
ASIAN J. MATH. c© 2007 International Press

Vol. 11, No. 4, pp. 555–566, December 2007 002

VOLUME AND ANGLE STRUCTURES ON 3-MANIFOLDS∗

FENG LUO†

Abstract. We propose an approach to find constant curvature metrics on triangulated closed
3-manifolds using a finite dimensional variational method whose energy function is the volume. The
concept of an angle structure on a tetrahedron and on a triangulated closed 3-manifold is introduced
following the work of Casson, Murakami and Rivin. It is proved by A. Kitaev and the author that any
closed 3-manifold has a triangulation supporting an angle structure. The moduli space of all angle
structures on a triangulated 3-manifold is a bounded open convex polytope in a Euclidean space.
The volume of an angle structure is defined. Both the angle structure and the volume are natural
generalizations of tetrahedra in the constant sectional curvature spaces and their volume. It is shown
that the volume functional can be extended continuously to the compact closure of the moduli space.
In particular, the maximum point of the volume functional always exists in the compactification. The
main result shows that for a 1-vertex triangulation of a closed 3-manifold if the volume function on
the moduli space has a local maximum point, then either the manifold admits a constant curvature
Riemannian metric or the manifold contains a non-separating 2-sphere or real projective plane.
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1. Introduction.

1.1. The purpose of the announcement is to propose an approach to find con-
stant curvature metrics on triangulated closed 3-manifolds using a finite dimensional
variational method whose energy function is the volume. It is a generalization of the
corresponding program introduced by Casson [La] and Rivin [Ri1] for finding hyper-
bolic metrics on compact ideally triangulated 3-manifolds with torus boundary. It
is also motivated by the work of Murakami [Mu]. Very recently, Casson and Rivin’s
approach was successfully carried out by Francois Gueritaud [Gu] to give a new proof
of the existence of hyperbolic structures on 1-holed torus bundles over the circle with
Anosov monodromy.

By an angle structure on a 3-simplex we mean an assignment of a number, called
the dihedral angle, to each edge of the 3-simplex so that dihedral angles at three edges
sharing a common vertex are the inner angles of a spherical triangle. (Note that the
similar concept introduced by Casson and Rivin requires that the vertex triangle be
a Euclidean triangle). Since a spherical triangle is determined by its inner angles
subject to four linear inequalities, the moduli space of all angle structures on a 3-
simplex, denoted by AS(3), is an open bounded convex polytope in R6. Examples
of angle structures on a 3-simplex are classical geometric tetrahedra, i.e., Euclidean,
hyperbolic and spherical tetrahedra measured by dihedral angles. However, not every
angle structure is of this form. We define the generalized volume (or volume for short)
of an angle structure on a 3-simplex by generalizing the Schlaefli formula. To be more
precise, the Schlaefli formula for volume of spherical or hyperbolic tetrahedra says
that volume can be defined by integrating the Schlaefli 1-form which depends on the
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dihedral angles and the edge lengths. Furthermore, one finds the edge length from
the dihedral angles by using the Cosine Law twice. We follow this path to define
the volume of an angle structure by first defining the edge lengths using the Cosine
Law and then verifying the resulting Schlaefli 1-form is closed in the moduli space
AS(3). The generalized volume is the integration of the Schlaefli 1-form. In the
case of classical geometric tetrahedra, the generalized volume coincides with classical
geometric volume for spherical and hyperbolic tetrahedra and is zero for Euclidean
tetrahedra.

By an angle structure on a triangulated closed 3-manifold (M, T ) we mean an
assignment of a number, called the dihedral angle, to each edge of each 3-simplex in
the triangulation T , so that (1) the assignment is an angle structure on each 3-simplex
in T , (2) the sum of dihedral angles at each edge in T is 2π. The basic examples of
angle structures are totally geodesic triangulations in a 3-manifold with a constant
curvature metric. The volume of an angle structure on a triangulated manifold is
defined to be the sum of the volume of its 3-simplexes. From the definition, it is clear
that the moduli space of all angle structures on a fixed triangulated 3-manifold (M, T ),
denoted by AS(M, T ), forms a bounded convex polytope in a Euclidean space. The
main theorem is the following.

Theorem 1.1. Suppose (M, T ) is a closed 3-manifold with a triangulation T so
that the moduli space of all angle structures AS(M, T ) is non-empty. Then volume
function can be extended continuously to the compact closure of the space AS(M, T ).
If the volume functional has a local maximum point in AS(M, T ), then,

(a) the manifold M supports a constant sectional curvature Riemannian metric,
or

(b) there is a normal surface of positive Euler characteristic in the triangulation
T so that it intersects each 3-simplex in at most one normal disk.

In particular, if the triangulation T has only one vertex, then the normal surface
in case (b) is non-separating.

The existence of angle structures on a triangulation is a linear programming
problem.

Problem 1.2. Does every closed irreducible non-Haken non Seifert-fibered 3-
manifold have a 1-vertex triangulation supporting an angle structure?

We expect the problem has an affirmative solution. See [JR] for more informa-
tion on efficient triangulaions. In [LT], a relationship between the existence of angle
structure and the normal surface theory is established.

If we do not assume 1-vertex condition, then the following has been proved by A.
Kitaev and myself.

Theorem 1.3. For any closed 3-manifold M3, there is a triangulation of M3

supporting an angle structure.

By theorem 1.1, the maximal point of the volume function on the compact closure
of AS(M, T ) always exists. If the maximum point is in AS(M, T ), then we conclude
either the manifold M is geometric, or the triangulation admits a special normal
surface of positive Euler characteristic. It is expected ([Lu3]) that the maximum point
in the boundary ∂AS(M, T ) will give rise either a geometric structure on the manifold,
or a special normal surface of non-negative Euler characteristic in the triangulation.
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1.2. Using dihedral angles instead of edge lengths to parameterize a classical geo-
metric tetrahedra seems to have some advantages. First of all, the Schlaefli formula
suggests that dihedral angles are natural variables with respect to the volume. Second,
dihedral angle parameterization puts all hyperbolic, spherical and Euclidean tetrahe-
dra in one frame work. Third, volume considered as a function of dihedral angles
can be extended continuously to the degenerated tetrahedra. This was conjectured
by John Milnor [Mi] and was established recently in [Lu1] and [GL] ([Ri2] has a new
proof together with some generalizations). On the other hand, volume considered as a
function of edge lengths cannot be extended continuously to degenerated tetrahedra.
The use of dihedral angle parameterization has also appeared in the work of Murakami
[Mu].

1.3. In this subsection, we briefly sketch the main ideas used in the definition of
volume and the proof of theorem 1.1.

By a 2-dimensional angle structure on a triangle, we mean an assignment of
a number in (0, π), called the angle, to each vertex of the triangle. Classical geo-
metric triangles are examples of 2-dimensional angle structures. It is known that a
2-dimensional angle structure is the same as a Moebius triangle, i.e., a triangle of inner
angles in (0, π) in the Riemann sphere bounded by circles and lines (see [Lu2]). We will
interchange the use of terminology Moebius triangle and 2-dimensional angle structure
in the rest of the paper. For a classical geometric tetrahedron, the codimension-1 faces
of them are classical geometric triangles of the same type. Similarly, for an angle struc-
ture on a tetrahedron, the codimension-1 face of it is a 2-dimensional angle structure.
Namely, the inner angle of a vertex of a codimension-1 face is the spherical edge length
in the spherical vertex triangle. The edge length can be calculated by the Cosine Law
for the spherical vertex triangle. To define the Schlaefli 1-form, we have to define the
edge length of a Moebius triangle. This is achieved by generalizing the Cosine Law
for classical geometric triangles. The main observation is that the side of the Cosine
Law involving inner angles is still valid for 2-dimensional angle structures. We define
the length of an edge in a Moebius triangle by using the Cosine Law. Having defined
the lengths of edges of a Moebius triangles, we are able to define the edge length of
an angle structure on a tetrahedron by verifying the compatibility condition. Namely,
although each edge of a tetrahedron is adjacent to two triangular faces, the length of
the edge is independent of the choice two Moebius triangles adjacent it. From this,
one forms the schlaefli 1-form defined on the space AS(3) of all angle structures and
shows that the 1-form is closed. We define the volume to be the integration of this
1-form.

The volume function defined in this way automatically satisfies the Schlaefli for-
mula. By the Schlaefli formula, we are able to identify the critical points of the volume
in the space of all angle structures AS(M, T ). By the Lagrangian multiplier, a critical
point p ∈ AS(M, T ) of the volume is the same as the following. If e is an edge in T

adjacent to two tetrahedra A and B, then the lengths of e in A and B (in their angle
structures in p) are the same. This produces a condition for gluing angle structures on
3-simplexes along their codimension-1 faces. One the other hand, both 2-dimensional
and 3-dimensional angle structures can be classified into three types: Euclidean, hy-
perbolic and spherical. The type of an angle structure depends only on the length
of an edge. As a consequence, at the critical point, all 3-simplices have the same
type. If each 3-simplex in p is a classical geometric tetrahedron, then condition (a)
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in theorem 1.1 holds. If there is a 3-simplex in p which is not a classical geometric
tetrahedron, we are able to produce a normal surface so that it cuts each 3-simplex in
at most one normal disk and its Euler characteristic is positive. The positivity of the
Euler characteristic is a consequence of the following observation. Namely, the sum
of the dihedral angles at two pairs of opposite edges of a Euclidean or a hyperbolic
tetrahedron is less than 2π. Finally, if the triangulation has only one vertex, then all
edges become loops. Since the normal surface intersects some edge transversely in one
point, it is non-separating.

1.4. The above finite dimensional variational set up can be extended easily to
find constant curvature cone metrics on 3-manifolds.

1.5. This paper is organized as follows. In §2, we establish a calculus Cosine
Law and its derivative form. In §3, we establish a generalized Schlaefli formula. In
§4, we define the edge lengths of 2-dimensional angle structures and state some of its
consequences. In §5, we define the volume of angle structures on tetrahedra. In §6,
we give a classification of angle structures on tetrahedra. In §7, we sketch the proof
of theorem 1.1.

Acknowledgment. We thank X.S. Lin, Ben Chow, and Thomas Au for discus-
sions on the related subjects. Bruno Martelli made a nice suggestion on improving
the last statement in theorem 1.1. Part of the work was done while I was visiting the
Chinese University of Hong Kong and Yale University. We thank Thomas Au and
Yair Minsky for their hospitality.

2. A Calculus Cosine Law. Recall that if a spherical triangle has three inner
angles x1, x2, x3 and edge lengths y1, y2, y3 where yi is the length of the edge opposite
to the angle xi, then the Cosine Law says,

(2.1) cos(yi) =
cosxi + cosxj cosxk

sin xj sin xk

where {i, j, k} = {1, 2, 3}. It turns out (2.1) encodes all Cosine Laws for classical
geometric triangles, i.e., hyperbolic, Euclidean triangles and even hyperbolic right-
angled hexagons if we interprete the terms appropriately. To be more precise, if a
classical geometric triangle in K2 (K2 = S2, E2 or H2) has inner angles x1, x2, x3,
then the length yi of the edge opposite to the angle xi satisfies the Cosine Law,

(2.2) cos(
√

λyi) =
cosxi + cosxj cosxk

sin(xj) sin(xk)

where {i, j, k} = {1, 2, 3} and λ = 1, 0,−1 is the curvature of the space K2. This
prompts us to look at (2.1) from analysis point of view.

2.1. Suppose we have a single valued complex analytic function y = y(x) where
y = (y1, y2, y3) ∈ C3 and x = (x1, x2, x3) is in some open connected set Ω in C3 so
that y and x are related by (2.1).

Theorem 2.1. Suppose Ω ⊂ C6 contains a diagonal point (a, a, a) so that
y(a, a, a) = (b, b, b). Let the indices {i, j, k} be {1, 2, 3} and Aijk = sin yi sin xj sin xk.
Then
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(a) Aijk = Ajki.

(b) A2
ijk = 1 − cos2 xi − cos2 xj − cos2 xk − 2 cosxi cosxj cosxk.

At the point x where Aijk 6= 0, the following three hold,

(c) ∂yi/∂xi = sin xi/Aijk ,

(d) ∂yi/∂xj = ∂yi/∂xi cos yk,

(e) cos(xi) =
cos yi − cos yj cos yk

sin yj sin yk

.

2.2. Remarks. 1. Formula (a) is sometimes called the Sine Law.
2. If we make a change of variable that zi = π − yi, then (2.1) and (e) show that
the map z = z(x) is an involution, i.e., z(z(x)) = x. This corresponds to the duality
theorem for spherical triangles. Using this, we see that the partial derivatives ∂xi/∂yi

and ∂xi/∂yj can be derived easily from theorem 2.1. To be more precise, we have
∂xi/∂yj = −∂xi/∂yi cosxk.
3. Let F1(x) = (x1, π−x2, π−x3), then (cos(y1(F1(x))), cos(y2(F1(x))), cos(y3(F1(x))))
= (cos(y1(x)), cos(π − y2(x)), cos(π − y3(x))). This symmetry of the Cosine Law (2.1)
will be used extensively in the paper.

2.3. Proof. For simplicity, let ci = cosxi and si = sinxi for i = 1, 2, 3. Then by
definition,

A2
ijk = sin2 yi sin2 xj sin2 xk = (1 − cos2 yi) sin2 xj sin2 xk

= (1 − c2
j)(1 − c2

k) − (ci + cjck)2

= 1 − c2
j − c2

k + c2
jc

2
k − c2

i − 2cicjck − c2
jc

2
k

= 1 − c2
i − c2

j − c2
k − 2cicjck.

This shows that (b) holds. Now consider the analytic function Aijk/Ajki. By (b), it
takes values ±1. By the assumption that y(a, a, a) = (b, b, b), we see that value 1 is
achieved. Thus Aijk = Ajki in the connected set Ω. This shows that (a) holds.

By taking derivative of (2.1), we obtain,

− sin yi∂yi/∂xi = − sinxi/(sinxj sinxk).

This establishes part (c).
To see part (d), we take the derivative of (2.1) with respect to xj . Thus

− sin yi∂yi/∂xj = (1/sk)[(−sj cosxk)sj − cosxj(cosxi + cosxj cosxk)]/s2
j

= 1/(s2
jsk)(− cosxk − cosxi cosxj)

= [−si/(sjsk)][cosxk + cosxi cosxj ]/(sisj)
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= −(si/(sjsk)) cos yk

By dividing it by − sin yi and using part (c), we obtain identity (d).

Finally, we derive (e). By (a) and (b), we have

(cos yi − cos yj cos yk)/(sin yj sin yk)

= [(ci + cjck)/(sjsk) − (cj + cick)(ck + cicj)/(sisksisj)]/(sin yj sin yk))

= [(1 − c2
i )(ci + cjck) − (cjck + cic

2
j + cic

2
k + c2

i cjck)]/[(sisk sin yj)(sisj sin yk)]

= (ci + cjck − c3
i − cjckc2

i − cjck − cic
2
j − cic

2
k − c2

i cjck)/(AikjAijk)

= ci(1 − c2
i − c2

j − c2
k − 2cicjck)/A2

ijk

= cosxi.

3. A Generalized Schlaefli Identity. In this section, we will fix a branch
of the function arccos z. Let U be the set {z ∈ C|0 < Re(z) < π} ∪ {

√
−1x|x ∈

R≥0} ∪ {π −
√
−1x|x ∈ R≥0}. Then the restriction map cos z : U → C is a bijection.

We define arccos z : C → U to be the inverse and call it the principal branch of
arccos z. Note that arccosz is analytic in C− {x ∈ R||x| ≥ 1}.

3.1. Given a 3-simplex with vertices {v1, ..., v4}, a complex weight on the 3-
simplex is an assignment of a complex number xij = xji ∈ C − {πn|n ∈ Z} to
the edge vivj . We consider xij as a complex valued ”dihedral angle”. In this setting,
the ”face angle” yi

jk of the weighted 3-simplex in the face triangle ∆vivjvk at the

vertex vi is defined to be the unique complex number yi
jk in U so that

(3.1) cos yi
jk =

cosxil + cosxij cosxik

sinxij sin xik

where i, j, k, l are pairwise distinct. We will assume that indices i, j, k, l are always
pairwise distinct in the sequel. Note that if {x12, ..., x34} forms the dihedral angles
of a classical geometric tetrahedron, then yi

jk is the inner angle at vi in the triangle

∆vivjvk by the Cosine Law (2.1).

Proposition 3.1.(Compatibility) Suppose the complex weight x = (x12, ..., x34)
satisfies sin(yi

jk) 6= 0 for all indices. Then

(3.2)
cos(yi

jk) + cos(yj
ik) cos(yk

ij)

sin(yj
ik) sin(yk

ij)
=

cos(yl
jk) + cos(yj

lk) cos(yk
jl)

sin(yj
lk) sin(yk

jl)
.

The underlying geometric meaning of this proposition is that the length of the
edge vjvk in a classical geometric tetrahedron can be calculated from any of the two
triangles ∆vivjvk or ∆vlvjvk. The proof is a direct computation using the Sine Law
in theorem 2.1.

Note that the condition sin(yi
jk) 6= 0 for all indices i, j, k is equivalent to xij ±

xik ± xil 6= (2n + 1)π for some integer n for all {i, j, k, l} = {1, 2, 3, 4}. We call a
complex weight (x12, ..., x34) non-degenerate if sin(yi

jk) 6= 0 for all indices. In this

case, the common value in (3.2) is denoted by cos zjk where zjk ∈ U . We call zjk the
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complex length of the edge vjvk. If the dihedral angles (x12, ..., x34) form the inner

angles of a spherical or a hyperbolic 3-simplex, by the Cosine Laws, λ
√

λzij is equal
to the length of edge vivj in the 3-simplex in S3 or H3 where λ = ±1 is the curvature
of S3 or H3.

3.2. For a non-degenerated complex weight x = (x12, ..., x34), the complex length
zij = zij(x) is a complex analytic function of the weight x.

Theorem 3.2. For a non-degenerate complex weight (x12, ..., x34), then

∂zij/∂xab = ∂zab/∂xij ,

where the indices satisfy a 6= b and i 6= j. In particular, the differential 1-form
∑

i,j zijdxij is closed.

The proof is computational using theorem 2.1.

4. Lengths of Edges in Moebius Triangles. Given a Moebius triangle of
inner angles (x1, x2, x3) ∈ (0, π)3, we will define the Moebius length (or length for
simplicity) of an edge in the triangle in this section. The definition of the length is
guided by formula (2.2).

4.1. As a convention in this section, the function cos z is considered as a home-
omorphism from the 1-dimensional subset L = {

√
−1x|x ∈ R≥0} ∪ {x ∈ R|x ∈

[0, π]}∪{π−
√
−1x|x ∈ R≥0} to the real line R. Let φ : R → L be the homeomorphism

given by φ(x) = x if x ∈ [0, π]; φ(x) = −
√
−1x if x ≤ 0; and φ(x) = π +

√
−1(π − x)

if x ≥ π. In particular, the homeomorphism f(x) = cos(φ(x)) : R → R is given by
f(x) = cosh(x) when x ≤ 0; f(x) = cos(x) when x ∈ [0, π]; and f(x) = − cosh(x − π)
when x ≥ π. The function f is C1-smooth and f−1 is continuous.

Definition 4.1. Given a Moebius triangle of inner angles (x1, x2, x3), the length
(or more precisely the Moebius length) zi of the edge opposite to the angle xi is the
real number so that

cos(φ(zi)) =
cosxi + cosxj cosxk

sin xj sin xk

where {i, j, k} = {1, 2, 3}.
By formula (2.2), if (x1, x2, x3) ∈ (0, π)3 is a classical geometric triangle in K2 =

S2, H2, E2 of curvature λ = 1,−1, 0 so that lengths of the edges are l1, l2, l3 measured
in K2 geometry, then the Moebius lengths of it are (λl1, λl2, λl3), i.e., the Moebius
length is the signed length for classical geometric triangles.

4.2. Given a Moebius triangle x = (x1, x2, x3) ∈ (0, π)3, the i-th flip Fi(x) of x is the
Moebius triangle with inner angles y = (ya) where yi = xi and yj = π − xj for j 6= i.

Let E(2), H(2), S(2) be the subspaces of AS(2) corresponding the Euclidean,
hyperbolic and spherical triangles respectively. Then evidently Fi : S(2) → S(2). It
can be shown that for any x ∈ AS(2), either x ∈ E(2) ∪ H(2) ∪ S(2) or there is a flip
Fi(x) so that Fi(x) ∈ E(2) ∪ H(2). We classify the Moebius triangles into Euclidean
type, hyperbolic type or spherical type according to x or Fi(x) is the classical geometric
triangle of the same type. This classification is invariant under the flip operation. The
following result summerizes the basic properties of the Moebius lengths, the type of
Moebius triangles and flip operations.
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Proposition 4.2. The i-th edge length function zi : AS(2) = (0, π)3 → R1 is
continuous. If x is a classical geometric triangle in K2 of curvature λ = −1, 1, 0,
then the Moebius length zi(x) is λli where li is the length calculated in the classical
geometry. Furthermore,

(a) For a non-Euclidean type Moebius triangle, the three Moebius lengths deter-
mine the three inner angles.

(b) If Fi(x) is the i-th flip of x, then the Moebius length and the flip are related
by

(4.1) zj(Fi(x)) = π − zj(x)

(4.2) zi(Fi(x)) = zi(x)

(c) The type of a Moebius triangle is determined by one edge length. Namely, x

is of Euclidean type if and only if zi(x) ∈ {0, π}; x is of spherical type if and only if
zi(x) ∈ (0, π); and x is of hyperbolic type if and only if zi(x) ∈ (−∞, 0) ∪ (π,∞).

(d) A Moebius triangle is not a classical geometric triangle if and only if one edge
length is at least π.

Part (a) follows from theorem 2.1 (e). Part (b) is a consequence of remark 2.2.3.
Parts (c) and (d) follow from (b) and the definition. There are exactly two edges in
a non-classical geometric triangle of length at least π. The flip operation about the
vertex which is the intersection of the two edges of length ≥ π is a classical geometric
triangle.

4.3. Remark. One can take identities (4.1) and (4.2) as the definition of the
Moebius length of edges in Moebius triangles.

5. Volume of an Angle Structure on a Tetrahedron.

5.1. In this section, we assume that the indices {i, j, k, l} = {1, 2, 3, 4}. An angle
structure x = (x12, ..., x34) on a 3-simplex with vertices v1, ..., v4 has dihedral angle
xij = xji at the edge vivj . The space of all angle structures on a tetrahedron AS(3)
is {x ∈ (0, π)6|xij + xik + xil > π, xij +xik −xil < π, for all i,j,k,l}. Given x ∈ AS(3)
and a codimension-1 face ∆vivjvk of the tetrahedron, the induced 2-dimensional angle
structure on ∆vivjvk is obtained by assigning the positive number yi

jk ∈ (0, π) to the

vertex vi where yi
jk satisfies (3.1). Geometrically, if we construct a spherical triangle

of inner angles xij , xik, xil associated to the vertex vi, then yi
jk is the spherical length

of the edge opposite to the angle xil in the spherical triangle. There are four Moebius
triangles ∆vivjvk appeared as codimension-1 faces of the tetrahedron. These Moebius
triangles have Moebius lengths at the edges. By the definition of Moebius lengths and
compatibility proposition 3.1, we have,

Lemma 5.1. The Moebius lengths of the edge vivj in the Moebius triangles
∆vivjvk and ∆vivjvl are the same.

We call the common value in lemma 5.1 the length (or Moebius length) of the
edge vivj in x, and denote it by lij . Note that if the angle structure is a classical
geometric tetrahedron in the space K3 = S3, H3, E3 of curvature λ = 1,−1, 0, then
the Moebius length is λl where l is the length measured in the classical geometry K3.
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5.2. Note that the regular Euclidean tetrahedron has the dihedral angle arccos(1/3).
A continuous differential 1-form ω defined on a smooth manifold is said to be closed
if its integration along each piecewise smooth loop is zero.

Theorem 5.2. The continuous differential 1-form ω = 1/2
∑

i>j lijdxij on the

open convex polytope AS(3) is closed. Its integration

V (x) =

∫ x

a

ω

where a = arccos(1/3)(1, 1, .., 1) is a C1-smooth function on AS(3), called the volume
(or Moebius volume). The function V (x) has the following properties,

(a) (Schlaefli formula)

(5.1) ∂V (x)/∂xij = lij/2,

(b) if x ∈ AS(3) is a classical geometric 3-simplex in the space of constant curvature
λ (λ = −1, 0, 1), then the volume V (x) = λ2vol(x) where vol is the volume measured
in the classical geometry of constant curvature λ.

(c) The volume function V can be extended continuously to the compact closure ¯AS(3) =
{x ∈ [0, π]3|xij + xik + xil ≥ π, xij + xik − xil ≤ π}.

6. The Classification of Angle Structures and Flip Operations. For an
angle structure on a tetrahedron x = (xrs) ∈ AS(3), the i-th flip Fi(x) = (yrs) is
the angle structure so that yij = xij and yjk = π − xjk where {i, j, k, l} are pairwise
distinct. It follows from the definition and remark 2.2.3 that the codimension-1 faces
∆vivjvk of Fi(x) and x are related by the i-th flip and the faces ∆vjvkvl of x and Fi(x)
are the same. The corresponding vertex links of Fi(x) and x, considered as spherical
triangles, are either the same or related by a flip.

6.1. Let E(3), H(3) and S(3) be the subspaces of AS(3) corresponding to the
Euclidean, hyperbolic, and spherical tetrahedra respectively. It can be shown that,

Proposition 6.1. For any x ∈ AS(3), exactly one of the following holds,
(a) x is a classical geometric tetrahedron, i.e., x ∈ E(3) ∪ H(3) ∪ S(3),
(b) there is a flip Fi so that Fi(x) ∈ E(3) ∪ H(3),
(c) there are two flips Fi, Fj, i 6= j, so that FiFj(x) ∈ E(3) ∪ H(3).

If an angle structure x is obtained from a single flip Fi(y) where y ∈ E(3)∪H(3),
then the edge length lij of x is at least π and all other edge lengths are at most 0 by
(4.1) and (4.2). If x is obtained from a double-flip FiFj(y) where y ∈ E(3)∪H(3) with
i 6= j, then the edge lengths and dihedral angles of x satisfy: (1) lab ≥ π, xab = π−yab

for {a, b} = {i, k}, {i, l}, {j, k}, {j, l}; and (2) lij , lkl ≤ 0 and xij = yij , xkl = ykl.

Lemma 6.2. Suppose x = FiFj(y) for y ∈ E(3) ∪ H(3) is a double flip of a
Euclidean or a hyperbolic tetrahedron y. Then the sum of the dihedral angles at the
two pairs of opposite edges of length at least π is greater than 2π.

Indeed, by the classification above, the lemma is equivalent to the following state-
ment about Euclidean and hyperbolic tetrahedra. Namely, if a1, a2, a3, a4 are dihedral
angles at two pairs of opposite edges in a Euclidean or hyperbolic tetrahedron, then
a1 + a2 + a3 + a4 < 2π. The proof of it is a simple exercise in geometry.
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6.2. Remark. The relationship between the flip operation and the volume is
the following. For any angle structure x ∈ AS(3), V (Fi(x)) + V (x) = π/2(xij + xik +
xil − π). One can in fact use this as the definition of the volume of angle structure.
Using this formula, we prove the continuous extension of the volume to the closure of
AS(3) using [Lu1].

7. The Sketch of the Proof of Theorem 1.1. The proof goes as follows.

7.1. Recall that the type of a Moebius triangle is determined by one edge length
by proposition 4.2. Using proposition 3.1, it follows that the types of all Moebius
triangles appeared as faces of an angle structure on a tetrahedron are the same. We
define the type of an angle structure on a tetrahedron to be the type of a codimension-
1 face of it. By definition, the type of an angle structure is determined by the length
of one edge. To be more precise, if the length of the ij-th edge lij is in {0, π}, then
it is of Euclidean type; if lij is in (0, π), then it is of spherical type; and if lij is in
(−∞, 0) ∪ (π,∞), then it is of hyperbolic type.

7.2. If p ∈ AS(M, T ) is a critical point of the volume, then Schlaefli formula
shows that the following holds. Namely, if e ∈ T (1) is an edge in the triangulation so
that e is adjacent to two 3-simplexes A, B, then the Moebius lengths of e in A and B

(in p) are the same:

(7.1) le(A, p) = le(B, p).

Indeed, suppose a1 and a2 are the dihedral angles of p = (a1, a2, ..., an) at the edge
e inside A and B. Now consider the deformation r(t) = (t,−t, 0, ..., 0) + p. Since
p = (a1, a2, ..., an) is the critical point of V , it follows that d/dt|t=0V (r(t)) = 0. But
by the Schlaefli formula (5.1), the derivative is 1/2(le(A, p) − le(B, p)). Thus (7.1)
follows.

7.3. By combining 7.1 and 7.2, the types of all angle structures on 3-simplexes
in p are the same.

7.4. If one 3-simplex in p is spherical, then all 3-simplexes in p are spherical. They
are all classical spherical tetrahedra so that their faces can be glued isometrically by
(7.1). By the definition of angle structure that the sum of dihedral angles is 2π at
each edge, we obtain a spherical metric on the 3-manifold M .

7.5. If all 3-simplexes in p are classical hyperbolic 3-simplexes, then the same
argument as in 7.4 shows that the manifold M has a hyperbolic metric.

7.6. If all 3-simplexes in p are classical Euclidean tetrahedra, then we claim that
p is not a local maximum point. In fact, the critical point p is a local minimum of
the volume. This is due to the following two facts. First, if x is an angle structure
on a tetrahedron sufficiently close to a Euclidean tetrahedron, then x is a classical
geometric tetrahedron, i.e., S(3)∪E(3)∪H(3) is open in AS(3). Second, by theorem
5.2(b), the volume of spherical and hyperbolic tetrahedra are positive and the volume
of a Euclidean tetrahedron is zero. Thus, the volume of points in AS(M, T ) sufficiently
close to p are none negative. On the other hand, the volume of p is zero. This shows
that the point p is a local minimum. It is easy to show that the volume function is
not a constant on any open subset of AS(M, T ). Thus, the critical point p is not a
local maximum.
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7.7. We claim,

Proposition 7.1. If one 3-simplex in p is not a classical geometric tetrahedron,
then the triangulation T contains a normal surface S of positive Euler characteristic
which cuts each 3-simplex in at most one normal disk.

To prove this, let X be the set of all edges in the triangulation so that its length
is at least π (in p). This set is non-empty since there are non-classical geometric
tetrahedra in p. By definition, the intersection of X with each 3-simplex A in T

consists of the following three cases:
(1) X ∩ A = ∅ if A is a classical geometric tetrahedron in p,
(2) X∩A consists of three edges from a vertex if A is Fi(x) for a classical geometric

tetrahedron x ∈ E(3) ∪ H(3),
(3) X ∩ A consists of two pairs of opposite edges if A is FiFj(x) for a classical

geometric tetrahedron x ∈ E(3) ∪ H(3).
For each 3-simplex A in cases (2) and (3), we construct a normal disk in A whose

vertices are in X . These normal disks form a normal surface S in T . Note that the
normal surface S intersects the each tetrahedron in T in at most one normal disk.
We claim the normal surface S has positive Euler characteristic. To see this, let us
consider the CW-decomposition of the surface S formed by the normal disks in S. We
assign each vertex of each 2-cell in the CW-decomposition a number, called the inner
angle, which is the corresponding dihedral angle in p. By the construction, these inner
angles satisfy the following three conditions. First, the sum of all inner angles at each
vertex in S is 2π. Second, the sum of the inner angles in each normal triangle greater
than π. Finally, the sum of all inner angles in each normal quadrilateral is greater
than 2π by lemma 6.2. By the Gauss-Bonnet theorem, it follows that the normal
surface S has positive Euler characteristic.
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