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0. Weyl, Schur, and Cartan

Weyl (1949): “Frobenius and Issai Schur’s spadework on finite and

compact groups and Cartan’s early work on semi-simple Lie groups

and their representations had nothing to do with it [relativity theory].

But for myself I can say that the wish to understand what really is

the mathematical substance behind the formal apparatus of relativ-

ity theory led me to the study of representations and invariants of

groups, and my experience in this regard is probably not unique.”

Weyl’s book Raum, Zeit, Materie (4th ed. – 1921):

• Helmholtz-Lie space problem (Weyl interacts with Cartan)

• Decompose ⊗k
C

n under commuting actions of general linear

group and symmetric group (Weyl interacts with Schur)

Weyl (1949): This decomposition is “an epistemological principle

basic for all theoretical science, that of projecting the actual upon

the background of the possible.”

Schur (1905): Found subspaces of tensor space that are invariant

and irreducible under all transformations that commute with Sk.

• Use minimal projections in the group algebra of Sk

• These subspaces give all irreducible representations of SL(n,C)
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Cartan (1913): finite-dimensional irreducible representations of a

simply-connected simple Lie group – constructs the fundamental

representations (case-by-case) and then uses tensor products.

Weyl (1926): “The correct starting point for building representa-

tions does not lie in the adjoint group, but rather in the regular

representation, which through its reduction yields in one blow all

irreducible representations.”

U = compact real form of G (complex semisimple group)

Peter–Weyl (1927): Normalized matrix entries of the irreducible

unitary representations of U furnish an orthonormal basis for L2(U).

Cartan (1929): The use of integral equations by Peter & Weyl is a

“transcendental solution to a problem of an algebraic nature.”

(determination of all finite-dimensional irreducible representations)

Cartan’s Goal: Decompose L2(X) (X homogeneous U -space)

“to give an algebraic solution to a problem of a transcendental

nature, more general than that treated by Weyl.”

Weyl (1934): “the systematic exposition by which I should like to

replace the two papers Peter–Weyl and Cartan.”

• Finds irreducible subspaces of C(X) – harmonic sets

• Constructs intertwining operators between C(X) and the left

regular representation of U on C(U)
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I. Algebraic Group Version of Peter–Weyl

1. Isotypic Decomposition of O[X ]

Cartan–Weyl–Chevalley (g – complex semisimple Lie algebra):

Lie Algebra→ Lie Group: There is a simply-connected complex

linear algebraic group G with Lie algebra g.

Infinitesimal←→ Global: Finite-dimensional representations of g

←→ rational representations of G.

Compact Real Form: There is a real form u of g and a simply-

connected compact Lie group U ⊂ G with Lie algebra u.

Unitary Trick: Finite-dimensional unitary representations of U ←→

rational representations of G; U -invariant subspaces←→

G-invariant subspaces (=⇒ G is reductive).

Highest Weight: Irreducible rational representations of G←→

cone in a lattice of rank l.

Highest Weight Details:

Borel subgroup B = HN+ ⊂ G (upper triangular matrices)

H ∼= (C×)l – maximal algebraic torus in G (diagonal matrices)

N+ – unipotent radical of B (←→ positive roots of H on g)

B̄ = HN− – opposite Borel subgroup (lower triangular matrices)

h = Lie(H) Φ ⊂ h∗ – roots of h on g

P (Φ) ⊂ h∗ – weight lattice of H P++ ⊂ P (Φ) – dominant weights

λ ∈ P (Φ) determines character hn 7→ hλ of B
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Models for Irreducible Representations:

λ ∈ P++ ←→ (πλ, Eλ) – irreducible rational representation of G

dimEN+

λ = 1 unique H weight space for weight λ (highest )

dimEN−

λ = 1 unique H weight space for weight w0λ (lowest )

w0 ∈ NormG(H)/H – interchanges positive and negative roots

(πλ∗, E
∗
λ) = dual representation (highest weight λ∗ = −w0λ)

Highest/Lowest weight vectors: eλ ∈ E
N+

λ fλ∗ ∈ (E∗λ)N
−

Normalization: 〈eλ, fλ∗〉 = 1 (tautological form on Eλ × E
∗
λ)

Algebraic Setting for Cartan–Weyl Decomposition:

X – irreducible affine algebraic G space

O[X ] – regular functions on X Representation ρ of G on O[X ]:

ρ(g)f (x) = f (g−1x) for f ∈ O[X ] and g ∈ G

Span{ρ(G)f} is a rational G-module for all f ∈ O[X ]

HomG(Eλ, O[X ] ) ∼= O[X ]N
+

(λ)

= {f ∈ O[X ] : ρ(hn)f = hλf}

isomorphism: T ∈ HomG(Eλ, O[X ] )←→ Teλ ∈ O[X ]N
+

(λ)

Spec(X) = {λ ∈ P++ : O[X ]N
+

(λ) 6= 0} (G spectrum of X)

Tautological G-intertwining map:

Eλ ⊗ HomG(Eλ,O[X ]) ↪→O[X ] v ⊗ T 7→ Tv

Theorem 1. [Isotypic Decomposition]

O[X ] ∼=
⊕

λ∈Spec(X)

Eλ ⊗O[X ]N
+

(λ) (algebraic direct sum)

as a G-module, with action πλ(g)⊗ 1 on the λ summand.
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Corollary. The multiplicity of πλ in O[X ] is dimO[X ]N
+

(λ).

Cartan product: G acts by algebra automorphisms of O[X ] =⇒

Spec(X) is an additive semigroup of P++.

Cartan’s program: Determine the decomposition of O[X ] when G

acts transitively on X – especially when X is a symmetric space.

2. Multiplicity Free Spaces

Definition. X is multiplicity free if dimO[X ]N
+

(λ) ≤ 1 (∀λ).

Assume Borel subgroup has an open orbit B · x0 on X.

Let Hx0
= {h ∈ H : h · x0 = x0} (isotropy group at x0).

Theorem 2. [Vinberg–Kimelfeld]

(1) X is multiplicity free.

(2) If λ ∈ Spec(X), then hλ = 1 for all h ∈ Hx0
.

Example. Two-sided Regular Representation

G×G acting on X = G by left and right translations:

ρ(y, z)f (x) = f (y−1xz) for f ∈ O[G] and x, y, z ∈ G

Cartan subgroup: H ×H Borel subgroup: B̄ × B

Borel Orbit of x0 = e is N−HN+ (dense in G), so

(1) =⇒ X is multiplicity-free for G×G

Let (w0µ, λ) ∈ Spec(X). (H ×H)x0
= {(h, h) : h ∈ H}, so

(2) =⇒ µ = λ∗

6



Generating function: Define ψλ(g) = 〈πλ(g)eλ, fλ∗〉

Then ψλ is a B̄ × B highest weight vector for G×G

=⇒ Spec(X) = { (w0λ
∗, λ) }λ∈P++

Theorem 3. [Algebraic Peter–Weyl]

(1) Vλ = Span{ρ(G×G)ψλ} ∼= Eλ∗ ⊗ Eλ as a G×G module.

(2) O[G] =
⊕

λ∈P++
Vλ

(3) O[G] is multiplicity free as a G×G representation.

Let λ1, . . . , λl be the fundamental weights and let ψi(g) = ψλi
(g).

Product Formula: Let λ = m1λ1 + · · ·+mlλl with mi ∈ Z+. Then

ψλ(g) = ψ1(g)
m1 · · ·ψl(g)

ml for g ∈ G

Example. G = SL(n,C), B = upper-triangular matrices in G

Weights: For λ ∈ Z
n let hλ = xλ1

1 · · ·x
λn
n (h = diag[x1, . . . , xn])

Dominant weights: λ1 ≥ λ2 ≥ · · · ≥ λn = 0

Fundamental weights: λi = [1, . . . , 1
︸ ︷︷ ︸

i

, 0, . . . , 0] for i = 1, . . . , n− 1

Fundamental representations: Eλi
=

∧i
C

n

Generating function: ψi(g) = deti(g) (ith principal minor of g)

N−HN+ = {g ∈ SL(n,C) : ψi(g) 6= 0 for i = 1, . . . , n− 1 }

(LDU matrix factorization)
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Let K ⊂ G be an algebraic subgroup.

O[G]R(K) = right K-fixed functions, EK
λ = K-fixed vectors in Eλ

Corollary. Under the left G action,

O[G]R(K) ∼=
⊕

λ∈P++

Eλ ⊗ E
K
λ∗

with G acting by πλ ⊗ 1 on the λ-isotypic summand.

• G/K is a complex manifold on which G acts holomorphically

• O[G]R(K) ↪→ holomorphic functions on G/K

• K reductive algebraic subgroup ⇐⇒ X = G/K is an affine

algebraic G-space with O[X ] = O[G]R(K) [Matsushima]

Definition. K is a spherical subgroup if dimEK
λ ≤ 1 (∀λ ∈ P++).

If K reductive algebraic:

K is a spherical subgroup⇐⇒ G/K is multiplicity free
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II. Representations on Symmetric Spaces

3. Complexified Iwasawa Decomposition

G0 noncompact real form of G with maximal compact subgroup K0

g0 = Lie(G0) (real semisimple Lie algebra)

Cartan decomposition: θ = Cartan involution: (G0)
θ = K0

θ eigenspaces: g0 = k0 + p0 G0 = K0 exp p0

Iwasawa decomposition: G0 = K0A0N0 (analytic isomorphism)

A0 = exp a0 (a0 maximal abelian subspace of p0)

N0 = nilpotent subgroup normalized by A0

Complexifications:

K = complexification of K0 in G (reductive algebraic group)

A = complexification of A0 in G (algebraic torus of rank l)

N = complexification of N0 in G (unipotent subgroup)

Properties:

• KAN is Zariski-dense in G.

• M = CentK(A) is reductive and normalizes N .

• Cartan subgroup H = AT where T = H ∩K and A∩ T is finite

• Borel subgroup B with HN ⊂ B ⊂MAN
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4. Spherical Representations

Proposition 1.

(1) [Cartan] K is a spherical subgroup of G.

(2) If λ ∈ Spec(G/K) then

tλ = 1 for all t ∈ T. (?)

Proof: (1) KAN dense =⇒ B ·K open in G/K.

(2) Let x0 = K ∈ G/K. Then T = Hx0
=⇒ (?) by Theorem 2.

Definition. λ is θ-admissible if it satisfies (?)

Example. G = SL(n,C) θ(g) = (gt)−1 K = SO(n,C)

A = H (diagonal matrices in G)

N = upper-triangular unipotent matrices

M = T = {diag[δ1, . . . , δn] : δi = ±1, δ1 · · · δn = 1}

λ = [λ1, . . . , λn−1, 0] is θ-admissible⇐⇒ λi is even for all i.

Theorem 4. [Helgason] Let (πλ, Eλ) be an irreducible rational

representation of G with highest weight λ (relative to B). The fol-

lowing are equivalent:

(1) λ is K-spherical (EK
λ 6= 0).

(2) M fixes the B-highest weight vector in Eλ.

(3) λ is θ-admissible.
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Proof that (3) =⇒ (1): Define v0 =
∫

K0
πλ(k)eλ dk ∈ E

K
λ

Claim: v0 6= 0. By definition

〈v0, fλ∗〉 =

∫

K0

ψλ(k) dk (??)

(i) λ admissible =⇒ hλ > 0 for all h ∈ H ∩G0 = (T ∩G0) exp a0

(ii) ψλ(g) ≥ 0 for g ∈ G0 by (i)

K0 ⊂ G0 and property (ii) =⇒ the integral in (??) is nonzero.

Example. G0 = SL(n,R) θ(g) = (gt)−1 K0 = SO(n)

ψλ(g) = det1(g)
m1 · · · detn−1(g)

mn−1 (mi = λi − λi+1)

λ is θ-admissible =⇒ all λi are even =⇒ ψλ(g) ≥ 0 on G0.

There exist fundamental K-spherical highest weights

µ1, . . . , µl (linearly independent)

so that

Λ = {m1µ1 + · · · +mlµl : mi ∈ Z+}

is the set of K-spherical highest weights.

Corollary. As a G-module O[G/K] ∼=
⊕

µ∈ΛEµ
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5. Zonal Spherical and Horospherical Functions

For µ ∈ Λ choose K-fixed spherical vector: eK
µ ∈ Eµ

MN-fixed conical vector: eµ ∈ Eµ

Normalization: 〈eµ, e
K
µ∗〉 = 1, 〈eK

µ , e
K
µ∗〉 = 1

Zonal spherical function: ϕµ ∈ O[G]R(K)

ϕµ(g) = 〈πµ(g)eK
µ , e

K
µ∗〉 (ϕµ(1) = 1)

Transformation properties:

ϕµ(kgk′) = ϕµ(g) for k, k′ ∈ K and g ∈ G

Zonal horospherical function: ∆µ ∈ O[G]R(MN)

∆µ(g) = 〈πµ(g)eµ, e
K
µ∗〉 (∆µ(1) = 1)

Transformation properties:

∆µ(kgman) = aµ∆µ(g) for k ∈ K, g ∈ G, man ∈MAN

Sylvester functions: ∆j(g) = ∆µj(g)

(generalization of principal minors)

Product formula: For µ = m1µ1 + · · · +mlµl ∈ Λ

∆µ(g) = ∆1(g)
m1 · · ·∆l(g)

ml

Set Ω = {g ∈ G : ∆j(g) 6= 0 for j = 1, . . . , l} ⊃ KAN

Proposition 2. [Clerc] Ω = KAN
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Theorem 5. [Clerc] Let g = k(g)a(g)n(g) be the Iwasawa fac-

torization in G0.

(1) The function g 7→ n(g) extends holomorphically to a map from

Ω to N .

(2) The functions g 7→ k(g) and g 7→ a(g) extend to multivalent

holomorphic functions on Ω, with values in K and A, resp.

The branches are related by elements of the finite group A∩K.

(3) Let g 7→ H(g) be the multivalent a-valued function on Ω such

that a(g) = expH(g). Then ∆µ(g) = e〈H(g), µ〉 for g ∈ Ω.

Corollary. [Clerc’s Integral Formula] For g ∈ G let

Kg = {k ∈ K0 : gk ∈ Ω}

Then Kg is an open set in K0 whose complement has measure

zero, and

ϕµ(g) =

∫

Kg

e〈H(gk), µ〉 dk

Application: [Clerc] Asymptotic behavior of ϕµ(u) as µ → ∞

in a cone (u a regular element of U ) – use method of complex

stationary phase
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6. Horospherical Cauchy–Radon Transform

Let f ∈ O[G]R(K) ←→ {vµ ∈ Eµ : µ ∈ Λ}

Peter–Weyl expansion: (vµ = 0 except for finitely many µ)

f (g) =
∑

µ∈Λ

d(µ)〈vµ, πµ∗(g)e
K
µ∗〉 (d(µ) = dimEµ)

Definition. The horospherical Cauchy–Radon transform f̂ of f is

f̂(g) =
∑

µ∈Λ

〈vµ, πµ∗(g)eµ∗〉

Algebraic description:

• Replace spherical vector by conical vector for each µ

• Divide by dimension factor (Plancherel measure) for each µ

Analytic description:

Theorem 6. [Gindikin] The map f 7→ f̂ is a G isomorphism be-

tween O[G]R(K) and O[G]R(MN). One has

f̂ (g) =
∑

µ∈Λ

∫

X

f (u)∆µ(u−1g) du for g ∈ G

(integrals over compact symmetric space X = U/K0)

Proof: O[G]R(K) ∼=
⊕

µ∈ΛEµ
∼= O[G]R(MN) (Helgason)

Intertwining maps eK
µ∗ 7→ d(µ)−1eµ∗ (use Schur orthogonality)
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Double fibration: (dimZ = dim Ξ, dimN = dimK/M)

G

(g ·MN)K ∼= N ↙ ↘ (g ·K)MN ∼= K/M

(horospheres) Z = G/K G/MN = Ξ (pseudospheres)

Inversion of Cauchy–Radon Transform:

Invariant differential operator φ(D) on A←→ symbol φ(µ) ∈ P(a∗):

φ(D)aµ = φ(µ)aµ for a ∈ A

Weyl dimension formula: d(µ) =
∏

α>0

(µ + δ, α)

(δ, α)
(δ = 1

2

∑

α>0 α)

Weyl operator:

W (D) = invariant differential operator on A with symbol d(µ)

Fiber bundle:

(quasi-projective) G/MN = Ξ (right A action)

↓

(projective) G/MAN = F (flag manifold)

W (D) : O[G]R(MN)
// O[G]R(MN) (differentiation along the fibers)

W (D) commutes with left translations by G

Theorem 7. [Gindikin] Let f ∈ O[G]R(K). Then

f (g) =

∫

K0/M0

(W (D)f̂ )(gk) dk for g ∈ G

(integral over the flag manifold for noncompact dual symmetric space)

Proof. Integral over K0 takes conical vectors→ spherical vectors
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7. Cauchy–Radon Transform as a Singular Integral

Complex symmetric space: origin x0 = K ∈ Z = G/K

Complex horospheric manifold: origin ζ0 = MN ∈ Ξ = G/MN

For z = y · x0 ∈ Z (y ∈ G) and ζ = g · ζ0 ∈ Ξ (g ∈ G) let

∆j(z | ζ) = ∆j(y
−1g) for 1 ≤ j ≤ l

Define a meromorphic function on Z × Ξ by

K(z | ζ) =
∏

1≤j≤l

1

1−∆j(z | ζ)

• G invariance: K(g · z | g · ζ) = K(z | ζ) for g ∈ G

• Singular set of K(z | ζ) in Z × Ξ is
⋃

1≤j≤l{∆j(z | ζ) = 1}

Let X = U/K0 (compact symmetric space). Define

Ξ(0) = {ζ ∈ Ξ : |∆j(x | ζ)| < 1 for 1 ≤ j ≤ l and x ∈ X}

• U · Ξ(0) = Ξ(0) (by definition)

• Product formula for ∆µ =⇒

K(x | ζ) =
∑

µ∈Λ

∆µ(u−1g) (absolutely convergent series)

for x = u · x0 ∈ X and ζ = g · ζ0 ∈ Ξ(0)

Lemma

(1) (U/M0)×A // Ξ by (u, a) 7→ u · ζ0 · a is regular and surjective.

(2) [Clerc] Let A+ = {a ∈ A : |aµj| < 1 for j = 1, . . . , l}. Then

U · ζ0 · A+ ⊂ Ξ(0). Hence Ξ(0) is a nonempty open set in Ξ.
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Let ν = gU ∈ G/U (the space of compact real forms of G). Set

X(ν) = g ·X (compact totally-real cycle in Z)

Ξ(ν) = g · Ξ(0) (nonempty open set in Ξ)

Then

Ξ =
⋃

ν∈G/U

Ξ(ν) (parameter space G/U is contractible)

Theorem 8. [Gindikin] For f ∈ O[Z] the horospherical Cauchy–

Radon transform is given on each set of the covering {Ξ(ν)} by the

Cauchy-type singular integral

f̂(ζ) =

∫

X(ν)

f (x)K(x | ζ) dx for ζ ∈ Ξ(ν)

(the integrand is continuous on X(ν)).

Proof. Use series formula for K(x | ζ) when ζ ∈ Ξ(0). Then trans-

late by g ∈ G.
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Concluding Remarks

• We have carried out the harmonic analysis of finite functions

on a compact symmetric space using algebraic group and Lie

group methods, extending the results of Cartan and Weyl.

• A compact symmetric space has a canonical dual object that is

a complex manifold.

• The integral formulas for the direct and inverse horospherical

Cauchy–Radon transform hold for all holomorphic functions on

X and Ξ (not just the G-finite functions), and for hyperfunctions

(Gindikin).

• Gindikin develops this transform using complex analysis and

integral geometry (Japanese J. of Math. 2006).

• Another problem: holomorphic extension of real analytic func-

tions on a compact symmetric space. These functions extend

holomorphically to complex neighborhoods of the space.

• The geometric and analytic properties of these neighborhoods

were studied by B. Beers and A. Dragt, L. Frota-Mattos, and M.

Lasalle in the 1970’s.
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