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Abstract

This paper develops a novel computational technique to @efind construct manifold splines with only one singular pbiy employing
the rigorous mathematical theory of Ricci flow. The centoida and new computational paradigm of manifold splines @a®ystematically
extend the algorithmic pipeline of spline surface congtomcfrom any planar domain to arbitrary topology. As a résmanifold splines
can unify planar spline representations as their specegscaDespite its earlier success, the existing manifolthesgitamework is plagued
by the topology-dependent, large number of singular pdings, |2g— 2| for any genusg surface), where the analysis of surface behaviors
such as continuity remains extremely difficult. The unigheatretical contribution of this paper is that we devise neathematical tools so
that manifold splines can now be constructed with only omgudar point, reaching their theoretic lower bound of siagty for real-world
applications. Our new algorithm is founded upon the conoémtiscrete Ricci flow and associated techniques. FirstciRiow is employed
to compute a special metric of any manifold domain (serviagagparametric domain for manifold splines), such that th&imbecomes
flat everywhere except at one point. Then, the metric ndyuiradluces an affine atlas covering the entire manifold ekteis singular point.
Finally, manifold splines are defined over this affine atlHse Ricci flow method is theoretically sound, and practicalmple and efficient.
We conduct various shape experiments and our new thedratidaalgorithmic results alleviate the modeling difficutiy manifold splines,
and hence, promote the widespread use of manifold splinearface and solid modeling, geometric design, and revergmeering.

Key words: Manifold splines, affine structure, discrete Ricci flow,raxtrdinary point, metric, differential geometry
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1. Introduction and Motivation ing to develop novel modeling, design, and simulation sa®em
that are capable of accurately representing complicatad re
world objects in a compact manner, and facilitating rapicheo

1.1. Problem Statement putation of their desirable properties both globally anchlty
such as differential properties, smoothness requirements

) _ . ) _topological validity. Strongly inspired by the recent dieye
Despite many algorithmic and theoretical advances in soligyeny of subdivision surfaces and manifold splines, ourentrr
modeling a”?' shape computing In most rece_nt years, one f_“'?'esearch goal in this paper is to further advance the statesof
damental objective of our research community is always-stri knowledge in manifold splines. At the theoretic level, we de
vise manifold splines with only one singular point througk t
* Corresponding author. Tel: +65 65141008; Fax: +65 679263&Riress: mathematical rigor of Ricci flow and relevant computational
Zg g'iggyang Avenue, BLK N4, Nanyang Technological Univgrsiingapore,  tachnjques. At the application level, we design a brand rew a
Emaii addressesgu@cs . sunysb.edu (Xianfeng Gu),yhe@ntu.edu.sg gorithmic plpe_“ne that enables all the Comp_Utatlonal Gl
(Ying He), mjin@cs. sunysb.edu (Miao Jin), towards the widespread use of manifold splines (especiadly
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modeling, shape design, and reverse engineering. are no-longer polynomials and their computation expenses a
relatively high in comparison with conventional splinefages.

Most recently, the manifold splines proposed by Gu, He, and
Qin [11] offer a different approach to manifold domain con-
struction. The main advantage for manifold splines is that o

For the perspectives of solid modeling, engineering designeaCh local chart, the functions are all piecewise polyntsiia

finite element simulation, and scientific computation, aldg common use, currently avail_able spline sur_faf:es in comialerc
geometric properties such as high-order continuity and th oftware packages can easily serve as building blocks ttsvar

ease of computing all the desirable properties rapidly &re a € effective design of complicated models of arbitraryolop

ways mandatary for the development of novel shape reprquy’ and hence, the evaluation and all the necessary computa

sentations. Therefore, it is not surprising to see thatspli tional procedures are both efficient and robust. Furtheeqe

centric polar forms [31] are becoming the most popular COm_lstmg algorithms and softwares for conventional splindazes

putational tools in geometric modeling and shape design. E can all be easily adopted for use in applications of maniard

sentially, the methodology of polar forms naturally giviseito SL?E'SA NT;_e.theEfs'ecne;::nmdz;g.\?gggis 22” tr?g:.all?]TmSt
parameterization-centered, piecewise polynomials defore inguftarit Y : xcept forl. y

any planar parameter domain for the effective modeling an(ﬁi :sci)\t/ert(;d thqt ;[he eX|s]:tence O_f tlhetlman]'f?rl]d spl(ljnels Isvequ
accurate computing of smooth spline surfaces. alent 1o the existence of a special atas of the uncerlying-ma

ifold domain, whose transition functions are all affine ammon
However, examining all the real-world applications, weaavs ~ themselves, denoted affine atlas Unfortunately, it is impos-
that the most natural shapes are manifolds with complicategible to find an affine atlas to cover arbitrary closed sudace
topologies and arbitrarily detailed geometric configunasi, ~ except tori. There must be singularities for the atlas wich
which can not be completely covered by a single open surfaceot be covered by any chart within its collection set. MooV
defined in one coordinate system (note that, it does not mattéhey proved that the minimal number of singularities equals
if the parametric surface is a polynomial or a non-polyndmia to one without developing any practical algorithm. So, how t
this fundamental principle remains the same). Instead, @ ma lower the number of singular points remains elusive, and how
ifold might be covered by a family afoordinate chartseach  to devise new algorithms with a minimum number of singular
coordinate chart covers only a portion of the manifold. &iff  points for practical applications remains extremely techity

ent charts may overlap with each othegamrdinate transition ~ challenging.

functiontransforms from one coordinate system to the other. IfUsin existing popular techniaues of polar forms and Eeid
we follow the algorithmic procedure of polar forms and other 9 gpop q P

. . : L metrics, the manifold splines in the neighborhood of siagul
relevant computational techniques in a principled way, e c .. cer
. ; . . . ties appear to be extremely difficult to construct, unstadnhel
easily realize that conventional splines (defined over grgno

. . : error-prone. In addition, the mapping distortion from the-s
domain) can not be transferred over the manifold directly. face to the affine atlas significantly affects the quality fod t

In order to model a manifold using piecewise polynomials; cu final spline surface. The distortions are intrinsicallyedetined
rent approaches will segment the manifold to many patcees, d by the singularities for the affine atlas. Therefore, it igty

fine a single coordinate system over each patch, such that eagesirable for users to be able to control the position and the
patch can be modelled by a spline patch. Finally, any generiBumber of the singularities. For open surface cases, haweve
approach will glue/abut all the spline patches togetherdby a it is ideal to push the singularities away from the surfates.
justing the control points and the knots along their commorthis paper, we demonstrate that Discrete Ricci flow is a pow-
boundaries. This whole process is mainly performed mayuall €rful theoretic and computational tool for constructingref

and it requires the users’ skill and mathematical sophigita, ~ atlas with full control of singularities, and specificallyeing
and is tedious and error-prone. capable of minimizing the number of singularities to itsadhe

retical lower bound (which is at most one for closed surfaces
It is highly desirable to design splines defined over mad#ol and zero for all open surfaces).

directly, such that different spline patches can be autmadlt

glued together with high continuity, and the modelling @ss

requires neither segmentation nor patching. Pioneering wo 1 3. Intrinsic Shape Space

has been done by Grimm and Hughes [7], which can model

splines on arbitrary surfaces. Recently, Ying and Zorir [87

troduced a general method by constructing a conformal.atlasn reality, surfaces are typically acquired via modern sag

In both methods, smooth functions are defined on each chadevices, and they are initially approximated by a set of {3oin
and blended together to form a function coherently defined ov and/or triangular meshes. We shall consider the triangislhm
the entire manifold. The methods are flexible for all mamifol approximation of domain manifolds first. In order to find an
with arbitrary topologies. The functions are with any degoé¢  affine atlas of a triangle mesh, it is sufficient to find a con-
desirable continuity without any singularity. The primainaw-  figuration of edge lengths, such that the one-ring neighibor o
backs of these methods are that surfaces constructed this waach vertex is flat. So, any parameterization problem can be

1.2. Manifold Splines
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formulated as: 1.4. Ricci Flow

Finding a configuration of edge lengths, such that each xerteRicci flow was first introduced in differential geometry by
has zero discrete Gaussian curvattire Hamiltonin [13]. It has solid theoretic foundations. By ua, it
is a constructive geometric tool and can be easily impleetent

) ) therefore, it has a great potential for real-world applaad.
One could naturally raise the following much broader ques- g P PP

tions: given a mesh, The fundamental idea of Ricci flow is rather simple. We can
deform the surface driven by its curvature to the desiregsha
_ ) _ _ Supposeis a closed surface with Riemannian megj@andu
() What are the all possible configurations of edge lengths3s 5 function ons, thene?g is another metric 0% conformal

(i) What are the all possible configurations of curvatures ont® 9 Ricci flow is explicitly defined as

vertices? duv) _ = K(t), 1)

(i) What is the relation between edge length configurations d_t o .
and curvature configurations? It is obvious that edgewhere the area preserving constraint is explicitly forredaas,

lengths determine curvatures. Can curvatures determine /dA: / UdA )
edge lengths? s s

The entire space of all possible configurations of edge kengt @ndK(t) is the Gaussian curvature induced by the meftitg,

is denoted as thmetric spaceThe entire space of all possible @1dK is a constant _ omx(9

configurations of vertex curvatures is denoted asctiveature K=— T

space Metric space and curvature space arginsic shape ) j§ .
spacef the mesh. It has been proven that Ricci flow converges to the uniform

metric that induces constant Gaussian curvakuen the sur-
The answer to the admissible edge lengths is straightfatwar face,K (o) — K. Furthermore, Ricci flow converges to the final
any configuration satisfying triangle inequality is adribé&  stable solution exponentially fast, for a given surf&ehere
For admissible curvature configuration, the answer is muclexist two positive constants, c, determined by the geometry
more complicated. There are mainly two constraints: togolo of S, such that,
ical constraint and combinatorial constraint. The topalab
constraint is represented as the Gauss-Bonnet formulagthe
tal curvature equals to therk, wherey is the Euler number
of the mesh. The combinatorial constraint ensures thatall a
gles are between 0 amg and represented solely by inequali-
ties of curvature and connectivity. The technical detailslve =~ — Ricci flow offers the freedom to traverse the intrinsic shap
discussed in the next Section. space (all the admissible configurations of edge lengths) by
driving the surface to deform to all possible shapes as long
as the Gaussian curvature of the target shape is known.

IK(t) — K(o0)| < cre™ .

Ricci flow has many promising properties, which make it very
valuable for real-world applications,

The answer to the third question has fundamental importance
it is the main focus of this research work. It is easy to com-
pute curvature using edge lengths, but the inverse is muca mo— The deformation induced by Ricci flow is conformal.
complicated. Intuit_ively speaking, the Gaussian cunaigra . — Ricci flow deforms the surface to a single solution and con-
map from t_he metric space to the curvature space, the mappmgVerges to the solution exponentially fast.

in general is not injective. However, one can select a sudespa

of the whole metric space, such that any two metrics in the sub- Ricci flow can be formulated as a variational problem. The
space are conformally equivalent. Restricted on this satesp energy is a convex function, therefore has a single global
Gauss curvature map is a homeomorphism, namely, any curva- optimum. Ricci flow is the negative gradient flow of the
ture configuration uniquely determines an edge length cenfig energy, and can be further speed up using Newton’s method.

uration in this subspace. In our current research, the fundamental motivation foouse

In practice, one can specify the target curvature and deforrRRicci flow is its computational power to compute the affinastl
the edge length according to the difference between theurr Of @ mesh with any desired number of singularities, espgcial
curvature and the target curvature. It is guaranteed tieatah ~ With only one singularity.

vature configuration of the final mesh will reach the target.on
Thls kind of defo_rm_at|on process driven by Gaussian cureatu 1 5. Contributions
is the so calledRicci flow

1 Discrete Gaussian curvature is defined as the differenagebet 2t and N this paper, we devise a novel algorithm to construct nodahif
the summation of all angles adjacent to the vertex (see Begt2). splines with only one singular point for closed surfaces and



singular point for open surfaces, reaching its lower bound i surface, the solution to Ricci flow is the hyperbolic metrithw
theory. The algorithm is uniquely founded up on a mathemati€onstant negative Gaussian curvature. The analogue of Ricc
cally rigorous tool in differential geometry, namely, Riflow. flow in the discrete, combinatorial setting is first studied3].

Key contributions of this paper include: Itis proven that combinatorial Ricci flow will deform the miet

of a triangle mesh to metrics with constant vertex curvature
ecently, Jiret al. applied discrete Ricci flow to compute the
yperbolic and real projective structure of surfaces [21].

(i) We formulate the intrinsic space of a mesh: the metric
space (i.e., all admissible configurations of edge length
and the curvature space (i.e., all admissible configura-
tions of vertex curvatures). We point out the topologi- Circle Packing and Circle Pattern. Circle packing and cir-
cal constraints and the combinatorial constraints for thecle pattern are used for approximating conformal deforomasti
metric spaces. We re-define the general surface param&ircle packing is first introduced by Thurston in [36], whéee
terization problem as equivalence to finding flat metricsdesigned an algorithm to find the circle packing of a graph by
with any user-assigned singularities. adjusting the radii at vertices one at a time. Stephensoh et a

developed practical algorithms in [35]. Circle patternrigo-

(i) We articulate our new computational method to consttrucduced in [1] and applied for surface parameterizations 2}, [2

an affine atlas with any pre-determined singularities USingJ/Vhich is closely related to circle packing. Instead of usiirg

E:;(;rflzvl\'é;gt:fffgecggzz ecsztiervmeais'fct)fl]s Skel}i]:;]dersleéles centered at each vertex, this method uses the cirawtesi
ssary . : ucting 010 SPINES, ESpesy triangles. Comparing with circle pattern, the theor&tene-
cially, for manifold splines with only one singular point.

work of Ricci flow is much simpler and clearer. Furthermore,
(i) We offer a theoretically rigorous, practically singpnd  the implementation of the Ricci flow is much easier in pragtic

computatlonallly eﬁ'CIem tool, Ricci ﬂOW’. to splve geo- Global Surface Parametrization. Affine atlas can be com-
metric and solid modeling problems. In its discrete set-

: : . . puted using surface parametrization algorithms. In trerdit
ting, given the Gaussian curvature on each vertex, Ric . o o

. . : ure, there exist many parameterization methods usingietyar
flow will be employed to compute the configuration of

edae lenaths of distortion metrics. For a thorough survey, we refer tredre
9 gins. ers to the excellent work of Floater and Hormann [5,34]. We
shall focus on the most related work, especially global para

2. Background Review eterization methods.

Gu and Yau computed the conformal structure based on Hodge
) ) ) ) , ) ._.theory in [9]. The method computes the holomorphic 1-form
This section bqeflyl reviews previous \_/vork on splines, RICCIbaSiS’ and induces a flat metric witly2 2 singularities. Ni
flow, parameterization, and circle packing. et al. extracted the topological structure using harmoricse

Manifold Splines. Pioneering work has been done earlier byfunction, the vector fields are holomorphic 1-forms, and in-
Grimm and Hughes [7], which can model splines on arbitraryduced a flat metric with more singularities [24]. RecentlgyR
surfaces. Recently, Ying and Zorin [37] introduced a gelneraet al. [29] computed the global conformal parameterizagisn
method by constructing a conformal atlas. The function bausing holomorphic 1-form, but specifically tailored the qar
sis in their constructions are smooth and without singtiéarj ~ €terization to follow the principle curvature lines.

however, they are not polynomials, requiring the neces$atiy
exchange between polynomial-based spline surfaces aird th
special-purpose functions for surface design.

It may be note that, all current parameterization methodls wi
Grhtroducemultiple singularities due to the topological obstruc-
tion. The method to be developed in this paper is capable
Manifold splines defined by piecewise polynomials over man-0f reducing the number of singularity points to its theoretic
ifold domains of arbitrary topology were first rigorouslyrfo lower bound (which is one)

mulated in [11], which unifies the conventional spline scef

based on polar forms and the subdivision surfaces of arpitra

t0p0|ogy. In their Work’ itis proven that a manifold admits a3. Global Surface Parameterization USing Discrete Ricci
manifold splines based on polar forms if and only if it has anFlow

affine atlas. The topological obstruction for the existeoicine
affine atlas is the Euler class. By removing only one poing, an

oriented surface has an affine atlas. Conventionalocal surface parameterization refers to the pro-

cess of mapping a simply connected surface patch to a planar
Ricci Flow. Ricci flow on surface is introduced by Hamilton in region. In contrast, global surface parameterization maps the
[13], which will conformally deform the metric of a surfaced ~ whole surface to the plarig?, the unit spher&? or the hyper-
canonical metric with constant Gaussian curvature. Favsed  bolic spaced? periodically. The global surface parameteriza-
genus-zero surface, Ricci flow will change the metric to thetion problem could be formulated in a precise and general way
spherical metric with constant positive Gaussian curegfora  as deforming the given surface to satisfy the prescribedacur
genus-one closed surface, the solution to Ricci flow isthegnl  tures. By deforming the surface, we mean finding a different
metric with zero Gaussian curvature; for a high genus close®iemannian metric (the first fundamental form). If confotma

A



ity is required, then the new metric should be conformal ® th
original metric. Mathematically, suppogés the original met-
ric, then the metric conformal phas the forme?!g, whereu is
the function defined on the surface. Then global surfacenpara
eterization is to solve function by the prescribed curvature.

In the following, we assume the surface is an oriented 2-
manifold, represented by a two dimensional simplicial ctaxp
(i.e., triangular meshM = (V,E,F), whereV is the set of all
vertices E is the set of all non-oriented edges, dnthe set of

all faces. We use;,i = 1,2,--- ,n to denote its vertices; to ] ] )
denote an oriented edge fromto vj, fijx to denote an oriented (a) Closed surface (b) Flat circle packing metric
face,vi,vj, Vi are sorted counterclock-wisely.

(a). front side (b). back side

Y4

B
B

9

Fig. 2. Affine atlas induced by a global conformal surface parameter
zation. The affine atlas is illustrated by texture mapping of a cheubard
pattern. There are@2- 2 singularities centered at the white octagons.
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3.1. Discrete Conformal Metrics
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The central task is to approximate Ricci flow (1) in the digere
mesh setting. Continuous Ricci flow conformally deforms a
surface.
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Figure 1 illustrates an important observation for continsio
conformal mappings: they transform infinitesimal circlesn-
finitesimal circles, and preserve the intersection anghesray
the circles. Based on this property, Thurston introducedtth
cle packing metric in early eighties [36]: a circle with the r
dius y is associated with each vertex For an each edge;,
two circles intersect at the angfg;, called edge weight. The Fig. 3. Computing the affine structures for genus one surfaces using

edge Iength Oﬁj is determined b)Man andcpij, discrete Ricci flow. The right column (b) and (d) shows the embedded
fundamental domain. The last row shows the universal cogespace.

VAN

’VAV
%
]

(e) Universal covering space

|ij:\/yi2_|_yj2—|—2y,ijOSCDij. (3)

It can be shown that for any fadgy with vertex radii{yi, yj, %}
and edge weightg®;j, ®j, Py}, if edge weights are acute
angles, then the edge lengthis;, |, I} satisfy the triangle

inequality, Two circle packing metric§M,IM1,®;) and (M, ,®,) are

conformal to each other, ib; = ®,. Namely, a discrete con-
We usel : V — R" to denote the vertex radip : E — [0, 7] formal mapping will change the vertex radii only and preserv
for the edge weights, then a circle packing metric is repriese  the intersection angles. Figure 4 and Figure 5 illustragecth
as(M,l, o). cle packing metric.

|ij ‘ij > ly.
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Fig. 5. Circle packing metric for a triangle. Triangle [v1,Vv2,Vv3] has vertices
vi, V2 andvs, edgese;,, e23 andez;. Three circles centered ®f,v2, vz, with
radii y1,)» and ys intersect one another, the intersection anglesdare®,3
and @33, which are the weights associated with the edges. The edgthke
of the triangle are determined by and ®;; by the cosine law.

3.2. Discrete Curvature

Given a discrete metriéM, ®,I"), supposefij is a face, the
angle of vertexy; in fj) is denoted asBi'k, then the discrete

rad

Vo /\

Ko Ko

V3

Vi

V.

2 Ky
Fig. 6. Circle packing metric and curvature. For a canonical tetrahedron,
the edges lengths equal to= 1.0, the radii on all the vertices equal to
r =0.5. The curvature on each vertex equalskio= 7. The weights of all
edgesd equals to 0.

ISRy

I

Ko

Circle packing metric space, Curvature Space

Fig. 7. Gaussian curvature is a homeomorphism between the circle p&-
ing metric space based onM,®) and the curvature space, the inverse
map can be computed using Ricci flowWe start from the known metrigy
and the known curvaturkg, then flow to the target curvatui€, using Ricci
flow, then the metric will flow to the corresponding metgic = M~ (K).

Gaussian curvaturé; at an interior vertex; is defined as
Ki=2m— Y 6%vi¢om, (4)
fijkeF
the discrete Gaussian curvature for an boundary vertex
defined as _
Ki =m— Z Qijk,vi € oM.
fijkeF
Figure 6 demonstrates the circle packing metric for a tetrah
dron surface, where all the edge weights are zeros, all thexve
radii are 05, and all the vertex curvatures ame

(%)

The Gaussian curvature at each vertex could be arbitraty, bu

the total curvature is confined by the topology of the surface
This is indicated by the Gauss-Bonnet theorem.



Theorem 1 (Gauss-Bonnet)Suppose M is a mesh, the total
discrete Gaussian curvature equals the producRmfand its
Euler number,

z Ki = 2myx. (6)
Furthermore, for any discrete metiipl,®,I"), ®: E — [0, %]
and any proper subsgébf verticesV,

ZKi(V)> - > (m=®(e)+2mx(F), (7)
e (ev)eLk(l)

whereF, is the set of all faces iM whose vertices are ih,
Lk(I) is the link of | being the set of pairge,v) of an edgee
and a vertew so that(1) the end points o€ are not inl and
(2) the vertexvis in | and(3) e andv form a triangle.

The following theorem is fundamental that the map between

the vertex radil” and the discrete curvatukeis a homeomor-
phism, detailed proof can be found in [3].

Theorem 2 If a discrete metri¢M, ", @) induces discrete cur-
vature K, then K satisfies the Gauss-Bonnet Equation (6) an
the set of all linear inequalities (7). If M and are given, K
satisfies (6) and the set of all linear inequalities (7), thleere
exists al” unique up to scaling, such that K is induced by the
metric (M, T, ®).

Global surface parameterization problem can be re-forradla
as follows:

Global surface parameterization is to find a special metric,
such that the curvatures are zero almost everywhere exdept
several singularities

For example, conventional global conformal surface param
terization is to compute a special metric on the mesh, suath th
at |2g — 2| singularities, the curvatures equal+@r. The sin-

gularities are determined by the geometry of the surface, a%

shown in Figure 2. Ricci flow method allows the user to freely
assign singularities for global parameterizations, ag Esthe
target curvature satisfies the conditions in Theorem 2.rEigu
illustrates the relation between circle packing metriccgpand
curvature space.

3.3. Discrete Ricci Flow

One can assign discrete Gaussian curvaltufer a weighted
mesh (M, ®) as long asK satisfies the conditions in Theo-
rem 2. Discrete Ricci flow is able to solve the vertex rddii
We usee'l" to denote the conformal metric with vertex radius
ey at vertexi. Similar to the continuous Ricci flow (1),

Definition 3 (Discrete Ricci flow) The discrete Ricci flow is
defined as

d
U _ g

E = _Ki)v (8)

e

wherek; is the desired discrete Gaussian curvature at vertex v
under the constrainy u; = 0 (equivalent to the area-preserving
constraint).

Similar to continuous Ricci flow, it is proven that discretie¢®
flow also converges to this stable solution exponentiaky.fa

Definition 4 (convergence) The solution to (8) is calledon-
vergentif

(i) lim; . Ki(t) = K; exists for all i,
(i) limi—e ¥i(t) =y € RT exists for all i.

A convergent solution is callezbnvergent exponentially fagt
there are positive constantg,c,, so that for all time t> 0,

Ki(t) — Ki] < g™,
and 3
Yi(t) — | < cre™

The following theorem states that discrete Ricci flow is guar
8nteed to converge exponentially [3].

Theorem 5 SupposéM, ®) is a closed weighted mesh. Given
any initial circle-packing metric based on the weighted mes
the solution to the discrete Ricci flow (8) in the Euclidean ge
ometry with the given initial value exists all the time ane-<o
verges exponentially fast. The solution converges to theane
n—1(K).

3.4. Conformality

a

In practice, it is highly desirable for the deformation todwa-
formal, namely, angle preserving. A conformal map tramsfor
an infinitesimal circle to an infinitesimal circle, as shown i
Figure 1. Therefore conformal mapping only changes the radi
in the circle packing metriéM,®,I"), and preserves the in-
tersection angle® among the circles. It can be proven that
continuous conformal mapping can be approximated with ar-
bitrary accuracy by discrete maps using circle packing.[30]

In graphics applications, the meshes are embedd@&®,ithe

metrics are induced from that &2. We can find the optimal

weight® with initial circle radiil", such that the circle packing

metric(M, ®,T") is as close as possible to the Euclidean metric

in the least square sense. Namely, we want to fvid®, ") by

minimizing the following functional
minco S [lij %,

gj€E

(9)

wherel;; is the edge length of; in R3.
4. Affine Atlas Construction

In this section, we detail our algorithm of constructing the
affine atlas by employing Ricci flow. The entire pipeline of th
algorithm is illustrated in Figure 9.
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The mapping of the one-ring neighbor of the singular vertexat 1 to 1, but §—1 to 1 shown in (d). Other charts covering the cut graph arestcocted
as shown in (e) and (f), and their overlapping relation with tentral chart is shown in (g) and (h) by encoded colorpedively.
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] : . i k _
Step 1: Selecting Singularities ZK(W) —omy,
i=

wherey is the Euler number of the surface; the target curvature
) i of other vertices are zero. Note that, there are severaiapec
We can select the S|ngglar_vert|c{a\ss1,vz,--- _,vk},k >0any-  ases that must be addressed.
where on the mesh arbitrarily, then we assign the targeteurv

ture of the singular vertices such that — If the surface is a closed genus one mesh, then no singular



Fig. 10. (a) The distribution of the area distortion is color encoded
(b) The path of the arrow illustrate the rough behavior of the error
distribution for the eight model.

vertex is needed.

— For a high genus mesh, we can select only one singular verte

and concentrate all curvatures on it.

— Ifthe mesh is open, we can assign the target curvaturet for a

the interior vertices to be zero and assign the target cureat
for boundary vertices such that the total boundary curestur
equal to 2ty. By this way, all the non-zero curvature will
be pushed to the boundary.

Ricci flow only changes the vertex radii, therefore, the Itasy
metric is conformal to the original one, and no angle digtort
will be introduced. But the area distortion is unavoidallee
uniformity of the parameterization varies drastically deging

on the choice of singularities. Our selection is based on th
minimal area distortion among all possible cases. For eash, c
we set one vertex as the single singularity.

The area distortion error is measured with the followingaequ

tion:

STi(—log(S) —log(s))?

n

where § is thei-th triangle area in surfaces is its area in
parametrization domain, andis the total number of triangles.
Figure 10(a) shows the distribution of the area distortioe
area with low distortion, and red area with high distortitm.
figure 10(b), the path of the arrow illustrates the rough bigira
of the error distribution for the eight model.

When we sort the vertices with the area distortion errors, we

may find the best position to put the singularity. Figure 11
gives five different cases of setting singularity. From tife to
the right, the area distortion is increasing, with the lefistn

being the best parameterized and the right most being thet wor

parameterized.

Step 2: Modify Local Connectivity around the Singular \ierte

In order to determine the desired flat metric, the combirnaitor
constraints for the curvature (7) have to be satisfied. Ifi bo¢
initial curvature configuration and the target curvaturafip
uration satisfy the constraints, any intermediate cumeaton-
figuration during Ricci flow will satisfy the constraints. T$,

it is enough to only consider the target curvature. If some si
gularities have high target curvature concentration, wedne
modify the local connectivity in their neighborhoods.

In practice, we replace the combinatorial constraints Ely 7
a stronger one which is independent of the edge welight

gKi (V) >— (&Wz

eLk(l)
We modify the connectivity around the extraordinary poimd a
make the sampling in the neighborhood of the singularityimuc
denser. We increase the connectivity of the singularityass |
than four times of genus, and vertices in the neighborhowd ha
valence of about 6. This can be summarized as follows:

2K (V)
T

i+ 2nx (/).

(i) The valence of asingular vertexs no less than 4

X(ii) For all the vertices in the firsh ring neighbor of the
singular vertex, their valences are no less than 8, a
small integer. We seh = 3 in our experiments in this
paper.

Figure 15 demonstrates the step of the connectivity motiidica
around the extraordinary point. This step can be easily done
using the edge split operation in half edge data structure.

Step 3: Ricci Flow

Th order to compute the flat metric, we use Ricci flow to drive

the mesh to deform in this order:
(i) Set the initial valuey; = O for each vertex.

(i) Assign the weight for each edge and the radii for each
vertex by minimizing the energy,

minco 3 [lij—1ijl%
gj€E

(10)

whereli_j is the edge length of; in R3. Namely, the
discrete metrigdM, ®,I") is consistent with the induced
Euclidean metric oM.

(i) Update the vertex radiug; by €iy. Compute current
edge lengtH;;’s using Equation (3), corner angles, and
discrete curvatures for each vertex using Equation (4) or

©).

Update vertex radii,

(iv)

Ui+ = & x (Ki —K;), (11)

wheree is a carefully selected step length. Note that if
the step length is too small, the convergence is very slow.
€ =0.1is used in the experiments in this paper.

v)

Normalizeu;, such that the summation of all's equals
to zero.

(vi) Check the deviation betwedf andK;, if the error is less
than a predetermined threshold, the algorithm terminates.
Otherwise, goto Step 2.
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Fig. 11. The first row gives the different positions of singularities on the same model; The second row shows their correspondingafl metric. From
left to right, the area distortion increases.

The algorithm will converge exponentially fast. In praetic

OM = asbya; 'b; Taghpa, thy - aghgag byt
the step length might be time-varying in order to improve the
efficiency.

Each edge starts and ends at the singulgogtyWe cover each
edges, by a chart

Uk = Uy es NI, Vi # Po,Ni = Ui,
Step 4: Segmentation k= Uues i vi 7 po, N k

whereN; represents the one ring neighbor of vertgxThe
algorithm for computing an open covering idf is as follows:
Next, in order to construct the affine atlas, an open covesfng

the mesh needs to be built. The basic idea is to find a set of () ComputeacutgrapB using a canonical homology basis.
curvesG such that the mesk can be sliced open along the

curves and form a topological disk. Such kind of curves form

the cut graphas introduced in the work on geometry images

(i) Slice the mesh along the cut graph to form a topological
[11].

disk M.

(i) For edges of the cut graph, compute the union of one
ring neighbors of all its interior vertices.

(iv) The open covering o is formed byM andUy,

M/{po} C MUy U

Step 5: Planar Embedding

Because the curvature for each vertex is zero, the faces can

be flattened one by one on the plane. The following algorithm
_ _ _ describes the details on how to flatten an opetsetM /{po}.

Fig. 12. A genus two surface with a set of canonical fundamental group . o . 2

generators {ap,by,az,b2} is shown on the left. A finite portion of its Let the desired parameterizationnisU — R,

universal covering space is shown on the rightDifferent fundamental (I) Label all faces irU as non-processed ones. Meanwhile
domains are drawn in different colors. The boundary of easiddmental . . '
domain is the preimage afibya; *b; tabra, tb, . The points{po, p1, p2} label all vertices irJ as non-processed.
are the primages op on the surface.

(i) Select randomly a facéy = [V, Vi, V2] from U, label fg
If there is only one singularitypo, the cut graph can be as processed, label all its vertices as processed. Assign
constructed using a set of canonical homology basis passing (Vo) = (0,0) and7(v1) = (lo1,0). Computet(vz) such
through the singularity as introduced in [2]. The cut graph that
has one node andg2edges. The edges can be labelled as [T(v2) = T(Vo)| = loz, [T(v2) = T(Va)[ =112,  (12)
ar,br,a, by, -+ a4, by (see Figure 12). g

an

Then the mesh is cut open along the cut graph to form a big
chartM. The boundary oM has canonical form

(t(v1) = T(vo)) x (T(v2) — T(V0)) -n >0, (13)

1N



(i) Find all faces inU sharing an edge witli, insert them library as in [20], while adding the edge lengths, vertexirad
to a face queu®. and curvature as the new attributes for the underlying mesh.

(iv) If Qisempty, simply terminate. Otherwise, fetch the first In our prototype software system, we have tested severdigses
face f = [vo,v1,V2] from Q, label f as processed. of genus from zero to three. In this paper, we choose manifold
triangularB-spline because of its flexibility in domain construc-

(v) If all ve_rtlces of f have been processed, go _to Step S'Eion. This method can be also applied to other manifold ssiin
Otherwise, there must be only one vertex which has no . . .
such as T-splines [18] and Powell-Sabin splines [16].

been processed, assume itis labelv, as processed.
Given a domain manifoldM, a manifold triangulaB-spline

(vi) Computet(vz), such that both distance condition (12) surface is defined as follows:

and orientation condition (13) are satisfied.

(vii) Find all neighboring faces sharing an edge witrand Z Z G,pNip(TI (W), UEM,
they are not yet to be processed, add ther@®td@o to [Fl=n
Step(iii ). wherel is the triangle index ang = (Bo, B1,32) is the 3-

tuple to label the control points and knots. The algorithm fo

In order to reduce the accumulation error, the paramet@iza . . : P
P constructing manifold trianguld-spline is as follows:

can be further improved by minimizing the following func-

tional, () The initial control pointsc, g are chosen by uniformly
minZ(|T(vi) —T(vj))? - Iizj)z. subdivided the domain manifol according to the user-
B 7 specified degre@a. Each domain triangle is associated
The purpose of the above functional is to find a valid embed- with (n+ 1)(n—+ 2)/2 control points.

ding such that the distortion between the edge length in the

parametric domain and the Ricci flow output is minimal. In

practice, this step is usually unnecessary if singulariee

carefully chosen to spread out the surface and the cunsture

for each of them is not extremely high. m'”Z Y &g —cigl? (14)
IBl=n

subject tog; g = fJ(VL';),VI,VB, IBl=nB<r

(i) To compute the optimal control poin& g, we solve the
following linear constrained least square problem:

Figure 3, 8, and 16 demonstrate the affine atlas for surfaces
from genus one, two and three, respectively.

where | = A(vo,v1,v2) and J = A(vs,vy,Vp) are ad-

5. Manifold Spline Construction jacent triangles with common edgévo,v1}, Vg =
{tho-- 3071,...,t'z’o,...,t'z,ﬁzil} and t/; are the
knots for trlanglel .

After the affine atlas are constructed in the previous segtios
section first briefly summarizes the theory of manifold spdin
then presents our experimental results.

Suppos# is a mesh with the one ring neighbors of the singular
vertices removed{ (U, 7i)} is an affine atlas, wherd; is a
topological disk comprised by a set of facedwfT; : U; — R?
mapdJ; onto the plane, namelg;, 7i) forms a local coordinate
chart. The chart transition functiontg : 7, (UiNU;) — 1;(UiN

Uj) is a rigid-body motion irR2.

A manifold spline is defined on the meBh M — R?, such that

1 Fig. 13. The linear constraints in the least square problem Eq 14 for

— The local representations of manifold splinése T a cubic manifold triangular B-spline. (a) shows two adjacent triangles

1,(Uj) — R3, are commonly used spline schemes with planat = £ (Vo,v1,V2) andJ = A(vs,v1,Vo) and the knot configurations. (b) high-
parameter domaln. lights six control points, three for each triangle. Notetttiee constraint for

caser =0 is equivalent to the shared control points, |c%0+m1~0 C|Bo+1‘B1‘
— The evaluation of manifold splines is independent of theandcy ;.1 =Cp 5,10 The constraint for case =1 requires that the
choice of local parameter charts, highlig ted six control points to be coplanar.

For, 1=Fo T;lo Tij Note that the initial manifold trianguleB-spline surfaces ac-
quired by step 1 usually have very bad curvature distriloutio
In our current implementation for this paper, we use tridagu especially along the edges of the domain triangles. The pur-
B-splines [?], because it has no restrictions on the connectivitypose of step 2 is to fair the spline surface by modifying the
of the mesh and it can represent any polynomials defined oveontrol points. In the objective function Eq (14), we minkmi
planar [14], sphericald] and manifold domain [11]. We have the squared distance between the control points of the-origi
implemented our own version based on a generic half edge mesital and the new spline surface, which implies that the mihima

11



change of the shape. In the constraints, we use an integer parts, such as Horse and Camel, we choose multiple singulari
0<r <n-1, to control the fairness of the spline surface. Theties on their legs to reduce the area distortion of the affilas a
bigger the value, the more faired surface we obtain. In our For the high genus closed models, such as Eight, Vase and 3-
experiments, we can get visually pleasing surfaces withl  hole torus, only a single extraordinary point is specifies we
for cubic splines or = 2 for splines of degree 5 or above. Fig- remove the extraordinary points and their one-ring neighbo
ure 13 illustrates the case= 1. For the detailed information in spline construction, there are holes in the resultechepli
about spline fairing, please refer to [17]. In the postprocessing step, we use planar triang8isplines

to fill these holes withG! continuity along the boundaries.

6. Discussion

This section discusses several implementation relateesss

Conformal structure vs affine structure. It is proven that con-
formal structure induces affine but not vice versa [11]. €her
fore, conformal structure is in some sense stronger thameaffi
structure. In [11], Gt al. showed a method to construct man-
ifold triangular B-splines using conformal structure. In fact,
manifold splines are solely defined using affine structunees

all the popular planar splines such as NURBS, Bezier spline
triangularB-splines are parametric affine invariant. Thus, from
the spline construction point of view, one can totally igmor
the conformal constraints. The affine atlas shown in Figuse 9
computed by ignoring the conformal constraints, i.e., we-si
ply skip Step 3 (ii) and assign the initial radius of each e@ert
to be 1. Therefore, the angt®; in the circle packing metric is
zero for each edge;. Since discrete Ricci flow preserves the
®;j;, the triangles in the isometric embedding tend to be equi-
lateral triangles. We should also point out that remeshfrigeo

Fig. 14. Examples of manifold splines with various extraordinary pants. input domain mesh is not necessary except the valance of the

Rabbit: genus zero, two boundaries, no singularity; Vaseug two, one  Singular point needs to be increased.
singularity; Cup: genus two, one boundary, no singularity.

Number of singularities. The intrinsic connection between

Figure 8 shows the flat circle packing metric of a genus twomanifold splines and polar forms results from affine streetu
surface and its affine atlas. Figure 9 demonstrates the gsoceand affine atlas. To make these geometric structures computa
of using Ricci flow on how to compute the affine atlas. Thetional tractable in shape modeling applications, we resdtte
sculpture surfaces in Figure 16 is of genus three with difier powerful tool of global parameterization over arbitraryrma
resolutions. The singular vertex and the cut graph are@pli  ifold domain. It is known that global parameterization ofte

shown in this figure. The affine atlas are also highlightedhén t Suffers from severe area distortion. The quality of the glob
figure. parameterization is determined by many factors, such as the

) ) ) ~connectivity of the mesh, the weights on edges, the position
All the examples of manifold triangul@-splines are shown'in - and curvatures of the singularities. It is technically t#raging

Figure 14, 17 and 18. Table 1 shows the statistics of the tegn how to optimize these factors towards the quality improve
cases. As shown in this table, our algorithms for constnacti ment of global parameterization.

the affine atlas and manifold trianguBssplines are extremely
fast, i.e., within only a few seconds. Section 4 presents a brutal force method to locate the singul

ity such that the area distortion of the affine atlas is mitima
Note that genus 1 surfaces, such as Rockerarm (closed) aggya|ly, the more number of singularities, the less aremuis

Hypersheet (open), do not have singularities. There is m0 Si (o in the affine atlas. In practice, the singular pointsistide

gularity for the cup model (genus 2 open surface) as all theqsen on parts with large extrusion, e.g., the feet of theeho
non-zero curvatures are pushed to the boundary. For theitRabl, qe| in 17.

model, we introduce two cuts, one on the top, the other on the

bottom, and then apply the double covering to convert it intoBesides this work which minimizes timeimber of singularities

a closed genus one surface. Thus, no singularity existdéor t we developed polycube T-splines which aims to minimizes the
Rabbit model. For the Bunny model, we specify the singulararea distortionin affine atlas [38]. However, the price to pay
ity on the head. For other genus 0 surfaces with large exinusi for the lower area distortion is the significantly larger rhen

1N



Table 1

Statistics of test exampleg, genus of domain manifold; N¢, # of faces inM; N, # of boundaries ifM; Ns, # of singularities;N;, # of control points;
Tricei, time for computing the discrete Ricci flow and isometric eading (Step 3 and 5 in Section 4pine, time for the spline constructiom, degree of
splines. Note that time measures in seconds.

‘ Object ‘g‘ Nt ‘Nb Ns| Ne¢ [Tricci Tsp“ne‘n‘COntinuiM
Bunny |[0/621|3|1|2827| 6s| 3s |3 c?
Rabbit [0]1038 2| 0|4698| 12s| 8s |3| c?
Horse |0]4002 5|2{18074 26s| 18s |3 c?
Camel (0]2958 5|1 (13380 18s| 12s |3| c?

Rockerarm1| 614 0| 0| 7675| 2s | 5s |3 c?

Hypersheell| 300| 3| 0| 1446| 55 | 2s |3| c?
Eight [2/806|0|1|3644| 4s| 3s |3 C?
Vase [2/14800|1|6666|15s| 10s |3 C2
Cup |2/19291|0(155153 20s| 18s |4] CB3

3-hole torug3| 878| 0| 1|3955| 8s | 4s |3| C?

of extraordinary points. Therefore, in real applicatidhis the
user’s call to make the balance

7. Conclusion and Future Work

This paper has developed an efficient and rigorous algofithm

constructing a manifold spline surface of complicated togy

and complex geometry with single extraordinary point, vahic _ N _ _

has already reached the theoretic lower bound of the numb&g. 15.Modify local connectivity around the extraordinary point. (a) The
fsi lariti Th . f thi truction afbm extraordinary point and its one-ring neighbors are markerkd. (b) Modify

0 smgu_ ar |es._ € _umquene_ss ot this construc |0n_ b local connectivity to satisfy the combinatorial consttaftquation (7).

for manifold splines is that, it is solely based on a simpld an

powerful computational tool: Ricci flow. From the mathemat-tially supported by NSF 11S-0326388, 11S-0601168, and IIS-

ical point of view, Ricci flow has substantial relevance te th 0710819.

curvature flow method in differential geometry. For example

Ricci flow can conformally deform the metric to induce any

prescribed curvature.

(a) original connectivity

(b) Modified connectivity
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Fig. 17. Multiple singularities. Within our framework, the user can also specify multiplegsiarities on the models. The horse model has five boundaries
(four on the feet and one on the mouth) and two singularifié®e camel model has five boundaries and one singularity. ditgett geodesic curvature of the
boundary vertices is zero. The holes and singularities #eel fusing minimal surfaces.
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Fig. 18. Examples of manifold triangular B-splines. The affine atlas are computed using Ricci flow under free bagndondition. The transition function
is a combination of translation and rotation. The red cuveghe spline surfaces (see (d)) highlight the triangulactpaork.



