \operatorname{Aff}(X)$. BY: all $\phi \in \operatorname{Aff}(Y)$.

Corrections to Representations and Invariants ... (Revised January 18, 2002) 16
p.592, l. -14 to l. -10 REPLACE:
every $\phi \in \operatorname{Hom}(A, \mathbb{C})^{a}$ extends to $\psi \in \operatorname{Hom}(B, \mathbb{C})^{b}$.
Proof. We start with the case $B=A[u]$ for some element $u \in B$. Let $b=f(u)$ be given, where

$$
f(X)=a_{n} X^{n}+\cdots+a_{0}, \quad a_{i} \in A .
$$

BY:
every $\phi \in \operatorname{Hom}(A, \mathbb{C})^{a}$ extends to $\psi \in \operatorname{Hom}(B, \mathbb{C})^{b}$. If B is integral over A and $b=1$, then $a=1$.

Proof. We start with the case $B=A[u]$ for some element $u \in B$. Let $b=f(u)$ be given, where $f(X)=a_{n} X^{n}+\cdots+a_{0}$ with $a_{i} \in A$.
p.593, 1.3 REPLACE:
element $a=a_{m} c_{0}$ has the desired property in this case.
BY:
element $a=a_{m} c_{0}$ has the desired property. Note that if u is integral over A and $b=1$ then $a=1$.
p.593, 1.5 and 1.6 REPLACE: $\quad q(X)$ BY: $\quad h(X)$
p.599, 1.15 and 1.16 REPLACE:
a map $x \mapsto L_{x}$ from X to $T(X)_{x}$
BY:
a correspondence $x \mapsto L_{x} \in T(X)_{x}$
p.601, l. -13 to -8 Delete: Statement and proof of Corollary A.3.3
p.601, l.-7 REPLACE: Theorem A.3.4 BY: Theorem A.3.3
p.602, 1.1 Replace: Lemma A.3.5 BY: Lemma A.3.4
p.603, 1.9 Replace: Theorem A.3.4 BY: Theorem A.3.3
p.602, 1.9 Replace: Lemma A.3.5 BY: Lemma A.3.4
p.602, l. -12 replace: Corollary A.3.6 BY: Corollary A.3.5
p.602, l. -9 REPLACE: Lemma A.3.5 BY: Lemma A.3.4
p.603, l.-8 REPLACE: Theorem A.3.4 BY: Theorem A.3.3
p.604, 1.12 to $\mathbf{l . 2 5}$ delete Exercises A.3.5 and replace by:

Proposition A.3.6 Let $\varphi: X \rightarrow Y$ be a dominant regular map of irreducible affine algebraic sets. For $y \in Y$ let $F_{y}=\varphi^{-1}\{y\}$. Then there is a nonempty open set $U \subset X$ such that $\operatorname{dim} X=\operatorname{dim} Y+\operatorname{dim} F_{\varphi(x)}$ and $\operatorname{dim} F_{\varphi(x)}=\operatorname{dim} \operatorname{Ker}\left(d \varphi_{x}\right)$ for all $x \in U$.

Corrections to Representations and Invariants ... (Revised January 18, 2002) 17

Proof. Let $d=\operatorname{dim} X-\operatorname{dim} Y, S=\varphi^{*} \operatorname{Aff}(Y)$, and $R=\operatorname{Aff}(X)$. Set $k=\operatorname{Quot}(S)$ and let $B \subset \operatorname{Quot}(R)$ be the subalgebra generated by k and R (the rational functions on X with denominators in $S \backslash\{0\}$). Since B has transcendence degree d over k, Lemma A.1.17 furnishes an algebraically independent set $\left\{f_{1}, \ldots, f_{d}\right\} \subset R$ such that B is integral over $k\left[f_{1}, \ldots, f_{d}\right]$. Taking the common denominator of a set of generators of the algebra B, we obtain $f=\varphi^{*} g \in S$ such that R_{f} is integral over $S_{f}\left[f_{1}, \ldots, f_{d}\right]$, where $R_{f}=\operatorname{Aff}\left(X^{f}\right)$ and $S_{f}=\varphi^{*} \operatorname{Aff}\left(Y^{g}\right)$. By Theorem A.2.5 we can take g so that $\varphi\left(Y^{g}\right)=X^{f}$.
Define $\psi: X^{f} \rightarrow Y^{g} \times \mathbb{C}^{d}$ by $\psi(x)=\left(\varphi(x), f_{1}(x), \ldots, f_{d}(x)\right)$. Then $\psi^{*} \operatorname{Aff}\left(Y^{g} \times \mathbb{C}^{d}\right)=$ $S_{f}\left[f_{1}, \ldots, f_{d}\right]$, and hence $\operatorname{Aff}\left(X^{f}\right)$ is integral over $\psi^{*} \operatorname{Aff}\left(Y^{g} \times \mathbb{C}^{d}\right)$. By Theorem A.2.5 every homomorphism from $S_{f}\left[f_{1}, \ldots, f_{d}\right]$ to \mathbb{C} extends to a homomorphism from R_{f} to \mathbb{C}. Hence ψ is surjective. Let $\pi: Y^{g} \times \mathbb{C}^{d} \rightarrow Y^{g}$ by $\pi(y, z)=y$. Then $\varphi=\pi \circ \psi$ and $F_{y}=\psi^{-1}\left(\{y\} \times \mathbb{C}^{d}\right)$. If W is any irreducible component of F_{y} then $\operatorname{Aff}(W)$ is integral over $\psi^{*} \operatorname{Aff}\left(\{y\} \times \mathbb{C}^{d}\right)$, and hence $\operatorname{dim} W=d$.
We have $d \varphi_{x}=d \pi_{\psi(x)} \circ d \psi_{x}$. By integrality, every derivation of $\operatorname{Quot}\left(\psi^{*}\left(Y^{g} \times \mathbb{C}^{d}\right)\right)$ extends uniquely to a derivation of $\operatorname{Rat}\left(X^{f}\right)$, as in the proof of Theorem A.3.1. Hence $d \psi_{x}$ is bijective for x in a nonempty dense open set U by Lemma A.3.4. For such x, $\operatorname{Ker}\left(d \varphi_{x}\right)=\operatorname{Ker}\left(d \pi_{\psi(x)}\right)$ has dimension d.
p.606, l. -2 and 1.-1 REPLACE:
$(x, y) \mapsto x^{t} y$, where x^{t} is the transpose of x.
BY:
$(x, y) \mapsto x y^{t}$, where y^{t} is the transpose of y.
p.607, 1.8, l.12, and l. -3 REPLACE: $x^{t} y$ BY: $x y^{t}$
p.607, l. -5 REPLACE: $x^{t} x$ BY: $x x^{t}$
p.609, l. - 4 to l. -1 REPLACE:

Corollary A.4.6 Let X be a quasiprojective algebraic set and $\phi: X \rightarrow X$ a regular map. Then the fixed-point set $\{x \in X: \phi(x)=x\}$ is closed in X.

Proof. The fixed-point set of ϕ is the intersection of the closed sets Γ_{ϕ} and Δ, where Δ is the diagonal in $X \times X$.

BY:
Corollary A.4.6 Let X, Y be quasiprojective algebraic sets and $\phi: X \times Y \rightarrow X$ a regular map. Then $\{(x, y) \in X \times Y: \phi(x, y)=x\}$ is closed in $X \times Y$.

Proof. Use the same argument as for Proposition A.4.5.
p.664, 1.8, l.9, and 1.10 REPLACE:

$$
d \varphi: \operatorname{Lie}(G) \rightarrow \operatorname{Lie}(H) \text { by }
$$

$$
d \varphi(X)_{1}=d \varphi_{1}\left(X_{1}\right) .
$$

Corrections to Representations and Invariants ... (Revised January 18, 2002) 18

The content of the following result is that $d \varphi$ is a Lie algebra homomorphism.
BY:
$d \varphi: \operatorname{Lie}(G) \rightarrow \operatorname{Lie}(H)$ by $d \varphi(X)_{1}=d \varphi_{1}\left(X_{1}\right)$.
p.664, 1.12 REPLACE:

Proof. Use the same argument as in Theorem 1.2.10
BY:
Proof. If $f \in C^{\infty}(H)$ then $X(f \circ \varphi)=(d \varphi(X) f) \circ \varphi$ by the left-invariance of X. Hence $[X, Y](f \circ \varphi)=([d \varphi(X), d \varphi(Y)] f) \circ \varphi$. This implies that $d \varphi([X, Y])_{1}=$ $([d \varphi(X), d \varphi(Y)])_{1}$.
p.664, 1.17 REPLACE:

Thus Lemma D.2.5 implies that
BY:
Thus Theorem D.2.3 implies that

