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RIGIDITY OF POLYHEDRAL SURFACES, I

Feng Luo

Abstract

We study the rigidity of polyhedral surfaces and the moduli
space of polyhedral surfaces using variational principles. Curvature-
like quantities for polyhedral surfaces are introduced and are shown
to determine the polyhedral metric up to isometry. The action
functionals in the variational approaches are derived from the co-
sine law. They can be considered as 2-dimensional counterparts of
the Schlaefli formula.

1. Introduction

We use variational principles to study geometry of polyhedral sur-
faces in a series of three papers [19], [29], of which this is the first.
Several rigidity and infinitesimal rigidity results are established. As one
consequence, for each real number h, we produce a natural parameteri-
zation ψh of the Teichmüller space of an ideal triangulated surface with
boundary. The images of the Teichmüller space under these parameter-
izations are shown to be convex polytopes by our work (for h ≥ 0) and
the work of Ren Guo [16] (for h < 0).

A key identity for variational framework for polyhedral metrics in
dimension greater than 2 is the Schlaefli formula (see for instance [37]).
In dimension 3, the Schlaefli formula expresses the volume V ol, the
dihedral angles θi, and the edge lengths li of a tetrahedron in the simple
form

∂V ol

∂θi
=
λ

2
li and

∂θi
∂lj

=
∂θj
∂li

where λ = ±1 is the curvature of the ambient hyperbolic space H3 or
the 3-sphere S3. In 1991, Colin de Verdière [11] found a 2-dimensional
counterpart of the Schlaefli formula and used it to prove Thurston’s
circle packing theorem. Our study finds all 2-dimensional counterparts
of the Schlaefli formula. They consist of two one-parameter families. All
rigidity results in the paper are consequences of the variational principles
associated to these 2-dimensional Schlaefli type identities.
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1.1. Polyhedral surfaces, their curvatures, and the main re-
sults. Recall that a closed triangulated surface (S,T ) is the quotient of
a finite disjoint union of Euclidean triangles by identifying all edges of
triangles in pairs by homeomorphisms. The simplices in the triangula-
tion T are the quotients of vertices, edges, and triangles in the disjoint
union. We use V,E, T to denote the sets of all vertices, edges, and trian-
gles in T . Let Hn, En, and Sn be the n-dimensional space of hyperbolic,
Euclidean, and spherical geometries and R>0 be the set of all positive
real numbers.

Definition 1.1. (Polyhedral surfaces) Given a triangulated surface
(S,T ) and K2 = H2,S2, or E2, a K2-polyhedral metric on (S,T ) is
a map l : E → R>0 so that if e1, e2, e2 are edges of a triangle, then
l(e1) + l(e2) > l(e3) and if K2 = S2, l(e1) + l(e2) + l(e3) < 2π. A
Euclidean (or spherical or hyperbolic) polyhedral surface is the triple
(S,T , l) where l is an E2 (or S2, or H2) polyhedral metric.

Intuitively, a polyhedral surface is an isometric gluing of geometric
triangles along pairs of edges. The boundary of a generic compact con-
vex polytope in the 3-dimensional space E3, S3, or H3 is a polyhedral
surface. We emphasize that the triangulation T is an intrinsic part of a
polyhedral surface in our study. Two polyhedral surfaces (S,T , l) and
(S′,T ′, l′) are triangulation preserving isometric if there is an isomor-
phism h between the triangulations T and T ′ so that l = l′ ◦ h. The
(classical) discrete curvature k0 : V → R of a polyhedral surface (S,T , l)
is the function assigning each vertex 2π less the sum of the inner angles
of triangles at the vertex.

A basic problem on polyhedral geometry is to understand the rela-
tionship between the metric and its curvature. For a polyhedral surface,
the metric is the edge lengths, and discrete curvature comes from the in-
ner angles of triangles. The metric-curvature relation is governed by the
cosine law for triangles. Using inner angles, we introduce three families
of curvature-like quantities and study the relationships between these
curvature-like quantities and the metrics.

Definition 1.2. (Curvatures) Let K2 be E2, or S2 or H2, and h ∈
R. Given a K2 polyhedral metric l on (S,T ), the φh curvature of the
polyhedral metric l is the function φh : E → R sending an edge e to:

(1.1) φh(e) =

∫ π/2

a
sinh(t)dt+

∫ π/2

a′
sinh(t)dt

where a, a′ are the inner angles facing the edge e. See figure 1.
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The ψh curvature of the metric l is the function ψh : E → R sending
an edge e to

(1.2) ψh(e) =

∫ b+c−a
2

0
cosh(t)dt+

∫ b′+c′−a′

2

0
cosh(t)dt

where b, b′, c, c′ are inner angles adjacent to the edge e and a, a′ are the
angles facing the edge e. See figure 1.
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The h-th discrete curvature kh of the metric l is the function kh :
V → R sending a vertex v to

(1.3) kh(v) = (2− m

2
)π −

m
∑

i=1

∫ θi

π/2
tanh(t/2)dt

where the vertex v has degree m and θ1, . . . , θm are all inner angles at
v. See figure 1.

Remark 1.3. The curvatures φ0 and ψ0 were first introduced by I.
Rivin [36] and G. Leibon [25] respectively. The geometric meaning of
them is related to the dihedral angle along edges of a hyperbolic poly-
hedron associated to the polyhedral surface. In particular, a Euclidean
polyhedral surface is Delaunay if and only if φ0(e) ≥ 0 for all e ∈ E,
and a hyperbolic polyhedral surface is Delaunay if and only if ψ0(e) ≥ 0
for all e.

Remark 1.4. The positivity of the curvatures φh and ψh is indepen-
dent of h. To be more precise, due to (x+y)(

∫ x
0 cosh(t)dt+

∫ y
0 cosh(t)dt) ≥

0 for x, y ∈ [−π/2, π/2], we have ψh(e) ≥ 0 (or φh(e) ≥ 0) if and only
if ψ0(e) ≥ 0 (or φh(e) ≥ 0). Thus the geometric meaning of positive ψh

curvature is the same Delaunay condition (i.e., ψ0 > 0) for polyhedral
metrics.

Remark 1.5. The curvature φ−2(e) = cot(a) + cot(a′) has appeared
in the finite element method approximation of the smooth Beltrami-
Laplace operator. It is called the discrete cotangent Laplace operator.
See for instance Pinkall and Polthier’s work [35].
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Remark 1.6. The 0-th discrete curvature k0 = 2π −∑m
i=1 θi is the

(classical) discrete curvature.

Recall that a circle packing metric on (S,T ) is a polyhedral metric
l : E → R>0 so that there is a map, called the radius assignment, r : V
→ R>0 with l(vv′) = r(v) + r(v′) whenever the edge vv′ has end points
v and v′.

One of the main results in the series of the papers is:

Theorem 1.7. Let h ∈ R and (S,T ) be a closed triangulated surface.

(a) A Euclidean circle packing metric on (S,T ) is determined up to
isometry and scaling by the kh discrete curvature.

(b) A hyperbolic circle packing metric on (S,T ) is determined up to
isometry by the kh discrete curvature.

(c) A Euclidean polyhedral metric on (S,T ) is determined up to isom-
etry and scaling by the φh curvature.

(d) A spherical polyhedral metric on (S,T ) is determined up to isom-
etry by the φh curvature.

(e) A hyperbolic polyhedral surface metric on (S,T ) is determined up
to isometry by the ψh curvature.

Furthermore, the corresponding infinitesimal rigidity results hold.

We remark that Andreev [1] and Thurston [43] first proved Theo-
rem 1.7(a) for h = 0. Theorem 1.7(b) for h = 0 was first proved by
Thurston [43]. Theorem 1.7(c) for h = 0 was first proved by Rivin [36]
and Theorem 1.7(d) for h = 0 was first proved by Leibon [25]. The-
orem 1.7(a),(d) for h = −2 shows that the discrete Laplace operator
determines the Euclidean and spherical polyhedral metrics.

In this paper, we will prove Theorem 1.7(a),(b) and the corresponding
infinitesimal rigidity results (see Theorem 4.1). Theorem 1.7(c),(d),(e)
is proved in [29] using the machinery built in this paper.

A counterpart of Theorem 1.7(e) for hyperbolic metrics with totally
geodesic boundary on an ideal triangulated compact surface is the fol-
lowing. Recall that an ideal triangulated compact surface with boundary
(S,T ) is obtained by removing a small open regular neighborhood of
the vertices of a triangulated closed surface. The edges of an ideal tri-
angulation T correspond bijectively to the edges of the triangulation of
the closed surface. Given a hyperbolic metric l with geodesic boundary
on an ideal triangulated surface (S,T ), the triangulation T is isotopic
to a unique geometric ideal triangulation T ∗ so that all its edges are
geodesics orthogonal to the boundary. The edges in T ∗ decompose the
surface into hyperbolic right-angled hexagons. The ψh curvature of the
hyperbolic metric l is defined to be the map Ψh : { all edges in T } → R
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sending each edge e to

(1.4) ψh(e) =

∫ b+c−a
2

0
coshh(t)dt+

∫ b′+c′−a′

2

0
coshh(t)dt

where a, a′ are lengths of arcs in the boundary (in the ideal triangulation
T ∗) facing the edge and b, b′, c, c′, are the lengths of arcs in the boundary
adjacent to the edge so that a, b, c lie in a hexagon. See figure 1.

Theorem 1.8. A hyperbolic metric with totally geodesic boundary on
an ideal triangulated compact surface is determined by its ψh-curvature.
Furthermore, if h ≥ 0, then the set of all ψh curvatures on a fixed ideal
triangulated surface is an explicit open convex polytope Ph in a Euclidean
space so that Ph = P0.

The case when h < 0 has been recently established by Ren Guo [16].
He proved that:

Theorem 1.9. Under the same assumption as in Theorem 1.8, if
h < 0, the set of all ψh curvatures on a fixed ideal triangulated surface
is an explicit bounded open convex polytope Ph in a Euclidean space.
Furthermore, if h < h′, then Ph ⊂ Ph′ .

Theorem 1.7 shows that polyhedral metrics are determined by their
curvatures. It is natural to investigate the spaces of all curvatures on a
given triangulated surface (S,T ). A major portion of the paper (§5, §6,
§7) studies this problem. The important work of Thurston, Rivin, and
Leibon shows that the spaces of k0, φ0, and ψ0 curvatures of Delaunay
polyhedral metrics and circle packing metrics on (S,T ) are convex poly-
topes. Our results in §6 and §7 (Theorems 6.1, 6.4, 6.7, 7.1) generalize
their work to all polyhedral metrics and to curvatures φh, ψh, and kh
for h ≤ −1 and h = 0.

A summary of main results in the subsequent papers [19] and [29] is
as follows. In [29], we prove the global rigidity part of Theorem 1.7 and
investigate the inversive circle packings introduced by P. L. Bowers and
K. Stephenson. We prove a rigidity conjecture of Bowers-Stephenson
that the k0 curvature determines Euclidean and hyperbolic inversive
distance circle packing metrics. The case of spherical inversive distance
circle packing remains open. Our proof uses a variational principle es-
tablished by Ren Guo [18] for inversive distance circle packing which is
valid for Euclidean, spherical, and hyperbolic geometry.

In [19], we study various generalized cosine laws for nontriangular
regions bounded by three possibly disjoint geodesics in the hyperbolic
plane. We establish several variational principles for the corresponding
polyhedral surfaces. As a consequence, the work of Penner, Bobenko
and Springborn, and Thurston on rigidity of polyhedral surfaces and
circle patterns is extended to a very general context.
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1.2. The method of proofs and the derivative cosine law. The
proofs of the above theorems use variational principles. The use of vari-
ational principles on triangulated surfaces in recent time appeared in
the seminal work of Colin de Verdière [11] in 1991 and I. Rivin [36] in
1994. Variational principles on triangulated surfaces have also appeared
in [5], [25], [9], [7], [39], and others. The energy functions used in [11],
[36], [5], [25], [9] are related to the 3-dimensional volume, the Schlaefli
formula, or its Legendre transform. Even in the work of [11], Colin de
Verdière’s energy was motivated by the 3-dimensional Schlaefli volume
formula [12]. In 2004, motivated by the discrete 2-dimensional inte-
grable system, Bobenko and Springborn [7] discovered a new collection
of energies for triangulated surfaces.

We observe that all energy functions used in [11], [5], [36], [9], [25], [7]
are derived from the cosine law and the Legendre transformation. Fur-
thermore, we show that these known energy functions are special cases
of two one-parameter families of energy functions derived from the co-
sine law. These energies functionals can be considered as 2-dimensional
analogs of the Schlaefli formula.

Our study is motivated by discretization of 2-dimensional Riemann-
ian geometry. In the discrete setting, the smooth metric is replaced by
the polyhedral metric and the Gaussian curvature is replaced by the dis-
crete curvature k0. The relationship between a polyhedral metric and its
curvature is the cosine law for triangles. Thus, the cosine law should be
considered as a metric-curvature relation. Just like in Riemannian ge-
ometry, it is natural to study the infinitesimal dependence of curvature
(inner angles) on the metric (edge lengths). The result is a collection
of identities which we call the derivative cosine law. Among the most
interesting ones are the following. Suppose a triangle in S2, E2, or H2

has inner angles θ1, θ2, θ3 and opposite edge lengths l1, l2, l3. Consider
θi as a function of (l1, l2, l3); then for i, j, k distinct,

(1.5)
∂θi/∂lj
∂θj/∂li

=
sin θi
sin θj

and
∂θi/∂lj
∂θi/∂li

= − cos θk.

1.3. An example. We illustrate the use of these identities by an ex-
ample. It shows the main techniques and methods used in our papers.
Given a Euclidean triangle of edge lengths l1, l2, l3 and opposite angles
θ1, θ2, θ3, the cosine law relating them states

cos θi =
l2j + l2k − l2i

2lj lk
,

where i 6= j 6= k 6= i. Consider θi = θi(l1, l2, l3) as a smooth function of
l = (l1, l2, l3). Then identity (1.5) shows that the differential 1-form
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ω =
3
∑

i=1

ln tan

(

θi
2

)

dli

is closed. This closed smooth 1-form is defined on the space E2(3) =
{(l1, l2, l3)|li + lj > lk} of all Euclidean triangles parameterized by the
edge lengths. Since the space E2(3) is convex and therefore simply con-

nected, the integral F (l) =
∫ l
(1,1,1) ω defines a smooth function on the

E2(3). By definition, this function F satisfies

(1.6)
∂F

∂li
= ln tan

(

θi
2

)

.

Its Hessian matrix [ ∂2F
∂lr∂ls

]3×3 = [ 1
sin θr

∂θr
∂ls

]3×3 can be shown to be con-
gruent to the Gram matrix of the triangle. Thus the Hessian matrix is
positive semi-definite. It follows that the function F is convex on E2(3).
Property (1.6) says the partial derivative with respect to the i-th edge
length (i.e., the metric) of the function F depends only on the opposite
angle θi (i.e., the curvature). This is similar to the Schlaefli identity.
A function with property (1.6) is very useful for variational framework
on polyhedral surfaces. We call F (l1, l2, l3) the F -energy of the trian-
gle (l1, l2, l3). Let a Euclidean polyhedral surface (S,T , l) be given so
that E and T are the sets of edges and triangles and l : E → R is
a metric, also called an edge length function. Define an “energy” W (l)
of the metric l to be the sum of the F -energies of its triangles, i.e.,
W (l) =

∑

{e1,e2,e3}∈T
F (l(e1), l(e2), l(e3)). Then the function W (l) is

convex in l since it is the sum of convex functions. Furthermore, by
property (1.6), we have

(1.7)
∂W (l)

∂li
= ln

(

tan
(a

2

))

+ ln

(

tan

(

a′

2

))

= −φ−1(ei)

where a and a′ are the two inner angles facing the i-th edge ei. Identities
(1.1) and (1.7) show that the gradient of the convex functionW is −φ−1,
i.e., ▽W = −φ−1.

On the other hand, we have the following well known fact:

Lemma 1.10. If U : Ω → R is a smooth function of positive definite
Hessian matrix defined on an open convex set Ω in Rn, then the gradient
map ▽U : Ω → Rn is a smooth embedding.

The function W is not strictly convex. Using the lemma and a little
extra work, we prove that the gradient ▽W is injective up to scaling,
i.e., the φ−1 curvature determines the metric l up to scaling. This is
Theorem 1.7(c) for h = −1. Indeed, Theorem 1.7(c) is proved in exactly
the same way by using a special collection of closed 1-forms on the space
of all Euclidean triangles.
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1.4. 2-dimensional Schlaefli formula. The most general form of the
cosine law can be stated as follows. Suppose a function y = y(x) where
y = (y1, y2, y3) ∈ C3 and x = (x1, x2, x3) is in some open connected set
in C3 so that xi’s and yi’s are related by

(1.8) cos(yi) =
cos xi + cos xj cos xk

sin(xj) sin(xk)

where {i, j, k} = {1, 2, 3}. We say y = y(x) is a cosine law function and
write it as y = CL(x). Let ri =

1
2(xj + xk − xi). Then r = (r1, r2, r3) is

a new parameterization so that xi = rj + rk.

Theorem 1.11. For a cosine law function (y1, y2, y3) = CL(x1, x2,

x3), all closed 1-forms of the form w =
∑3

i=1 f(yi)dg(xi) where f, g
are two non-constant smooth functions are up to scaling and complex
conjugation,

ωh =

3
∑

i=1

∫ yi

sinh(t)dtd(

∫ xi

sin−h−1(t)dt) =

3
∑

i=1

∫ yi sinh(t)dt

sinh+1(xi)
dxi

for some h ∈ C, i.e., f ′(t) = sinh(t) and g′(t) = sin−h−1(t). In particu-
lar, all closed 1-forms of this type are holomorphic or anti-holomorphic.

All closed 1-forms of the form
∑3

i=1 f(yi)dg(ri) where f, g are two
non-constant smooth functions are up to scaling and complex conjuga-
tion,

ηh =
3
∑

i=1

∫ yi

tanh(t/2)dtd(

∫ ri

cos−h−1(t)dt) =
3
∑

i=1

∫ yi tanh(t/2)dt

cosh+1(ri)
dri

for some h ∈ C, i.e., f ′(t) = tanh( t2) and g
′(t) = cos−h−1(t). In particu-

lar, all closed 1-forms of this type are holomorphic or anti-holomorphic.

This theorem can be considered as finding all 2-dimensional analogs
of the Schlaefli identity. Recall that if a spherical or hyperbolic tetra-
hedron has dihedral angle θi and edge length li at the i-th edge, then
the Schlaefli formula says that the 1-form ω =

∑

i lidθi is closed. Its
integration

∫

ω is 2λV ol where λ = ±1 is the curvature of the space
S3 or H3 and V ol is the volume of the tetrahedron. By specializing
Theorem 1.11 to various cases of S2, E2, and H2 and integrating the
1-forms, we obtain various energy functionals for variational framework
on triangulated surfaces. Theorems 3.2 and 3.4 identify all those convex
or concave energies constructed in this way.

1.5. Surfaces with boundary. The results obtained in this paper can
be generalized without difficulty to compact triangulated surfaces with
boundary by doubling across the boundary. The notions of kh, φh, and
ψh curvatures can now be defined for polyhedral metrics on (S,T ) by
using the corresponding concepts on the closed surface. For simplicity,
we will not state the results for triangulated surfaces with boundary.
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1.6. The organization of the paper. In section 2, we list some of
the properties of the derivatives of the cosine law and prove the part of
Theorem 1.11 showing that the listed 1-forms are closed. The proof that
the list contains all of the closed 1-form is deferred to Appendix A. In
section 3, we deduce various consequences of Theorem 1.11 and identify
all convex and concave action functionals derived from the cosine law
(Theorems 3.2, 3.4). In §4, we prove the infinitesimal rigidity part of
main Theorem 1.7. In §5, we study the shapes of the Teichmüller space
in ψh-coordinates and prove Theorem 1.8. In §6, we investigate spaces
of all φh and ψh curvatures for closed triangulated surfaces, generalizing
the main work of Rivin [36] and Leibon [25]. In §7, we study the space
of all kh discrete curvatures of circle packing metrics. In §8, we discuss
some open problems and conjectures. In the appendices, we give a proof
of the uniqueness of the energy functions, derive the derivative cosine
law of the second kind, and recall known relationships of some energy
functions with the Lobachevsky functions.
Acknowledgments. We would like to thank David Gu, Ren Guo, and
G. Ziegler for discussions. We thank the referees for their suggestions
and comments. Part of the work was carried out when we participated
in the Oberwolfach workshop on discrete differential geometry.

The work is supported in part by an NSF grants 1105808 and 1222663.

2. The derivative cosine law

We call a smooth function defined in an open set in Rn locally convex
(or locally strictly convex) if its Hessian matrix is positive semi-definite
(or positive definite) at each point. Note that the definition of strictly
convex is not the standard one. Let {i, j, k} = {1, 2, 3} in this section.
2.1. The derivative cosine law. Given a triangle in H2, E2, or S2 of
inner angles θ1, θ2, θ3 and edge lengths l1, l2, l3 so that θi is facing the
li-th edge, the cosine law expressing length li in terms of the angles θr is

(2.1) cos
(√

λli

)

=
cos θi + cos θj cos θk

sin θj sin θk

where λ = 1,−1, 0 is the curvature of the space S2, H2, or E2. Another
related cosine law is

(2.2) cosh(li) =
cosh θi + cosh θj cosh θk

sinh θj sinh θk

for a right-angle hyperbolic hexagon with three non-adjacent edge lengths
l1, l2, l3 and their opposite edge lengths θ1, θ2, θ3. Note that (2.2) can be
considered the same as (2.1) applied to a triangle in the extension of
the hyperbolic plane by the de Sitter plane.

Identities (2.1) and (2.2) show that the cosine laws are specializations
of the cosine law function y = y(x) defined by (1.8). The following was
proved in [28].
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Theorem 2.1. Suppose the cosine law function y = y(x) is de-
fined on an open connected set in C3 which contains a point (a, a, a) so
that y(a, a, a) = (b, b, b). Let Aijk = sin yi sinxj sinxk where {i, j, k} =
{1, 2, 3}. Then
(2.3) Aijk = Ajki = A123.

(2.4) A2
ijk = 1− cos2 xi − cos2 xj − cos2 xk − 2 cos xi cos xj cos xk.

At a point x where Aijk 6= 0, then,

(2.5)
∂yi
∂xi

=
sinxi
Aijk

,

(2.6)
∂yi
∂xj

=
∂yi
∂xi

cos yk,

(2.7) cos(xi) =
cos yi − cos yj cos yk

sin yj sin yk
.

Remark 2.2. Formula (2.3) shows that sin yi
sinxi

is independent of the
index i. It is the sine law.

Remark 2.3. Identity (2.7) can be written in the symmetric form as

(2.8) cos(π − xi) =
cos(π − yi) + cos(π − yj) cos(π − yk)

sin(π − yj) sin(π − yk)
.

This reflects the duality of the spherical triangles. Namely, the dual
triangle of a spherical triangle has edge lengths π − θi and inner angles
π − li. In particular, by (2.6) applied to (2.8), we obtain

(2.9)
∂xi
∂yj

= −∂xi
∂yi

cos xk.

Remark 2.4. Identity (1.5) follows from (2.6) and (2.9).

Remark 2.5. If we consider (yi, xj , xk) as a function of (yj, yk, xi) in
the cosine law, there are similar derivative identities which we call the
derivative cosine laws of second kind. See appendix B.

2.2. The tangent law and the radius parameterization. Many
geometric problems (circle packing, etc.) prompt us to parameterize a
triangle whose i-th edge length (or angle) xi is by rj + rk, i.e., one uses
(r1, r2, r3) to parameterize (x1, x2, x3) where ri =

1
2(xj +xk−xi). If the

xi are the edge lengths, then the ri are the radii of the pairwise tangent
circles whose centers are the vertices of the triangle. If the xi are the
inner angles, then ri is π/2 less the angle between the i-th edge and the
circumcircle.
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 i−th vertex

riπ/2−

ri

rjr
k

Figure 2

Lemma 2.6. For the cosine law function y = y(x), write xi = rj+rk,

or ri =
1
2(xj +xk − xi); under the same assumption as in Theorem 2.1,

the following expression is independent of the indices:

(2.10)
tan2(yi/2)

cos2(ri)
= − cos(r1 + r2 + r3)

cos(r1) cos(r2) cos(r3)
.

Furthermore, there is a quantity A = sin(yi) sin(xj) sin(xk) independent
of indices so that

(2.11)
1

cos(ri)

∂yi
∂rj

=
2cos(rk)

A sin(xk)

and
∂yi
∂ri

=
2 sin(xj + xk) cos(rj) cos(rk)

A sin(xj) sin(xk)
.

In particular,

(2.12)
∂yi/∂rj
∂yj/∂ri

=
cos(ri)

cos(rj)
=

tan(yi/2)

tan(yj/2)
.

We call identity (2.10) the tangent law. In the case of a Euclidean
triangle of edge lengths ri + rj and opposite angle θk, identity (2.10)
says that ri tan(θi/2) is independent of the index i (the common value
is the radius of the inscribed circle).

Proof. To see (2.10), let us calculate tan2(yi/2). It is

tan2(yi/2) =
1− cos(yi)

1 + cos(yi)

=
sin(xj) sin(xk)− cos(xi)− cos(xj) cos(xk)

sin(xj) sin(xk) + cos(xi) + cos(xj) cos(xk)

= −cos(xi) + cos(xj + xk)

cos(xi) + cos(xj − xk)

= −cos(ri) cos(r1 + r2 + r3)

cos(rj) cos(rk)

= −cos2(ri) cos(r1 + r2 + r3)

cos(r1) cos(r2) cos(r3)
.

Thus (2.10) follows.



252 F. LUO

Next, let us calculate ∂yi
∂rj

for i 6= j. Note that due to xi = rj + rk, we

have ∂
∂rj

= ∂
∂xi

+ ∂
∂xk

. Thus

∂yi
∂rj

=
∂yi
∂xi

+
∂yi
∂xk

=
∂yi
∂xi

(1 + cos(yj))

=
sin(xi)

A

(

cos(xj) + cos(xi − xk)

sin(xi) sin(xk)

)

=
2cos(ri) cos(rk)

A sin(xk)
.

This establishes (2.11).

To see ∂yi
∂ri

, we have

∂yi
∂ri

=
∂yi
∂xj

+
∂yi
∂xk

=
∂yi
∂xi

(cos(yk) + cos(yj))

=
sin(xi)

A

(

cos(xk) + cos(xi) cos(xj)

sin(xi) sin(xj)
+

cos(xj) + cos(xi) cos(xk)

sin(xi) sin(xk)

)

=
sin(xj) cos(xj) + sin(xk) cos(xk) + cos(xi)(cos(xj) sin(xk) + cos(xk) sin(xj))

A sin(xj) sin(xk)

=
sin(xj + xk) cos(xj − xk) + cos(xi) sin(xj + xk)

A sin(xj) sin(xk)

=
2 sin(xj + xk) cos(rj) cos(rk)

A sin(xj) sin(xk)
.

q.e.d.

2.3. A proof of Theorem 1.11. We prove that the 1-forms in the list
are closed. Indeed, a holomorphic 1-form ωh =

∑3
i=1 f(yi)g

′(xi)dxi is

closed if and only if ∂(f(yi)g′(xi))
∂xj

= f ′(yi)g
′(xi)

∂yi
∂xj

is symmetric in i, j.

For ωh where f ′(t) = sinh(t) and g′(t) = sin−h−1(t), we have

∂(f(yi)g
′(xi))

∂xj
= f ′(yi)g

′(xi)
∂yi
∂xj

=
1

A
f ′(yi)g

′(xi) sin(xi) cos(yk)

=
1

A

(

sin(yi)

sin(xi)

)h

cos(yk)

whereA is independent of the indices by Theorem 2.1. The above expres-
sion is clearly symmetric in i, j due to the sine law. Thus the closedness
follows.
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To see the holomorphic 1-form ηh =
∑3

i=1 f(yi)dg(ri) is closed, we

check if the quantity f ′(yi)g
′(ri)

∂yi
∂rj

is symmetric in i, j for f ′(t) =

tanh(t/2) and g′(t) = cos−h−1(t). Indeed, it is equal to

tanh(yi/2)

cosh+1(ri)

∂yi
∂rj

=

(

tan(yi/2)

cos(ri)

)h( 1

cos(ri)

∂yi
∂rj

)

where 1
cos(ri)

∂yi
∂rj

is symmetric in i, j by (2.11) and tan(yi/2)
cos(ri)

is independent

of i by the tangent law. This shows the closedness.
The proof that these are all closed 1-forms is relatively long and the

techniques used will not be used anywhere in the paper. We defer it to
Appendix A.

2.4. Hessian matrices of the energy functions. In Theorem 1.11,
let ui =

∫ xi sin−h−1(t)dt in the case of wh and ui =
∫ ri cos−h−1(t)dt for

ηh; then the closed 1-forms are wh =
∑3

i=1

∫ yi sinh(t)dtdui and ηh =
∑3

i=1

∫ yi tanh(t/2)dtdui.

Lemma 2.7. For any two h, h′,

(a) the Hessian matrices of the two functions
∫ u

wh and
∫ u

wh′ are
congruent;

(b) the Hessian matrices of the two functions
∫ u

ηh and
∫ u

ηh′ are
congruent.

Proof. In the case of wh, the Hessian of the function F (u) =
∫ u

wh

is [∂2F/∂us∂ut] where

∂2F

∂us∂ut
= sinh(yt)

∂yt
∂xs

∂xs
∂us

= sinh(yt) sin
h+1(xs)

∂yt
∂xs

(2.13) =

(

sin(yt)

sin(xt)

)h

(sin(xt) sin(xs))
h

(

sin(xs)
∂ys
∂xt

)

.

Let q = ( sin(yt)sin(xt)
)h be the function which is independent of index t due to

the sine law and D be the 3× 3 diagonal matrix whose (i, i)-th entry is

sinh(xi). Then (2.13) shows that the Hessian matrix is qD[sin(xs)
∂ys
∂xt

]D.
It follows that the Hessian matrices for different h’s are congruent.

By the same calculation using the tangent law instead of the sine law,
for the integration of ηh, we see that the (s, t)-th entry of the Hessian
matrix is

(

tan(yt/2)

cos(rt)
)h(cos(rs) cos(rt)

)h(

cos(rt)
∂yt
∂rs

)

.

This shows that the Hessian matrices for different h’s are congruent.
q.e.d.
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2.5. The Legendre transformation. The integrals
∫

wh in Theorem
1.11 are not independent. In fact

∫

wh and
∫

w−h−1 are Legendre trans-
formations of each other.

Let us recall briefly the Legendre transforms. Suppose U and V are
diffeomorphic connected open sets in Rn so that the first de Rham
cohomology group H1

dR(U) = 0. Let x = (x1, . . . , xn) ∈ U and y =
(y1, . . . , yn) ∈ V and y = y(x) : U → V be a diffeomorphism so that its
Jacobian matrix is symmetric, i.e.,

∂yi
∂xj

=
∂yj
∂xi

.

Then the differential 1-forms wU =
∑n

i=1 yidxi and wV =
∑n

i=1 xidyi
are closed in U and V respectively. Their integrations f(x) =

∫ x
a wU

and g(y) =
∫ y
b wV + (a, b) where b = y(a) and (a, b) is the dot prod-

uct are well defined due to H1
dR(U) = H1

dR(V ) = 0. We call g(y) the
Legendre transformation of f(x) (and vice versa). By the construction,
the Hessian matrices of f and g are inverses of each other. Therefore the
Legendre transform of a strictly convex (or concave) function is strictly
convex (or concave).

Proposition 2.8. Let fh(x) =
∫ x
(π/2,π/2,π/2)

∑3
i=1

∫ yi
π/2

sinh(t)dt

sinh+1(xi)
dxi.

Then the Legendre transformation of fh(x) is f− h−1(x)− f−h−1(0). In
particular, the Legendre transform of f−1/2(x) is f−1/2(x) up to adding
a constant.

Proof. Let gh(y) be the Legendre transformation of fh(x). Then,

gh(y) =

∫ y

(π/2,π/2,π/2)

3
∑

i=1

(

∫ xi

π/2
sin−h−1(t)dt

)

d

(

∫ yi

π/2
sinh(t)dt

)

+ c

where c = gh(0, 0, 0) − gh(π/2, π/2, π/2). In the above identity, x and
y are related by the cosine law (1.8) which we denote by y = CL(x).
Let w = (w1, w2, w3) and v = (v1, v2, v3) so that wi = π − yi and
vi = π − xi. Then by (2.8), we have v = CL(w). Making a change of
variables xi = π − vi and yi = π − wi in the integral of gh, we obtain

gh(y) =

∫ (π−w1,π−w2,π−w3)

(π/2,π/2,π/2)

3
∑

i=1

(

∫ π−xi

π/2
sin−h−1(π − t)d(π − t)

)

sinh(π − wi)d(π − wi) + c

=

∫ (π−w1,π−w2,π−w3)

(π/2,π/2,π/2)

3
∑

i=1

(

∫ vi

π/2
sin−h−1(t)dt

)

sinh(wi)dwi + c

= f−h−1(y) + c

since v = CL(w). Thus gh(y) = f−h−1(y)− f−h−1(0).
q.e.d.
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3. Energy functionals on the moduli spaces of geometric
triangles

In this section, we consider 1-forms in Theorem 1.11 defined on the
moduli spaces of geometric triangles and determine the convexity of the
integrals of the 1-forms.

3.1. Derivative cosine laws for geometric triangles. Take
(x1, x2, x3) and (y1, y2, y3) in Theorem 2.1 to be the inner angles (θ1, θ2, θ3)
and edge lengths (l1, l2, l3) of a triangle in E2, H2, or S2. Then:

Corollary 3.1. Let {i, j, k} = {1, 2, 3}. There is a positive quantity
A independent of indices so that

(a) ([10])

∂θi
∂lj

= −∂θi
∂li

cos(θk) and
∂θi
∂li

=
sin(θi)

A
> 0.

(b) For spherical triangles,

∂li
∂θj

=
∂li
∂θi

cos(lk) and
∂li
∂θi

=
sin(li)

A
> 0.

(c) For hyperbolic triangles,

∂li
∂θj

=
∂li
∂θi

cosh(lk) and
∂li
∂θi

= −sinh(li)

A
< 0.

(d) For a hyperbolic right-angled hexagon of three non-pairwise adja-
cent edge lengths l1, l2, l3 and opposite edge lengths θ1, θ2, θ3,

∂θi
∂lj

= −∂θi
∂li

cosh(θk) and
∂θi
∂li

=
sinh(θi)

A
> 0.

The proof uses Theorem 2.1 by taking care of the curvature factor
λ = ±1, 0 that appeared in (2.1). Note that cos(

√
−1x) = cosh(x),

sin(
√
−1x) =

√
−1 sinh(x), and sinh(

√
−1x) =

√
−1 sin(x). Using these

relations, part (a) follows from (2.9) where xi = θi and yi =
√
λli for

λ = ±1. Part (a) for a Euclidean triangle was established in [10] and
can be checked directly. Parts (b) and (c) follow from Theorem 2.1. To
see part (d), note that the cosine law for hexagon can be written as

cos(π −
√
−1θi) =

cos(
√
−1li) + cos(

√
−1lj) cos(

√
−1lk)

sin(
√
−1lj) sin(

√
−1lk)

.

Thus part (d) follows from Theorem 2.1.

3.2. Closed 1-forms on the space of triangles parameterized by
edge lengths. Using Corollary 3.1 and Theorem 1.11, we obtain,
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Theorem 3.2. Let a triangle in E2, H2, or S2 have inner angles
θ1, θ2, θ3 and opposite edge lengths l1, l2, l3. The following is the complete
list, up to scaling, of all closed real-valued 1-forms (in variables l1, l2, l3)

of the form
∑3

i=1 f(θi)dg(li) for some non-constant smooth functions
f, g. Let h ∈ R and u = (u1, u2, u3).

(a) For a Euclidean triangle,

wh =

3
∑

i=1

∫ θi sinh(t)dt

lh+1
i

dli,

i.e., f ′(t) = sinh(t) and g′(t) = t−h−1. Furthermore, its integral
∫ u

wh has a positive semidefinite Hessian matrix in variable u

where ui =
∫ li
1 t−h−1dt.

(b) For a spherical triangle,

wh =
3
∑

i=1

∫ θi sinh(t)dt

sinh+1(li)
dli,

i.e., f ′(t) = sinh(t) and g′(t) = sin−h−1(t). The integral
∫ u

wh has

a positive definite Hessian matrix in u where ui =
∫ li
π/2 sin

−h−1(t)dt.

(c) For a hyperbolic triangle,

wh =
3
∑

i=1

∫ θi sinh(t)dt

sinhh+1(li)
dli,

i.e., f ′(t) = sinh(t) and g′(t) = sinh−h−1(t).
(d) For a hyperbolic right-angled hexagon,

wh =
3
∑

i=1

∫ θi sinhh(t)dt

sinhh+1(li)
dli,

i.e., f ′(t) = sinhh(t) and g′(t) = sinh−h−1(t).

In the cases of (b), (c), (d), by taking the Legendre transforma-
tion, we also obtain the complete list of all closed 1-forms of the form
∑3

i=1 g(li)df(θi).

Proof. The closedness of these 1-forms is evident due to Theorem 1.11
and Corollary 3.1 except in the case of Euclidean triangles. In the case
of E2, we need to verify that the expression

(3.1)
∂

∂lj

(

∫ θi sinh(t)dt

lh+1
i

)

is symmetric in i, j. By Corollary 3.1 that ∂θi
∂lj

= −∂θi
∂li

cos(θk) =

− sin(θi)
A cos(θk), the expression (3.1) is equal to 1

lh+1
i

sinh(θi)
∂θi
∂lj

=
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−( sin(θi)li
)h+1 cos(θk)

A where A is independent of indices. It is symmetric
in i, j due to the sine law.

To verify the convexity, note that if ui = g(li) and w =
∑3

i=1 f(θi)dui
is closed, then the Hessian of the function F (u) =

∫ u
w is [ ∂2F

∂ur∂us
] =

[f
′(θr)
g′(ls)

∂θr
∂ls

].

In the cases (a)–(d), by the sine law and the choice of f, g, f ′(θi)
sin(θi)g

′(li) = q is a positive function independent of the indices. Thus

the (r, s)-th entry of the Hessian matrix [ ∂2F
∂ur∂us

] can be written as

f ′(θr)

g′(ls)

∂θr
∂ls

= (f ′(θr) sin(θr)g
′(lr))(

1

g′(lr)g′(ls)
)

(

1

sin(θr)

∂θr
∂ls

)

=

(

q

g′(lr)g′(ls)
)(

1

sin(θr)

∂θr
∂ls

)

.

This shows that the Hessian matrix can be written as qDLD where
D is the positive diagonal matrix whose (i, i)-th entry is 1

g(li)
and L =

[ 1
sin(θr)

∂θr
∂ls

]3×3. Recall that given a triangle with inner angles θ1, θ2, θ3,

its (angle) Gram matrix [ars]3×3 satisfies aii = 1 and aij = − cos(θk)
({i, j, k} = {1, 2, 3}). On the other hand, by Corollary 3.1(a), the matrix
L is equal to the Gram matrix multiplied by the positive function 1/A.
As a consequence, the Hessian of the integral of the 1-forms in (a)-(d) is
congruent to the Gram matrix of the triangle. It is well known that the
Gram matrix of a Euclidean triangle is positive semi-definite of rank 2
and the Gram matrix of a spherical triangle is positive definite. (See for
instance [28] for proofs.) Thus the local convexity of the integrations
for Euclidean and spherical triangles follows. q.e.d.

Corollary 3.3. In Theorem 3.2(a), the null space of the Hessian
matrix Hess(F ) of F =

∫ u
wh at a point u is generated by the vector u

if h 6= 0 and is generated by (1, 1, 1) if h = 0.

Indeed, if v = (v1, v2, v3) is in the kernel of the Hessian, then by
definition and the calculation above, we have

∑

r,s∈{i,j,k}

vrvs
g′(lr)g′(ls)

ars = 0

where [ars]3×3 is the Gram matrix of the Euclidean triangle. Due to
li − lj cos(θk) − lk cos(θj) = 0, the null space of the Gram matrix of a
Euclidean triangle of edge lengths (li, lj , lk) is generated by the length
vector (li, lj , lk). It follows that there is a constant c ∈ R so that vr =

clrg
′(lr) = cl−h

r for r = i, j, k. On the other hand, for h 6= 0, ur = − 1
h l

−h
r .

Therefore, if h 6= 0, v = −(ch)u and if h = 0, v = c(1, 1, 1).
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3.3. Closed 1-forms on the space of triangles parameterized by
radii. In this section, we establish the counterpart of Theorem 3.2 for
triangles parameterized by the radii. There are two cases to be discussed:
(1) the edge lengths are lk = ri + rj and opposite angles are θk and (2)
edge lengths are li and the opposite angles θi = rj + rk. Let {i, j, k} =
{1, 2, 3} in this subsection.

Theorem 3.4. The following are the complete list, up to scaling,
of all closed real-valued 1-forms of the form

∑3
i=1 f(li)dg(ri) (where

θi = rj + rk) and
∑3

i=1 f(θi)dg(ri) (where li = rj + rk) for some non-
constant smooth functions f, g. Let h ∈ R and u = (u1, u2, u3).

(a) For a Euclidean triangle of angles θi and opposite edge lengths
rj + rk,

ηh =

3
∑

i=1

∫ θi coth(t/2)dt

rh+1
i

dri,

i.e., f ′(t) = coth(t/2) and g′(t) = t−h−1. Its integral
∫ u

ηh has
a negative semi-definite Hessian matrix in u = (u1, u2, u3) where
ui =

∫ ri
1 t−h−1dt.

(b) For a hyperbolic triangle of angles θi and opposite edge lengths
rj + rk,

ηh =

3
∑

i=1

∫ θi coth(t/2)dt

sinhh+1(ri)
dri,

i.e., f ′(t) = coth(t/2) and g′(t) = sinh−h−1(t). Its integral
∫ u

ηh
has a negative semi-definite Hessian matrix in u where ui =
∫ ri
1 sinh−h−1(t)dt.

(c) For a spherical triangle of angles θi and opposite edge lengths rj +
rk,

ηh =

3
∑

i=1

∫ θi coth(t/2)dt

sinh+1(ri)
dri,

i.e., f ′(t) = coth(t/2) and g′(t) = sin−h−1(t).
(d) For a hyperbolic triangle of edge lengths li and opposite angles

rj + rk,

ηh =

3
∑

i=1

∫ li tanhh(t/2)dt

cosh+1(ri)
dri,

i.e., f ′(t) = tanhh(t/2) and g′(t) = cos−h−1(t). Its integral
∫ u

ηh
has a positive definite Hessian matrix in u where ui =
∫ ri
1 cos−h−1(t)dt.
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(e) For a spherical triangle of edge lengths li and opposite angles rj +
rk,

ηh =

3
∑

i=1

∫ li tanh(t/2)dt

cosh+1(ri)
dri,

f ′(t) = tanh(t/2) and g′(t) = cos−h−1(t).
(f) For a hyperbolic right-angled hexagon of three non-pairwise adja-

cent edge lengths li and opposite edge lengths rj + rk,

ηh =

3
∑

i=1

∫ li cothh(t/2)dt

coshh+1(ri)
dri,

i.e., f ′(t) = cothh(t/2) and g′(t) = cosh−h−1(t). Its integral
∫ u

ηh
has a negative definite Hessian matrix in u where ui =
∫ ri
1 cosh−h−1(t)dt.

Proof. The proof of the uniqueness is essentially the same as that
of Theorem 1.11 and will be omitted (see appendix A). The proof of
closedness of the 1-forms follows from Theorem 1.11 by taking care of
the curvature factors. Indeed, for (b) and (c), we take yi = π − θi and

xi = π −
√
δli in Theorem 1.11 where δ = ±1 is the curvature of the

space S2 or H2. For (d) and (e), we take yi =
√
δli and xi = θi. For (f),

we take yi = π −
√
−1li and xi =

√
−1θi in Theorem 1.11.

It remains to prove the closedness in case (a). The closedness of the

1-form means ∂(f(θi)g
′(ri))

∂rj
is symmetric in i, j. Let the R be the radius

of the inscribed circle given by R = ri tan(θi/2). By Corollary 3.1(a),
we have

∂θi
∂rj

=
∂θi
∂li

+
∂θi
∂lk

=
∂θi
∂li

(1− cos(θj)) =
2 sin(θi) sin

2(θj/2)

A

=
4ri sin

2(θi/2) sin
2(θj/2)

AR
.(3.2)

Using (3.2), f ′(t) = coth(t/2) and g′(t) = r−h−1, we obtain

∂(f(θi)g
′(ri))

∂rj
= f ′(θi)g

′(ri)
∂θi
∂rj

= (ri tan(θi/2))
−h

(

r−1
i

∂θi
∂rj

)

= R−h

(

r−1
i

∂θi
∂rj

)

(3.3)

(3.4) =
4R−h−1

A
sin2(θi/2) sin

2(θj/2)

is symmetric in i, j, i.e., the 1-form ηh =
∑

i f(θi)dg(ri) in case (a) is
closed.

The convexity or concavity of the functions in cases (b), (d), (f) is
proved as follows. By Lemma 2.7, for any two h and h′, the Hessian
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matrices of the associated functions
∫ u

ηh and
∫ u

ηh′ in each case of
(b)–(f) are congruent. Thus, to check the convexity or concavity in cases
(b), (d), and (f), it suffices to verify it for a specific value of h. These
special cases were established by various authors. For cases (a), (b) and
h = 0, Colin de Verdière [11] proved the concavity of the function

∫ u
η0.

In case (d), Leibon [25] proved the strict convexity for h = 0. In case
(f), we proved it for h = 0 in [27]. Finally, to verify the concavity of case
(a), we note that (3.3) (which holds even for i = j) shows the Hessian
matrices of the functions

∫ u
ηh and

∫ u
η0 are congruent. Since

∫ u
η0 is

shown in [11] to be concave, it follows that
∫ u

ηh is concave in u. q.e.d.

Corollary 3.5. (See also [11]). In Theorem 3.4(a), for a Euclidean
triangle of edge lengths li = rj+rk, the null space of the Hessian Hess(F)
where F (u) =

∫ u
ηh at a point u is generated by the vector u for h 6= 0

and by (1, 1, 1) if h = 0.

Indeed, we first note that the null space of the symmetric 3×3 matrix
[ast] contains (1, 1, 1) due to the equality aii+aij+aik = 0. Next, we note
that the rank of [ast] is 2, due to the fact that |aii| > |aij |, for all i 6= j.
Thus the null space of [ast] is generated by (1, 1, 1). Now the Hessian
matrix H is R−h[rhs r

h
t ast] by the calculation above. It follows that the

null space of H is generated by (1, 1, 1) if h = 0 or by 1
h(r

−h
1 , r−h

2 , r−h
3 ) =

u if h 6= 0.

4. Infinitesimal and global rigidity of polyhedral surfaces

Suppose (S,T ) is a closed triangulated surface so that V,E, and T
are the sets of all vertices, edges, and triangles. Let K2 = H2, S2, or
E2. The moduli space of all K2-polyhedral metrics on (S,T ), denoted
by PK2(S,T ), is the set of all polyhedral metrics l : E → R>0 so
that l(ei) + l(ej) > l(ek) whenever ei, ej , ek are edges of a triangle and
if K2 = S2, one requires further that l(ei) + l(ej) + l(ek) < 2π. By
definition, the space PK2(S,T ) is a convex polytope in the Euclidean
space RE . Define three maps Φh,Ψh, and Kh on PK2(S,T ) as follows.
The map Φh : PK2(S,T ) → RE sends a metric to its φh curvature
defined by (1.1). The map Ψh : PK2(S,T ) → RE sends a metric l to its
ψh curvature defined by (1.2). The map Kh : PK2(S,T ) → RV sends
a polyhedral metric l to its kh discrete curvature defined by (1.3). Let
R>0 act on RE by multiplication. Then PE2(S,T ) ⊂ RE is invariant
under the action. The orbit space, denoted by PE2(S,T )/R>0, is the
set of all Euclidean polyhedral metrics on (S,T ) modulo scaling. By
definition, all maps Φh, Ψh, and Kh defined on PE2(S,T ) are invariant
under the action, i.e., they satisfy the equation φ(kx) = φ(x) for all
k ∈ R>0. We use the same notations Φh, Ψh, and Kh to denote the
induced maps from PE2(S,T )/R>0 to RE or RV . We use CPK2(S,T )
to denote the space of all K2 circle packing metrics on (S, T ) for K2 =
E2,H2, or S2. In particular, if K2 = H2,E2, then CPK2(S,T ) = RV

>0
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and CPS2(S,T ) = {r ∈ RV
>0|r(v1) + r(v2) + r(v3) < π if v1, v2, v3 are

vertices of a triangle}. The space of all Euclidean circle packing metrics
modulo scaling is denoted by CPE2(S,T )/R>0.

4.1. The main results. The relationship between the metric l and
its various curvatures is encoded by these maps Kh,Φh, and Ψh. For
instance, the rigidity theorem that the φh curvature determines the
metric means that the map Φh is injective. The corresponding infinites-
imal rigidity theorem says that Φh is a local diffeomorphism. Our main
result, which implies Theorem 1.7, is

Theorem 4.1. Suppose (S,T ) is a triangulated closed surface and
h ∈ R.

(a) The map Φh : PS2(S,T ) → RE is a smooth embedding.
(b) The map Φh : PE2(S,T )/R>0 → RE is a smooth embedding.
(c) The map Kh : CPH2(S,T ) → RV is a smooth embedding.
(d) The map Kh : CPE2(S,T )/R>0 → RV is a smooth embedding.
(e) The map Ψh : PH2(S,T ) → RE is a smooth embedding.

In particular, in cases (a), (c), (e), the maps are local diffeomor-
phisms.

In this paper, we will prove parts (c), (d) and the infinitesimal rigidity
part of (a), (b), (e) of Theorem 4.1, i.e., the derivatives of the maps in
Theorem 4.1 are injective. The injectivity of the maps in parts (a), (b),
(e) are proved in [29].

The proof uses Lemma 1.10 and the convex or concave energy func-
tions in Theorems 3.2 and 3.4. The following convention will be used.
Let E = {e1, . . . , en} be the set of all edges in the triangulation T . If
x : E → X, then xi denotes x(ei).

4.2. Proof of infinitesimal rigidity part of Theorem 4.1(a) and

4.1(e). Let f(t) =
∫ t
π/2 sin

−h−1(x)dx for t ∈ (0, π). Then f ′(t) > 0 on

(0, π) and f(t) is strictly increasing. Given l ∈ PS2(S,T ) with li = l(ei),
define u : E → R by ui = f(li) and write u = (u1, . . . , un). Then the
map u = u(l) : PS2(S, T ) → RE is a smooth embedding. Let Ω =
u(PS2(S, T )) which is open in RE . Recall from Theorem 3.2 that if
li, lj , lk are the edge lengths of a spherical triangle with opposite angles
θi, θj, θk, then the differential 1-form

wh =

∫ θi

π/2
sinh(t)dtdui +

∫ θj

π/2
sinh(t)dtduj +

∫ θk

π/2
sinh(t)dtduk

is closed and its integral F (ui, uj , uk) =
∫ (ui,uj ,uk)

(π/2,π/2,π/2) wh has a positive

definite Hessian matrix. Define an energy function W : Ω → R by

W (u) =
∑

{ea,eb,ec}∈T

F (ua, ub, uc)



262 F. LUO

where the sum is over all triangles whose edges are {ea, eb, ec}. By the
construction,

∂W

∂ui
=

∫ α

π/2
sinh(t)dt+

∫ β

π/2
sinh(t)dt

where α, β are the angles facing the edge ei, i.e.,

▽W = −(φh(e1), . . . , φh(en)).

We claim that the Hessian Hess(W ) of W is positive definite. Indeed,
take a non-zero vector v = (v1, . . . , vn) ∈ Rn and let vt be the transpose
of v. By definition of W ,
(4.1)

v·Hess(W )·vt =
∑

{ea,eb,ec}∈T

(va, vb, vc)·Hess(F )|(ua ,ub,uc)·(va, vb, vc)t > 0

since each summand above is non-negative and one of the summand

(4.2) (va, vb, vc) ·Hess(F ) · (va, vb, vc)t > 0

due to (va, vb, vc) 6= 0 for some (va, vb, vc).
By Lemma 1.10 applied to W on Ω, we conclude that Φh is a local

diffeomorphism.
Exactly the same argument shows the infinitesimal rigidity in part

4.1(e). We use the strict convexity of the Legendre transform of the
function in Theorem 3.4(b).

4.3. Proofs of infinitesimal rigidity part of Theorem 4.1(b). For

an E2 polyhedral metric l : E → R>0, let ui = f(li) where ui = − 1
h l

−h
i

if h 6= 0 and ui = ln(li) if h = 0. The space of all E2 polyhedral metrics
on (S, T ), parameterized by the edge length function, is the open convex
polytope PE2(S, T ) in RE

>0. The map u = u(l) sends PE2(S, T ) onto an

open set Ω ⊂ RE . Since f(µli) = µ−hf(li) for h 6= 0 and f(µli) =
f(li)+ ln(µ) for h = 0, the space Ω has the following property. If h 6= 0,
then for any positive number c ∈ R>0, cΩ = {cx|x ∈ Ω} = Ω. If h = 0,
then for any c ∈ R, Ω + c(1, 1, . . . , 1) = {x + c(1, 1, . . . , 1)|x ∈ Ω} = Ω.
It follows that the space PE2(S, T )/R>0 of all Euclidean polyhedral
metrics modulo scaling is diffeomorphic, under the map u = u(l), to the
set Ω ∩ Ph where Ph = {u = (u1, . . . , un) ∈ RE |∑n

i=1 ui = −h}.
By Theorem 3.2(a), if li, lj , lk are the edge lengths of a Euclidean

triangle with opposite angles θi, θj , θk, then the differential 1-form

ωh =

∫ θi

π/2
sinh(t)dtdui +

∫ θj

π/2
sinh(t)dtduj +

∫ θk

π/2
sinh(t)dtduk

is closed and its integral F (ui, uj , uk) =
∫ (ui,uj ,uk)

(π/2,π/2,π/2) ωh has a positive

semidefinite Hessian matrix whose null space is generated by (ui, uj , uk)
if h 6= 0 and by (1, 1, 1) if h = 0.
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Now for u = (u1, . . . , un) ∈ Ω, define the energy function

W (u) =
∑

{ea,eb,ec}∈T

F (ua, ub, uc)

where the sum is over all triangles {ea, eb, ec} in T with edges ea, eb, ec.
By the construction, the function W : Ω → R has a positive semi-
definite Hessian matrix so that the gradient of W is the −φh curvature.
To establish Theorem 4.1(b), it suffices to prove that the gradient map
▽W restricted to Ω ∩ Ph is an immersion.

Lemma 4.2. The restriction map W | : Ω ∩ Ph → R has a posi-
tive definite Hessian matrix. In particular, the associated gradient map
▽(W |) : Ω ∩ Ph → P0 = Rn−1 is a local diffeomorphism.

Proof. Let A : Rn → P0 be the orthogonal projection. Then by defi-
nition, ▽(W |) = A(▽(W )|) on the subspace Ω ∩ Ph. Furthermore, the
restriction of the Hessian Hess(W ) to P0 × P0 is the Hessian matrix
Hess(W |) of W |. Thus it suffices to show that the null space of the
Hessian Hess(W ) at a point u is transverse to the plane P0. To see this,
take a vector v = (v1, . . . , vn) ∈ Rn so that

vHess(W )|uvt = 0

where vt is the transpose of the row vector v. By the definition of the
function W , the above identity is equivalent to

∑

{ea,eb,ec}∈T

(va, vb, vc)Hess(F )|(ua,ub,uc)(va, vb, vc)
t = 0.

Each term in the summation is non-negative due to the convexity of F .
It follows that all terms are vanishing, i.e.,

(va, vb, vc)Hess(F )|(ua,ub,uc)(va, vb, vc)
t = 0.

By Corollary 3.3, there is a constant C{a,b,c} depending only on the
triangle {ea, eb, ec} so that if h 6= 0,

(4.3) (va, vb, vc) = C{a,b,c}(ua, ub, uc)

and if h = 0,

(4.4) (va, vb, vc) = C{a,b,c}(1, 1, 1).

Take two triangles sharing the same edge ea; say these triangles are
{ea, eb, ec} and {ea, ei, ej}. Then (4.3) and (4.4) hold for both triangles.
In the case h 6= 0, by (4.3), we obtain C{a,b,c}ua = C{a,i,j}ua = va. Since
ua 6= 0 for h 6= 0, this implies that C{a,b,c} = C{a,i,j}. On the other hand,
the surface is assumed to be connected. Thus there is a constant C so
that C{a,b,c} = C for all triangles {ea, eb, ec}. By the same argument
using (4.4), we conclude that for h = 0, C{a,b,c} is again a constant. In
summary, we have v = Cu if h 6= 0 and v = C(1, 1, . . . , 1) if h = 0.
Since the vector v is not in the subspace P0 unless v = 0, this shows
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thatW | : Ω∩Ph → R has a positive definite Hessian matrix. By Lemma
1.10, it follows that ▽(W )| : Ω ∩ Ph → Rn is an immersion. q.e.d.

4.4. A proof of Theorem 4.1(c). The proof is straightforward due
to the strict convexity of the energy functional in Theorem 3.4(b) (by
replacing h by −h). Namely, given a hyperbolic triangle of edge lengths
lk = ri + rj , {i, j, k} = {1, 2, 3}, and opposite angles θk, the differential
1-form

ηh =
3
∑

i=1

∫ θi

π/2
tanh(t/2)dtdui

is closed where ui =
∫ ri
1 sinhh−1(t)dt. Furthermore, the Hessian matrix

of the function F (u1, u2, u3) =
∫ u

ηh is positive definite. By definition,
we have

∂F

∂ui
=

∫ θi

π/2
tanh(t)dt.

Let V = {v1, . . . , vm} be the set of all vertices in the triangulation.
For a hyperbolic circle packing metric r : V → R>0, define u = u(r) :

V → R by ui = f(r(vi)) where f(x) =
∫ x
1 sinhh−1(t)dt. The image of

RV
>0 under the map u = u(r) is the open cube JV where J = f(R>0).

Define a smooth function W on JV by

(4.5) W (u1, . . . , um) =
∑

{va,vb,vc}∈T

F (ua, ub, uc)

where the sum is over all triangles with vertices va, vb, vc.
By the construction, W has a positive definite Hessian matrix and its

gradient is the h-th discrete curvature kh.
Thus Theorem 4.1(d) follows from Lemma 1.10 applied to the energy

function W .

Remark 4.3. For h = 0, the above proof was first given by Colin de
Verdière [11].

4.5. A proof of Theorem 4.1(d). The proof of part (d) is essentially
the same as that of parts (b), (c). We sketch the main steps. First, by
Theorem 3.4(a) (by replacing h by −h), the integral F (u) =

∫ u
η of the

closed 1-form

η =

3
∑

i=1

∫ θi

tanh(t/2)dtdui

is locally concave where ui =
1
hr

h
i for h 6= 0 and ui = ln ri for h = 0.

Furthermore, by Corollary 3.5, the null space of the Hessian of F (u) at
a point u is generated by u if h 6= 0 and by (1, 1, 1) if h = 0. Now for
a Euclidean circle packing metric r : V → R>0, define a new function
u : V → R by ui = f(ri) where f(t) =

1
h t

h for h 6= 0 and f(t) = ln(t)

for h = 0. We write u = (u1(r), . . . , um(r)) ∈ RV . The image of RV
>0
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under u = u(r) is an open convex cube IV where I = f(R>0). Define
a function W on IV by the same formula (4.5). Then this function W
is concave with gradient ▽W equal to the h-th discrete curvature. The
space CPE2(S,T )/R>0 of all circle packing metrics modulo scaling is

homeomorphic to IV ∩Ph where Ph = {(u1, . . . , um) ∈ R|∑k
i=1 ui = h}

under u = u(l). Now due to Corollary 3.5 and by the same argument as
in §4.3, the function W | : IV ∩Ph → R is strictly concave. Thus by the
convexity of IV ∩ Ph, the map ▽W | : IV ∩ Ph → RV is an embedding.

5. Parameterizations of the Teichmüller Space of a Surface
with Boundary

5.1. Ideal triangulated surfaces. An ideal triangulation of a com-
pact surface is defined as follows. Take a closed triangulated surface
(X,T ∗) with vertex set V . Let N(V ) be a small open regular neighbor-
hood of V . Then S = X − N(V ) is a compact surface with an ideal
triangulation T = {σ ∩ S|σ ∈ T ∗}. It is well known that each com-
pact surface S with ∂S 6= ∅ and negative Euler characteristic admits an
ideal triangulation. We use E to denote the set of all edges in T , i.e.,
E = {e ∩ S|e an edge in T ∗}. If σ is a triangle in T ∗, we call σ ∩ S a
hexagon (a 2-cell) in T and we use T to denote the set of all hexagons
in T .

The geometric realization of a hexagon is the right-angled hyperbolic
hexagon. The following is a well known result. See [6], [22] for a proof.

Lemma 5.1. For any l1, l2, l3 ∈ R>0, there exists a hyperbolic right-
angled hexagon, unique up to isometry, whose three pairwise non-adjacent
edges have lengths l1, l2, l3.

5.2. Coordinates for Teichmüller spaces and the main results.
Suppose (S,T ) is an ideal triangulated compact surface with boundary.
For each h ∈ R, we produce a parameterization ψh of the Teichmüller
space of the surface S in this section. For h = 0, this parameterization
was first found in [27].

Let E = {e1, . . . , em} be the set of all edges in T . As a convention, if
x : E → X is a function, we use xi to denote x(ei). Given T and any
l : E → R>0, we produce a hyperbolic metric with geodesic boundary on
S by making each hexagon in T a right-angled hexagon of given length
l(e)’s (using Lemma 5.1) and gluing them isometrically along edges.
Thus each vector l ∈ RE

>0 produces a hyperbolic metric with geodesic
boundary, still denoted by l, on S. It is known that each hyperbolic
metric with geodesic boundary on S is Teichmüller equivalent to exactly
one such metric l. (See for instance [44], [27] for a proof.) This gives a
parameterization of the Teichmüller space Teich(S) of S by RE

>0.

Let gh(x) =
∫ x
0 coshh(t)dt. For a hyperbolic metric with geodesic

boundary l on S, recall that the ψh curvature of the metric is defined
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to be

ψh(e) = gh

(

b+ c− a

2

)

+ gh

(

b′ + c′ − a′

2

)

where b, c, b′, c′ are the lengths of the edges (in ∂S) adjacent to the edge
e and a, a′ are the lengths of the edges (in ∂S) facing the edge e. See
figure 1. Denote Ψh : RE

>0 → RE the map sending a metric l to its ψh

curvature.

Theorem 5.2. For any h ∈ R and an ideal triangulated surface
(S,T ), the map Ψh : Teich(S) → RE is a smooth embedding.

An edge cycle in (S,T ) is an edge loop in the 1-skeleton of the dual
cellular decomposition of (S, T ). To be more precise, an edge cycle con-
sists of edges {ei1 , . . . , eir} in E and hexagons {H1, . . . ,Hr} in T so
that for all indices s, eis and eis+1 are adjacent to a hexagon Hi where
eir+1 = ei1 .

Theorem 5.3. For any h ∈ R and an ideal triangulated surface
(S,T ), Ψh(Teich(S)) = Ψ0(Teich(S)) = {z ∈ RE | for each edge cycle
{ei1 , . . . , eim}, ∑m

s=1 z(eis) > 0}. Furthermore, the image Ψh(Teich(S))
is an open convex polytope independent of the parameter h ≥ 0.

For h < 0, we conjecture that a similar result holds, i.e., if h < h′ < 0,
then Ψh(Teich(S)) ⊂ Ψh′(Teich(S)) and each Ψh(Teich(S)) is an open
convex polytope. This has been established by Ren Guo [16].

Remark 5.4. (a) Theorems 5.2 and 5.3 were proved for h = 0 in
[27].

(b) Whether these new coordinates are related to the quantum
Teichmüller space ([14], [23], [3], [42]) is an interesting question.

(c) An edge cycle {ei1 , . . . , eim} is called fundamental if each edge
appears at most twice. It is proved in [27] that the convex set
{z ∈ RE | for each edge cycle {ei1 , . . . , eim}, ∑m

s=1 z(eis) > 0} is
defined by a finite set of linear inequalities

∑m
s=1 z(eis) > 0 where

{ei1 , . . . , eim} is a fundamental edge cycle. Thus, Ψh(Teich(S)) is
an open convex polytope in RE .

5.3. A proof of Theorem 5.2. The proof of Theorem 5.2 is very
similar to that of Theorem 4.1(c) and is a simple application of the strict
convexity of the energy functions introduced in §3. By Theorem 3.4(f)
(by replacing h by −h−1) and Legendre transformation, for a hyperbolic
right-angled hexagon of three non-adjacent edge lengths li, lj , lk and
opposite edge lengths θi, θj , θk where θi = rj + rk, i 6= j 6= k 6= i, the
following 1-form

ω =

3
∑

i=1

∫ ri

0
coshh(t)dtd(

∫ li

1
tanhh+1(t/2)dt)
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is closed. Let ui =
∫ li
1 tanhh+1(t/2)dt and u = (u1, u2, u3). Then

w =

3
∑

i=1

∫ ri

0
coshh(t)dtdui,

and the integral F (u) =
∫ u
(1,1,1) w has a negative definite Hessian matrix

in J3 where J = f(R>0) and f(x) =
∫ x
1 tanh h+1(t/2)dt. Furthermore,

∂F
∂ui

=
∫ ri
0 coshh(t)dt.

For a hyperbolic metric l : E → R>0 on (S,T ), let u : E → R be

ui =
∫ l(ei)
1 tanhh+1(t/2)dt. Then the set of all possible values of u forms

the open convex cube JE . Define an energy function W : JE → R by

W (u) =
∑

{ea,eb,ec}∈T

F (ua, ub, uc)

where the sum is over all hexagons with edges ea, eb, ec. By definition
and exactly the same argument as in §4.2, W has a negative definite
Hessian matrix. Furthermore, by the construction of F ,

∂W

∂ui
= ψh(ei)

i.e., ▽W = Ψh. By Lemma 1.10, we conclude that the map ▽W : JE →
RE is a smooth embedding. This proves Theorem 5.2.

5.4. Degenerations of hyperbolic hexagons. Suppose a hyperbolic
right-angled hexagon has three non-pairwise adjacent edge lengths l1, l2, l3
and opposite edge lengths θ1, θ2, θ3 so that the edge of length θi is oppo-
site to the edge of length li. Let ri be

1
2(θj +θk−θi) (i, j, k distinct) and

call ri the r-coordinate at the edge of length θi. Note that θi = rj + rk.

Lemma 5.5. (a) If i 6= j, then lj ≥ cosh−1(coth(θi)). In particu-
lar, limθi→0 lj(θ1, θ2, θ3) = ∞ so that the convergence is uniform
in θ = (θ1, θ2, θ3).

(b) |ri| ≥ cosh−1(12 coth(
li
2 )). In particular, limli→0 |ri(l1, l2, l3)| = ∞

so that the convergence is uniform in l.
(c) Suppose a sequence of hexagons satisfies that |r1|, |r2|, |r3| are uni-

formly bounded. Then limli→∞ θj(l)θk(l) = 0 so that the conver-
gence is uniform in l.

Proof. For (a), we use the cosine law that

cosh(lj) =
cosh(θj) + cosh(θi) cosh(θk)

sinh(θi) sinh(θk)

≥ cosh(θi) cosh(θk)

sinh(θi) sinh(θk)

≥ coth(θi).
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Since limθi→0 coth(θi) = ∞, it follows that limθi→0 lj = ∞ and the
convergence is uniform in θi.

For (b), we use the tangent law (2.10) for hexagons that

tanh2(li/2) =
cosh(rj) cosh(rk)

cosh(ri) cosh(ri + rj + rk)

=
1

cosh(ri)[cosh(ri)(1 + tanh(rj) tanh(rk)) + sinh(ri)(tanh(rj) + tanh(rk))]

≥ 1

cosh(ri)[cosh(ri)(1 + 1) + | sinh(ri)|(1 + 1)]

≥ 1

4 cosh2(ri)
.

It follows that cosh2(ri) ≥ 1
4 tanh2(li/2)

. Thus part (b) follows and the

convergence is uniform in l.
For part (c), by the assumption that |ri|’s are uniformly bounded, it

follows that θi = rj + rk are uniformly bounded from above. Now the
cosine law says that

cosh(li) =
cosh(θi) + cosh(θj) cosh(θk)

sinh(θj) sinh(θk)

≤ C

sinh(θj) sinh(θk)

for some constant C. Thus sinh(θj) sinh(θk) ≤ C
cosh(li)

. Since sinh(t) ≥ t

for t ≥ 0, it follows that limli→∞ θjθk = 0 and the convergence is uniform
in l. q.e.d.

5.5. A proof of Theorem 5.3. Recall that Ψh : RE
>0 → RE is the

map sending a hyperbolic metric l ∈ RE
>0 to its ψh curvature. Let Ω

be the convex set {z ∈ RE | whenever ei1 , . . . , eik form an edge cycle,
∑k

j=1 z(eij ) > 0}. We will prove the theorem in two steps. First, we

show Ψh(R
E
>0) ⊂ Ω. Then, we show Ψh(R

E
>0) is a closed subset of Ω.

Since Theorem 5.2 shows that Ψh(R
E
>0) is open in Ω, it follows from the

connectivity of Ω that Ψh(R
E
>0) = Ω.

To see Ψh(R
E
>0) ⊂ Ω, take a hyperbolic metric l ∈ RE

>0 and an
edge cycle {en1 , . . . , enk

} with associated hexagons {H1, . . . ,Hk}. Let
z = Ψh(l) and ai be the length of the edge in the hexagon Hi adjacent
to both eni and eni+1 . Denote the lengths of the edges in Hi oppo-
site to eni and eni+1 by bi and ci. Then by definition,

∑m
i=1 z(eni) =

∑k
i=1(

∫

ai+bi−ci
2

0 coshh(t)dt +
∫

ai+ci−bi
2

0 coshh(t)dt) where we have rear-
ranged the sum according to the hexagon Hi. Now each term in the

above summation is positive due to
∫ t+c
0 coshh(s)ds+

∫ t−c
0 coshh(s)ds >

0 for any t > 0. It follows that the sum
∑k

i=1 z(eni) > 0.
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To see that Ψh(R
E
>0) is closed in Ω, take a sequence l(m) ∈ RE

>0 so

that Ψh(l
(m)) converges to a point b ∈ Ω. We claim that l(m) contains a

subsequence converging to a point a ∈ RE
>0. By taking a subsequence,

we may assume that limm→∞ l(m) = a ∈ [0,∞]E . The goal is to use
b ∈ Ω to show that for each edge e ∈ E, a(e) ∈ (0,∞).

Suppose otherwise that there is an edge e ∈ E so that a(e) ∈ {0,∞}.
We will derive a contradiction for the two cases a(e) = 0 and a(e) = ∞.

Call an edge of a hexagon in T which appears in ∂S a boundary arc.
The r-coordinate of a boundary arc s is the r-coordinate (introduced in
§5.4) of s in the unique hexagon containing it.

Case 1. a(e) = 0 for some e ∈ E, i.e., limm→∞ l(m)(e) = 0. Let H,H ′ be
the hexagons containing e and rm, r

′
m be the r-coordinates of boundary

arcs in H,H ′ (in metric l(m)) opposite to e. By Lemma 5.5(b), we have
limm→∞ |rm| = limm→∞ |r′m| = ∞. Due to the assumption that b ∈ Ω,

zm(e) =

∫ rm

0
coshh(t)dt+

∫ r′m

0
coshh(t)dt

is bounded inm. On the other hand, h ≥ 0 implies that
∫∞
0 coshh(t)dt =

∞. It follows that one of the limits limm→∞ rm or limm→∞ r′m is ∞ and
other one is −∞. Say limm→∞ rm = −∞. Let r′′m and r′′′m be the r-

coordinates of the other two boundary arcs of H (in metric l(m)). Since
rm + r′′m and rm + r′′′m are both non-negative (being the length of an
edge), we obtain limm→∞ r′′m = ∞ and limm→∞ r′′′m = ∞.

We summarize the above discussion to two rules governing the r-
coordinates of boundary arcs in hexagons in the metrics l(m).
Rule I. If the r-coordinate of a boundary arc converges to −∞, then
the r-coordinates of the other two boundary arcs in the same hexagon
converge to ∞.

Rule II. If x and y are two boundary arcs opposite to an edge so that the
r-coordinate of x converges to ±∞, then the r-coordinate of y converges
to ∓∞.

angle=0
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−

−

−
−

e
ei

i+1

Figure 3

We claim that these two rules are contradicting to each other on
(S,T ). Indeed, since a(e) = 0, there exists a boundary arc whose r-
coordinates converge to ±∞. Now use Rule II to find a boundary arc,
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denoted by a1, whose r-coordinates converge to −∞. Say this boundary
arc lies in the boundary component s of ∂S. See figure 3. Label all
boundary arcs in s by a1, a2, . . . , an in a cyclic order so that ai is in
the hexagon Hi. Let the other two boundary arcs in Hi be bi and ci so
that ci and bi−1 are opposite to the same edge in T . Assign a boundary
arc + (or −) if its r-coordinates converge to ∞ (or −∞) as m → ∞.
In particular, a1 is assigned −. Rule I says both b1 and c1 are assigned
+. Now applying Rule II to c2, b1, we see that c2 is assigned −. Now
applying Rule I to c2 and H2, we see that b2 and a2 are assigned +.
Repeating this, we see that bi are assigned + and ci are assigned −.
Therefore ai are assigned +. However, an+1 = a1 is assigned − by the
choice of a1. This is a contradiction.

The above argument shows that if the r-coordinates of a boundary
arc in the metrics l(m) are not bounded, then we obtain a contradic-
tion. Therefore, we may assume r-coordinates of all boundary arcs are
bounded.

Case 2. There exists an edge e so that a(e) = ∞, i.e., limm l
(m)(e) = 0,

and all r-coordinates of boundary arcs in the metrics l(m) are bounded.
Let H be a hexagon containing the edge e. By the assumption
limm l

(m)(e) = ∞ and Lemma 5.5(a), (c), there exists an edge e′ in
H and a boundary arc x in H adjacent to e and e′ so that

1) The length of x in l(m) tends to 0 as m tends to ∞ (by Lemma

5.5(c) applied to l(m)(e) → ∞), and

2) limm l
(m)(e′) = ∞ (by Lemma 5.5(a) applied to l(m)(x) → 0).

By repeatedly using these two properties, we obtain a cycle of edges,
say {en1 , . . . , enk

} so that

1) limm l
(m)(eni) = ∞,

2) eni and eni+1 lie in a hexagon Hi so that enk+1
= en1 for i =

1, 2, . . . , k,

3) the length a
(m)
i of the boundary arc in Hi adjacent to eni and eni+1

converges to 0 (in the metrics l(m)).

By definition, the sum of the ψh curvature at en1 , . . . , enk
in metric

l(m) is

k
∑

i=1

z(m)(eni) =
k
∑

i=1

∫

a
(m)
i

+b
(m)
i

−c
(m)
i

2

0
coshh(t)dt(5.1)

+

∫

a
(m)
i

−b
(m)
i

+c
(m)
i

2

0
coshh(t)dt

where b
(m)
i and c

(m)
i are the lengths of the boundary arcs in Hi fac-

ing eni and eni+1 and z(m)(e) = ψh(e) in the metric l(m). Due to the
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assumption that all r-coordinates are bounded in the metrics l(m), the

lengths of all boundary arcs are bounded. In particular, b
(m)
i and c

(m)
i

are bounded. Thus, as m tends to infinity, due to limm a
(m)
i = 0, the

limit of the summation limm
∑k

i=1 z
(m)(eni) = 0. But by definition

limm
∑k

i=1 z
(m)(eni) =

∑k
i=1 b(eni) > 0. This is a contradiction.

6. Moduli spaces of polyhedral metrics, I

In this section, we describe the spaces of all φh and ψh curvatures on
a triangulated surface for h = 0 and h ≤ −1. The main theorems are
the counterparts of Theorem 5.3 for closed triangulated surfaces.

In §6.1 we analyze how triangles degenerate in E2, H2, and S2. The
main theorems for Euclidean, hyperbolic and spherical polyhedral sur-
faces are proved in §6.2, §6.3, and §6.4 respectively.

6.1. Degenerations of geometric triangles. For K2 = H2,S2 or
E3, let K2(3) ⊂ [0,∞]3 denote the space of all triangles in K2 parame-

terized by the edge lengths l = (l1, l2, l3). A point l ∈ K2(3)−K2(3) ⊂
[0,∞]3 is called a degenerated triangle. The inner angles θ1, θ2, θ3 of

a degenerated triangle l are defined as follows. Take a sequence l(n) =

(l
(n)
1 , l

(n)
2 , l

(n)
3 ) in K2(3) converging to l so that their inner angles

(θ
(n)
1 , θ

(n)
2 , θ

(n)
3 ) converge to θ = (θ1, θ2, θ3) ∈ [0, π]3. Then we call θ1, θ2, θ3

inner angles of the degenerated triangle l. Note that θi’s depend on the
choice of the converging sequences l(n). For instance, a degenerated tri-
angle of edge lengths 1, 1, 0 can have inner angles α, π − α, 0 for any
α ∈ [0, π]. We use {i, j, k} = {1, 2, 3} in this section.

6.1.1. Degenerated Euclidean triangles. For degenerated Euclidean

triangles, we normalize the length by
∑3

i=1 l
(n)
i = 1. Then l1+l2+l3 = 1.

There are two possibilities:
(E1) One of li = 0, and lj = lk > 0. In this case, θi = 0.
(E2) l1, l2, l3 > 0 and li = lj + lk. In this case, θi = π, θj = θk = 0.

   =0

l kl

il

iθ 

iθ + θ j π=

=0

=0

l = l  + li j kjl

kl
jθ =0 

π

θ 

j

k
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6.1.2. Degenerated hyperbolic triangles. There are four types of
degenerated hyperbolic triangles of lengths l ∈ [0,∞]3 and angles θ ∈
[0, π]3:

(H1) One of the edge lengths is ∞. In this case, there are two lengths
li = lj = ∞ so that θk = 0.

(H2) All edge lengths lk’s are finite so that some li = 0 and some
lj > 0. In this case, lk = lj > 0 and θi = 0.

(H3) All li’s are 0. In this case,
∑3

i=1 θi = π.
(H4) All edge lengths are in R>0 and li = lj + lk. In this case, θi = π,

θj = θk = 0.

.. .

Figure 5

6.1.3. Degenerated spherical triangles. The space of all spherical
triangles parameterized by the edge length is S2(3) = {(l1, l2, l3) ∈
R3|li + lj > lk, and l1 + l2 + l3 < 2π where {i, j, k} = {1, 2, 3}}. Take
a degenerated spherical triangle of edge lengths l = (l1, l2, l3) and inner

angles θ1, θ2, θ3. Since the closure S2(3) is defined by the inequalities
li+ lj ≥ lk and l1+ l2+ l3 ≤ 2π, it follows that if li = 0 then lj = lk, and
if li = π then lj + lk = π. We classify degenerated spherical triangles
into six types:

(S1) l = (0, 0, 0). In this case, θi + θj + θk = π.
(S2) li = 0 and lj = lk = π. In this case, θi = θj + θk − π.
(S3) li = 0 and lj = lk ∈ (0, π). In this case, θi = 0 and θj + θk = π.
(S4) li = π and lj + lk = π so that lj, lk ∈ (0, π). In this case, θi = π

and θj = θk.
(S5) (l1, l2, l3) ∈ (0, π)3 and li = lj + lk for some i, j, k. In this case,

θi = π and θj = θk = 0.
(S6) (l1, l2, l3) ∈ (0, π)3 and l1 + l2 + l3 = 2π. In this case, all θi = π.
Note that in the last two cases (S5) and (S6), each inner angle is well

defined.

6.2. Moduli spaces of Euclidean polyhedral surfaces. We will
prove:

Theorem 6.1. Suppose (S,T ) is a closed triangulated surface so that
E = {e1, . . . , en} is the set of all edges.

(a) The space Φ0(PE2(S,T )) ⊂ RE is in the affine plane

(6.1) A =

{

z ∈ RE |
∑

e∈E

z(e) = π(|E| − |T |)
}
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so that it is a connected component of the open set defined by the
inequalities in (i) and bounded by Wi;jk in (ii):
(i) for any proper subset I ⊂ E so that no triangle has exactly two

edges in I,

(6.2)
∑

e∈I

z(e) < π|I| − π|FI |

with FI = {σ ∈ F | all edges of σ are in I};
(ii) the hypersurfaces Wi;jk which are the Φ0 image of the

codimension-1 submanifold {z ∈ RE
>0|z(ei) = z(ej) + z(ek)

where ei, ej , ek form the edges of a triangle} ∩PE2(S,T ).
(b) If h ≤ −1, then the space Φh(PE2(S,T )) is a proper smooth

codimension-1 submanifold in RE.

Numerical calculation shows that Φ0(PE2(S,T )) is not convex in gen-
eral. Polyhedral metrics {z ∈ RE

>0|z(ei) = z(ej) + z(ek) where ei, ej , ek
form the edges of a triangle} ∩PE2(S,T ) are non-degenerated with re-
spect to a different triangulation obtained by the diagonal switch surgery
operation on T .

Proof. To see part (a), first note that (6.1) is the Gauss-Bonnet theo-
rem for Euclidean polyhedral surfaces. It follows that Φ0(PE2(S,T )) ⊂
A. Let X be the space of all normalized polyhedral metrics defined by
PE2(S,T )∩{z ∈ RE |∑e∈E z(e) = 1}. We have Φ0(PE2(S,T )) = Φ0(X)
by definition. It is a theorem of Rivin [36] that the map Φ0 : X → A
is an embedding. It follows that Φ0(X) is open and connected in A by
dimension counting. To finish the proof, we need to analyze the bound-
ary of Φ0(X) in A. We will show that if l(m) is a sequence of polyhedral

metrics in X converging to a boundary point p ∈ X −X, then Φ0(l
(m))
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contains a subsequence converging to a point either in Wi;jk or in an
affine plane where one of the inequalities in (6.2) becomes an equal-
ity. Furthermore, we will prove that (6.2) holds for all non-degenerated
polyhedral metrics.

To this end, let us assume, after taking a subsequence, that angles
of each triangle (in T ) in metrics l(m) converge and Φ0(l

(m)) converges
to a point w ∈ RE . There are two cases which could occur for the
degenerated metric p : (1) p(e) > 0 for all e ∈ E and there is a triangle
with edges ei, ej , ek so that p(ei) = p(ej) + p(ek); (2) the set I = {e ∈
E|p(e) = 0} 6= ∅ and I 6= E. In case (1), by definition, we have w ∈
Wi;jk. In case (2), by the triangular inequality, there is no triangle σ
having exactly two edges in I. Let FI be the set of all triangles with all
edges in I and GI be the set of all triangles with exactly one edge in I.
For angles measured in the metric p, by definition,

(6.3)
∑

e∈I

φ0(e) = π|I| −
∑

σ∈FI

(a+ b+ c)−
∑

σ∈GI

a

where the first sum is over triangles σ in FI with inner angles a, b, c
and the second sum is over all triangles σ in GI with an inner angle a
facing an edge in I. But the angle a = 0 for triangles in GI by (E2).
It follows from (6.3) that

∑

e∈I φ0(e) = −π(|FI | − |I|). This shows that
the point w is in an affine surface defined by an equality from condition
(6.3). The above argument also shows that condition (6.2) holds for non-
degenerated polyhedral metrics due to GI 6= ∅, a > 0, and

∑

σ∈GI
a > 0

for non-degenerated metrics. This establishes part (a).
To see part (b) for h ≤ −1, by Theorem 4.1, the restriction map

Φh|X : X → RE is an embedding and its image is a smooth codimension-
1 submanifold. Thus it suffices to show that Φh(X) is a closed subset

of RE . To this end, take a sequence {l(m)} of points in X converging
to a point p ∈ X − X ⊂ [0, 1]E so that angles of each triangle (in T )
in metrics l(m) converge. In particular, we may assume that Φh(l

(m))
converges to a point w in [−∞,∞]E . We will show that one of the coor-
dinates of w is infinite. Suppose otherwise that w ∈ RE . We will derive
a contradiction as follows.

By the same argument as above, we see there are two cases: (1) p(e) >
0 for all edges e and there is a triangle σ with edges ei, ej , ek so that
p(ei) = p(ej) + p(ek), or (2) there is an edge e so that p(e) = 0.

In the argument below, all angles and lengths are measured in the
metric p. In case (1), let the inner angles of the triangle σ be α, β, γ
where (α, β, γ) = (0, π, 0) so that α faces ej . Now let σ′ be the triangle
adjacent to σ along ej and α

′ be the angle in σ′ facing ej . By definition,

φh(ej) =

∫ π/2

α
sinh(t)dt+

∫ π/2

α′

sinh(t)dt
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is finite. Due to the divergence of
∫ 0
π/2 sin

h(t)dt = −∞ for h ≤ −1 and

α = 0, it follows that α′ = π. Thus, the inner angles of σ′ must be 0, 0, π.
In summary, we obtain the following rule: if α,α′ are two angles facing
an edge so that α = 0, then α′ = π. Now applying this rule to triangle
σ′, we obtain a third (0, 0, π)-angled triangle σ′′ adjacent to σ′. Since
there are only a finite number of triangles in T , by repeatedly applying
this rule, we obtain an edge cycle {en1 , . . . , enk

} so that eni , eni+1 are
adjacent to a triangle σi (enk+1

= en1) and the angle of σi facing eni

is π. The inner angles of σi are π, 0, 0. We call such an edge cycle a
(π, 0, 0)-angled edge cycle.

Lemma 6.2. There are no (π, 0, 0)-angled edge cycles in a degener-
ated K2 polyhedral metric for K2 = E2, or H2, or S2.

π
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Proof. Suppose otherwise that such an edge cycle exists. Take a se-
quence of non-degenerated polyhedral metrics converging to the degen-
erated metric. We obtain a (non-degenerated) polyhedral metric l on
(S,T ) so that the inner angle of σi facing eni is larger than the other
two angles in σi. Using the fact that in a Euclidean (or hyperbolic or
spherical) triangle, the larger angle faces the edge of longer length, we
see that the length l(eni) of eni is strictly larger than the length of
l(eni+1) of eni+1 . Thus, we obtain

l(en1) > l(en2) > · · · > l(enk
) > l(enk+1

) = l(en1).

This is absurd. q.e.d.

By this lemma, we conclude that case (1) does not occur.
In case (2) where some edge e ∈ E has length p(e) = 0, there must

be some e′ ∈ E so that p(e′) > 0 due to the normalization assumption
∑

x∈E p(x) = 1. It follows that there is a triangle σ having two edges
e, e′ so that p(e) = 0 and p(e′) > 0. Thus the inner angle α of σ facing
e must be 0. By the same argument as above, if α′ is the other angle
facing e, then α′ = π. This implies that the triangle σ′ containing α′



276 F. LUO

must have inner angles (π, 0, 0). By the same argument as above, we
produce a (π, 0, 0)-angled edge cycle. By Lemma 6.2, this is impossible.
This ends the proof of part (b). q.e.d.

We remark that Theorem 6.1(a) is an improvement of the main result
of Rivin [36].

Corollary 6.3. (Rivin) The space Φ0(PE2(S,T )) ∩ [0,∞)E ⊂ A is
the convex polytope defined by condition (6.2) in Theorem 6.1 and in-
equalities 0 ≤ z(e) ≤ π for all e ∈ E.

Proof. First, we have the obvious inequality that φ0(e) ∈ [−π, π].
We will use the same notations as above. It suffices to show that the
condition Wi;jk does not arise in the limits of φ0 curvatures of polyhe-

dral metrics Φ0(PE2(S,T )) ∩ [0,∞)E . Suppose otherwise that there is
a sequence of metrics {l(m)} in PE2(S,T ) ∩ Φ−1

0 ([0,∞)E) so that the

sequence l(m) converges to a degenerated polyhedral metric p ∈ Wi;jk.
By definition, p(e) ∈ (0,∞) for all e ∈ E and there is a triangle σ with
edges ei, ej , ek so that p(ei) = p(ej) + p(ek). Let the two inner angles
facing the edge ei be a and a′ so that a is in the triangle σ. Then a = π
and the inner angles of σ are π, 0, 0. By definition φ0(ei) = π−a−a′ and
φ0(e) ≥ 0 for all e ∈ E. It follows that a′ = 0. Since the only degenerated
triangles in p are (0, 0, π)-angled triangles, this implies the triangle σ′

adjacent to σ along ei must have inner angles 0, 0, π. To summarize, we
see that the Delaunay condition that φ0(e) ∈ [0,∞) forces the propaga-
tion of (0, 0, π)-angled triangles. By repeatedly using this propagation
rule, we obtain a (0, 0, π)-angled edge cycle in the degenerated metric
p. But by Lemma 6.2, this is impossible. q.e.d.

6.3. Moduli space of hyperbolic polyhedral metrics. We will
prove:

Theorem 6.4. (a) The space Ψ0(PH2(S,T )) is a connected com-
ponent of the open set in RE defined by the following inequalities
in (i), (ii) and bounded by hypersurfaces Wi;jk. Letting z ∈ RE:

(i) For each edge cycle {en1 , . . . , enk
}, ∑k

i=1 z(eni) > 0.
(ii) For any subset I of E with the property that no triangle has

exactly two edges in I, let F ′
I be the set of all triangles having

at least one edge in I, then

∑

e∈I

z(e) <
π|F ′

I |
2

.

(iii) The hypersurface Wi;jk which is the image under Ψ0 of the

codimension-1 submanifold {z ∈ RE
>0|z(ei) = z(ej) + z(ek)

where ei, ej , ek are the edges of a triangle} ∩PH2(S,T ).
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(b) For h ≤ −1, the space Ψh(PH2(S, T )) is a connected component of
the open set in RE bounded by Φh(PE2(S, T )) and inequalities (i)
in part (a).

Proof. The proof of part (a) follows the same argument used in the
proof of Theorem 6.1(a). We will use the same notations as in subsection
6.2. First by Leibon’s rigidity theorem, Ψ0 is a smooth embedding. It
follows that Ψ0(PH2(S,T )) is an open connected set in RE . We need to

determine its boundary. Take a sequence of points {l(m)} converging to
a boundary point p of PH2(S,T ) in [0,∞]E so that the angles of each

triangle (in T ) in the metrics l(m) converge and Ψ0(l
(m)) converges to w

in RE . We will show that w lies either in a codimension-1 hyperplane
defined by an equality in (i) or (ii), or w is in the hypersurface Wi;jk.
Furthermore, we prove that (i) and (ii) hold for points in PH2(S,T ).

There are four types of degenerated hyperbolic triangles (H1), . . . ,
(H4) that appear in the degenerated metric p as discussed in §6.1 and
figure 5. In the proof below, all edge lengths and angles are measured
in the degenerated metric p.

Lemma 6.5. In the type (H1) degeneration where p(e) = ∞ for some
edge e, there exists an edge cycle {en1 , . . . , enk

;σ1, . . . , σk} so that the
lengths of eni are infinite and the angle between eni , eni+1 in the triangle
σi is 0.

Proof. Take a triangle σ adjacent to e. Then by triangle inequality for
edge lengths of a triangle, there is another edge e′ in σ so that p(e′) = ∞
and the angle between e, e′ in σ is 0. Now considering the triangle σ′

adjacent to σ along e′ and repeating this process, we obtain an edge
cycle {en1 , . . . , enk

} so that the lengths of eni are infinite and the angle
between eni , eni+1 in the triangle σi is 0. q.e.d.

We call the edge cycle in the lemma a (∞,∞, 0) edge cycle. For such
an edge cycle, by the definition of ψ0, the summation

∑m
i=1 ψ0(eni) is

equal to the summation
∑m

i=1 ai where ai is the angle between eni and
eni+1 in the triangle adjacent to both edges. Since ai = 0, therefore
∑m

i=1 ψ0(eni) = 0. This shows that p is in the plane defined by the
equality case of condition (i) for some edge cycle. It also shows that
condition (i) holds for all hyperbolic polyhedral metrics in PH2(S,T )
since ai > 0 for non-degenerated triangles.

In the type (H2) and (H3) cases that p(e) < ∞ for all e ∈ E and
some p(e′) = 0, let I = {e ∈ E|p(e) = 0}. By the triangular inequalities,
there is no triangle with exactly two edges in I. Take a triangle σ with
inner angles θi, θj , θk so that one of the edges of σ is in I. If all edges
of the triangle are in I, then the sum θi + θj + θk = π. In this case the
sum
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(6.4) (θj + θk − θi)/2 + (θi + θk − θj)/2 + (θi + θj − θk)/2 = π/2.

If only one edge of σ is in I, say the edge ei facing θi is in I, then
by the assumption p(ei) = 0 and p(ej) = p(ek) > 0. The assumption
implies that θi = 0 and θj + θk = π. Thus

(6.5) (θj + θk − θi)/2 = π/2.

Now the summation
∑

e∈I ψ0(e) can be expressed as
∑

σ;ei,ej ,ek∈I

((θj + θk − θi)/2 + (θi + θk − θj)/2 + (θi + θj − θk)/2)

+
∑

σ;ei∈I,ej /∈I

(θj + θk − θi)/2,

where the first sum is over all triangles σ whose three edges ei, ej , ek are
in I and the second sum is over all triangles σ with exactly one edge ei
in I. Equalities (6.4) and (6.5) show that in both cases the contribution
to z(e)’s from each triangle is π/2. It follows that

∑

e∈I ψ0(e) = π|F ′
I |/2,

i.e., p lies in the plane defined by the equality case of condition (ii). This
also shows that the inequality in condition (ii) holds for all metrics in
PH2(S,T ) since (6.4) and (6.5) become strictly less than π/2 for non-
degenerated hyperbolic triangles.

In the type (H4) degeneration, by definition, w ∈ Wi;jk.

To prove part (b), by Theorem 4.1, Ψh : PH2(S,T ) → RE is a smooth
embedding and its image is an open subset of RE . It remains to find the
boundary points of Ψh(PH2(S,T )) in RE . Take a sequence of metrics

{l(m)} converging to a boundary point p of PH2(S,T ) in [0,∞]E so

that angles of the triangle (in T ) in metrics l(m) converge and Ψh(l
(m))

converges to w in RE . We will show that w is either in Φh(PE2(S,T ))
or in an affine surface defined by the equality case of (i) for some edge
cycle. Furthermore, we will prove that (i) holds. There are four types of
degenerations of hyperbolic triangles in p according to §6.1. If p contains
a triangle of type (H1) where there is an edge e so that p(e) = ∞, then
by Lemma 6.5 there exists an edge cycle of type (∞,∞, 0). Then by the
same argument as in the proof of Theorem 5.3 and identity (5.1) (§5.5
case 2) where cosh(t) is replaced by cos(t) and limm→∞ a

(m)
i = 0, we

conclude that
∑m

i=1 ψh(eni) = 0 along the edge cycle. Thus the point w
is in the plane defined by an equality in (i). The proof also shows that (i)

holds for all edge cycles due to
∫

b+c−a
2

0 cosh(t)dt +
∫

c+a−b
2

0 cosh(t)dt > 0
for a, b, c ∈ (0, π) and a+ b+ c < π.

If p satisfies p(e) < ∞ for all e ∈ E and contains a triangle of type
(H2), i.e., there are two edges e′, e′′ with p(e′) = 0 and p(e′′) > 0,
we find a triangle σ with three edges ei, ej , ek so that p(ei) = 0 and
p(bj) = p(ek) > 0. Let the inner angles of σ be a, b, c so that a is facing
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ei. Let σ
′ be the triangle adjacent to σ along ei so that the inner angles

are a′, b′, c′ with a′ facing ei. Then by the choice of σ, a = 0 and b+c = π.
On the other hand,

ψh(ei) =

∫ b+c−a
2

0
cosh(t)dt+

∫ b′+c′−a′

2

0
cosh(t)dt.

By the assumption b+c−a
2 is π/2. Due to the divergence of

∫ π/2
0 cosh(t)dt

for h ≤ −1 and the assumption that ψh(ei) is finite, we must have
b′+c′−a′ = −π. By the assumption that a′, b′, c′ ≥ 0 and a′+b′+c′ ≤ π,
we must have (a′, b′, c′) = (π, 0, 0). Now by the same argument applied
to b′ = 0, we produce a new (0, 0, π)-angled triangle adjacent to σ′. In
this way, we obtain a (0, 0, π)-angled edge cycle in the triangulation. By
Lemma 6.2, this is impossible, i.e., type (H2) degenerated metric p does
not occur.

If all edges in the p metric have zero length, then each triangle de-
generates to a Euclidean triangle. Evidently if a + b + c = π, then

(a+ b− c)/2 = π/2− c. Thus
∫ (a+b−c)/2
0 cosh(t)dt =

∫ π/2−c
0 cos h(t)dt =

∫ π/2
c sinh(t)dt. Thus ψh(e) = φh(e). It follows that w is in the image
Φh(PE2(S,T )).

In the last case all edge lengths are in (0,∞) and p contains a trian-
gle of type (H4), i.e., there is a triangle σ with edges ei, ej , ek so that
p(ei) = p(ej) + p(ek). Then the inner angles of σ are π, 0, 0. By the
same argument as in the type (H2) degeneration, due to h ≤ −1, we
see that the triangle adjacent to σ along ei (also, ej , ek) has inner an-
gles 0, 0, π. It follows that there must be a (0, 0, π)-edge cycle in p. This
again contradicts Lemma 6.2. q.e.d.

Corollary 6.6. (Leibon) The space Ψ0(PH2(S,T ))∩(0, π]E is a con-
vex polytope defined by condition (ii) in Theorem 6.4(a).

Proof. It suffices to show that for the Delaunay condition where
φ0(e) ∈ (0, π], both constraints (i) and (iii) in Theorem 6.4 are not
necessary.

First of all, we show that condition (iii) Wi;jk does not arise in the
limits of Delaunay polyhedral metrics. Suppose otherwise that there is a
sequence of metrics {l(m)} converging to p in PH2(S,T )∩Ψ−1

0 ((0, π]E) so

that the angles of each triangle in metrics l(m) converge and the sequence
Ψ0(l

(m)) converges to a point w ∈ Wi;jk. In the degenerated metric p, let
a, b, c be the inner angles in the triangle σ facing the edges ei, ej , ek and
let a′, b′, c′ be angles of the triangle σ′ adjacent to σ along ei so that a, a′

are facing ei. Then (a, b, c) = (π, 0, 0) and (b + c − a)/2 = −π/2. Since
ψ0(ei) =

1
2(b+c−a+b′+c′−a′) ≥ 0 and (b′+c′−a′) ≤ π, it follows that

(b′ + c′ − a′)/2 = π/2. This in turn implies that {a′, b′, c′} = {0, 0, π}
with a′ = 0. In summary, the Delaunay condition that ψ0(e) ∈ [0, π]
forces the propagation of (0, 0, π) angled triangles. By repeatedly using
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this propagation rule, we construct a (0, 0, π)-angled edge cycle in the
degenerated metric p. But by Lemma 6.2, this is impossible. Finally,
it is clear that condition (i) follows from the Delaunay condition that
ψ0(e) > 0. q.e.d.

6.4. The moduli space of spherical polyhedral surfaces. In this
section we investigate the space of all spherical polyhedral metrics on
(S,T ) in terms of the φh curvature for h = 0 and h ≤ −1.

A degenerated spherical polyhedral metric l on a triangulated surface
(S,T ) is a point in the boundary of PS2(S,T ) ⊂ RE , i.e., one of the
triangles is degenerated. A degenerated spherical polyhedral metric is
called a bubble if all triangles in the metric are of types (S1) and (S2)
introduced in §6.1. Since a type (S2) triangle is represented by a region
in the 2-sphere bounded by two geodesics of length π, i.e., a secant,
geometrically a bubble polyhedral surface is obtained by taking a finite
set of secants and identifying edges in pairs. Let Wi,jk = Φ0(Y) where

Y = {z ∈ (0, π)E |z(ei) = z(ej) + z(ek) where ei, ej , ek form the edges

of a triangle} ∩ PS2(S,T ). Similarly, let Uijk = Φ0(Z) where Z = {z ∈
(0, π)E |z(ei) + z(ej) + z(ek) = 2π where ei, ej , ek form the edges of a

triangle} ∩ PS2(S,T ). Both of them are codimension-1 hypersurfaces
in RE .

Theorem 6.7. Suppose (S,T ) is a closed triangulated connected sur-
face so that E is the set of all edges in the triangulation.

(a) The space Φ0(PS2(S,T )) of all φ0 curvatures of spherical polyhe-
dral metrics on (S,T ) is a connected component of the open set in
RE bounded by the hypersurfaces Wi,jk,Uijk and defined by the
following set of linear inequalities: for any disjoint sets I, J ⊂ E
so that no triangle σ ∈ T has exactly three edges in J , or exactly
two edges in I ∪ J ,

(6.6)
∑

e∈I

z(e)−
∑

e∈J

z(e) < π|G(I, J)| − π|F (I)|+ π(|I| − |J |),

where F (I) consists of all triangles with all three edges in I and
G(I, J) consists of all triangles with either (1) two edges in J and
one edge in I or (2) exactly one edge in J and the other two edges
not in I.

(b) Let h ≤ −1. The space Φh(PS2(S,T )) of all φh curvatures of spher-
ical polyhedral metrics on (S,T ) is a connected component of the
open set in RE bounded by the Φh images of the bubble degenerated
spherical surfaces.

6.4.1. Proof of Theorem 6.7(a). By Theorem 4.1(a), the map Φ0 :
PS2(S,T ) → RE is a smooth embedding. It remains to analyze the
boundary of the open set Ω = Φ0(PS2(S,T )) in RE . To this end, take

a sequence {l(m)} in PS2(S,T ) converging to a point p ∈ PS2(S,T ) −
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PS2(S,T ) so that the angles of each triangle in metrics l(m) in T converge

and Φ0(l
(m)) converges to a point w ∈ ∂Ω. If all edge lengths in the

degenerated metric p are in the open interval (0, π), then all degenerated
triangles in the metric p are of types (S5) or (S6) due to the classification
in §6.1. Thus by definition w ∈ Wi;jk or w ∈ Uijk for some ei, ej , ek
forming edges of a triangle in T . Now if some edge lengths in the metric
p are 0 or π, let

I = {e ∈ E|p(e) = 0}
and

J = {e ∈ E|p(e) = π}.
We have I ∩ J = ∅ and I ∪ J 6= ∅. Furthermore, the triangle inequality
and l1 + l2 + l3 ≤ 2π for edge lengths imply that no triangle σ ∈ T
has all edges in J , or exactly two edges in I ∪ J . We claim that (6.6)
becomes an equality for this choice of I, J . Furthermore, we shall prove
that (6.6) holds for all metrics in PS2(S,T ).

In the proof below, all edge lengths and angles are measured in the
degenerated metric p. Consider a triangle σ with an edge in I ∪ J . Let
θi, θj, θk be the inner angles and ei, ej , ek be the edges in σ so that θr
faces er. There are four possibilities: (I) all edges of σ are in I; (II) one
edge of σ is in I and the other two edges are in J ; (III) one edge of σ
is in I and the other two are not in I ∪ J ; and (IV) one edge of σ is in
J and the other two are not in I ∪ J . We will analyze the angles θr in
each of these four cases.
Case I: All er’s are in I, and thus the triangle σ is of type (S1). We
obtain

(6.7) θi + θj + θk = π.

Furthermore, the left-hand side of (6.7) is strictly greater than π for
non-degenerated spherical triangles.
Case II: ei ∈ I and ej, ek ∈ J . Thus the triangle σ is of type (S2). Then,
by the classification,

(6.8) θi − θj − θk = −π.
Furthermore, the left-hand side of (6.8) is strictly greater than −π for
non-degenerated spherical triangles.
Case III: ei ∈ I and ej, ek /∈ I ∪ J. Then σ is of type (S3) so that

(6.9) θi = 0.

Furthermore, the left-hand side of (6.9) is strictly greater than 0 for
non-degenerated triangles.
Case IV, ei ∈ J and ej , ek /∈ I ∪ J . Then σ is of type (S4) and

(6.10) −θi = −π.
Furthermore, the left-hand side of (6.10) is strictly greater than −π for
non-degenerated triangles.
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Now the left-hand side of (6.6) can be expressed as

(6.11)
∑

e∈I

φ0(e)−
∑

e∈J

φ0(e) = −
∑

e∈I

(α+ β) +
∑

e∈J

(α+ β) + π(|I| − |J |)

where α, β are angles facing the edge e.
Break the first two summations in the right-hand side of (6.11) into

groups according to the triangles of cases I, II, III, and IV. Then

−
∑

e∈I

(α+ β) +
∑

e∈J

(α+ β)

=−
∑

σ∈ case I

(θi + θj + θk)−
∑

σ∈ case II

(θi − θj − θk)(6.12)

−
∑

σ∈ case III

θi −
∑

σ∈ case IV

(−θi).

By equalities (6.7)–(6.10), the expression (6.12) is−π|F (I)|+π|G(I∪J)|.
This verifies that the condition (6.6) becomes an equality for the degen-
erated metric p. On the other hand, for a non-degenerated spherical
triangle, the left-hand sides of (6.7)–(6.10) become strictly greater than
the right-hand side. Thus the above argument shows (6.11) is strictly
less than π|G(I ∪ J)| − π|F (I)| for any metric in PS2(S,T ), i.e., (6.6)
holds for non-degenerated metrics.

6.4.2. A proof of Theorem 6.7(b). By Theorem 4.1(a), the map Φh :
PS2(S,T ) → RE is a smooth embedding. To prove Theorem 6.7(b),
we need to show that boundary points of Φh(PS2(S,T )) in RE come
from the images of the bubbled metrics under Φh. To this end, take
a sequence of points {l(m)} in PS2(S,T ) converging to a point p ∈
PS2(S,T )−PS2(S, T ) ⊂ [0,∞]E so that inner angles of each triangle in

metrics l(m) in T converge and Φh(l
(m)) converge to w ∈ RE . The goal

is to show that all triangles in the metric p are of types (S1) or (S2).
All angles are measured in the metric p below.

Lemma 6.8. If α and β are two angles facing an edge so that α ∈
{0, π}, then β = π − α ∈ {0, π}.

Indeed, this is due to the assumption that
∫ π/2
α sinh(t)dt+

∫ π/2
β sinh(t)dt ∈ R and both integrals

∫ π/2
0 sinh(t)dt and

∫ π/2
π sinh(t)dt

diverge.

Proposition 6.9. No triangle in p has inner angles equal to 0 or π.

Proof. We begin by introducing some terminologies. If θ ∈ {0, π} and
l ∈ [0, π], by a [θ, l]-triangle we mean a degenerated spherical triangle
with one inner angle θ so that the length of the opposite edge is l.
Thus, it suffices to show that there are no [θ, l]-triangles in p. Suppose
otherwise, by Lemma 6.8, p contains both [0, l]- and [π, l]-triangles. Let
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σ be such a triangle of angles θ1, θ2, θ3 and opposite edge lengths l1, l2, l3
where θ1 = 0 or π. We will discuss three cases according to l1 = π, 0 or
is in (0, π).

Case 1: l1 = π. By Lemma 6.8, we may assume that θ1 = 0, i.e., σ is a
[0, π]-triangle. According to the classification in subsection 6.1, the type
of a [0, π]-triangle is (S2) so that the inner angles (θ1, θ2, θ3) = (0, 0, π)
and the opposite edge lengths (l1, l2, l3) = (π, 0, π). Let τ be the triangle
adjacent to the l3-th edge of σ and let β be the angle in τ facing the
l3-th edge. By Lemma 6.8, β = π − θ3 = 0. Thus τ is a [0, π]-triangle.
In summary, we see that [0, π]-triangles propagate through one of its
edges. In particular, there exists an edge cycle so that each triangle in
the cycle is a [0, π]-triangle. Since the inner angles of a [0, π]-triangle
are 0, 0, π and by Lemma 6.8, this edge cycle is a {0, 0, π}-angled edge
cycle. According to Lemma 6.2, this is impossible. Therefore, there are
no [0, π]-triangle in p. By Lemma 6.8, there are no [π, π]-triangles in the
metric p.

Case 2: l1 = 0. By Lemma 6.8, we may assume that σ is a [π, 0]-triangle
where θ1 = π and l1 = 0. According to the classification in subsection
6.1, the type of σ must be either (S1) or (S2). If σ is of type (S2), then its
angles and lengths are: (θ1, θ2, θ3) = (π, π, π) and (l1, l2, l3) = (0, π, π).
Thus σ is a [π, π]-triangle. This is impossible by case 1. Thus σ must be
of type (S1). In this case, the angles of σ must be (θ1, θ2, θ3) = (π, 0, 0)
and lengths (l1, l2, l3) = (0, 0, 0). Let τ be the triangle adjacent to σ
along the l2-th edge. Then due to θ2 = 0 and Lemma 6.8, the angle of τ
facing the l2-th edge is π. It follows that τ is a [π, 0]-triangle. Thus we
see that a [π, 0]-triangle propagates through one of its edges. Therefore,
we obtain an edge cycle so that all triangles in the cycle are of type
[π, 0]. By the analysis above, each such [π, 0]-triangle of type (S1) has
inner angles 0, 0, π. Therefore, we obtain a {0, 0, π}-angled edge cycle.
This contradicts Lemma 6.2. Using Lemma 6.8, we see that there are
no [0, 0]-triangles in p.

Case 3: l1 ∈ (0, π). By Lemma 6.8, we may assume that σ is a [0, l1]-
triangle. According to the classification of degenerated triangles, the
triangle σ must be of types (S3), (S4), or (S5).

If σ is of type (S3), then (θ1, θ2, θ3) = (0, π, 0) and (l1, l2, l3) =
(l1, l1, 0). Thus σ is also a [0, 0]-triangle. According to case 2, this cannot
occur.

If σ is of type (S4), then (θ1, θ2, θ3) = (0, 0, π) and (l1, l2, l3) = (l1, π−
l1, π). This implies that σ is a [π, π]-triangle which is impossible by
case 1.

Thus the type of σ must be (S5) so that (θ1, θ2, θ3) = (0, 0, π) and
(l1, l2, l3) = (l1, l2, l1 + l2) ∈ (0, π)3. Let τ be a triangle adjacent to σ
along the l3-th edge. Due to θ3 = π and Lemma 6.8, the inner angle
of τ facing the l3-th edge must be 0. Thus τ is a [0, l3]-triangle where
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l3 ∈ (0, π). Thus a type (S5) [0, l1]-triangle propagates through one of
its edges. By the discussion above, a type (S5), [0, l3]-triangle has inner
angles 0, 0, π, and it follows that there exists a {0, 0, π}-angled edge
cycle in the metric p. This contradicts Lemma 6.2. q.e.d.

Now to finish the proof, we see that all degenerated triangles in p are
of types (S1) or (S2). We claim all triangles in p are of types (S1) or
(S2). This is due to the fact that any triangle adjacent to a triangle of
types (S1) or (S2) along an edge must be degenerated (since all edge
lengths of types (S1) and (S2) are 0 or π). By assumption, these adjacent
triangles must be of types (S1) or (S2). Since the surface is connected
and the metric p is degenerated, it follows that all triangles in p are of
types (S1) or (S2).

7. Moduli spaces of polyhedral surfaces, II:
circle packing metrics

In Thurston’s notes [43], he showed that the space of all discrete
curvatures k0 of Euclidean or hyperbolic circle packing metrics on a
triangulated surface is a convex polytope. (Also see [15], [32], [30], [10]
for different proofs.) The goal of this section is to give a description of
the space of all kh curvatures when h ≤ −1.

Let (S,T ) be a triangulated closed surface so that E and V are sets of
all edges and vertices. Let CPK2(S,T ) be the space of all circle packing
metrics on (S,T ) in K2 geometry where K2 = S2,E2, or H2. Recall
that Kh : CPK2(S,T ) → RV sends a circle packing metric to its kh-th
discrete curvature.

Theorem 7.1. Suppose h ≤ −1 and (S,T ) is a closed triangulated
surface.

(a) The space Kh(CPE2(S,T )) is a proper codimension-1 hypersurface
in RV .

(b) The space Kh(CPH2(S,T )) is an open set whose boundary is con-
tained in Kh(CPE2(S,T )) in RV .

7.1. Degeneration of Euclidean and hyperbolic triangles. The
following result on degeneration of triangles will be used to analyze
the singularities that appear in the variational framework. Part of the
lemma was proved already in [30] and [43].

Lemma 7.2. ([30], [43]). Suppose a Euclidean or hyperbolic triangle
has edge lengths l1, l2, l3 and opposite angles θ1, θ2, θ3. Let {i, j, k} =
{1, 2, 3} and li = rj + rk.

(a) If the triangle is hyperbolic, then θi ≤ 2 tan−1( 1√
2 sinh(ri)

). In par-

ticular, limri→∞ θi(r1, r2, r3) = 0 so that the convergence is uni-
form in r = (r1, r2, r3).
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(b) If the triangle is hyperbolic and li → ∞, then after taking a sub-
sequence, one of lj or lk, say lj, tends to ∞, so that the angle θk
between li-th and lj-th edges tends to zero.

(c) Suppose ri ≥ c for a fixed constant c > 0. Then limrj→0 θi(r1, r2,
r3) = 0 and the convergence is uniform in (r1, r2, r3).

i

θ −>0i

j r  small

r >ci

iθ −>0

iθ 

iθ 

r   large

Figure 8

Proof. To see (a), recall that the tangent law for hyperbolic triangle
(2.10) says,

tan2(θi/2) =
sinh(rj) sinh(rk)

sinh(ri) sinh(r1 + r2 + r3)
.

Due to sinh(x+ y) ≥ 2 sinh(x) sinh(y) for x, y > 0, it follows that

(7.1) tan2(θi/2) ≤
sinh(rj) sinh(rk)

sinh(ri) sinh(rj + rk)
≤ 1

2 sinh(ri)
.

Thus part (a) holds.
Part (b) follows from part (a). Indeed, since li = rj+rk and li tends to

infinity, one of rj or rk must tend to infinity after taking a subsequence.
Say rk tends to infinity. Then due to lj ≥ rk, lj converges to infinity. By
part (a), θk tends to 0.

To see part (c) for hyperbolic triangles, using (7.1), we obtain

tan2(θi/2) ≤
sinh(rj)

sinh(ri)

sinh(rk)

sinh(rj + rk)

≤ sinh(rj)

sinh(c)

sinh(rk)

sinh(rj + rk)

≤ sinh(rj)

sinh(c)
.

Thus part (c) follows.
To see part (c) for Euclidean triangles, recall that the radius of the

inscribed circle of a Euclidean triangle is R =
√

r1r2r3
r1+r2+r3

. Thus by



286 F. LUO

tan(θi/2) =
R
ri
, we obtain

tan2(θi/2) =
rjrk

ri(r1 + r2 + r3)
≤ rj

c
.

Thus we obtain the uniform convergence of θi to 0.
We remark that a geometric way to see part (a) is as follows. Make the

i-th vertex the Euclidean center of the Poincare disk model. For large
radius ri, the Euclidean diameter of the hyperbolic disk C of radius ri
centered at the origin is almost 1. This forces the Euclidean diameter
of any hyperbolic disk tangent to C to be very small. Thus the angle θi
is very small no matter how one chooses the radii rj and rk. q.e.d.

7.2. A proof of Theorem 7.1 (a). We identify the space CPE2(S,T )
of all Euclidean circle packing metrics with RV

>0 by the radius param-

eter. Let X = {r ∈ RV
>0|
∑

v∈V r(v) = 1} be the space of all normal-
ized circle packing metrics. By definition and Theorem 4.1, Kh(X) =
Kh(CPE2(S,T )) where Kh| : X → RV is an embedding and its image
is a codimension-1 smooth submanifold. It remains to show that when
h ≤ −1, Kh(X) is a closed subset of RV . To this end, take a sequence
of points {r(m)} in X so that Kh(r

(m)) converges to a point in RV . We

will prove that {r(m)} contains a convergent subsequence in X.
Since the space X is bounded, by taking a subsequence if necessary,

we may assume that r(m) converges to a point p in the closure X̄ of X in
[0,∞)V and the inner angles of each triangle in metrics r(m) converge.
If p ∈ X, we are done. If otherwise, the set I = {v ∈ V |p(v) = 0} is
non-empty and I 6= V . Since the surface S is connected, there exists
a triangle σ ∈ T with vertices, say v1, v2, v3, so that p(v2) = 0 and
p(v1) > 0.

We claim that limm→∞ k
(m)
h (v1) = ∞ where k

(m)
h is the kh cur-

vature in the metrics r(m). This will contradict the assumption that
limmKh(r

(m)) is in RV .
To see the claim, consider those triangles τ having v1 as a vertex. Let

θ be the inner angle in τ at the vertex v1. By definition,

(7.2) kh(v1) = (2−m/2)π −
∑

τ

∫ θ

π/2
tanh(t/2) dt

where the sum is over all such triangles τ and m is the degree of v1.
We now analyze the angle θ. If vj and vk are the other two vertices of

τ , then there are two cases: (1) both p(vj) and p(rk) are positive or (2)
one of p(vj), p(vk) is zero. In case (1), the triangle τ is non-degenerated

since p(v1) > 0 and thus θ ∈ (0, π). The contribution of
∫ θ
π/2 tan

h(t/2)dt

to the sum (7.2) is finite. In case (2), say p(rj) = 0, by Lemma 7.2(c), the

angle θ in the metrics r(m) converges to 0 as m tends to infinity. Thus
the contribution of the term from the triangle τ to (7.2) is negative
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infinity (i.e.,
∫ 0
π/2 tan

h(t)dt = −∞, due to h ≤ −1). By the choice of

v1, v2, v3, p(v2) = 0 and p(v1) > 0, it follows that case (2) exists. This
establishes the claim and hence the proof of Theorem 7.1(a).

7.3. A proof of Theorem 7.1(b). We again identify CPH2(S,T ) with
RV

>0 by the radius parameter. By Theorem 4.1, the map Kh : RV
>0 →

RV is an embedding. The goal is to prove the image Kh(R
V
>0) is a

domain bounded by Kh(CPE2(S,T )), i.e., boundary points of Kh(R
V
>0)

are in Kh(CPE2(S,T )). To this end, take a sequence {r(m)} converging

to a boundary point p ∈ [0,∞]V of RV
>0 so that Kh(r

(m)) converges to

a point w ∈ RV . We may assume, after taking a subsequence, that the
inner angles of each triangle in metrics r(m) converge. We will show that
w ∈ Kh(CPE2(S,T )).

Since the point p is in the boundary of RV
>0 in [0,∞]V , there are three

possibilities: (1) there is a vertex v so that p(v) = ∞, (2) p(v) < ∞ for
all v ∈ V and there are v1, v2 ∈ V so that p(v2) = 0 and p(v1) > 0, or
(3) p(v) = 0 for all v ∈ V .

In the first case, say p(v1) = ∞. Then by Lemma 7.2(a), all angles
θ at vertex v1 converge to 0 uniformly. It follows that the h-th discrete

curvature at v1, kh(v1) = (2−m/2)π −∑θ

∫ θ
π/2 tan

h(t/2)dt diverges to

∞ due to h ≤ −1. This contradicts limmKh(r
(m)) ∈ RV .

In case (2), exactly the same argument used in §7.2 works due to the
fact that Lemma 7.2(c) holds for Euclidean and hyperbolic triangles.

This again contradicts limmKh(r
(m)) ∈ RV .

The only case left is that p(v) = 0 for all v ∈ V . In this case, the
metrics r(m) are degenerating to Euclidean circle packing metrics after
a scaling. By Theorem 7.1(a) where Kh(CPE2(S,T )) is closed in RV ,

it follows that limmKh(r
(m)) is in Kh(CPE2(S,T )).

8. Open Problems

8.1. The space of all geometric triangulations with prescribed
curvature. The investigation in the previous sections leads us to pro-
pose the following.

Conjecture 8.1. Suppose (S,T ) is a closed triangulated surface. Let
Π : PK2(S,T ) → RV be the curvature map sending a metric l to its k0
curvature and p ∈ RV .

(a) For K2 = E2 or H2, the space Π−1(p) is either the empty set or

a smooth manifold diffeomorphic to R|E|−|V |.
(b) For K2 = S2, the space Π−1(p) is either the empty set or a smooth

manifold diffeomorphic to R|E|−|V |+µ where µ is the dimension of
the group of conformal automorphisms of a spherical polyhedral
metric l ∈ Π−1(p).
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One supporting evidence comes from Teichmüller spaces on surfaces
with boundary so that the boundary lengths are prescribed. This was
discussed in subsection 5.3. The conjecture for S = S2 was first investi-
gated by S. S. Cairns in [8]. It was also related to the work of E. Steinitz
[40] on the moduli space of all convex polytopes in the 3-space of the
same combinatorial type. Cairns was trying to show that for spherical
polyhedral metrics on (S2,T ), Π−1(0) is either homeomorphic to a Eu-
clidean space or is the empty set. His first proof in 1941 contained a
gap and later in [8] he proved that the set Π−1(0) is connected. The
question whether Π−1(0) is a cell for spherical polyhedral metrics on
the 2-sphere became Cairns conjecture ([2]). In [2], E. Bloch, R. Con-
nelly, and D. Henderson proved that for Euclidean polyhedral metrics
on a simplicially triangulated disk, the space Π−1(0) is homeomorphic
to a Euclidean space. Another evidence for the conjecture comes from
the work of [36] and [25]. They show that the space of all Delaunay
E2 or H2 polyhedral metrics (i.e., ψ0(e) ≥ 0) with prescribed discrete
curvature is a cell.

The following result implies that the spaces Π−1(p) are smooth man-
ifolds in the Euclidean and hyperbolic cases.

Proposition 8.2. Suppose (S,T ) is a closed triangulated surface.
Then

(a) The curvature map Π : PH2(S,T ) → RV is a submersion.
(b) The curvature map Π defined on PE2(S,T ) is a submersion to the

affine space

A =

{

z ∈ RV |
∑

v∈v

z(v) = 2πχ(S)

}

of RV defined by the Gauss-Bonnet identity.

Proof. We will use the following notation. If v is a vertex and e is an
edge having v as a vertex, we denote it by e > v. Given v, the set of
elements in {e ∈ E|e > v} will be counted with multiplicity, i.e., if the
two end points of e are v, then e will be counted twice. The following
simple lemma was proved in [36] and [25].

Lemma 8.3. Suppose v is a vertex.

(a) (Rivin) For a Euclidean polyhedral metric,
∑

e>v φ0(e) = 2π −
k(v);

(b) (Leibon)
∑

e>v ψ0(e) = 2π − k(v).

Lemma 8.4. The linear map L : RE → RV sending a vector z ∈ RE

to
∑

e>v z(e) is an epimorphism.

Proof. For a finite set Z, we identify the dual space ofRZ withRZ us-
ing the standard basis. Then the dual map L∗ : RV → RE is L∗(f)(e) =
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∑

v<e f(v) for e ∈ E. It suffices to show that L∗ is injective. To see this,

suppose f ∈ RV so that L∗(f) = 0, i.e., f(v) = −f(v′) whenever v, v′

are end points of an edge. Then f = 0 follows by considering a triangle
with vertices v, v′, v′′. Indeed, we have f(v) = −f(v′) = f(v′′) = −f(v).
Thus f(v) = 0. q.e.d.

Now to prove Proposition 8.2(a), consider the affine map A : RE →
RV so that A(z)(v) = 2π −∑e>v z(e). Then Lemma 8.3 shows that
Π = A ◦ Ψ0. It follows that D(Π) = −LD(Ψ0). Now by Lemma 8.4,
the derivative of A is −L which is surjective. By Leibon’s theorem,
D(Ψ0) is onto. Therefore, D(Π) is onto. To prove Proposition 8.2(b), by
Lemma 8.3, we have Π = A ◦Φ0. By Rivin’s rigidity theorem, the rank
of D(Φ0) is |E| − 1. By Lemma 8.4, it follows that the rank of D(Π) is
at least |V | − 1. But on the other hand, by the Gauss-Bonnet formula,
Π(PE2(S,T )) lies in the affine space {z ∈ RV |∑v∈V z(v) = 2πχ(S)}.
Thus, the rank of D(Π) is |V | − 1 and Π is a submersion to the affine
space. q.e.d.

The special case of Conjecture 8.1 addresses the space Π−1(0), i.e.,
the space of all geometric triangulations of constant curvature metrics
on a surface. There exists the obvious map φ : Π−1(0) → Teich(S) from
Π−1(0) to the Teichmüller space by forgetting the triangulation. The
fiber φ−1(0) can be interpreted as the space of all geodesic triangula-
tions isotopic to T in a fixed constant curvature metric. There are two
related questions for φ. Namely, when is Π−1(0) non-empty and when is
φ surjective? Both of these questions have been solved by a combination
of the works of various authors, especially [13]. Call a triangulation geo-
metric if there exists a constant curvature metric on the surface so that
each cell in the triangulation is geodesic, i.e., the triangulation is iso-
topic to a geodesic triangulation in some constant curvature metric. The
question whether Π−1(0) is non-empty is the same as asking if the trian-
gulation is geometric. This was solved in the work of Koebe, Thurston
[43], Colin de Verdière [11], [13], Marden-Rodin [30], and others.

Recall that a triangulation of a space is called simplicial if the trian-
gulation is isomorphic to a simplicial complex. We summarize the above
discussion into the following.

Proposition 8.5. Suppose T is a triangulation of a closed surface S.

(a) ([43], [11], [24], [30]) A triangulation T is the geometric triangu-
lation in some constant curvature metric on S if and only if the
lift of the triangulation to the universal cover is simplicial.

(b) ([13]) If T is a geometric triangulation in some constant curva-
ture metric, then T is isotopic to a geodesic triangulation in any
constant curvature metric.
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A triangulation T of a closed surface S is said to support an angle
structure if one can assign each vertex in each triangle a positive number,
called angle, so that the sum of the angles at each vertex is 2π, and each
triangle with these angle assignments becomes a K2 geometric triangle
where K2 = H2 if χ(S) < 0, K2 = E2 if χ(S) = 0, and K2 = S2

if χ(S) > 0. It can be shown ([11], [10]) that for closed triangulated
surfaces of non-positive Euler characteristic, the existence of an angle
structure is equivalent to the fact that the triangulation is geometric.
However, R. Stong [41] has constructed a non-geometric triangulation
of the 2-sphere which supports an angle structure. See also the related
work of [17].

8.2. Global rigidity of polyhedral metrics in various curva-
tures. Those non-convex or concave energy functions in Theorems 3.2
and 3.4 have the corresponding variational principles on triangulated
surfaces.

Problem For any h ∈ R,

(a) show that a hyperbolic polyhedral surface is determined by its φh
curvature;

(b) show that a spherical polyhedral surface is determined by its ψh

curvature.

8.3. Cellular decompositions of the Teichmüller spaces. One in-
teresting consequence of Theorem 7.1 and Lemma 7.2 concerns the cell
decompositions of the Teichmüller space, first observed in [33] for ψ0-
curvature.

Recall that the arc-complex of a compact surface S with boundary
is the following simplicial complex, denoted by A(S). The vertices of
A(S) are isotopy classes [a] of proper arcs a in S which are homotopi-
cally non-trivial relative to the boundary of S. A simplex in A(S) is a
collection of distinct vertices [a1], . . . , [ak] so that ai∩aj = ∅ for all i 6= j.
For instance, the isotopy class of an ideal triangulation corresponds to
a simplex of maximal dimension in A(S). The non-fillable subcomplex
A∞(S) of A(S) consists of those simplexes ([a1], . . . , [ak]) so that one
component of S − ∪k

i=1ai is not simply connected. The simplexes in
A(S)−A∞(S) are called fillable.

As a convention in this subsection, if X is a simplicial complex, then
|X| denotes the geometric realization of X. If σ is a simplex with ver-

tices v1, . . . , vk, then the product space int(σ)×R>0 = {∑k
i=1 hivi|hi >

0,
∑k

i=1 hi = 1} × R>0 can be identified naturally with the open cone

over int(σ), denoted by c(σ) = {∑k
i=1 civi|ci > 0} by sending (

∑

i hivi, λ)
to λ

∑

i hivi. Using this convention, the product space (|A(S)| − |
A∞(S)|) × R>0 can be naturally identified with the union of all open
cones over interior points of fillable simplexes in |A(S)|, i.e., each point

in (|A(S)|− |A∞(S)|)×R>0 is of the form x =
∑k

i=1 ci[ai] where ci > 0
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for exactly one fillable simplex ([a1], . . . , [ak]). For x =
∑k

i=1 ci[ai] in
(|A(S)| − |A∞(S)|) ×R>0, let ([a1], . . . , [an]) be an ideal triangulation
containing the fillable simplex ([a1], . . . , [ak]). Assign each edge [ai] the
positive number zi = ci if i ≤ k and zero otherwise. Then this assign-
ment z satisfies the positive edge cycle condition in Theorem 5.3 for
the ideal triangulation ([a1], . . . , [an]). By Theorem 5.3 for h ≥ 0, there
exists a hyperbolic metric on S whose ψh-coordinate in the ideal tri-
angulation ([a1], . . . , [an]) is z. For the ψ0-coordinate, this fact has also
been established by Hazel [21].

On the other hand, the following results of Ushijima [44] and Kojima
[24] show that:

Theorem 8.6. For a compact hyperbolic surface S with totally geo-
desic boundary, there is an ideal triangulation so that the ψ0-coordinate
of the metric in the ideal triangulation is non-negative. Furthermore,
the set of all edges in the ideal triangulation with positive ψ0-coordinate
form a fillable simplex in A(S) and the fillable simplex is unique.

Combining with the observation that ψ0(e) > 0 if and only if ψh(e) >
0, we can replace positivity of the ψ0-coordinate in Theorem 8.6 by ψh.
As a consequence, one can define an injective map

Πh : Teich(S) → (|A(S)| − |A∞(S)|)×R>0

by sending the equivalence class of a hyperbolic metric to the point
∑n

i=1 zi[ai] where (a1, . . . , an) is the ideal triangulation produced in The-
orem 8.6 and zi is the ψh-coordinate of the metric at the i-th edge in the
ideal triangulation. The discussion above shows that Πh is onto. Thus
we obtain (see also [20]):

Corollary 8.7. For any compact surface with boundary and of neg-
ative Euler characteristic and h ≥ 0, the map

Πh : Teich(S) → (|A(S)| − |A∞(S)|)×R>0

is a homeomorphism equivariant under the action of the mapping class
group. In particular, for each h, the map Πh produces a natural cell-
decomposition of the moduli space of surfaces with boundary.

We remark that the underlying cells for various h’s are the same.
The attaching maps for the cells are different. In particular, if h 6=
h′ and h, h′ ≥ 0, then Π−1

h′ Πh is a self-homeomorphism of the Te-
ichmüller space preserving the cell-structure derived from Π0 and com-
muting with the action of the mapping class group, i.e., it induces
a self-homeomorphism of the moduli space of the surface. These self-
homeomorphisms of Teich(S) deserve a further study. For instance, we
do not know if these maps are smooth. Finally, Guo’s result [16] for ψh

with h < 0 also produces cellular structures on the Teichmüller space
Teich(S).
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8.4. Miscellaneous remarks. It will be interesting to know if these
edge invariants φh, ψh, and kh correspond to some curvatures in Rie-
mannian geometry as triangulations become finer and converge to a
Riemannian metric.

Appendix A. Proof of uniqueness of the 1-forms

The goal of this appendix is to prove the uniqueness part of Theorem
1.11.
Theorem 1.11. For the cosine law function y = y(x), all closed 1-

forms of the form w =
∑3

i=1 f(yi)dg(xi) where f, g are two non-constant
smooth functions, are up to scaling and complex conjugation

ωh =

3
∑

i=1

∫ yi

sinh(t)dtd(

∫ xi

sin−h−1(t)dt) =

3
∑

i=1

∫ yi sinh(t)dt

sinh+1(xi)
dxi

for some h ∈ C.
All closed 1-forms of the form

∑3
i=1 f(yi)dg(ri) where f, g are two

non-constant smooth functions, are up to scaling and complex conjuga-
tion

ηh =

3
∑

i=1

∫ yi

tanh(t/2)dtd(

∫ ri

cos−h−1(t)dt) =

3
∑

i=1

∫ yi tanh(t/2)dt

cosh+1(ri)
dri

for some h ∈ C. In particular, all closed 1-forms are holomorphic or
anti-holomorphic.

Proof. Let {i, j, k} = {1, 2, 3}. q.e.d.

Lemma A1. Suppose y = y(x) is the cosine law function and f, g are
two smooth non-constant functions.

(a) If f(yi)/g(xi) is independent of the indices for all x, then there are
constants h, µ, c1, c2 so that f(t) = c1 sin

h(t) sinµ(t̄) and g(t) =
c2 sin

h(t) sinµ(t̄).
(b) If ri = 1/2(xj + xk − xi), and f(yi)/g(ri) is independent of the

indices for all r, then there are constants h, µ, c1, c2 so that f(t) =
c1 tan

h(t) tanµ(t̄) and g(t) = c2 cos
h(t) cosµ(t̄).

Proof. We use fz and fz̄ to denote the partial derivatives ∂f
∂z and

∂f
∂z̄ respectively. Note that ∂yi/∂x̄j = 0. Taking ∂

∂xk
to the identity

f(yi)
g(xi)

=
f(yj )
g(xj)

, we obtain

fz(yi)

g(xi)

∂yi
∂xk

=
fz(yj)

g(xj)

∂yj
∂xk
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By the derivative cosine law that ∂yi/∂xk

∂yj/∂xk
=

sin(yi) cos(yj)
sin(yj) cos(yi)

and f(yi)
g(xi)

=
f(yj)
g(xj)

, we obtain

fz(yi) sin(yi)

f(yi) cos(yi)
=
fz(yj) sin(yj)

f(yj) cos(yj)
.

The variables yi, yj are independent. This shows that there is a constant
h ∈ C so that

fz(t)

f(t)
= h cot(t),

i.e.,
∂ ln(f(z))

∂z
=
∂(h ln sin(z))

∂z
.

If we take ∂
∂x̄k

to the equation f(yi)
g(xi)

=
f(yj)
g(xj)

and use ∂yi/∂x̄k = 0, we

obtain, by the same argument as above,

∂(ln f(z))

∂z̄
=
∂(µ ln sin(z̄))

∂z̄

for some constant µ ∈ C. This implies that f(z) = c1 sin
h(z) sinµ(z̄).

Now substituting it back to f(yi)/g(xi) and using the sine law, we obtain

that g(xi)

sinh(xi) sin
µ(x̄i)

is independent of the indices i. Thus it must be a

constant. This shows that g(z) = c2 sin
h(z) sinµ(z̄) for some constant

c2.
The proof of the second part (b) is exactly the same as part (a) where

we use the tangent law that tan(yi/2)/ cos(ri) is independent of i instead
of the sine law. QED.

To prove the uniqueness part of Theorem 1.11, we write the closed
1-form w =

∑3
i=1 f(yi)dg(xi) as

w =

3
∑

i=1

f(yi)gz(xi)dxi + f(yi)gz̄(xi)dx̄i.

The 1-form w is closed if and only if for i 6= j, the expressions ∂(f(yi)gz(xi))
∂xj

and ∂(f(yi)gz̄(xi))
∂x̄j

are symmetric in i, j and

(A.1)
∂(f(yi)gz(xi))

∂x̄j
=
∂(f(yj)gz̄(xj))

∂xi
.

The symmetry of i, j in ∂(f(yi)gz(xi))
∂xj

and Theorem 2.1 show that

fz(yi)gz(xi) sin(xi) = fz(yj)gz(xj) sin(xj).

By Lemma A1, there are constants c1, c2, α, β so that

(A.2) fz(t) = c1 sin
α(t) sinβ(t̄)

and

(A.3) gz(t) = c2 sin
−α−1(t) sin−β(t̄).
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By the same argument using the symmetry of i, j in ∂(f(yi)gz̄(xi))
∂x̄j

, we

obtain

(A.4) fz̄(t) = c3 sin
h(t) sinµ(t̄)

and

(A.5) gz̄(t) = c4 sin
−h(t) sin−µ−1(t̄)

for some constants c3, c4, h, µ. Substituting (A.2)–(A.5) into (A.1), we
obtain

c2c3 sin
h(yi) sin

µ(ȳi) sin
−α−1(xi) sin

−β+1(x̄i) cos(ȳk)B̄

(A.6) = c1c4 sin
α(yj) sin

β(ȳj) sin
−h+1(xj) sin

−µ−1(x̄j) cos(yk)B,

where B = sin(xi)
sin(yi)

is a function symmetric in i, j, k. We claim (A.6)

implies that c1c2c3c4 = 0. Indeed, suppose otherwise that c1c2c3c4 6= 0.
We will derive a contradiction as follows. Identity (A.6) can be written
as

c2c3 sin
h−α−1(yi) sin

µ+1−β(ȳi) cos(ȳk)B
−α−1(B̄)−β+2

= c1c4 sin
−h+α+1(yj) sin

−µ−1+β(ȳj) cos(yk)B
−h+2(B̄)−µ−1.

As a consequence, we conclude that

(A.7) (sinh−α−1(yi) sin
µ+1−β(ȳi))(sin

h−α−1(yj) sin
µ+1−β(ȳj))

cos(ȳk)

cos(yk)

is independent of the indices i, j, k. In particular, identity (A.7) is equal
to

(sinh−α−1(yi) sin
µ+1−β(ȳi))(sin

h−α−1(yk) sin
µ+1−β(ȳk))

cos(ȳj)

cos(yj)
.

This shows that

(sinh−α−1(yk) sin
µ+1−β(ȳk))

cos(yk)

cos(ȳk)

= (sinh−α−1(yj) sin
µ+1−β(ȳj))

cos(yj)

cos(ȳj)
.

Since yj , yk are independent variables, both sides must be constant. But
that is impossible.

As a consequence, we see that c1c2c3c4 = 0. Since we assume that f
and g are non-constant functions, we have |c1|+ |c3| 6= 0 and |c2|+ |c4| 6=
0. Now if c3 = 0, then c1 6= 0 due to |c1| + |c3| > 0. But (A.6) shows
that c1c4 = 0. Since c1 6= 0, we must have c4 = 0. This shows, by
(A.4) and (A.5), that fz̄ = gz̄ = 0, i.e., f and g are holomorphic. By
(A.2) and (A.3), due to the holomorphic property of f, g, it follows that
β = −0, i.e., f(z) = c1

∫ z
sinα(t)dt and g(z) = c2

∫ z
sin−α−1(t)dt. The

same argument shows that if c1 = 0, then f, g are anti-holomorphic,
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given by (A.4) and (A.5) with h = 0. This establishes Theorem 1.11 for
the wh family.

The proof for the forms w =
∑3

i=1 f(yi)dg(ri) is exactly the same,
using the tangent law (that tan(yi/2)/ cos(ri) is independent of the in-
dices) and Lemma A1(b). q.e.d.

Appendix B. Derivative Cosine Law of the Second Kind

Suppose that y = y(x) is the cosine law function so that

(B.1) cos(yi) =
cos(xi) + cos(xj) cos(xk)

sin(xj) sin(xk)

where {i, j, k} = {1, 2, 3}. This convention of {i, j, k} = {1, 2, 3} is as-
sumed in this appendix.

Then we know that

(B.2) cos(xi) =
cos(yi)− cos(yj) cos(yk)

sin(yj) sin(yk)
.

Identity (B.2) shows that

(B.3) cos(yi) = cos(yj) cos(yk) + sin(yj) sin(yk) cos(xi).

We consider yi = yi(yj , yk, xi) and xj = xj(yj , yk, xi) as functions of
yj, yk and xi. Let A

∗
ijk = sin(yi) sin(yj) sin(xk) and Aijk = sin(xi) sin(xj)

sin(yk). Both A∗
ijk and Aijk are independent of the indices due to the

sine law.

Derivative cosine law II. The derivatives of functions yi = yi(yj , yk, xi)
and xj = xj(yj, yk, xi) satisfy

(B.4)
∂yi
∂yj

= cos(xk)

(B.5)
∂yi
∂xi

=
A∗

ijk

sin(yi)
=

Aijk

sin(xi)

(B.6)
∂xj
∂yk

= − sin(xj) cot(yi)

(B.7)
∂xj
∂yj

=
sin(xk)

sin(yi)

(B.8)
∂xj
∂xi

= −sin(xj) cos(xk)

sin(xi)
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Proof. Taking derivative ∂/∂xi to (B.3), we have

− sin(yi)
∂yi
∂xi

= − sin(yj) sin(yk) sin(xi).

Dividing it by − sin(yi), we obtain (B.5).
To see (B.4), take ∂/∂yj to (B.3). We obtain

(B.9) − sin(yi)
∂yi
∂yj

= − sin(yj) cos(yk) + cos(yj) sin(yk) cos(xi).

Let ci = cos(xi) and si = sin(xi). By the sine law, then, (B.9) can be
written as

∂yi
∂yj

=
sin(yj)

sin(yi)
cos(yk)− cos(yj) cos(xi)

sin(yk)

sin(yi)

=
sj cos(yk)

si
− cos(yj) cos(xi)sk

si

=
1

si
(sj

ck + cicj
sisj

− skci
cj + cick
sisk

)

=
1

s2i
(ck + cicj − cicj − c2i ck)

=
1

s2i
(cks

2
i )

= ck.

This verifies (B.4).
To see the partial derivatives of xj = xj(yj, yk, xi), we use the sine

law

(B.10) sin(xj) = sin(xi) sin(yj)/ sin(yi).

Take the partial derivative of (B.10) with respect to yk. We obtain

cos(xj)
∂xj
∂yk

= − sin(xi) sin(yj)
cos(yi)

sin2(yi)

∂yi
∂yk

.

By (B.4), we obtain that

∂xj
∂yk

= −sin(xi) sin(yj) cos(yi)

sin2(yi)

= − sin(xj) cot(yi)

where the last equation is due to the sine law. This establishes (B.6).
To see (B.7), we take the partial derivative with respect to xi of

(B.10). It becomes

cos(xj)
∂xj
∂xi

=
sin(yj)

sin2(yi)
(cos(xi) sin(yi)− sin(xi) cos(yi)∂yi/∂xi).
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Using identity (B.5) and the sine law, the above is

cos(xi) sin(yi)− cos(yi)Aijk

sin2(yi)
sin(yj)

=
cos(xi) sin(yi)− cos(yi) sin(yi) sin(xj) sin(xk)

sin2(yi)
sin(yj)

=
cos(xi)− (cos(xi) + cos(xj) cos(xk))

sin(yi)
sin(yj)

= −cos(xj) cos(xk)

sin(yi)
sin(yj)

= −cos(xj) cos(xk)

sin(xi)
sin(xj).

Now dividing both sides by cos(xj), we obtain identity (B.8).
Finally, take the partial derivative with respect to yj to (B.10). Using

(B.4) and the sine law, we obtain

cos(xj)
∂xj
∂yj

= sin(xi)
cos(yj) sin(yi)− sin(yj) cos(yi)∂yi/∂yj

sin2(yi)

(B.11) =
sin(xi)

sin2(yi)
(cos(yj) sin(yi)− sin(yj) cos(yi) cos(xk)).

Let Cr = cos(yr) and Sr = sin(yr). Then by (B.2), equation (B.11)
becomes

=
sin(xi)

S2
i

(

CjSi − SjCi
Ck − CiCj

SiSj

)

=
sin(xi)

S3
i

(CjS
2
i − CiCk +C2

i Cj)

=
sin(xi)Sk

S2
i

(

Cj − CiCk

SiSk

)

=
Sk sin(xi) cos(xj)

S2
i

=
sin(xk) cos(xj)

sin(yi)
.

Dividing both sides by cos(xj), we obtain (B.7). q.e.d.

We remark that identity (B.6) for Euclidean triangles was in [10],
Lemma A1(d).
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Corollary B2. Let h ∈ C.

(a) Consider yj , yk, xi as variables and xi fixed. Then the differential
1-form

∫ xj sinh(t)dt

sinh+1(yj)
dyj +

∫ xk sinh(t)dt

sinh+1(yk)
dyk

is closed.
(b) ([19]) Consider yj, yk, xi as variables and xi fixed. Then the dif-

ferential 1-form

(
∫ xk

sinh(t)dt

)

sinh−1(yj)dyj +

(
∫ xj

sinh(t)dt

)

sinh−1(yk)dyk

is closed.
(c) ([19]) Consider xi, xj , xk as variables and xi fixed. Then the dif-

ferential 1-form

(
∫ yk

sinh(t)dt

)

sinh+1(xj)dxj +

(
∫ yj

sinh(t)dt

)

sinh+1(xk)dxk

is closed.

The proof is a simple application of identities (B.6) and (B.7) in the
above theorem. We omit the detail. The integrations of the 1-forms
for h = 0,−1 in part (b) for geometric triangles were first discovered
by Bobenko-Springborn [7]. Bobenko-Springborn showed the integral of
the 1-form for h = 0 can be identified with the dilogarithmic function.
In the work of [19], a further study of the applications of the derivative
cosine law of the second kind are carried out.

Appendix C. Relationship to the Lobachevsky Function

In the special cases of h = ±1 or 0, some of integrations
∫ u

wh and
∫ u

ηh in Theorem 1.11 and Corollary B2 or their Legendre transfor-
mations have been found explicitly by various authors. We give a brief
summary in this appendix.

Following Milnor [31], let Λ(z) =
∫ z
0 − ln(2 sin(t))dt be the (complex

valued) Lobachevsky function defined as a multi-valued complex ana-
lytic function (depending on the choice of the branch of ln(t) and the
path). This function is related to the dilogarithm function (see [31]).

Let y = y(x) be the cosine function defined by (1.8), xi = rj + rk for
{i, j, k} = {1, 2, 3} and r = (r1, r2, r3). Then we have:

Proposition C1. The following identities hold up to addition of a con-
stant.
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(a) ([26])

∫ x 3
∑

i=1

ln tan(yi/2)dxi =−
3
∑

i=1

Λ(π/2 − ri) + Λ(π/2 − r1 − r2 − r3)

(C.1)

+
√
−1π

(

3
∑

i=1

ri

)

(b) (Leibon [25])

∫ r

2 ln sin(yi/2)dri =
3
∑

i=1

[Λ(π/2 − ri) + Λ(ri + ri+1)(C.2)

+
√
−1πri] + Λ(π/2 − r1 − r2 − r3)

where r4 = r1.
(c) (Bobenko-Springborn [7]) Consider x1, x2, y3 as variables and fix-

ing y3. The integral

(C.3)

∫ (x1,x2)

ln tan(y1/2)dx2 + ln tan(y2/2)dx1

= Λ(π/2 − r1) + Λ(π/2 − r2)− Λ(π/2 − r3) + Λ(π/2 − r1 − r2 − r3)

+
√
−1π/2(x1 + x2) + c,

where the constant c depends only on y3.

Proof. The proof is straightforward by checking the derivatives of
both sides. In part (a), the partial derivative with respect to xi of the
left-hand side is ln(tan(yi/2)) by definition. By the tangent law (2.10),
we have

2 ln(tan(yi/2)) = ln cos(ri) + ln cos(r1 + r2 + r3)− ln cos(rj)

− ln cos(rk) +
√
−1π.

The right-hand side of the above equation is the xi-th partial derivative
of the right-hand side of (C.1) by the definition of the Lobachevsky
function.

In part (b), we use the following identity:

sin2(yi/2) =
1− cos(yi)

2
=

sin(xj) sin(xk)− cos(xi)− cos(xj) cos(xk)

2 sin(xj) sin(xk)

= −cos(ri) cos(r1 + r2 + r3)

sin(ri + rk) sin(ri + rj)
.

Now take the logarithm of this function and compare with the partial
derivatives of the right-hand side of (C.2).

The proof of (C.3) is the same as above. We omit the details. q.e.d.
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These integrations in the cases of spherical or hyperbolic triangles
have geometric interpretations. To be more precise, for x, y to be the in-
ner angles and edge lengths of a spherical triangle, the integral in Propo-
sition C1(a) is the volume of the ideal hyperbolic octahedron which is
the convex hull of the six intersection points of the three circles at the
sphere at infinity forming a triangle of inner angles x1, x2, x3 (see [26]).
If x, y are the inner angles and edge lengths of a hyperbolic triangle,
Leibon [25] showed that the integral in Proposition C1(b) is the volume
of the ideal prism which is the convex hull of the six intersection points
at the sphere at infinity of the three circles forming a triangle of inner
angles x1, x2, x3. For a spherical triangle of inner angles x1, x2, x3, the
integral in Proposition C1(b) was shown by P. Doyle [25] to be the vol-
ume of the hyperbolic tetrahedron with exactly three vertices at infinity
and a finite vertex v so that the dihedral angles at the edges from v are
x1, x2, x3.
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