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Corrections to

Representations and Invariants of the Classical Groups

by Roe Goodman and Nolan R. Wallach
(1998 hard-cover edition)

Revised January 18, 2002

Note: Most of the following corrections are incorporated into the 1999 (paperback) printing.

p.15, l.−14 to l.−8 (proof of assertion (2)) replace:

We may assume that . . . this proves (2).

by:

The point evaluations {δx}x∈X span V ∗. Choose xi ∈ X so that {δx1 , . . . , δxq} is a
basis for V ∗ and let {g1, . . . , gq} be the dual basis for V . Then we can write

R(x)gj =
q∑
i=1

cij(x) gi

for x ∈ X . Since
cij(x) = 〈R(x)gj, δxi〉 = gj(xix),

we see that x 7→ cij(x) is a regular function on X . This proves (2).

p.15, l.−3 replace: {f1, . . . , fm} ⊂ ρ∗Aff(G) by: {f1, . . . , fn} ⊂ Φ∗Aff(G)

p.16, l.1 to l.26 replace :

The following theorem shows that . . .

(statement and proof of Theorem 1.1.14)

. . . so σ−1 is regular (see Section A.4.3). 2

by:

Example

Let B be a bilinear form on Cn. We define a multiplication ∗B on Cn+1 by[
x
λ

]
∗B
[
y
µ

]
=

[
x+ y

λ+ µ+B(x, y)

]

for x, y ∈ Cn and λ, µ ∈ C. From the bilinearity of B we calculate easily that this
multiplication is associative. Since[

x
λ

]
∗B
[

−x
−λ+ B(x, x)

]
=

[
0
0

]
,
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we conclude that ∗B defines a group structure on Cn+1 with 0 as the identity element.
Multiplication and inversion are regular maps, so by Theorem 1.1.13 there is a linear
algebraic group GB with Aff(GB) ∼= Aff(Cn+1) as a C-algebra and GB ∼= (Cn+1, ∗B)
as a group.

We can use the proof of Theorem 1.1.13 to obtain an explicit matrix realization of
GB. Let fi(x) = xi for x ∈ Cn+1 and let gi ∈ (Cn)∗ for i = 1, . . . , n be the linear
functionals such that

B(x, y) =
n∑
i=1

fi(x)gi(y)

for x, y ∈ Cn. Let f0(x) = 1 for all x ∈ Cn+1. For f ∈ Aff(Cn+1) and y ∈ Cn+1

let R(y)f(x) = f(x ∗B y). From the definition of the multiplication ∗B we have
R(y)f0 = f0, R(y)fi = fi + fi(y) for 1 ≤ i ≤ n, and

R(y)fn+1 = fn+1 + fn+1(y) +
n∑
i=1

gi(y)fi

(we define gi(y) = gi(ȳ), where ȳ is the projection of y onto Cn). Thus the (n + 2)-
dimensional subspace V of Aff(Cn+1) spanned by the functions f0, . . . , fn+1 is invariant
under R(y). Let Φ(y) be the restriction of R(y) to V . Then Φ(y) has the matrix

1 f1(y) · · · fn(y) fn+1(y)
0 1 · · · 0 g1(y)
...

...
. . .

...
...

0 0 · · · 1 gn(y)
0 0 · · · 0 1


relative to the ordered basis {f0, f1, . . . , fn+1} for V . Since fi and gi are linear func-
tions and {fi(y)} are the coordinates of y, it is clear that GB = Φ(Cn+1) is a closed
subgroup of GL(n+ 2,C) that is isomorphic to (Cn+1, ∗B) as a group and as an affine
algebraic set.

p.25, l.10 replace: We denote by s0

by: We denote by sl

p.25, l.11 (display) replace: s0 by: sl

p.25, l.13 replace:

J+ =

[
0 s0

s0 0

]
, J+ =

[
0 s0

−s0 0

]
,

by:

J+ =

[
0 sl
sl 0

]
, J+ =

[
0 sl
−sl 0

]
,

p.25, l.-10 replace: s0a
ts0 by: sla

tsl



Corrections to Representations and Invariants . . . (Revised January 18, 2002) 3

p.25, l.-7 replace:

A =

[
a b
c −s0a

ts0

]
,

by:

A =

[
a b
c −slatsl

]
,

p. 25, l.-6 replace: such that bt = −s0bs0 and ct = −s0cs0

by: such that bt = −slbsl and ct = −slcsl

p.25, l.-3 replace:

A =

[
a b
c −s0a

ts0

]
,

by:

A =

[
a b
c −slatsl

]
,

p. 25, l.-2 replace: such that bt = s0bs0 and ct = s0cs0

by: such that bt = slbsl and ct = slcsl

p.26, l.6 replace:

S =

 0 0 s0

0 1 0
s0 0 0

 .
by:

S =

 0 0 sl
0 1 0
sl 0 0

 .
p.26, l.12 replace:

A =

 a w b
u 0 −wts0

c −s0u
t −s0a

ts0

 ,
by:

A =

 a w b
u 0 −wtsl
c −slut −slatsl

 ,
p.26, l.13 replace: such that bt = −s0bs0 and ct = −s0cs0

by: such that bt = −slbsl and ct = −slcsl

p.31, l.−8 to l.−1 Replace printed text by:

XAIG ⊂ IG. Write σ = π|G and take f = fC ◦ π for C ∈ End(V ). Then XA(fC ◦
σ)(I) = XA(fC ◦ π)(I), and hence dσ(A) = dπ(A) by (1.2.9).
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(3): Write g = Lie(G) and h = Lie(H). By (1), Lie(G ∩H) ⊂ g ∩ h. Let X = G×H
and define ϕ : X → GL(n,C) by ϕ(g, h) = gh−1. Set Y = ϕ(X) and Fy = ϕ−1{y}.
Then Fgh−1 = {(gz, hz) : z ∈ G ∩ H}, and hence dimFgh−1 = dim(G ∩ H) for all
(g, h) ∈ X . Since Ker dϕ(1,1) = {(A,−A) : A ∈ g∩ h} and dϕ(g,h) = dLgdRh−1dϕ(1,1),
we have dim Ker dϕ(g,h) = dim(g∩h) for all (g, h) ∈ X . Proposition A.3.6 now implies
that dim(G ∩H) = dim(g ∩ h), hence Lie(G ∩H) = g ∩ h. 2

p.30, l.−4 replace: Corollary A.3.6 by: Corollary A.3.5

p.32, l.−2 replace: = [Ad(g)A,Ad(g)A], by: = [Ad(g)A,Ad(g)B],

p.39, l.−15 replace: gu by: gn

p.39, l.−13 replace:

subset of End(V ) and Gu is an algebraic subset of GL(V ).

by:

subset of Mn(C) and Gu is an algebraic subset of GL(n,C).

p.39, l.−4 and l.−3 replace:

Decompose Cn into spaces Wλ = {w ∈ Cn : (H − λI)pw = 0 for some p}. Show that
XWλ ⊂Wλ+2.)

by:

Show that [H,Xk] = 2kXk. Then consider the eigenvalues of adH on Mn(C).)

p.44, l.9 replace:

Hence ρ−1 is regular by Theorem 1.1.14.

by:

Clearly ρ∗(Aff(H)) = Aff(G), so ρ−1 is regular.

p.49, l.4 (Exercise #1) replace:

1. Check the assertion in (1.4.2) above.

by:

1. Define a real form Sp(p, q) of Sp(p + q,C) analogous to the real form U(p, q) of
GL(p+ q,C).

p.49, l.7 and l.8 (Exercise #3) replace:

Let ψ ∈ End(C2n) act by

ψ[z1, . . . , zn, zn+1, . . . , z2n] = [z̄n+1, . . . , z2n,−z̄1, . . . ,−z̄n]

by:

Let ψ be the real linear transformation of C2n defined by

ψ[z1, . . . , zn, zn+1, . . . , z2n] = [z̄n+1, . . . , z̄2n,−z̄1, . . . ,−z̄n]



Corrections to Representations and Invariants . . . (Revised January 18, 2002) 5

p.51, formula (2.1.1) replace:

n∏
k=1

by:

l∏
k=1

p.66, l.−7 replace:

σk(g)f(x) = (−cx+ d)kf
(
ax − b
−cx+ d

)
.

by:

σk(g)f(x) = (cx+ a)kf
(
dx+ b

cx+ a

)
.

p.68, l.10 replace: P (G) = Span{dθ : θ ∈ X (H)} by: P (G) = {dθ : θ ∈ X (H)}

p.77, Figure 2.2 replace: εl − εl+1 by: εl−1 − εl

p.77, l.−13 and −12 replace:

as in Type A,

by:

and εi + εl = αi + · · ·+ αl,

p.78, Figure 2.3 replace: εl − εl+1 by: εl−1 − εl

p.82, l.−17 replace:

αi + · · ·+ αj for 1 ≤ i < j < l

by:

αi + · · ·+ αj for 1 ≤ i < j ≤ l

p.94, l.6 replace: Let s0 ∈ GL(2l,C)

by: Let sl ∈ GL(l,C)

p.94, l.10 replace:

π(σ) =

[
sσ 0
0 s0sσs0

]
,

by:

π(σ) =

[
sσ 0
0 slsσsl

]
,

p.95, l.8 replace:

φ(σ) =

 sσ 0 0
0 1 0
0 0 s0sσs0

 ,
by:

φ(σ) =

 sσ 0 0
0 1 0
0 0 slsσsl

 ,
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p.95, l.−14 replace: O(2l+ 1,C) by: O(B,C)

p.169, l.−14 replace:

From Theorem 3.3.6 we have a

by:

From Proposition 3.1.6 we have the

p.170, l.12 replace: if φ ∈ J then there exist

by: if φ ∈ J+ then there exist

p.172, l.7 replace:

σI − x1 = σ1 − x1 = x2 + · · ·+ xn

by:

σI − xI = σ1 − x1 = x2 + · · ·+ xn

p.172, l.−14 replace: f(x)− aIσI by: f(x)− aσI

p.174, l.−7 replace: induction that H · (PJ+) contains all polynomials

by: induction that H · (1 +PJ+) contains all polynomials

p.175, l.7 replace:

4.1.4(1), which contradicts

by:

4.1.4, which contradicts

p.176, l.2 replace: g = 0. 2 by: g = 0.

p.180, l.14 replace: ρ(g−1)vn by: ρ(g−1)vm

p.181, l.2 replace: f(xρ(g−1), ρ(g)y), x ∈ X, y ∈ Y. by: f(xρ(g−1), ρ(g)y).

p.181, l.7 replace: for g ∈ G and x ∈ X , y ∈ Y . by: for g ∈ GL(V ).

p.181, l.−15 replace: i = 1, . . . , m, j = 1, . . . , k by: i = 1, . . . , k, j = 1, . . . , m

p.182, l.−5 replace: i 6= j by: i < j

p.183, l.−7 display replace:

uZw =

[
Ir Or,m−r

Om−r,r Om−r

]

by:

uZw =

[
Ir Or,m−r

Ok−r,r Ok−r,m−r

]
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p.183, l.−5 display replace:

X =

[
Ir Or,m−r

Om−r,r Ok−r

]
, Y =

[
Ir Or,n−r

On−r,r On−r

]
,

by:

X =

[
Ir Or,n−r

Ok−r,r Ok−r,n−r

]
, Y =

[
Ir Or,m−r

On−r,r On−r,m−r

]
,

p.184, l.−8 display replace:

X =

[
Jr Or,k−r

Ok−r,r On−r,k−r

]
g.

by:

X =

[
Jr Or,k−r

On−r,r On−r,k−r

]
g.

p.184, l.−3 replace: (SFT, Free Case) by: (SFT, Free Case) Let V = Cn.

p.184, l.−2 replace: dim V ≥ min(k,m) by: n ≥ min(k,m)

p.185, l.6, l.7, l.10 replace: (Cn)k by: V k

p.189, l.10 display replace:

k∏
j=1

y
qj
j

by:

m∏
j=1

y
qj
j

p.189, l.13 replace: z = (v1, . . . , vk, v
∗
1, . . . , v

∗
k)

by: z = (v1, . . . , vk, v
∗
1, . . . , v

∗
m)

p.198, l.−7 replace: representation on Cn

by: representation on V

p.198, l.−5 replace: space P [p,q](V k ⊗ (V ∗)m)GL(V )

by: space P [p,q](V k ⊕ (V ∗)m)GL(V )

p.198, l.−3 replace: acts on P [p,q](V k ⊗ (V ∗)m)

by: acts on P [p,q](V k ⊕ (V ∗)m)

p.198, l.−1 display replace: P [p,q](V k ⊗ (V ∗)m)GL(V ) = 0

by: P [p,q](V k ⊕ (V ∗)m)GL(V ) = 0

p.199, l.2 display replace: P [p,q](V k ⊗ (V ∗)m)GL(V )

by: P [p,q](V k ⊕ (V ∗)m)GL(V )
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p.199, l.4 replace: complete contractions Cs
by: complete contractions λs

p.199, l.6 display replace: Cs

by: λs

p.199, l.9 display replace: Cs

by: λs

p.211, l.7 replace: EM = M by: EM ⊂M

p.211, l.−5 replace: Span{ρ(G)u} = Zλ by: Span{ρ(G)f} = Zλ

p.211, l.−1 replace: u ∈ RG by: r ∈ RG

p.218, l.−10 replace:

(V k)∗ dual to the coordinates xij on V k.

by:

V ∗ dual to the coordinates xij on V .

p.219, l.13 replace: ρ(g)Dijρ(g−1) by: ρ(g)∆ijρ(g−1)

p.224, l.9 replace: ξ∗ ∈ V ∗ by: ξ ∈ V ∗

p.226 between l.5 and l.6 Insert:

4.5.8 Exercises

1. Let G = GL(n,C) and V = Mn,p(C)⊕Mn,q(C). Let g ∈ G act on V by g · (x⊕y) =
gx ⊕ (gt)−1y for x ∈ Mn,p(C) and y ∈ Mn,q(C). Note that the columns xi of x
transform as vectors in Cn and the columns yj of y transform as covectors in (Cn)∗.

(a) Let p− be the subspace of D(V ) spanned by the operators of multiplication by
(xi)t · yj for 1 ≤ i ≤ p, 1 ≤ j ≤ q. Let p+ be the subspace of D(V ) spanned by the
operators ∆ij =

∑n
r=1

∂
∂xri

∂
∂yrj

for 1 ≤ i ≤ p, 1 ≤ j ≤ q. Prove that p± ⊂ D(V )G.

(b) Let k be the subspace of D(V ) spanned by the operators E(x)
ij + k

2δij (with 1 ≤
i, j ≤ p) and E(y)

ij + k
2 δij (with 1 ≤ i, j ≤ q), where E(x)

ij is defined by equation (4.5.27)

and E(y)
ij is similarly defined with xij replaced by yij . Prove that k ⊂ D(V )G.

(c) Prove the commutation relations [k, k] ⊂ k, [k, p±] = p±, [p−, p+] ⊂ k.

(d) Set g′ = p− + k + p+. Prove that g′ is isomorphic to gl(p + q,C), and that
k ∼= gl(p,C)⊕ gl(q,C).

(e) Prove that D(V )G is generated by g′. (Hint: Use Theorems 4.2.1 and 4.5.16. Note
that there are four possibilities for contractions to obtain G-invariant polynomials on
V ⊕ V ∗: (1) vector and covector in V ; (2) vector and covector in V ∗; (3) vector from
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V and covector from V ∗; (4) covector from V and vector from V ∗. Show that the
contractions of types (1) and (2) furnish symbols for bases of p±, and that contractions
of type (3) and (4) furnish symbols for a basis of k.)

p.226, l.7 replace:

The finiteness result in Theorem 4.1.1, due to Hilbert, was a major

by:

Theorem 4.1.1 (the proof given is due to Hurwitz) was a major

p.227, l.-1 replace: general Capelli problem.”

by: general “Capelli problem.”

p.237, l.10 replace: p = 0, 1, . . . , [k/2]. by: p = 0, 1, . . . , [k/2] (where $0 = 0).

p.237, l.12 replace:

[2l−p]⊕
k=0

by:

l−p⊕
k=0

p.243, l.2 replace: If we choose −Φ+ by: If we choose −Φ+

p.249, l.9 replace: zm1+···mn
by: zm1+···+mn

p.250, l.8 replace: O(n,C) by: O(B,C)

p.254, l.−13 replace:

We can choose g1 ∈ G so that G = G◦
⋃
g1G

◦ and ρ(g1)ϕk = ±ϕk

by:

We can choose g0 ∈ G so that G = G◦
⋃
g0G

◦ and ρ(g0)ϕk = ϕk

p.255, l.−8 replace:

∑
µi by:

∑
iµi

p.256, l.9 replace: depth(µ) ≤ r by: depth(ν) ≤ r

p.257, l.−3 replace: of size r such that by: of size 2r such that

p.258, l.18 replace: it has degree |µ| by: it has degree |µ|/2

p.259, l.5 replace: such that |µ| = r and by: such that |µ| = 2r and

p.270, l.−3 replace: 2γ(vi)2 = β(vi, vi) by: {γ(vi), γ(vj)} = β(vi, vj)

p.272, l.−1 replace: ε(x∗)ε(y∗) = −ε(x∗)ε(y∗)
by: ε(x∗)ε(y∗) = −ε(y∗)ε(x∗)

p.273, l.12 replace:

We combine them into a linear map

by:

When dim V is even, we combine these operators to obtain a linear map
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p.274, l.1 replace:

Let {e1, . . . , ek} be a basis for W , where k = n/2, and let {e−1, . . . , e−k} be the basis

by:

Let {e1, . . . , el} be a basis for W , where l = n/2, and let {e−1, . . . , e−l} be the basis

p.274, l.3 replace: with 1 ≤ j1 < · · · < jp ≤ k by: with 1 ≤ j1 < · · ·< jp ≤ l

p.275, l.2,l.3,l.4 replace:

Since the range of T is spanned by 2l vectors and dim(
∧
W ∗) = 2l, we conclude that

T is bijective.

by:

We will prove that Tγ(w+ w∗) = γ ′(w + w∗)T for w ∈ W and w∗ ∈ W ∗. This will
imply that KerT = 0, since γ(W +W ∗) acts irreducibly, and hence that dimZ = 1.

p.276, l.−1 replace: (1)rej1 ∧ · · · by: (−1)rej1 ∧ · · ·

p.277, l.7 replace: dimV = 2l+ 1 is odd, by: dim V = 2l+ 1 is odd with l ≥ 1,

p.277, l.−9 replace:

We use the tensor-product model

by:

Let l ≥ 1 (the case dim V = 1 is left to the reader) and use the model

p.278, l.−7 replace: dimension 2dimV , by: dimension 2dimV0,

p.279, l.12 replace: (x1e1 + · · ·+ xnen)2
by: 2(x1e1 + · · ·+ xnen)2

p.279, l.16 replace:

∑n
i=1 by:

1
2

∑n
i=1

p.279, l.−13 replace: (2
∑
Rijji)I by: (1/2)

∑
Rijji

p.279, l.−11 replace: algbera by: algebra

p.281, l.6 replace: [φ(X), λ(v)] by: [φ(X), γ(v)]

p.281, l.−1 replace: spin representation by: space of spinors

p.284, l.−15 replace: dominant weight by: highest weight

p.285, l.−12 replace: c : V → Cliff(V, β) by: γ : V → Cliff(V, β)

p.286, l.4 replace: ρ(x1) = 0 by: γ̃(x1) = 0

p.286, l.5 replace: ρ(x1) by: γ̃(x1)

p.286, l.8 replace:

ρ±(x1) = ±µI for some µ ∈ C.

by:

γ̃±(x1) = µ±I for some µ± ∈ C.
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p.286, l.9 replace:

ρ±(e0) is invertible, so µ = 0.

by:

γ̃±(e0) is invertible, so µ± = 0.

p.286, l.18 replace:

Hence O(V, β) is generated by reflections.

by:

(3) O(V, β) is generated by reflections.

p.286, l.−5 replace:

a product of reflections.

by:

a product of reflections, proving (3).

p.288, l.−15 and l.−14 replace:

These subalgebras are spanned by elements of the form Rx,y where x, y ∈ V satisfy

by:

By Lemma 6.2.1 these subalgebras are spanned by elements Rx,y where x, y ∈ V
satisfy

p.288, l.−5 replace:

=
1
2
β(y, y)β(x, z)γ(x),

by:

=
1
2
β(y, y)β(x, z)γ(x) = 0,

p.288, l.−3 replace:

u(t)γ(z)u(−t) = γ(z) + t[γ(x)γ(y), γ(z)] +
t2

2
β(y, y)β(x, z)γ(x)

by:

u(t)γ(z)u(−t) = γ(z) + t[γ(x)γ(y), γ(z)]

p.288, l.−2 replace:

= γ(z) + tγ(Rx,yz) +
t2

2
β(y, y)β(x, z)γ(x)

by:

= γ(z) + tγ(Rx,yz)

p.294, l.−6 replace:

(g) Spin(5, 1)◦ ∼= SU(1, 3).

by:

(g) Spin(5, 1)◦ ∼= SU∗(4) ∼= SL(2,H) (see 1.4.6, Exercise # 3).
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p.333, l.3 replace: Q ∈ Φ+
by: Q ⊂ Φ+

p.336, l.−7 replace:

for every Q ⊂ Φ+ and has multiplicity one.

by:

for every Q ⊂ Φ+.

p.340, l.−16 replace:

γs0γ
t = I2l

by:

γs2lγ
t = I2l

p.340, l−15 replace: where s0 is the matrix

by: where s2l is the matrix

p.340, l−14 replace: corresponding to s0 as in

by: corresponding to s2l as in

p.340, l−12 replace:

γgγ−1(γgγ−1)t = γgs0g
tγt = γs0γ

t = I2l.

by:

γgγ−1(γgγ−1)t = γgs2lg
tγt = γs2lγ

t = I2l.

p.340, l−9 replace: defined by the equation gtg = I .

by: defined by the equation gtg = I2l.

p.354, l.−1 replace: irreducible g-module by: irreducible h-module

p.434, l.11 replace:

HT ⊗kr = {u ∈ T ⊗kr : u · u = 0 for all u ∈ Bk,r+1(V, ω)}

by:

HT ⊗kr = {u ∈ T ⊗kr : z · u = 0 for all z ∈ Bk,r+1(V, ω)}

p.436, equation (10.3.4) replace:

1 ≤ m(r, λ)≤ dim(Gλ)|M(k, r)|

by:

dim(Gλ) ≤ m(r, λ)≤ dim(Gλ)|M(k, r)|

p.436, l.−8 replace: Let r ≥ 0 by: Let r > 0

p.467, l.−3 replace: Aff(G/N ) by: π∗Aff(G/N )
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p.467, l.−1 replace: translates if f by: translates of f

p.485, l.−4 replace: XA by: XG

p.486, l.−4 replace: Vi ⊂ Vi−1 by: V 0
i ⊂ V 0

i−1

p.487, l.−5 and l.−6 replace:

and
d

dt
(y−1θ(y)(I + tθ(B))y(I + tB))|t=0 = Ad(y−1)θ(B) +B.

by:

whereas the curve t 7→ y(I + tB) is tangent to Q at y provided

0 =
d

dt
(y−1θ(y)(I + tθ(B))y(I + tB))|t=0 = Ad(y−1)θ(B) +B.

p.492, l.−12 replace: Sp(ω) by: Sp(C2n, ω)

p.500, l.15 replace:

and distinct regular homomorphisms

by:

and regular homomorphisms

p.500, l.−10 replace:

Then we have distinct regular characters

by:

Then we have regular characters

p.500, l.−10 replace: · · · ⊃ Vr with by: · · · ⊃ Vr ⊃ Vr+1 = {0} with

p.501, l.5 replace:

Given v ∈ Vr, x ∈ D(G), and g ∈ G we have

by:

If v ∈ V and π(x)v = θr(x)v for all x ∈ D(G), then

p.501, l.7 and l.8 replace:

Thus π(g)v ∈ Vr. since π is an irreducible representation, this implies that V = Vr.
We conclude that r = 1 and π(x) = θ1(x)I for all x ∈ D(G).

by:

Thus π(x)v = θr(x)v for all v ∈ V and x ∈ D(G), since the space of vectors with this
property contains Vr 6= 0 and is G-invariant. Write θr = θ.

p.501, l.9, l.13, and l.14 replace: θ1 by: θ

p.502, l.8 replace: element by: elements
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p.502, l.−5 replace:

(expyX0)g(exp−yX0) = t exp[(t−α − 1)y + zX0].

by:

(exp yX0)g(exp−yX0) = t exp[((t−α − 1)y + z)X0].

p.504, l.13 to l.17 replace:

Proof of Theorem 11.3.7 We may take G to be a closed subgroup of GL(n,C). Let
X be the projective variety of full flags in Cn. Let B be a Borel subgroup of G of
maximum dimension. Then Theorem 11.3.8 implies that the set

Y = {x ∈ X : bx = x for all b ∈ B}

is nonempty. Fix y ∈ Y and set O = G · y. Set Z = O (Zariski closure in X).

by:

Proof of Theorem 11.3.7 Let B be a Borel subgroup of G of maximum dimension.
By Theorem 11.1.1 there is a representation (π, V ) of G and a point y ∈ P(V ) so that
B is the stabilizer of y. Set X = P(V ) and O = G · y ⊂ X . Then G/B ∼= O as a
quasi-projective set. Set Z = O (Zariski closure in X).

p.505, l.10 replace: y · (gB)− ygB by: y · (gB) = ygB

p.505, l.15 replace: φk(x) = xk by: Φk(x) = xk

p.505, l.16 replace: G(k) ⊂ G(k+ 1) by: G(2k) ⊂ G(2k+1)

p.515, l.10 replace: Theorem A.3.4 by: Theorem A.3.3

p.527, l.−7 replace: Theorem A.3.4 by: Theorem A.3.3

p.532, l.15 to l. 19 (Exercise #1) replace:

1. Let L be a reductive group, and set G = L × L. Let K = {(g, g) : g ∈ L} be
the diagonal embedding of L in G. Show that (G,K) is a spherical pair. (Hint:

The irreducible representations of G are of the form π = σ⊗̂µ, where σ and µ are
irreducible representations of L. Use Schur’s Lemma to show that the K-spherical
representations of G are the representations π = σ⊗̂σ∗.)
by:

1. Use Theorem 12.2.1 to show that the following spaces are multiplicity-free:

(a) G = GL(n)×GL(k), X = Mn,k(C), (g, h) · x = gxh−1. (Hint: Lemma B.2.8.)

(b) G = GL(n), X = SMn(C), g · x = gxgt. (Hint: Lemma B.2.9.)

(c) G = GL(n), X = AMn(C), g · x = gxgt. (Hint: Lemma B.2.10.)

p.534, l.16 replace: τ(g) = (g−t)
−1

by: τ(g) = (ḡt)−1

p.538, l.8 replace: Theorem A.3.4 by: Theorem A.3.3
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p.540, l.23 replace: note that l = n− 1 is odd. by: note that l = 2n− 1 is odd.

p.550, l.−1 replace:

Type AII: {$2, $4, . . . , $l} (p = l/2),

by:

Type AII: {$2, $4, . . . , $l−1} (p = (l− 1)/2),

p.558, l.−13 delete: Then

p.566, l.4 and l.5 replace: Tf,j by: Tj,f

p.566, l.8 replace: V(f) 6= 0 by: V(I(f)) 6= {0}

p.582, l.8 to l.17 replace statement and proof of Lemma A.1.3 by:

Lemma A.1.3 An element b ∈ B is integral over A if and only if there exists a
finitely-generated A-submodule C ⊂ B such that b · C ⊂ C.

Proof. Let b satisfy (A.1.2). Then A[b] = A · 1 + A · b + · · ·+ A · bn−1 is a finitely-
generated A-submodule, so we may take C = A[b]. Conversely, suppose C exists as
stated and is generated by {x1, . . . , xn} as an A-module. Since bxi ∈ C, there are
elements aij ∈ A so that

bxi −
n∑
j=1

aij xj = 0 for i = 1, . . . , n.

Since xi 6= 0 and B has no zero divisors, the determinant of the coefficient array of
the xi must vanish. This determinant is a monic polynomial in b, with coefficients in
A. Hence b is integral over A. 2

p.582, l.20 to l.23 replace:

The submodule A[b] of B is therefore also finitely generated, for any b ∈ B, and hence
b is integral over A.

by:

Now apply Lemma A.1.3 with C = B.

p.587, l.2 replace: but f1 not vanishing by: but fi not vanishing

p.587, l.3 replace: and X 6= X1. by: and X 6= Xi.

p.588, l.9 replace: ṽ(x)/f(x) = 0. by: ṽ(x)/f(x)k = 0.

p.592, l.1 replace: Let φ ∈ Aff(X). by: Let φ ∈ Aff(Y ).

p.592, l.6 replace: all φ ∈ Aff(X). by: all φ ∈ Aff(Y ).
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p.592, l.−14 to l.−10 replace:

every φ ∈ Hom(A,C)a extends to ψ ∈ Hom(B,C)b.

Proof. We start with the case B = A[u] for some element u ∈ B. Let b = f(u) be
given, where

f(X) = anX
n + · · ·+ a0, ai ∈ A.

by:

every φ ∈ Hom(A,C)a extends to ψ ∈ Hom(B,C)b. If B is integral over A and b = 1,
then a = 1.

Proof. We start with the case B = A[u] for some element u ∈ B. Let b = f(u) be
given, where f(X) = anX

n + · · ·+ a0 with ai ∈ A.

p.593, l.3 replace:

element a = amc0 has the desired property in this case.

by:

element a = amc0 has the desired property. Note that if u is integral over A and b = 1
then a = 1.

p.593, l.5 and l.6 replace: q(X) by: h(X)

p.599, l.15 and l.16 replace:

a map x 7→ Lx from X to T (X)x
by:

a correspondence x 7→ Lx ∈ T (X)x

p.601, l.−13 to −8 delete: Statement and proof of Corollary A.3.3

p.601, l.−7 replace: Theorem A.3.4 by: Theorem A.3.3

p.602, l.1 replace: Lemma A.3.5 by: Lemma A.3.4

p.603, l.9 replace: Theorem A.3.4 by: Theorem A.3.3

p.602, l.9 replace: Lemma A.3.5 by: Lemma A.3.4

p.602, l.−12 replace: Corollary A.3.6 by: Corollary A.3.5

p.602, l.−9 replace: Lemma A.3.5 by: Lemma A.3.4

p.603, l.−8 replace: Theorem A.3.4 by: Theorem A.3.3

p.604, l.12 to l.25 delete Exercises A.3.5 and replace by:

Proposition A.3.6 Let ϕ : X → Y be a dominant regular map of irreducible affine
algebraic sets. For y ∈ Y let Fy = ϕ−1{y}. Then there is a nonempty open set U ⊂ X
such that dimX = dimY + dimFϕ(x) and dimFϕ(x) = dim Ker(dϕx) for all x ∈ U .
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Proof. Let d = dimX − dimY , S = ϕ∗Aff(Y ), and R = Aff(X). Set k = Quot(S)
and let B ⊂ Quot(R) be the subalgebra generated by k and R (the rational functions
on X with denominators in S \ {0}). Since B has transcendence degree d over k,
Lemma A.1.17 furnishes an algebraically independent set {f1, . . . , fd} ⊂ R such that
B is integral over k[f1, . . . , fd]. Taking the common denominator of a set of generators
of the algebra B, we obtain f = ϕ∗g ∈ S such that Rf is integral over Sf [f1, . . . , fd],
where Rf = Aff(Xf) and Sf = ϕ∗Aff(Y g). By Theorem A.2.5 we can take g so that
ϕ(Y g) = Xf .

Define ψ : Xf → Y g ×Cd by ψ(x) = (ϕ(x), f1(x), . . . , fd(x)). Then ψ∗Aff(Y g×Cd) =
Sf [f1, . . . , fd], and hence Aff(Xf) is integral over ψ∗Aff(Y g ×Cd). By Theorem A.2.5
every homomorphism from Sf [f1, . . . , fd] to C extends to a homomorphism from Rf
to C. Hence ψ is surjective. Let π : Y g × Cd → Y g by π(y, z) = y. Then ϕ = π ◦ ψ
and Fy = ψ−1({y} × Cd). If W is any irreducible component of Fy then Aff(W ) is
integral over ψ∗Aff({y} × Cd), and hence dimW = d.

We have dϕx = dπψ(x) ◦ dψx. By integrality, every derivation of Quot(ψ∗(Y g × Cd))
extends uniquely to a derivation of Rat(Xf), as in the proof of Theorem A.3.1. Hence
dψx is bijective for x in a nonempty dense open set U by Lemma A.3.4. For such x,
Ker(dϕx) = Ker(dπψ(x)) has dimension d. 2

p.606, l.−2 and l.−1 replace:

(x, y) 7→ xty, where xt is the transpose of x.

by:

(x, y) 7→ xyt, where yt is the transpose of y.

p.607, l.8, l.12, and l.−3 replace: xty by: xyt

p.607, l.−5 replace: xtx by: xxt

p.609, l.−4 to l.−1 replace:

Corollary A.4.6 Let X be a quasiprojective algebraic set and φ : X → X a regular
map. Then the fixed-point set {x ∈ X : φ(x) = x} is closed in X .

Proof. The fixed-point set of φ is the intersection of the closed sets Γφ and ∆, where
∆ is the diagonal in X ×X . 2

by:

Corollary A.4.6 Let X, Y be quasiprojective algebraic sets and φ : X × Y → X a
regular map. Then {(x, y) ∈ X × Y : φ(x, y) = x} is closed in X × Y .

Proof. Use the same argument as for Proposition A.4.5. 2

p.664, l.8, l.9, and l.10 replace:

dϕ : Lie(G)→ Lie(H) by
dϕ(X)1 = dϕ1(X1).
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The content of the following result is that dϕ is a Lie algebra homomorphism.

by:

dϕ : Lie(G)→ Lie(H) by dϕ(X)1 = dϕ1(X1).

p.664, l.12 replace:

Proof. Use the same argument as in Theorem 1.2.10 2

by:

Proof. If f ∈ C∞(H) then X(f ◦ ϕ) = (dϕ(X)f) ◦ ϕ by the left-invariance of
X . Hence [X, Y ](f ◦ ϕ) = ([dϕ(X), dϕ(Y )]f) ◦ ϕ. This implies that dϕ([X, Y ])1 =
([dϕ(X), dϕ(Y )])1. 2

p.664, l.17 replace:

Thus Lemma D.2.5 implies that

by:

Thus Theorem D.2.3 implies that


