Review of Computations in Calculus

Fei Qi

Rutgers University
fq15@math.rutgers.edu

October 25, 2013

Disclaimer

- These slides are designed exclusively for students attending section 1, 2 and 3 for the course 640:244 in Fall 2013. The author is not responsible for consequences of other usages.
- These slides may suffer from errors. Please use them with your own discretion.

Power Function

- Definitions: $f(x)=x^{a} \quad(a \in \mathbb{R})$

Power Function

- Definitions: $f(x)=x^{a} \quad(a \in \mathbb{R})$
- Derivative:

$$
f^{\prime}(x)=\left(x^{a}\right)^{\prime}= \begin{cases}a x^{a-1} & a \neq 0 \\ 0 & a=0\end{cases}
$$

Power Function

- Definitions: $f(x)=x^{a} \quad(a \in \mathbb{R})$
- Derivative:

$$
f^{\prime}(x)=\left(x^{a}\right)^{\prime}= \begin{cases}a x^{a-1} & a \neq 0 \\ 0 & a=0\end{cases}
$$

- Antiderivative:

$$
\int f(x) d x=\int x^{a} d x= \begin{cases}\frac{1}{a+1} x^{a+1}+C & a \neq-1 \\ \ln |x|+C & a=-1\end{cases}
$$

Power Function

- Definitions: $f(x)=x^{a} \quad(a \in \mathbb{R})$
- Derivative:

$$
f^{\prime}(x)=\left(x^{a}\right)^{\prime}= \begin{cases}a x^{a-1} & a \neq 0 \\ 0 & a=0\end{cases}
$$

- Antiderivative:

$$
\int f(x) d x=\int x^{a} d x= \begin{cases}\frac{1}{a+1} x^{a+1}+C & a \neq-1 \\ \ln |x|+C & a=-1\end{cases}
$$

- Note: DO NOT forget to take absolute values in the natural logarithm.

Exponential Functions

- Definitions: $f(x)=a^{x} \quad(a>0)$

Exponential Functions

- Definitions: $f(x)=a^{x} \quad(a>0)$
- Derivative:

$$
f^{\prime}(x)=\left(a^{x}\right)^{\prime}=a^{x} \ln a .
$$

Exponential Functions

- Definitions: $f(x)=a^{x} \quad(a>0)$
- Derivative:

$$
f^{\prime}(x)=\left(a^{x}\right)^{\prime}=a^{x} \ln a
$$

- How to compute: Take logarithms on both sides and apply the differentiation law of composite functions.

Exponential Functions

- Definitions: $f(x)=a^{x} \quad(a>0)$
- Derivative:

$$
f^{\prime}(x)=\left(a^{x}\right)^{\prime}=a^{x} \ln a .
$$

- How to compute: Take logarithms on both sides and apply the differentiation law of composite functions.
- Antiderivative:

$$
\int f(x) d x=\int a^{x} d x=\frac{1}{\ln a} a^{x}+C
$$

Exponential Functions

- Definitions: $f(x)=a^{x} \quad(a>0)$
- Derivative:

$$
f^{\prime}(x)=\left(a^{x}\right)^{\prime}=a^{x} \ln a
$$

- How to compute: Take logarithms on both sides and apply the differentiation law of composite functions.
- Antiderivative:

$$
\int f(x) d x=\int a^{x} d x=\frac{1}{\ln a} a^{x}+C
$$

- How to compute: Make use of the derivative above.

Logarithm Functions

- Definitions: $f(x)=\log _{a} x \quad(a>0)$

Logarithm Functions

- Definitions: $f(x)=\log _{a} x \quad(a>0)$
- Derivative:

$$
f^{\prime}(x)=\left(\log _{a} x\right)^{\prime}=\frac{1}{x \ln a}
$$

Logarithm Functions

- Definitions: $f(x)=\log _{a} x \quad(a>0)$
- Derivative:

$$
f^{\prime}(x)=\left(\log _{a} x\right)^{\prime}=\frac{1}{x \ln a}
$$

- How to compute: Strictly speaking you should be using the law for inverse functions. But if you know already that $(\ln x)^{\prime}=1 / x$, then you can simply make use of the fact $\log _{a} x=\ln x / \ln a$.

Logarithm Functions

- Definitions: $f(x)=\log _{a} x \quad(a>0)$
- Derivative:

$$
f^{\prime}(x)=\left(\log _{a} x\right)^{\prime}=\frac{1}{x \ln a}
$$

- How to compute: Strictly speaking you should be using the law for inverse functions. But if you know already that $(\ln x)^{\prime}=1 / x$, then you can simply make use of the fact $\log _{a} x=\ln x / \ln a$.
- Antiderivative:

$$
\int f(x) d x=\int \log _{a} x d x=\frac{1}{\ln a}(x \ln x-x)+C
$$

Logarithm Functions

- Definitions: $f(x)=\log _{a} x \quad(a>0)$
- Derivative:

$$
f^{\prime}(x)=\left(\log _{a} x\right)^{\prime}=\frac{1}{x \ln a}
$$

- How to compute: Strictly speaking you should be using the law for inverse functions. But if you know already that $(\ln x)^{\prime}=1 / x$, then you can simply make use of the fact $\log _{a} x=\ln x / \ln a$.
- Antiderivative:

$$
\int f(x) d x=\int \log _{a} x d x=\frac{1}{\ln a}(x \ln x-x)+C
$$

- How to compute: Use integration by parts to solve the special case that $a=e$, then again use $\log _{a} x=\ln x / \ln a$.

Trigonometric functions

- Definitions: $\sin x, \cos x, \tan x, \cot x$

Trigonometric functions

- Definitions: $\sin x, \cos x, \tan x, \cot x$
- Derivative:

$$
\begin{aligned}
(\sin x)^{\prime} & =\cos x,(\cos x)^{\prime}=\sin x \\
(\tan x)^{\prime} & =\sec ^{2} x,(\cot x)^{\prime}=-\csc ^{2} x
\end{aligned}
$$

Trigonometric functions

- Definitions: $\sin x, \cos x, \tan x, \cot x$
- Derivative:

$$
\begin{aligned}
(\sin x)^{\prime} & =\cos x,(\cos x)^{\prime}=\sin x \\
(\tan x)^{\prime} & =\sec ^{2} x,(\cot x)^{\prime}=-\csc ^{2} x
\end{aligned}
$$

- How to compute: Use definitions of derivatives and the trigonometric identities to compute $\sin x$ and $\cos x$. Use laws of quotients to compute $\tan x$ and $\cot x$.

Trigonometric functions

- Definitions: $\sin x, \cos x, \tan x, \cot x$
- Derivative:

$$
\begin{aligned}
(\sin x)^{\prime} & =\cos x,(\cos x)^{\prime}=\sin x \\
(\tan x)^{\prime} & =\sec ^{2} x,(\cot x)^{\prime}=-\csc ^{2} x
\end{aligned}
$$

- How to compute: Use definitions of derivatives and the trigonometric identities to compute $\sin x$ and $\cos x$. Use laws of quotients to compute $\tan x$ and $\cot x$.
- Antiderivative:

$$
\begin{aligned}
& \int \sin x d x=-\cos x+C, \int \cos x d x=\sin x+C \\
& \int \tan x d x=-\ln |\cos x|+C, \int \cot x d x=\ln |\sin x|+C
\end{aligned}
$$

Trigonometric functions

- Definitions: $\sin x, \cos x, \tan x, \cot x$
- Derivative:

$$
\begin{aligned}
(\sin x)^{\prime} & =\cos x,(\cos x)^{\prime}=\sin x \\
(\tan x)^{\prime} & =\sec ^{2} x,(\cot x)^{\prime}=-\csc ^{2} x
\end{aligned}
$$

- How to compute: Use definitions of derivatives and the trigonometric identities to compute $\sin x$ and $\cos x$. Use laws of quotients to compute $\tan x$ and $\cot x$.
- Antiderivative:

$$
\begin{aligned}
& \int \sin x d x=-\cos x+C, \int \cos x d x=\sin x+C \\
& \int \tan x d x=-\ln |\cos x|+C, \int \cot x d x=\ln |\sin x|+C
\end{aligned}
$$

- How to compute: Use the derivatives above to see the first two.

Write in quotients and use substitutions then you will see the lase two.

Trigonometric functions

- Definitions: $\sin x, \cos x, \tan x, \cot x$
- Derivative:

$$
\begin{aligned}
(\sin x)^{\prime} & =\cos x,(\cos x)^{\prime}=\sin x \\
(\tan x)^{\prime} & =\sec ^{2} x,(\cot x)^{\prime}=-\csc ^{2} x
\end{aligned}
$$

- How to compute: Use definitions of derivatives and the trigonometric identities to compute $\sin x$ and $\cos x$. Use laws of quotients to compute $\tan x$ and $\cot x$.
- Antiderivative:

$$
\begin{aligned}
& \int \sin x d x=-\cos x+C, \int \cos x d x=\sin x+C \\
& \int \tan x d x=-\ln |\cos x|+C, \int \cot x d x=\ln |\sin x|+C
\end{aligned}
$$

- How to compute: Use the derivatives above to see the first two.

Write in quotients and use substitutions then you will see the lase two.

Inverse Trigonometric functions

- Definitions: $\arcsin x, \arccos x, \arctan x, \operatorname{arccot} x$.

Inverse Trigonometric functions

- Definitions: $\arcsin x, \arccos x, \arctan x, \operatorname{arccot} x$.
- Derivative:

$$
\begin{aligned}
(\arcsin x)^{\prime} & =\frac{1}{\sqrt{1-x^{2}}},(\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \\
(\arctan x)^{\prime} & =\frac{1}{1+x^{2}},(\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}}
\end{aligned}
$$

Inverse Trigonometric functions

- Definitions: $\arcsin x, \arccos x, \arctan x, \operatorname{arccot} x$.
- Derivative:

$$
\begin{aligned}
(\arcsin x)^{\prime} & =\frac{1}{\sqrt{1-x^{2}}},(\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \\
(\arctan x)^{\prime} & =\frac{1}{1+x^{2}},(\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}}
\end{aligned}
$$

- How to compute: Use the techniques dealing with inverse functions.

Inverse Trigonometric functions

- Definitions: $\arcsin x, \arccos x, \arctan x, \operatorname{arccot} x$.
- Derivative:

$$
\begin{aligned}
(\arcsin x)^{\prime} & =\frac{1}{\sqrt{1-x^{2}}},(\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \\
(\arctan x)^{\prime} & =\frac{1}{1+x^{2}},(\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}}
\end{aligned}
$$

- How to compute: Use the techniques dealing with inverse functions. Example of computing $\arctan x$:

$$
y=\arctan x \Rightarrow x=\tan y
$$

Inverse Trigonometric functions

- Definitions: $\arcsin x, \arccos x, \arctan x, \operatorname{arccot} x$.
- Derivative:

$$
\begin{aligned}
(\arcsin x)^{\prime} & =\frac{1}{\sqrt{1-x^{2}}},(\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \\
(\arctan x)^{\prime} & =\frac{1}{1+x^{2}},(\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}}
\end{aligned}
$$

- How to compute: Use the techniques dealing with inverse functions. Example of computing $\arctan x$:

$$
\begin{aligned}
& y=\arctan x \Rightarrow x=\tan y \\
\Rightarrow & d x=\sec ^{2} y d y=\left(1+\tan ^{2} y\right) d y=\left(1+x^{2}\right) d y
\end{aligned}
$$

Inverse Trigonometric functions

- Definitions: $\arcsin x, \arccos x, \arctan x, \operatorname{arccot} x$.
- Derivative:

$$
\begin{aligned}
(\arcsin x)^{\prime} & =\frac{1}{\sqrt{1-x^{2}}},(\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \\
(\arctan x)^{\prime} & =\frac{1}{1+x^{2}},(\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}}
\end{aligned}
$$

- How to compute: Use the techniques dealing with inverse functions.

Example of computing $\arctan x$:

$$
\begin{aligned}
& y=\arctan x \Rightarrow x=\tan y \\
\Rightarrow \quad & d x=\sec ^{2} y d y=\left(1+\tan ^{2} y\right) d y=\left(1+x^{2}\right) d y \Rightarrow \frac{d y}{d x}=\frac{1}{1+x^{2}}
\end{aligned}
$$

Inverse Trigonometric functions

- Definitions: $\arcsin x, \arccos x, \arctan x, \operatorname{arccot} x$.
- Derivative:

$$
\begin{aligned}
(\arcsin x)^{\prime} & =\frac{1}{\sqrt{1-x^{2}}},(\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \\
(\arctan x)^{\prime} & =\frac{1}{1+x^{2}},(\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}}
\end{aligned}
$$

- How to compute: Use the techniques dealing with inverse functions.

Example of computing $\arctan x$:

$$
\begin{aligned}
& y=\arctan x \Rightarrow x=\tan y \\
\Rightarrow \quad & d x=\sec ^{2} y d y=\left(1+\tan ^{2} y\right) d y=\left(1+x^{2}\right) d y \Rightarrow \frac{d y}{d x}=\frac{1}{1+x^{2}}
\end{aligned}
$$

- Antiderivative: Not interesting at least in 244 . So forget it.

Hyperbolic trigonometric functions

- Definitions:

$$
\sinh x=\frac{e^{x}-e^{-x}}{2}, \cosh x=\frac{e^{x}+e^{-x}}{2}, \tanh x=\frac{\sinh x}{\cosh x}, \operatorname{coth} x=\frac{\cosh x}{\sinh x}
$$

Hyperbolic trigonometric functions

- Definitions:
$\sinh x=\frac{e^{x}-e^{-x}}{2}, \cosh x=\frac{e^{x}+e^{-x}}{2}, \tanh x=\frac{\sinh x}{\cosh x}, \operatorname{coth} x=\frac{\cosh x}{\sinh x}$
- Derivative:

$$
(\sinh x)^{\prime}=\cosh x,(\cosh x)^{\prime}=\sinh x
$$

Hyperbolic trigonometric functions

- Definitions:
$\sinh x=\frac{e^{x}-e^{-x}}{2}, \cosh x=\frac{e^{x}+e^{-x}}{2}, \tanh x=\frac{\sinh x}{\cosh x}, \operatorname{coth} x=\frac{\cosh x}{\sinh x}$
- Derivative:

$$
(\sinh x)^{\prime}=\cosh x,(\cosh x)^{\prime}=\sinh x
$$

The rest two are left as exercises for product rule.

Hyperbolic trigonometric functions

- Definitions:
$\sinh x=\frac{e^{x}-e^{-x}}{2}, \cosh x=\frac{e^{x}+e^{-x}}{2}, \tanh x=\frac{\sinh x}{\cosh x}, \operatorname{coth} x=\frac{\cosh x}{\sinh x}$
- Derivative:

$$
(\sinh x)^{\prime}=\cosh x,(\cosh x)^{\prime}=\sinh x
$$

The rest two are left as exercises for product rule.

- How to compute: Straightforward.

Hyperbolic trigonometric functions

- Definitions:
$\sinh x=\frac{e^{x}-e^{-x}}{2}, \cosh x=\frac{e^{x}+e^{-x}}{2}, \tanh x=\frac{\sinh x}{\cosh x}, \operatorname{coth} x=\frac{\cosh x}{\sinh x}$
- Derivative:

$$
(\sinh x)^{\prime}=\cosh x,(\cosh x)^{\prime}=\sinh x
$$

The rest two are left as exercises for product rule.

- How to compute: Straightforward.
- Antiderivative:

$$
\int \sinh x d x=-\cosh x+C, \int \cosh x d x=\sinh x+C
$$

Hyperbolic trigonometric functions

- Definitions:
$\sinh x=\frac{e^{x}-e^{-x}}{2}, \cosh x=\frac{e^{x}+e^{-x}}{2}, \tanh x=\frac{\sinh x}{\cosh x}, \operatorname{coth} x=\frac{\cosh x}{\sinh x}$
- Derivative:

$$
(\sinh x)^{\prime}=\cosh x,(\cosh x)^{\prime}=\sinh x
$$

The rest two are left as exercises for product rule.

- How to compute: Straightforward.
- Antiderivative:

$$
\int \sinh x d x=-\cosh x+C, \int \cosh x d x=\sinh x+C
$$

The rest two are left as exercises for technique of substitution.

More formulas

$$
\int \frac{1}{a^{2}+x^{2}}=\frac{1}{a} \arctan \frac{x}{a}+C
$$

More formulas

$$
\int \frac{1}{a^{2}+x^{2}}=\frac{1}{a} \arctan \frac{x}{a}+C
$$

- How to compute: Substitution by scalar.

More formulas

$$
\int \frac{1}{a^{2}+x^{2}}=\frac{1}{a} \arctan \frac{x}{a}+C
$$

- How to compute: Substitution by scalar.

$$
\int \frac{1}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left|\frac{a-x}{a+x}\right|+C
$$

More formulas

$$
\int \frac{1}{a^{2}+x^{2}}=\frac{1}{a} \arctan \frac{x}{a}+C
$$

- How to compute: Substitution by scalar.

$$
\int \frac{1}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left|\frac{a-x}{a+x}\right|+C
$$

- How to compute: Either by trigonometric substitution or by breaking rational functions.

More formulas

$$
\int \frac{1}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{a}+C
$$

More formulas

$$
\int \frac{1}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{a}+C
$$

- How to compute: Again substitution by scalar.

More formulas

$$
\int \frac{1}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{a}+C
$$

- How to compute: Again substitution by scalar.

$$
\int \frac{1}{\sqrt{x^{2} \pm a^{2}}}=\ln \left|x+\sqrt{x^{2} \pm a^{2}}\right|+C
$$

More formulas

$$
\int \frac{1}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{a}+C
$$

- How to compute: Again substitution by scalar.

$$
\int \frac{1}{\sqrt{x^{2} \pm a^{2}}}=\ln \left|x+\sqrt{x^{2} \pm a^{2}}\right|+C
$$

- How to compute: Either by trigonometric substitution or by hyperbolic substitution.

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

- Approach by trigonometric substitution: Let $x=a \sec t$.

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

- Approach by trigonometric substitution: Let $x=a \sec t$.

$$
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x
$$

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

- Approach by trigonometric substitution: Let $x=a \sec t$.

$$
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\int \frac{1}{a \sqrt{\sec ^{2} t-1}} d\left(\frac{a}{\cos t}\right)
$$

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

- Approach by trigonometric substitution: Let $x=a \sec t$.

$$
\begin{aligned}
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\int \frac{1}{a \sqrt{\sec ^{2} t-1}} d\left(\frac{a}{\cos t}\right) \\
& =\int \frac{1}{\tan t} \cdot \frac{\sin t}{\cos ^{2} t} d t
\end{aligned}
$$

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

- Approach by trigonometric substitution: Let $x=a \sec t$.

$$
\begin{aligned}
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\int \frac{1}{a \sqrt{\sec ^{2} t-1}} d\left(\frac{a}{\cos t}\right) \\
& =\int \frac{1}{\tan t} \cdot \frac{\sin t}{\cos ^{2} t} d t=\int \frac{1}{\cos t} d t
\end{aligned}
$$

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

- Approach by trigonometric substitution: Let $x=a \sec t$.

$$
\begin{aligned}
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\int \frac{1}{a \sqrt{\sec ^{2} t-1}} d\left(\frac{a}{\cos t}\right) \\
& =\int \frac{1}{\tan t} \cdot \frac{\sin t}{\cos ^{2} t} d t=\int \frac{1}{\cos t} d t=\int \frac{d \sin t}{1-\sin ^{2} t}=
\end{aligned}
$$

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

- Approach by trigonometric substitution: Let $x=a \sec t$.

$$
\begin{aligned}
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\int \frac{1}{a \sqrt{\sec ^{2} t-1}} d\left(\frac{a}{\cos t}\right) \\
& =\int \frac{1}{\tan t} \cdot \frac{\sin t}{\cos ^{2} t} d t=\int \frac{1}{\cos t} d t=\int \frac{d \sin t}{1-\sin ^{2} t}=\ln \left|\frac{1+\sin t}{1-\sin t}\right|
\end{aligned}
$$

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

- Approach by trigonometric substitution: Let $x=a \sec t$.

$$
\begin{aligned}
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\int \frac{1}{a \sqrt{\sec ^{2} t-1}} d\left(\frac{a}{\cos t}\right) \\
& =\int \frac{1}{\tan t} \cdot \frac{\sin t}{\cos ^{2} t} d t=\int \frac{1}{\cos t} d t=\int \frac{d \sin t}{1-\sin ^{2} t}=\ln \left|\frac{1+\sin t}{1-\sin t}\right| \\
& =\ln \left|\frac{(1+\sin t)^{2}}{\cos ^{2} t}\right|
\end{aligned}
$$

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

- Approach by trigonometric substitution: Let $x=a \sec t$.

$$
\begin{aligned}
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\int \frac{1}{a \sqrt{\sec ^{2} t-1}} d\left(\frac{a}{\cos t}\right) \\
& =\int \frac{1}{\tan t} \cdot \frac{\sin t}{\cos ^{2} t} d t=\int \frac{1}{\cos t} d t=\int \frac{d \sin t}{1-\sin ^{2} t}=\ln \left|\frac{1+\sin t}{1-\sin t}\right| \\
& =\ln \left|\frac{(1+\sin t)^{2}}{\cos ^{2} t}\right|=\ln \left|\frac{1+\sin t}{\cos t}\right|
\end{aligned}
$$

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

- Approach by trigonometric substitution: Let $x=a \sec t$.

$$
\begin{aligned}
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\int \frac{1}{a \sqrt{\sec ^{2} t-1}} d\left(\frac{a}{\cos t}\right) \\
& =\int \frac{1}{\tan t} \cdot \frac{\sin t}{\cos ^{2} t} d t=\int \frac{1}{\cos t} d t=\int \frac{d \sin t}{1-\sin ^{2} t}=\ln \left|\frac{1+\sin t}{1-\sin t}\right| \\
& =\ln \left|\frac{(1+\sin t)^{2}}{\cos ^{2} t}\right|=\ln \left|\frac{1+\sin t}{\cos t}\right|=\ln |\sec t+\tan t|
\end{aligned}
$$

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

- Approach by trigonometric substitution: Let $x=a \sec t$.

$$
\begin{aligned}
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\int \frac{1}{a \sqrt{\sec ^{2} t-1}} d\left(\frac{a}{\cos t}\right) \\
& =\int \frac{1}{\tan t} \cdot \frac{\sin t}{\cos ^{2} t} d t=\int \frac{1}{\cos t} d t=\int \frac{d \sin t}{1-\sin ^{2} t}=\ln \left|\frac{1+\sin t}{1-\sin t}\right| \\
& =\ln \left|\frac{(1+\sin t)^{2}}{\cos ^{2} t}\right|=\ln \left|\frac{1+\sin t}{\cos t}\right|=\ln |\sec t+\tan t| \\
& =\ln \left|\frac{x}{a}+\frac{x \sqrt{1-(a / x)^{2}}}{a}\right|+C
\end{aligned}
$$

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

- Approach by trigonometric substitution: Let $x=a \sec t$.

$$
\begin{aligned}
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\int \frac{1}{a \sqrt{\sec ^{2} t-1}} d\left(\frac{a}{\cos t}\right) \\
& =\int \frac{1}{\tan t} \cdot \frac{\sin t}{\cos ^{2} t} d t=\int \frac{1}{\cos t} d t=\int \frac{d \sin t}{1-\sin ^{2} t}=\ln \left|\frac{1+\sin t}{1-\sin t}\right| \\
& =\ln \left|\frac{(1+\sin t)^{2}}{\cos ^{2} t}\right|=\ln \left|\frac{1+\sin t}{\cos t}\right|=\ln |\sec t+\tan t| \\
& =\ln \left|\frac{x}{a}+\frac{x \sqrt{1-(a / x)^{2}}}{a}\right|+C=\ln \left|x+\sqrt{x^{2}-a^{2}}\right|+C
\end{aligned}
$$

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

- Approach by hyperbolic substitution: Let $x=a \sinh t$.

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

- Approach by hyperbolic substitution: Let $x=a \sinh t$.

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x
$$

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

- Approach by hyperbolic substitution: Let $x=a \sinh t$.

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\int \frac{1}{a \sqrt{\sinh ^{2} t+1}} d(a \sinh t)
$$

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

- Approach by hyperbolic substitution: Let $x=a \sinh t$.

$$
\begin{aligned}
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\int \frac{1}{a \sqrt{\sinh ^{2} t+1}} d(a \sinh t) \\
& =\int \frac{1}{a \cosh t} a \cosh t d t
\end{aligned}
$$

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

- Approach by hyperbolic substitution: Let $x=a \sinh t$.

$$
\begin{aligned}
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\int \frac{1}{a \sqrt{\sinh ^{2} t+1}} d(a \sinh t) \\
& =\int \frac{1}{a \cosh t} a \cosh t d t=\int d t=t+C
\end{aligned}
$$

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

- Approach by hyperbolic substitution: Let $x=a \sinh t$.

$$
\begin{aligned}
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\int \frac{1}{a \sqrt{\sinh ^{2} t+1}} d(a \sinh t) \\
& =\int \frac{1}{a \cosh t} a \cosh t d t=\int d t=t+C \\
& x=a \sinh t=\frac{e^{t}-e^{-t}}{2}
\end{aligned}
$$

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

- Approach by hyperbolic substitution: Let $x=a \sinh t$.

$$
\begin{aligned}
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\int \frac{1}{a \sqrt{\sinh ^{2} t+1}} d(a \sinh t) \\
& =\int \frac{1}{a \cosh t} a \cosh t d t=\int d t=t+C \\
& x=a \sinh t=\frac{e^{t}-e^{-t}}{2} \Rightarrow 2 \frac{x}{a} e^{t}=e^{2 t}-1
\end{aligned}
$$

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

- Approach by hyperbolic substitution: Let $x=a \sinh t$.

$$
\begin{aligned}
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\int \frac{1}{a \sqrt{\sinh ^{2} t+1}} d(a \sinh t) \\
& =\int \frac{1}{a \cosh t} a \cosh t d t=\int d t=t+C \\
& x=a \sinh t=\frac{e^{t}-e^{-t}}{2} \Rightarrow 2 \frac{x}{a} e^{t}=e^{2 t}-1 \Rightarrow e^{2 t}-2 \frac{x}{a} e^{t}-1=0
\end{aligned}
$$

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

- Approach by hyperbolic substitution: Let $x=a \sinh t$.

$$
\begin{aligned}
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\int \frac{1}{a \sqrt{\sinh ^{2} t+1}} d(a \sinh t) \\
& =\int \frac{1}{a \cosh t} a \cosh t d t=\int d t=t+C \\
& x=a \sinh t=\frac{e^{t}-e^{-t}}{2} \Rightarrow 2 \frac{x}{a} e^{t}=e^{2 t}-1 \Rightarrow e^{2 t}-2 \frac{x}{a} e^{t}-1=0 \\
& \Rightarrow e^{t}=\frac{x+\sqrt{x^{2}+a^{2}}}{a}\left(\text { The smaller root makes } e^{t} \text { negative }\right)
\end{aligned}
$$

More detail about the last integral

Example:

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

- Approach by hyperbolic substitution: Let $x=a \sinh t$.

$$
\begin{aligned}
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\int \frac{1}{a \sqrt{\sinh ^{2} t+1}} d(a \sinh t) \\
& =\int \frac{1}{a \cosh t} a \cosh t d t=\int d t=t+C \\
& x=a \sinh t=\frac{e^{t}-e^{-t}}{2} \Rightarrow 2 \frac{x}{a} e^{t}=e^{2 t}-1 \Rightarrow e^{2 t}-2 \frac{x}{a} e^{t}-1=0 \\
& \Rightarrow e^{t}=\frac{x+\sqrt{x^{2}+a^{2}}}{a}\left(\text { The smaller root makes } e^{t} \text { negative }\right) \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=t+C=\ln \left|\frac{x \pm \sqrt{x^{2}+a^{2}}}{a}\right|+C
\end{aligned}
$$

The End

