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Discrete Conformal Deformation: Algorithm and Experiments∗

Jian Sun†, Tianqi Wu‡, Xianfeng Gu§, and Feng Luo¶

Abstract. In this paper, we introduce the definition of discrete conformality for triangulated surfaces with flat
cone metrics and describe an algorithm for solving the problem of prescribing curvature, which is
to deform the metric discrete conformally so that the curvature of the resulting metric coincides
with the prescribed curvature. We explicitly construct a discrete conformal map between the input
triangulated surface and the deformed triangulated surface. Our algorithm can handle a surface
with any topology, with or without boundary, and can find a deformed metric for any prescribed
curvature satisfying the Gauss–Bonnet formula. In addition, we present the numerical examples
to show the convergence of our discrete conformality and to demonstrate the efficiency and the
robustness of our algorithm.
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1. Introduction. In this paper, we introduce a definition of discrete conformality for
triangle meshes and describe an algorithm for solving the problem of prescribing curvature,
which is to deform the metric discrete conformally so that the curvature of the resulting
metric coincides with the prescribed curvature. In addition, we explicitly construct a discrete
conformal map between the original triangle mesh and the deformed triangle mesh. The
problem of prescribing curvature has many applications in various engineering fields, including
computer vision, image processing, and computer graphics. For instance, by setting the
curvature to be zero, one can discrete conformally flatten a triangle mesh into the plane and
thus obtain a discrete conformal parametrization of the mesh.

Our discrete conformal deformation consists of two basic operations: vertex scaling and
cocircular diagonal switch (see Figure 1). Assume a closed surface S is equipped with a
triangulation T = (V,E, F ), where V , E, and F are the vertex set, the edge set, and the
triangle set, respectively. An edge length assignment l : E → R

+ assigns any edge e ∈ E
the length l(e), which determines a metric on S, provided that the triangle inequalities are
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Figure 1. Two basic operations in discrete conformal deformation.

satisfied for all triangles in T . Vertex scaling is a special way of changing the edge lengths.
Specifically, the vertex scaling of the edge length assignment l by a function w : V → R is
another edge length assignment, denoted w∗T l, so that for any edge e ∈ E with the endpoints
u, v ∈ V,

(1.1) w ∗T l(e) = ew(u)+w(v)l(e).

We call the function w the discrete conformal factor. A discrete conformal factor w is legiti-
mate if the edge length assignment w ∗T l satisfies the triangle inequalities for all the triangles
in T . By a simple dimension counting, the vertex scalings of l will not in general cover all
possible edge length assignments on E. For an edge e in T , denote by f and f ′ the two trian-
gles in T incident to e, and e1, e2, respectively, e

′
1, e

′
2, are two other edges of f, respectively,

f ′, listed counterclockwise, as shown in Figure 1. Define the length cross ratio of the edge
e under the edge length assignment l as cl(e) = (l(e1)l(e

′
1))/(l(e2)l(e

′
2)). Then it is easy to

verify that an edge length assignment l̃ is a vertex scaling of l if and only if the length cross
ratio is preserved, i.e., cl(e) = cl̃(e) for any edge e in T .

The vertex scaling operation was introduced by Roček and Williams in physics [33] and
independently by Luo in mathematics [29]. Luo established a (convex) variational principle
associated to vertex scaling. This variational principle has many nice properties. The one
most relevant to the applications in engineering fields is that there is an efficient algorithm
to solve the problem of prescribing curvature, and thus the problem of discrete conformal
parametrization as a special case. The main observation is that, given a triangulation T and
an edge length assignment l over its edges E, the conformal factor w such that the metric
determined by w ∗T l achieves the prescribed curvature is the unique minimizer of a convex
energy, whose gradient and Hessian can be explicitly estimated. Thus, the minimizer can be
efficiently computed by Newton’s method. The convex energy discovered by Luo [29] takes
the form of a path integral of a differential one-form. An explicit formula of this convex energy
based on the Lobachevsky function was found later by Springborn, Schröder, and Pinkall [35].
However, there are the cases where the discrete conformal factor w solving the prescribing
curvature problem does not exist. In fact, in those cases, the minimizer w of the above convex
energy is not legitimate.

To tackle the issue of existence, we introduce the second operation: diagonal switch. Let
e be an edge in T adjacent to two distinct triangles f and f ′ in T ; the diagonal switch ofD
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the edge e replaces e by the other diagonal e′ of the quadrilateral f ∪ f ′. This also replaces
the triangles f, f ′ by two new triangles, g, g′, as shown in Figure 1, and produces a new
triangulation T ′ = (V,E′, F ′) on S. With diagonal switch, we can extend the domain of
legitimate discrete conformal factors. To see this, we start with a Euclidean triangulation T
and an initial edge length assignment l over the edges in T , and then we vertex scale l by
continuously changing the function w along the gradient of the above convex energy. At some
point, some triangle in T may become degenerate under the new edge length assignment w∗T l,
that is, the triangle inequality becomes an equality. It was shown by Luo [29] that in any
degenerated triangle one of its inner angles must equal π. By diagonally switching the edge
opposite to that angle, the degenerated triangle is removed. In this way, one may make the
conformal factor w legitimate. However, diagonal switch brings up many complicated issues.
For instance, with diagonal switch, a priori, the energy depends on not only the discrete
conformal factor w, but also the triangulations on S, which are combinatorial structures. Can
the energy with combinatorial variables still be convex? In addition, new edges are emerging
with diagonal switches. What is the assignment of the lengths for these edges which are not in
the initial triangulation? Furthermore, if multiple triangles simultaneously become degenerate,
do different sequences of diagonal switches lead to the same solution?

Our key observation to make diagonal switch work nicely is to switch an edge well before
its incident triangles become degenerate. Specifically, an edge e ∈ E shared by the triangles
f, f ′ is switched when it fails to be Delaunay, that is, the sum of the angles opposite to e
in f and f ′ becomes bigger than π. We call it cocircular diagonal switch, as the edge e is
switched at the moment that the quadrilateral f ∪f ′ become cocircular. See Figure 1. We will
answer the above three questions later. Roughly speaking, two polyhedral (PL) metrics on S
are discrete conformal if one can be deformed to the other by a sequence of vertex scalings
and cocircular diagonal switches. The rigorous definition is given in Definition 3.1. Based on
this discrete conformality, there always exists a PL metric which is discrete conformal to the
initial PL metric and achieves any prescribed curvature. Furthermore, such a metric can be
computed using an efficient algorithm through minimizing a convex energy. The algorithm
can handle surfaces with any topology with or without boundary.

In this paper, we describe our theory of discrete conformality with a focus on explaining
the algorithm for solving the problem of prescribing curvature, and we present the numerical
examples, in particular showing the convergence of our discrete conformality. For the rigorous
mathematical treatment of our theory, interested readers are referred to [15, 14].

Related work. There has been a lot of research into discrete conformality, and we will
not attempt a comprehensive review here. Instead, we focus on methods closely related to
ours. Note that all previous work deals with the concept of discrete conformality with fixed
triangulations.

Bobenko, Pinkall, and Springborn [4] introduced a geometric interpretation to vertex
scaling in both Euclidean and hyperbolic geometry using the volume of generalized hyperbolic
tetrahedron. Glickenstein [11, 12] extended vertex scaling to 3-dimensional piecewise flat
manifolds.

One closely related work is circle patterns, where a system of circles is associated with
vertices. Two triangulated surfaces are considered conformally equivalent if the intersectionD
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angles of the circles are equal in both triangulated surfaces. The idea of approaching discrete
conformality through circle patterns goes back to Thurston (see [36]). Rodin and Sullivan [34]
proved Thurston’s conjecture that Riemann mapping can be approximated by tangential cir-
cle packings (i.e., circle patterns with 0 intersection angles) of hexagonal triangulations, and
He and Schramm [20] later showed the convergence is C∞. Colin de Verdiére [8] discovered
a variational principle for circle patterns with intersection angles in [0, π/2], and Chow and
Luo [7] introduced discrete Ricci flow based on circle packing and established a convergence
theorem. An issue with circle patterns is that not all metrics can be realized by circle patterns
with intersection angles in [0, π/2]. To tackle this issue, Bowers and Stephenson [6] introduced
inversive circle patterns where circles do not necessarily intersect. Guo [18] established a vari-
ational principle for inversive circle patterns and showed that inversive distance circle patterns
are locally rigid, i.e., locally determined by the curvature. Luo gave a proof for global rigidity
in [30]. However, the question of existence to the problem of prescribing curvature remains
open. It is interesting to see if diagonal switch can help solving the existence problem. Many
practical algorithms based on circle patterns have been proposed for conformally flattening
triangulated surfaces, including [25, 24].

Conformality is closely related to harmonicity. Pinkall and Polthier [31] proposed an ap-
proach for flattening a triangulated surface by computing a pair of discrete harmonic functions
conjugate to each other. Gu and Yau [16] proposed a method to conformally flatten a surface
into the plane using holomorphic one-forms. Assuming h = f(z)dz is a holomorphic one-form
of the surface, the metric |f(z)|2dzdz̄ is then conformal and flat when f(z) �= 0. Noticing that
any holomorphic one-form can be decomposed as h = ω + i(∗ω), where w is a real harmonic
one-form and ∗w is its conjugate, Gu and Yau developed discrete algorithms to approximate
holomorphic one-forms from a triangulated surface by computing discrete harmonic one-forms
and their conjugates.

Another class of methods achieves conformality by minimizing conformal distortion. In
these methods, piecewise linear maps are used to approximate actual conformal maps. Notic-
ing that hz̄ = 0 for a conformal map h, Levy et al. [26] proposed a method for finding a
piecewise linear map f from a triangulated surface into the plane by minimizing ‖|fz̄|‖L2 .
Lipman [27] proposed a method for finding a piecewise linear map f whose conformal distor-

tion |fz|+|fz̄|
|fz|−|fz̄| is bounded. Lui et al. [28] noticed that the magnitude of the Beltrami coefficient

μ =
∣∣hz̄
hz

∣∣ is constant for the extremal map h (the map with minimal conformal distortion) and
proposed an iterative procedure to find a piecewise linear map f whose Beltrami coefficient
has constant magnitude.

With our new definition of discrete conformality, we establish a discrete uniformization
theorem. In a series of papers on developing discrete uniformization theorem [23, 22, 21],
Hersonsky proved several important theorems based on discrete harmonic maps and cellular
decompositions. His approach is complementary to our work.

2. PL metrics and triangulations. The purpose of this section is to explain the relation
between PL metrics and triangulations and to familiarize the readers with a more general
triangulated surface than is usually encountered in many engineering fields with simplicial
complex structure (i.e., any higher dimensional simplex is uniquely determined by its vertices).
For simplicity, we assume the surface S is closed without boundary. We will discuss how toD
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v0v3 → v1v2 v0v2 → v1v1

Figure 2. Triangulations of the boundary of a tetrahedron. The second row shows the gluing pattern of
the triangles for different triangulations, where the edges marked with the same symbol are glued together. The
triangulation T2 (T3) is obtained by switching an edge in T1 (T2).

deal with surfaces with boundaries in section 3.1.
We start with a triangulated surface S with which we are familiar, i.e., embedded in R

3

where each triangle is the convex hull of its three vertices. For example, the boundary of
a tetrahedron in R

3 is such a triangle mesh with four Euclidean triangles, as shown in the
leftmost picture in Figure 2. Denote by V the set of vertices. Note that, other than the
vertices, any point p ∈ S has a flat neighborhood. This is obvious if p is in the interior
of a triangle which is Euclidean. For p in the interior of an edge, one can flatten the two
triangles incident to the edge into the Euclidean plane, and thus p also has an (intrinsically)
flat neighborhood. For a vertex v ∈ V , it has a neighborhood like a cone, as shown in Figure 2.
Thus the metric on S is flat with possible cone singularities at a discrete set of vertices. We
call such a metric a polyhedral metric, or simply PL metric. In general, a surface with a PL
metric is obtained by isometrically gluing pairs of edges of a finite collection of Euclidean
triangles. See Figure 2 for examples. The converse also holds; that is, any surface with a
PL metric can be partitioned into Euclidean triangles. In fact, this can be done by keeping
connecting pairs of cone singular vertices with intrinsically straight edges on S until no edge
can be added without intersecting the previously added edges in their interiors. Each partition
is in fact a triangulation with Euclidean triangles (in short, Euclidean triangulation) on the
surface S. The curvature of a PL metric is 0 everywhere except at the cone singular vertices
where the curvature is defined as 2π less the cone angle. Given a Euclidean triangulation
T = (V,E, F ) on the surface S, one can evaluate the cone angle at a vertex v by summing
the inner angles at v in the triangulation T , and even deform the PL metric d by changing
the edge length. For an edge e ∈ E, let d(e) be the length of e measured in the metric d. The
edge length assignment l : E → R

+ with l(e) = d(e) uniquely determines the PL metric d.
Given a PL metric d on S, there may be more than one Euclidean triangulation. Figure 2

shows three different triangulations of the boundary of a tetrahedron, where the triangulation
T2, respectively, T3, is obtained by diagonally switching the edge v0v3 in T1, respectively,
the edge v0v2 in T2. It is generally true that any two (Euclidean) triangulations on S with
the same set of vertices V are related by diagonal switches [19]. Among those EuclideanD
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Tpl(S, V ) = ∪TM(T ) Tpl(S, V ) = ∪TMD(T )

MD(T0)

MD(T1)MD(T2)

MD(T3)

MD(T4)
MD(T5) MD(T6)

MD(T7)

MD(T8)
MD(T9)

M(T0)

M(T1)M(T2)

M(T3)

M(T4)

M(T5) M(T6)

M(T7)

M(T8)

M(T9)

Figure 3. Coverings of the space of PL metrics Tpl(S, V ).

triangulations, there always exists a Delaunay triangulation where every edge is Delaunay;
that is, the sum of the angles opposite the edge is no bigger than π [5]. There may exist more
than one Delaunay triangulation. If it happens that the sum of the angles opposite an edge
is exactly π, then by (cocircular) diagonally switching that edge, we obtain another Delaunay
triangulation. In fact, any two Delaunay triangulations are related by a sequence of cocircular
diagonal switches.

In this paper, we fix the topology of the closed surface S and a finite nonempty set V ⊂ S
and call the pair (S, V ) a marked surface. A PL metric on the pair (S, V ) is a PL metric
on S with the cone singularities in V ; the curvature of a PL metric on (S, V ) is the function
K : V → R sending a vertex v to 2π less than the cone angle at v; and a triangulation of the
pair (S, V ) is a triangulation on S with vertex set V . The curvature K of a PL metric satisfies
the Gauss–Bonnet formula:

∑
v∈V K(v) = 2πχ(S), where χ(S) is the Euler characteristic

number of S. If T = (V,E, F ) is a triangulation on (S, V ), then χ(S) = |V | − |E|+ |F |.
Let Tpl(S, V ) be the space of PL metrics on (S, V ).1 Given a triangulation T of (S, V )

with set of edges E = E(T ), let E(T ) be the set of edge length assignments so that the triangle
inequalities are satisfied for all triangles in T . E(T ) is a convex polytope in R

|E(T )|. Since any
edge length assignment l ∈ E(T ) determines a PL metric d on (S, V ) with d(e) = l(e), there
is an injective map

(2.1) ΦT : E(T )→ Tpl(S, V )

sending l to a PL metric dl = ΦT (l) on (S, V ). The imageM(T ) := ΦT (E(T )) is the space of
all PL metrics d on (S, V ) for which T is a Euclidean triangulation in d. From the previous
discussion, for any PL metric d on (S, V ), there exists a Euclidean triangulation T on (S, V )
whose edge length assignment is given by the metric d; i.e, there exists an edge length assign-
ment l ∈ E(T ) with d = ΦT (l). Thus we have Tpl(S, V ) = ∪TM(T ), where the union is over all
triangulations on (S, V ). Notice that E(T ) = (−3χ(S)+3|V |), where χ(S) is the Euler charac-
teristic number of S, which is independent of T . This means that Tpl(S, V ) is a manifold of di-
mension (−3χ(S)+3|V |) with coordinate charts {(M(T ),Φ−1

T )|T is a triangulation on (S, V )},
as illustrated in Figure 3. Note that in general Tpl(S, V ) �=M(T ).

1Strictly speaking, we should consider the set of equivalence classes of PL metrics where two PL metrics d, d′

on (S, V ) are equivalent if there is an isometry h : (S, V, d) → (S, V, d′) that is homotopic to the identity map
on (S, V ). However, this difference is subtle and can be ignored, especially for the purpose of understanding
the algorithm.D
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Now we consider a subset of E(T ):

(2.2) ED(T ) = {l ∈ E(T )|T is a Delaunay triangulation on (S, V ) in the PL metric ΦT (l)}.

As we discussed before, for any PL metric d, there is a Delaunay triangulation T whose edge
length assignment l is given by the metric d, i.e., d = ΦT (l). Thus the set {ED(T )|T is a
triangulation on (S, V )} also covers Tpl(S, V ). In fact, this set forms a cell decomposition of
Tpl(S, V ) [32, 15], as illustrated in Figure 3. Thus one may say that Delaunay triangulation
is canonical as it is uniquely determined by the PL metric except for those metrics on the cell
boundary which have multiple Delaunay triangulations.

Finally, we remark that in a Euclidean triangulation T on (S, V ), it is possible to have
multiple intrinsically straight edges between two vertices (e.g., the edges marked “◦” and “
”
between v1 and v2 in the triangulation T2 in Figure 2), and even to have an intrinsically
straight loop edge (e.g., the edge marked “�” in the triangulation T3 in Figure 2). Note that
even if we start with a mesh with simplicial complex structure, we may end up with a mesh
with a more general structure than that above, as we allow diagonal switches.

3. Discrete conformality. Now we are ready to present our definition of discrete confor-
mality.

Definition 3.1 (discrete conformality for surfaces without boundary). Two PL metrics d, d′

on (S, V ) are discrete conformal if there exist sequences of PL metrics d0 = d, . . . , dm = d′ on
(S, V ) and triangulations T0, . . . ,Tm of (S, V ) satisfying the following:

(a) Each Ti is Delaunay in di.
(b) If Ti = Ti+1, then li+1 = w ∗Ti li for a conformal factor w : V → R, where li+1 and li

are the edge length assignments over the edges of Ti with li+1(e) = di+1(e) and li(e) = di(e)
for any edge e in Ti.

(c) If Ti �= Ti+1, then di+1 = di,
2 and Ti,Ti+1 are related by cocircular diagonal switches.

This definition means that d, d′ are discrete conformal if and only if there exists a path
connecting two PL metrics in the space of Tpl(S, V ) such that, within a cell ED(T ), the metrics
deform along the path by vertex scalings, and on the cell boundary the Delaunay triangulation
is changed to another via cocircular diagonal switches.

Condition (a) in the definition is crucial. Note that vertex scaling depends on the choice
of triangulations. The vertex scaling of the same PL metric but under different Euclidean
triangulations may generate different PL metrics. So the previous definition of discrete con-
formality by vertex scaling [33, 29, 4] heavily depends on the triangulations, which is not
inherent to PL metrics. On the other hand, by restricting it to Delaunay triangulations which
are canonical to PL metrics, our definition of discrete conformality is inherent to PL metrics.
With this definition, we are able to prove the following uniformization theorem in [15].

Theorem 3.2. Suppose (S, V ) is a closed connected marked surface and d is any PL metric
on (S, V ). Then for any K∗ : V → (−∞, 2π) with

∑
v∈V K∗(v) = 2πχ(S), there exists a

PL metric d′, unique up to scaling, on (S, V ) such that d′ is discrete conformal to d and the
discrete curvature of d′ is K∗.

2Strictly speaking, di+1 = di in the sense of equivalence class; that is, (S, di) is isometric to (S, di+1) by an
isometry homotopic to the identity in (S, V ).D
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In the above theorem, the conditions on the curvature K∗ are necessary for K∗ to be
a curvature of a PL metric on (S, V ). The theorem states that those conditions are also
sufficient for K∗ to be achieved by a metric that is discrete conformal to the given metric d.
This solves the existence and the uniqueness of the discrete conformal deformation mentioned
in the introduction.

3.1. Surfaces with boundary. To deal with a surface with boundary, our strategy is to
double the surface to remove the boundary, that is, make another copy of the original surface
and glue them along the boundary, to apply the discrete conformal deformation described
above to the doubled surface, and finally to cut out a copy of the deformed surface from the
deformed doubled surface.

Let B be the boundary of the marked surface (S, V ). Given a PL metric d on S, B consists
of a set of closed polygonal loops. A Euclidean triangulation on (S, V ) is a partition of S into
Euclidean triangles with the vertices V . Note that those edges of the polygonal loops of B
have to be in the triangulation. For a vertex v ∈ V on the boundary, its curvature is defined
as π less than the cone angle at v. With this definition, the Gauss–Bonnet theorem still holds:∑

v∈V K(v) = 2πχ(S).
The doubled surface of (S, V ) is defined by taking the disjoint union of two copies of (S, V )

and identifying the points on the boundary by a homeomorphism f : B → B which preserves
the vertices on the boundary. Denote by (S̃, Ṽ ) the doubled surface of (S, V ). A PL metric
d on (S, V ) induces a PL metric d̃ on (S̃, Ṽ ) by forcing the gluing map f to be isometric in
d. We call d̃ the doubled metric of d. Conversely, a PL metric on the doubled surface (S̃, Ṽ )
is said to respect the doubling structure if it is the doubled metric of a PL metric on (S, V ).
Let the map h : (S̃, Ṽ ) → (S̃, Ṽ ) be the mirror map sending a point to the other copy. The
map h is a self-isometric map if the PL metric on (S̃, Ṽ ) respects the doubling structure. For
convenience, the set of fixed points of the map h is called the boundary of (S̃, Ṽ ).

Definition 3.3 (discrete conformality for surfaces with boundary). Two PL metrics d, d′ on
the surface (S, V ) with boundary are discrete conformal if their doubled metrics on the doubled
surface of (S, V ) are discrete conformal according to Definition 3.1.

Theorem 3.4. Suppose (S, V ) is a connected marked surface with boundary and d is any
PL metric on (S, V ). Then for any K∗ : V → (−∞, 2π) with

∑
v∈V K∗(v) = 2πχ(S) and

K∗(v) < π for a vertex v on the boundary, there exists a PL metric d′, unique up to scaling,
on the surface (S, V ) such that d′ is discrete conformal to d and the discrete curvature of d′

is the prescribed curvature K∗.
The proof of the above theorem is deferred to the appendix. The basic idea is as follows.

We obtain the doubled surface (S̃, Ṽ ) and prescribe the curvature K̃∗(v) for (S̃, Ṽ ) as follows:
for a vertex v on the boundary, set K̃∗(v) = 2 ∗ K∗(v), and for a vertex in the interior, set
K̃∗(v) = K∗(v). It is easy to verify that the curvature K̃∗ satisfies the hypotheses imposed
in Theorem 3.2 to a target curvature on (S̃, Ṽ ). Thus there exists a PL metric d̃′ discrete
conformal to d̃, and the discrete curvature of d̃′ is the curvature of K̃∗. It remains to show that
d̃′ respects the doubling structure, and the restriction of d̃′ onto S is the PL metric d′ with
the property stated in the theorem. The key is to show that the conformal factor w continues
to respect the conformal structure, i.e., w(h(v)) = w(v), and the Delaunay triangulation T of
(S̃, Ṽ ) under metric d̃′ has a certain symmetric property. Specifically, any triangle f crossingD
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i

s

u v
u4

u5

un

j

· · ·

u′ v′
u′4 u′5

u′n· · ·

u3

u′3

f

f ′

Figure 4. The symmetric property of the triangles crossing an edge ij on the boundary.

an edge ij on the boundary has to have two vertices u, u′ so that u′ = h(u), and, moreover,
if the third vertex v of the triangle f is neither i nor j, the neighboring triangle f ′ = v′vu′

with v′ = h(v) must also cross the edge ij, and two triangles f and f ′ form a cocircular
quadrilateral, as shown in Figure 4. In addition, the boundary edge ij remains straight after
the discrete conformal deformation, and they subdivide the crossed cocircular quadrilaterals
into two identical pieces. This makes it easy to algorithmically cut out a copy of the deformed
surface from the deformed doubled surface.

4. Convex energy. In this section, we describe a convex energy for solving the problem of
prescribing curvature. This will answer the first question raised in the introduction positively;
i.e., there is still a convex energy even with the seeming appearance of combinatorial variables
for changing triangulations. Roughly speaking, as our discrete conformality only involves
Delaunay triangulations, which are canonical and determined by PL metrics, the combinatorial
variables of triangulations are not independent.

Given a PL metric d on (S, V ), we let C(d) denote the space of PL metrics that are discrete
conformal to d. The following lemma about C(d) is important.

Lemma 4.1. There is a C1 diffeomorphism from C(d) to R
|V | where a point w ∈ R

|V | is
understood as a discrete conformal factor on V .

This lemma means there is a one-to-one correspondence between the PL metrics discrete
conformal to d and all discrete conformal factors on V . The energy is defined over R

|V |, the
space of all discrete conformal factors. The rigorous mathematical proof of this lemma uses
the Teichmüller theory by establishing a one-to-one correspondence between PL metrics on
(S, V ) and the hyperbolic metrics on S\V with cusps and decorations at V [15]. In this paper,
we will not explain this connection to hyperbolic metrics. Instead, we will give an intuitive
explanation of the lemma aiming at an understanding of the algorithmic aspects, which does
not, however, mathematically prove it.

The space C(d) ⊂ Tpl(S, V ) has a cell decomposition induced by that of Tpl(S, V ), where
a cell is the intersection C(d) ∩MD(T ) for some triangulation T on (S, V ). Note that the
number of cells in C(d) is finite [15]. See Figure 5. Let T0 be a Delaunay triangulation in
the initial PL metric d, and let lT0 be the edge length assignment with lT0(e) = d(e) for any
edge e of T0. Given a conformal factor w ∈ R

|V |, let w also denote a path in R
|V | from 0

and w, that is, w : [0, 1] → R
|V | with w(0) = 0 and w(1) = w. We have lT0 = w(0) ∗T0 lT0 .D
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R
|V |

C(d)

MD(T0)

MD(T1)w(t1)

w(1) = w

w(0) = 0 d1

MD(Tm)

d

d′

d2
d

dm−1· · ·

Figure 5. One-to-one correspondence between the conformal factors and the PL metrics on (S,V ) discrete
conformal to a PL metric d.

As we move along the path w, we continuously deform the PL metric d discrete conformally
through vertex scaling lT0 by w(t). This will trace out a path ΦT0(w(t) ∗T0 lT0) in the cell
C(d) ∩MD(T0). At some point, this path may hit the boundary of the cell. Assume that
happened at t = t1 and, for example, the quadrilateral f ∪ f ′ with the diagonal e becomes
cocircular in the metric d1 = ΦT0(w(t1) ∗T0 lT0). We diagonal switch the edge e to the edge
e′ and obtain another Delaunay triangulation T1 in d1, as shown in Figure 1. Note that T0 is
also Delaunay in d1. Due to the well-known Ptolemy identity for a cocircular quadrilateral,
we have

d1(e
′) =

d1(e1)d1(e
′
1) + d1(e2)d1(e

′
2)

d1(e)

=
lT0(e1)lT0(e

′
1) + lT0(e2)lT0(e

′
2)

lT0(e)
ew(t1)(u′)+w(t1)(v′),(4.1)

where u′ and v′ are the endpoints of e′. If we let lT1 be the edge length assignment over the
edges of T1 so that lT1(e) = lT0(e) for e �= e′ and

(4.2) lT1(e
′) =

lT0(e1)lT0(e
′
1) + lT0(e2)lT0(e

′
2)

lT0(e)
,

then we have d1 = ΦT1(w(t1) ∗T1 lT1). Note that lT1(e
′) for the new edge e′ depends only on

lT0 and in particular is independent of the conformal factor w(t1). This answers the second
question raised in the introduction on how to assign the initial edge lengths for the new edges
after diagonal switches. Repeat the above procedure as we continuously move along the path
w. At the end, we reach a metric d′ = ΦTm(w ∗Tm lTm) in the cell C(d) ∩MD(Tm) for some
triangulation Tm. Mathematically, we can show that the final metric d′ is independent of the
choice of path; namely, if we choose another path connecting 0 and w and repeat the above
procedure, we reach the same metric d′. Thus d′ depends only on the initial PL metric d and
the conformal factor w. We write d′ = w ∗ d. Conversely, for any PL metric d′ ∈ C(d), one
can find a conformal factor w ∈ R

|V | such that d′ = w ∗ d. To see this, from the definition of
discrete conformality, there is a path in C(d) connecting d and d′. From the above procedure,D
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it is easy to trace out a path w : [0, 1] → R
|V | starting at 0 so that w(t) ∗ d is the path in

C(d) connecting d and d′. This shows that there is a one-to-one correspondence between R
|V |

and C(d). This in fact answers the third question raised in the introduction positively, i.e.,
whether different orders of switching diagonals lead to the same final PL metric.

We follow Luo [29] and define the energy as a path integral of a differential one-form on
R
|V |. Given a PL metric d on (S, V ), let K : R|V | → R

|V | be the curvature map such that
K(w) is the curvature of the PL metric w ∗ d on (S, V ) for any conformal factor w ∈ R

|V |.
Label the vertices V using 1, 2, . . . , n = |V |. Let Ki and wi denote the curvature K and the
conformal factor w evaluated at the vertex i, respectively. Given a Euclidean triangulation
T = (V,E, F ) of (S, V ), associate each edge ij ∈ E to two oriented half edges, one from i to j
and the other from j to i. Let Eij(T ) be the set of oriented edges in T starting at the vertex
i and pointing to the vertex j. Note that Eii(T ) may not be empty. Let Ei(T ) be the set of
oriented edges in T starting from the vertex i, i.e., Ei(T ) = ∪j∼iEij(T ). For an edge e shared
by the triangles f and f ′, let αe and α′

e be the angles opposite e in f and f ′, respectively. We
have the following lemma on the curvature K.

Lemma 4.2.
(i) Ki is a C1 function on R

|V | for any vertex i.
(ii) Let T be a Delaunay triangulation in the metric w ∗ d; then

(4.3)
∂Ki

∂wj
=

{
−
∑

e∈Eij(T )(cotαe + cotα′
e) if i �= j,∑

e∈Ei(T )(cotαe + cotα′
e)−

∑
e∈Eii(T )(cotαe + cotα′

e) if i = j.

(iii) The matrix (∂Ki
∂wj

)i,j is semipositive definite, and its null space consists only of constant
vectors.

Proof. For a w ∈ R
|V | such that w ∗ d is in the interior of a cell of C(d), the above lemma

was proved by Luo [29]. In fact, in our setting, because the triangulation T is Delaunay, we
have αe+α′

e ≤ π and thus cotαe+cotα′
e ≥ 0 for any edge e, which means the matrix (∂Ki

∂wj
)i,j

is diagonally dominant. So it remains to show that Ki is C
1 on the cell boundaries.

Assume T ′ is another Delaunay triangulation in the metric w∗d. Since T and T ′ are related
by a sequence of cocircular diagonal switches, we may assume T ′ is obtained from T by one
cocircular diagonal switch. Assume the diagonal e of the quadrilateral f ∪ f ′ is switched to
the other diagonal e′, as shown in the right picture of Figure 1. For any vertex i, Ki obviously
remains the same before and after the diagonal switch. From (4.3), the evaluation of ∂Ki

∂wj
only

involves the quantity cotαe +cotα′
e associated to any edge e. Observe that only for the sides

and the diagonals of the quadrilateral f ∪ f ′ may this quantity differ before and after the
diagonal switch. For the diagonal e, this quantity is 0 in T due to the fact that αe + α′

e = π,
and remains 0 in T ′, as e is not an edge in T ′, and similarly for another diagonal e′. For
any side, say, e1 (see Figure 1), as the angle opposite to e1 in the triangle f equals the angle
opposite to e1 in the triangle g′, this quantity associated to e1 remains the same before and
after the diagonal switch. This shows that Ki is C

1 for any vertex i.
Define a differential one-form on the space of conformal factors as Ω(w) =

∑n
i=1 Ki(w)dwi

for any w ∈ R
n. From (4.3), ∂Ki

∂wj
=

∂Kj

∂wi
for any i, j, implying that Ω is closed and thus exact,

as the domain R
n is simply connected. This means the path integral of Ω depends only on

the endpoints of the path. Given a prescribed curvature K∗ ∈ R
n, define the energy E overD
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the space of discrete conformal factors as

(4.4) E(w) =

∫ w

0

n∑
i=1

Ki(w)dwi −
n∑

i=1

K∗
i wi.

Note that the gradient of the energy ∇E = (K1 − K∗
1 , . . . ,Kn − K∗

n)
t and the Hessian of

the energy H(E) = (∂Ki
∂wj

)i,j. From Lemma 4.2, the Hessian H(E) is semipositive definite,

and thus the energy E is convex and strictly convex restricted to the subspace W = {w ∈
R
n|w1 + · · · + wn = 0}. If the prescribed curvature K∗ satisfies the conditions stated in

Theorem 3.2, there exists a discrete conformal factor w∗ ∈ W such that K∗ = K(w∗). This
means ∇E(w∗) = 0, implying that w∗ is the unique minimum of the energy E on the subspace
W . Thus, one can employ Newton’s method to find w∗ and hence the PL metric w∗ ∗d, which
realizes the prescribed curvature.

5. Discrete conformal map. In this section, we construct a map φ : (S, V, d)→ (S, V, d′)
on the same marked surface (S, V ) but with two PL metrics d and d′ discrete conformal to
each other, which we call the discrete conformal map from d to d′. In [14], given a PL metric
d on (S, V ), we equip (S, V ) with another hyperbolic metric with cusps (but no decorations)
at V , denoted h(d). We show that d′ and d are discrete conformal to each other if and only
if h(d) and h(d′) are isometric to each other by an isometry homotopy to the identity. The
discrete conformal map φ from d to d′ is defined as that isometry from h(d) to h(d′). In this
paper, instead of establishing the connection to the hyperbolic metric, we give a more con-
structive description of the discrete conformal map for the purpose of better understanding
the algorithm of explicitly constructing the map. To make it concrete, assume the triangula-
tions T = (V,E, F ) and T ′ = (V,E′, F ′) are Delaunay under d and d′, respectively. Think of
the surface (S, V, d) as the disjoint union of the Euclidean triangles in F with pairs of edges
identified by isometries, and similarly for the surface (S, V, d′). Note that the map φ restricted
to V is the identity map on V, and the task is to extend the map to the interiors of the edges
in E and the interiors of the triangles in F .

Let w ∈ R
n be the conformal factor so that d′ = w ∗ d. First, we consider the special

case where there is a triangulation T which is Delaunay in both d and d′; i.e., d, d′ are in
the same cell MD(T ). In this case, the discrete conformal map is the so-called piecewise
circumcircle preserving projective map introduced by Bobenko, Pinkall, and Springborn [4].
Let the triangles fijk and f ′

ijk be the same triangle in T with the vertices i, j, k and the edge
lengths measured in d and d′, respectively. Then the map φ|fijk : fijk → f ′

ijk is defined in
terms of the barycentric coordinates as

(5.1) φ|fijk(ui, uj , uk) = (uie
−2wi/z, uje

−2wj/z, uke
−2wk/z),

where z = uie
−2wi + uje

−2wj + uke
−2wk is the normalizing factor. It is shown in [4] that the

map φ|fijk is a projective map from fijk onto f ′
ijk which also maps the circumcircle of fijk to

the circumcircle of f ′
ijk. For two triangles fijk and fjil sharing the edge eij , the maps φ|fijk and

φ|fjil coincide on the common edge eij . Thus, we can glue the maps on individual triangles
together to form a globally continuous map, which by definition is the discrete conformal map
φ : (S, V, d) → (S, V, d′). Note that the straight line remains straight within a triangle under
the map φ as any projective map preserves straight lines.D
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k

i j

b
c

a

b c

a

A

A′

φ(fijk)

φ−1(f ′
abc)

fijk

f ′
abc

f ′′
abc

Figure 6. The mapping triangle of a polygonal facet of T ∪ T ′.

Next, we consider the general case where d and d′ may not be in the same cell in C(d).
Consider a path γ : [0, 1] → C(d) with γ(0) = d to γ(1) = d′. Let d1, d2, . . . , dm−1 be the
intersections of γ with the boundaries of the cells in C(d) listed in increasing order of their
path parameter. See Figure 5 for an illustration. For convenience, let d0 = d and dm = d′.
For any i = 0, 1, . . . ,m − 1, di and di+1 are in the same cell MD(Ti) for some triangulation
Ti. Let φi : (S, V, di) → (S, V, di+1) be the discrete conformal map from di to di+1 defined
in the above special case. Then the discrete conformal map from d to d′ by definition is the
compositions of the above maps φ = φ0 ◦ φ1 ◦ · · · ◦ φm.

We now state some properties of the discrete conformal map. For their proofs, interested
readers are referred to the paper [14]. The most important property is that the map φ is
independent of the choice of the path γ. Namely, if we choose another path γ′, we may
end up with a different set of maps φ′

0, φ
′
1, . . . , φ

′
k, but their composition gives the same map

φ. Therefore, the map φ is indeed a well-defined map from d to d′. The second property
is that a straight line on (S, V, d) remains straight within a triangle in T ′ under the map
φ and similarly for a straight line on (S, V, d′) under the inverse of φ. Another important
property is that φ remains a piecewise circumcircle-preserving projective map but on the
smaller pieces. Specifically, for two triangles fijk ∈ T and f ′

abc ∈ T ′, let A = fijk ∩ φ−1(f ′
abc)

and A′ = f ′
abc ∩ φ(fijk). If A �= ∅, then φ(A) = A′, and φ|A : A → A′ is the restriction onto

A of the circumcircle preserving projective map from a triangle f ′′
abc to the triangle f ′

abc. The
triangle f ′′

abc is constructed as follows. The preimage of the edges of f ′
abc inside fijk are straight

segments. See Figure 6 for an illustration. Extend them linearly to intersect the circumcircle
of the triangle fijk. One can show that there are always exactly three intersection points. If
we labeled the intersections according to the labels of the endpoints of the edges in f ′

abc, this
constructs the triangle f ′′

abc, which we call the mapping triangle of A. Let d′(st) and d′′(st)
be the lengths of the edge st in f ′

abc and f ′′
abc, respectively, for any {s, t} ⊂ {a, b, c}. Calculate

w′
a =

(d′(ab)d′(ac)
d′(bc)

)1/2
and similarly for w′

b, w
′
c. Then by replacing w by w′ in (5.1), we construct

the circumcircle-preserving projective map from f ′′
abc to f ′

abc.
For the surface (S, V ) with boundary, one can verify that the straight line which cuts the

region ∪f∈Fs(Ti)f into two identical subregions (see Figure 4) is the image of the segment s

under the discrete conformal map φ̃. Therefore, if we let φ̃ denote the discrete conformal map
on the doubled surface, then the restriction of φ̃ onto a copy of S is a map from (S, V, d) to
(S, V, d′), which we define as the discrete conformal map φ from (S, V, d) to (S, V, d′).
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T ∪ T ′

S, V, d, T0

T0 ∪ T

T0∪T ∪T ′

Delaunay Deform

Subdivide

Double Cut

Core

No
boundary

S, V, d, T S, V, d′, T ′

Sb, Vb, db, Tb Sb, Vb, d
′
b, T

′
b

K∗

Figure 7. The main objects and the procedures of the algorithm for solving the problem of prescribing
curvature.

6. Algorithm. We have presented the main ideas of the algorithm for solving the prob-
lem of prescribing curvature. In this section, we give more details of the algorithm at the
implementation level.

The main objects and the procedures used in the algorithm are shown in Figure 7. In the
problem of prescribing curvature, assume we are given a closed surface S with a Euclidean
triangulation T = (V,E, F ) which is Delaunay, and a desired curvature K∗ : V → R. Note
that the initial PL metric d on (S, V ) is determined by the edge lengths of the Euclidean
triangles in T . The goal of the algorithm is (1) to find a triangulation T ′ = (V,E′, F ′) on
S and an edge length assignment l′ over the edges in E′ so that the PL metric d′ on (S, V )
determined by l′ is discrete conformal to d and the curvature of d′ equals K∗, and (2) to
construct the discrete conformal map φ from d to d′. This is the core of the algorithm, which
is performed by the procedure “Deform” using Newton’s method described in section 4. In
many applications, the given Euclidean triangulation T0 on S may not be Delaunay. The
procedure “Delaunay” is employed to convert T0 to a Delaunay triangulation T under the
same PL metric by diagonal switches, as described in [10]. Moreover, if the initial surface
has boundaries, the procedure “Double” is to double the surface to remove the boundary,
and the procedure “Cut” is to cut out a copy of the deformed surface from the deformed
doubled surface, as described in section 3.1. Both the procedures “Double” and “Cut” are
straightforward to implement.

The procedure “Deform” deforms the metric and also changes the triangulations, as shown
in Algorithm 1, whose implementation is more involved than the other procedures. Note that
the discrete conformal map φ is a piecewise circumcircle preserving projective map on the
pieces of the common refinement of the triangulations T and T ′, denoted T ∪T ′. Topologically,
the refinement T ∪T ′ is also a polyhedral surface whose vertices consist of the vertices V and
the intersections of the edges in T with the edges in T ′. To see the geometry of T ∪ T ′,
consider the discrete conformal map φ : (S, V, d) → (S, V, d′). According to the theory of
discrete conformal mapping described in [14], an edge in T ′ is pulled back to (S, V, d) and
geometrically becomes a polygonal line which is straight inside a triangle of T . Similarly, anD
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Algorithm 1. Deform(T = (V,E, F ), lT , K
∗ and ε).

1: Initialize T ∪ T ′ = T ′ = T
2: Set w = 0;
3: Evaluate K(w) and set ∇E = K(w)−K∗

4: while ‖∇E‖ > ε do
5: Evaluate H(E) and set Δw = H(E)−1∇E
6: MoveTo(w, w −Δw, T ′, T ∪ T ′, lT ′)
7: w ← w −Δw
8: end while
9: Output T ′, T ∪ T ′, lT ′ .

v1

v2

v3

v4

v5

v6
v7

v8

v0

v9

v10

v1

v2

v3

v4

v5

v6
v7

v8

v0

v9

v1

v2

v3

v4

v5

v6
v7

v8

v0

v9

v10

T T ′

T ∪ T ′

v10

v9

v7

v9

v7

v6

v8

v8

v6

Deform

Figure 8. Refinement: The dotted lines in T are the images of the edges in T ′ under the discrete conformal
map from d to d′, which are straight within a triangle in T , and similarly for the dotted lines in T ′.

edge in T is pushed forward to (S, V, d′) and is straight within a triangle of T ′. Therefore, each
edge of T ∪ T ′ is geometrically straight on both (S, V, d) and (S, V, d′). See Figure 8 for an
illustration. For instance, the triangle v1v2v10 in T is subdivided into three polygonal facets in
T ∪ T ′ and similarly for the triangle v9v0v10 in T ′. All of the involved polyhedral surfaces are
represented by halfedge data structures. A mechanism is built for these polyhedral surfaces to
communicate with each other as follows: each edge in T or T ′ has access to its first subedge in
T ∪ T ′, and each edge in T ∪ T ′ has access to the edge in T and/or T ′ to which it belongs. In
the example shown in Figure 8, for instance, each halfedge of the edge v7v9 in T has a pointer
pointing to its first subhalfedge in T ∪ T ′ and similarly for the halfedges of v6v8 in T ′. At the
same time, each subhalfedge of v7v9 (v6v8) in T ∪T ′ is equipped with a pointer pointing back
to the corresponding halfedge of v7v9 in T (v6v8 in T ′).

The final PL metric is determined by the edge length assignment w ∗T ′ lT ′ over the edges
in T ′. For a vertex v of T ∪T ′ which is the intersection of an edge e in T and an edge e′ in T ′ inD
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Algorithm 2. MoveTo(w1, w2, T
′, T ∪ T ′, lT ′).

1: Assume w(t) with t ∈ [0, 1] is a path satisfying e−2w(t) = (1− t)e−2w1 + te−2w2 .
2: Let the edge e in T ′ be the first edge that fails the Delaunay condition along the path

w(t).
3: if e exists then
4: Assume e fails to be Delaunay at w(t1).
5: Switch the edge e, and update lT ′ .
6: Update T ∪ T ′: (i) for the newly generated polygons, compute the edge lengths of

their mapping triangles, and (ii) for the vertices of T ∪ T ′ which are not the vertices of
T ′, compute their new positions on the edges of T ′ under the edge length assignment
w(t1) ∗T ′ lT ′ .

7: MoveTo(w(t1), w2, T
′, T ∪ T ′, lT ′).

8: else
9: For the vertices of T ∪ T ′ which are not the vertices of T ′, compute their new positions

on the edges in T ′ with the edge length assignment w2 ∗T ′ lT ′ .
10: end if
11: Output T ′, T ∪ T ′, lT ′ , and w.

the interior, we store both of its positions on e and e′. In this way, we can visualize φ−1(e) for
any edge e in T ′ on the input surface (S, V, d), and φ(e) for any edge e in T on the deformed
surface (S, V, d′). For a polygon A in T ∪T ′, we store the edge lengths of its mapping triangle
for the purpose of constructing the discrete conformal map φ. In each iteration in Newton’s
method, the conformal factor w is updated to w −Δw, which may change the triangulation
T ′, the refinement T ∪T ′, and lT ′ as well. The subprocedure “MoveTo” shown in Algorithm 2
presents more details on how to update the conformal factor and the combinatorial structures
of T ′ and T ∪ T ′.

Let le = lT ′(e) for an edge e in T ′ and x(u) = e−2w(u). Consider an edge e as shown in
Figure 1. That e is Delaunay is by cosine law equivalent to

(6.1)
le1le′1 + le2 le′2

le1le′2
x(v) +

le1 le′1 + le2le′2
le2 le′1

x(u)− l2e
le1 le2

x(u′)− l2e
le′1le′2

x(v′) ≥ 0,

which is a linear constraint in the variables x. Thus if we change the variables from w to x,
the cell C(d) ∩MD(T

′) becomes a convex polytope. We choose a path from w to w+Δw so
that it is a line segment in the variables x. This makes it easy to detect which edge to switch
first as it amounts to computing the intersections of the line segment with the hyperplanes
defined by the linear constraints.

Finally, the purpose of constructing the refinements T0∪T and T0∪T ∪T ′ is for visualiza-
tion. When the input Euclidean triangulation T0 on S is embedded in R

3, we can pull back
the triangulations T and T ′ onto T0 for the purpose of visualization. The common refinement
of the triangulations T0 and T , denoted T0∪T , is also computed in the procedure “Delaunay.”
The procedure “Subdivide” computes the common refinement of the triangulations of T0, T,
and T ′. In this way, we can pull back the edges in T back to T0 under the identity map over
(S, V, d), and the edges in T ′ back to T0 under the discrete conformal map φ from d to d′.D
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(a)

(b)

(c)

Deform

Cut

(d)
Pull-back or Push-forward by φ

Double & Delaunay

Figure 9. (a) The polyhedral surface (Sb, Vb, db, Tb) of a spherical cap. (b) The doubled polyhedral surface.
The Delaunay triangulation T consists of the triangles with blue edges. The black edges are non-Delaunay edges
in the triangulation T0. (c) Half of the doubled polyhedral surface after discrete conformal deformation. The
Delaunay triangulation T ′ consists of the triangles with red edges. The blue edges are the push-forward of the
switched edges in T under the discrete conformal map φ. Note that the blue edges may not be straight. (d) The
triangles with red edges are the pull-back of the edges in T ′ under the map φ. Note that the red edges may not
be straight.

Figure 9 shows the results of the different procedures when the algorithm runs over the
polyhedral surface of a spherical cap. In this example, we can embed the doubled polyhedral
surface into R

3 and visualize both the triangulations T0 and T (Figure 9(b)). Moreover, we
can visualize the pull-back of the triangulation T ′ under the map φ (Figure 9(d)). In addition,
we set the target curvature 0 everywhere except at four marked points on the boundary where
it is set to be π/2. In this way, we can embed the deformed polyhedral surface into a rectangle,D
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as shown in Figure 9(c). We use the procedure described in [17] to lay out a flat surface into
the plane. Note that in all the examples shown in the paper, we fix the ε in Algorithm 1 to
be 10−5.

7. Experimental results. In this section, we will show numerical examples, demonstrate
numerically the convergence of our discrete conformality, and compare this to the state of the
art. For convenience, we follow the notation in Figure 7 and denote T0 the (doubled) input
triangulation, and T and T ′ the Delaunay triangulations under the initial metric d and the
deformed metric d′, respectively.

7.1. Simple examples. In this subsection, we show a few examples with a small number
of triangles for a clear illustration of the geometric deformation of the metric and the combi-
natorial changes of the triangulation. In the first couple of examples, to visualize the resulting
metric, we prescribe the curvature to be zero except at a few vertices in order to satisfy the
Gauss–Bonnet theorem. A vertex with nonzero curvature is called singular. The first example
is a polyhedral surface of topological sphere, which we call Star, shown in the left column of
Figure 10. The total curvature of Star is 4π. We choose three singular vertices as marked
in Figure 10(a), where the curvature is set to be 4π

3 . To embed the deformed Star into the
plane, we cut Star along a tree of the edges in T ′ passing through three singular vertices. The
tree is shown in green in Figure 10(a). The planar embedding of the deformed Star is shown
in Figure 10(b), where the red edges are the edges of the triangulation T ′ and the blue edges
are the images of the switched edges in the triangulation T under the discrete conformal map
φ. The red edges in Figure 10(c) are the preimage of the edges in the triangulation T ′ under
the map φ. The second example is a polyhedral surface of genus two which we call Eight,
shown in the right column of Figure 10. The total curvature of Eight is −4π. We choose one
singular vertex as marked in Figure 10(b), whose curvature is set to be −4π. To embed the
deformed Eight into the plane, we cut Eight along a cut graph consisting of the edges in T ′

passing through the singular vertex. The cut graph is shown in green in Figure 10(d). The
planar embedding of the deformed Eight is shown in Figure 10(e). The red and blue edges in
Figure 10(e,b) have the same meaning as those in Star. The gray edges are the non-Delaunay
edges in the triangulation T0.

The main purpose of the next couple of examples is to show the triangulation of T ′ when
we prescribe a curvature close to the boundary of the domain of all possible curvatures. In
both examples, the curvature is prescribed to be 2π− 0.1 at every vertex except at one vertex
(labeled a for later reference), whose curvature is set to satisfy the Gauss–Bonnet theorem
and is usually a negative value. In the example of Star, the prescribed curvature at the vertex
a is −22π + 1.4, and in the example of Eight, it is −58π + 2.7. In Figure 11, the red edges
are the preimage of the edges in the triangulation T ′ pulled back by the discrete conformal
map φ into the input surface. Every triangle in T ′ has a as its vertex. In fact, in these two
examples, at least two of three vertices of any triangle in T ′ are a.

7.2. Convergence. In this subsection, we will present numerical evidences showing the
convergence of our discrete conformality. In addition, we will demonstrate the efficiency and
the robustness of our algorithm, in particular against the quality of the input triangulations,
and compare its performance to the state of the art. We check how much the conformality isD
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(d)

(e)

(f)

(a)

(b)

(c)

Star Eight

Figure 10. (a), (d) The original polyhedral surfaces. The marked vertices have nonzero prescribed curvature.
The green edges show a tree (a cut graph) passing the marked vertices. (b), (e) The planar embedding of the
deformed polyhedral surfaces after cutting them open along the tree (the cut graph). The red edges are the edges
in the triangulation T ′, and the blue edges are the images of the switched edges in the triangulation T under the
discrete conformal map φ. (c), (f) The red edges are the preimages of the edges in the triangulation T ′ under
the map φ, and the blue edges are the edges in T that were switched during the conformal deformation. The
gray edges in (b), (c), (e), and (f) are the non-Delaunay edges in the triangulation T0.

preserved when the triangulated surfaces are flattened into the plane, and we use two types
of criteria to measure the conformality.

7.2.1. Criteria. For the examples where the (approximated) ground truth of conformal
flattening is known, we can compare the results with the ground truth. Let ugt be the flattening
map of the (approximated) ground truth, and let u be the flattening map constructed by our
algorithm or other methods described below. We use the following two norms to measure theD
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Star Eight

Figure 11. The color scheme of the edges is the same as that in Figure 10(c, f).

approximation error:

(7.1) e2 =

(∑
i∈V ‖u(i) − ugt(i)‖2Ai∑

i∈V Ai

)1/2

and e∞ = max
i∈V
{‖u(i) − ugt(i)‖}.

where Ai is the area weight, which is estimated as a third of the total area of the triangles in
T incident to the vertex i.

In general, the ground truth of conformal flattening is not known. Given an orientation
preserving map h between two Riemann surfaces, the Beltrami coefficient is μ = hz̄

hz
, where

z is a complex number representing the local coordinates. The map h sends an infinitesimal
circle to an infinitesimal ellipse with the ratio of major semiaxis to minor semiaxis equal to
D(h) = 1+|μ|

1−|μ| . Note that |μ| < 1 as the map h preserves orientation. D(h) is called the

conformal distortion of the map h and D(h) = 1 if and only if h is conformal. So we check
the conformality of the map h by measuring how far D(h) is away from 1. Specifically, we
estimate ‖D(h)− 1‖L2 and ‖D(h)− 1‖L∞ .

Let (S, T = (V,E, F )) be the input triangulated surface. In the methods we describe
below for comparison, the constructed flattening map h is piecewise linear; namely, on a
triangle f ∈ F , h|f is the linear extension of the map on the vertices of the triangle. Let
Lf (z) = αz + βz̄ represent the linear map h|f . The conformal distortion of this linear map

Lf can be computed as D(Lf ) =
|α|+|β|
|α|−|β| . For a piecewise linear flattening map h, we have

‖D(h) − 1‖L2 = d2 =

(∑
f∈F (D(Lf )− 1)2area(f)∑

f∈F area(f)

)1/2

and(7.2)

‖D(h) − 1‖L∞ = d∞ = max
f∈F
{D(Lf )− 1}.(7.3)

In our method, from the discussion in section 5, the constructed flattening map h is piecewise
circumcircle-preserving projective. Specifically, for a polygonal face A in the common refine-
ment T ∪ T ′, let f and f ′ be the triangle in T and T ′ containing A. The map h restricted to
A, denoted h|A, is the restriction to A of the circumcircle preserving projective map from theD
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mapping triangle f ′′ to the triangle f ′. Let LA(z) = αz+βz̄ be the linear map from f ′′ to f ′.
In [14], we have shown that D(h|A) ≤ D(LA). Therefore, for our flattening map h, we have
the following upper bounds on ‖D(h)− 1‖L2 and ‖D(h)− 1‖L∞ , which are easy to estimate:

‖D(h)− 1‖L2 ≤ d2 =

(∑
A∈F (T∪T ′)(D(LA)− 1)2area(A)∑

f∈F (T∪T ′) area(A)

)1/2

and(7.4)

‖D(h) − 1‖L∞ ≤ d∞ = max
f∈F
{D(LA)− 1},(7.5)

where F (T ∪T ′) denotes the set of the polygonal faces in T ∪T ′ and area(A) denotes the area
of A as a subset of the triangle f .

7.2.2. Conformal flattening methods. We briefly describe three methods, including ours,
of conformally flattening triangulated surfaces into the plane.

Method of discrete conformal deformation (DC). This flattening method is based on
our discrete conformal deformation. To flatten a triangulated surface into the plane, we
basically prescribe the curvature to be 0 and solve the problem of prescribing curvature using
the algorithm described in section 6. Due to the obstruction of topology, the target curvature
cannot be 0 everywhere. We call those whose curvature are not zero the singular vertices.
For a topological disk surface, we choose three singular vertices on the boundary and set the
curvature there to be 2π/3. In this way, we flatten a triangulated surface of a topological
disk onto an equilateral triangle. This flattening map is guaranteed to be one to one. For a
topological sphere surface, as we did in section 7.1 for Star, we choose three singular vertices
whose curvatures are set to be 4π/3, and we cut the surface along a tree of the edges in T ′

passing through the singular vertices for flattening the triangulated surface. For a surface of
genus g ≥ 1, we choose 2(g − 1) singular vertices whose curvatures are set to be −2π, and
we cut the surface along a cut graph consisting of the edges in T ′ and passing the singular
vertices for flattening the triangulated surface.

Method of holomorphic form (HF). Gu and Yau [16] proposed a method to confor-
mally flatten a surface of genus g ≥ 1 into the plane using holomorphic one-forms. As-
sume h = f(z)dz is a holomorphic one-form of the surface; it is well known that the metric
|f(z)|2dzdz̄ is conformal and flat when f(z) �= 0. Noticing that any holomorphic one-form
can be decomposed as h = ω + i(∗ω), where w is a real harmonic one-form and ∗w is its
conjugate, Gu and Yau developed discrete algorithms for approximating from a triangulated
surface a basis {ω1, . . . , ω2g} of the space of real harmonic one-forms and their conjugates
∗ω1, . . . , ∗ω2g. Then {h1 = ω1 + i(∗ω1), . . . , h2g = ω2g + i(∗ω2g)} contains a basis of the space
of holomorphic one-forms, and any linear combination h =

∑
i aihi is a holomorphic one-form.

Integrate the real part and the imaginary part of h along the edges of the triangulated surface
to obtain the x-coordinates and the y-coordinates, respectively, for the vertices. Note that the
x, y-coordinate functions computed by integration are multivalued at a subset of vertices. The
edges with both endpoints multivalued form a cut-graph of the surface. Cut the surface along
this cut-graph and obtain a fundamental domain of the surface. The x, y-coordinate functions
conformally map this fundamental domain into a planar region. For surfaces with boundary,
one can double the surface to remove the boundary by gluing two copies along the boundary,D
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apply the above algorithm, and take half of the computed planar embedding. For a surface
with topological disk, in order to obtain an embedding onto unit disk, the following procedure
is used: (1) remove a triangle from the given triangulated surface to make an annulus; (2)
apply the above algorithm to obtain an planar embedding of rectangular shape; (3) take the
exponential to map the rectangle domain into an annulus with unit outer radius, and put back
the removed triangle to obtain the final embedding onto the unit disk. In our experiments,
we use the implementation made available to us by the authors.

Method of bounded distortion (BD). Lipman [27] considered the problem of finding a
piecewise linear map h mapping a triangulated surface into the plane so that the conformal
distortion D(h) is less than some prescribed number C. This amounts to solving a nonconvex
optimization problem, which was reduced to a conic optimization problem by restricting the
domain of optimization to a convex subset. In [27], Lipman also proposed a binary search
strategy to find a map with the “optimal” conformal distortion. Note that the reduced conic
optimization may miss a map with the conformal distortion less than the prescribed number,
and thus gives a wrong feedback to the binary search, which therefore may not reach a map
with true optimal conformal distortion. In our experiments, the following iterative procedure
is used to find a map with small conformal distortion, which is more efficient compared to the
binary search strategy. In each iteration, assume a piecewise linear map hk is given, construct
a convex set of maps whose conformal distortion is less than ‖D(hk)‖∞, and then use the conic
optimization to find the next map hk+1 in this convex set. The iteration is started with the
Tutte embedding where the position of an interior vertex is the average of the positions of its
neighboring vertices, and iterated at most 10 times. For vertices on the boundary, we fix the
positions of three of them and impose the linear constraints on the others so that the resulting
range is a triangle. The optimization package MOSEK [3] is used for conic optimization. In
our experiments, we use the implementation made available to us by the author.

7.2.3. Examples. Now we run the above conformal flattening methods over several ex-
amples to show their performance, in particular to compare their convergence properties.

Spherical Cap. A spherical cap is a portion of a sphere cut off by a plane, which can
be conformally flattened onto a unit disk by composing the stereographic projection with a
scaling. So in this example, we have the ground truth for conformal flattening, denoted as
ugt. We run the aforementioned methods over four continuously refined triangulated surfaces
with approximately 1000, 4000, 16000, and 64000 vertices, which are obtained by applying
Cocone [2], a surface reconstruction algorithm, to the randomly drawn samples on the spherical
cap and some additional samples on its boundary. Figure 12 shows the triangulated surfaces
with 1000 and 4000 vertices.

For the methods of DC and BD, we choose three vertices {a, b, c} on the boundary so
that they are mapped to the vertices of an equilateral triangle. To compare with the ground
truth, we use the Schwarz–Christoffel mapping, which can explicitly evaluate the conformal
transformation mapping the unit disk onto a triangle. In fact, we use the Schwarz–Christoffel
Toolbox [9] to compute the inverse map sending a, b, c to ugt(a), ugt(b), ugt(c), respectively. In
the method of HF, we have already embedded the spherical cap onto the unit disk. We align
the computed embedding to the ground truth by a Möbius transformation.D
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Figure 12. The triangulated surfaces of Spherical Cap with 1000 (left) and 4000 (right) vertices.

DC HF BD

Figure 13. Results for Spherical Cap: The first row shows the planar embedding of the vertices for the
triangulated surface with 1000 vertices. Blue ∗’s denote the ground truth, and the red ◦’s denote the results
computed by different methods. The second row plots the conformal distortion D(h)−1 of the planar embedding
computed by different methods from the triangulated surface with 4000 vertices. Note that for the purpose of
comparison, the range of the color map is fixed at [0, 0.11], although the maximal conformal distortion of the
planar embedding by HF and BD is larger than 1.11, as shown in Table 1.

The first row of Figure 13 shows the embedding of the vertices computed by different
methods. In Table 1, we show the approximation errors, e2, e∞, d2, d∞, and the timing
in seconds used by different conformal flattening methods to compute the embedding. Note
that since the convergence is often stated for a compact region away from the boundary, we
estimate the errors e2 and e∞ over the vertices which are mapped onto the disk D of radius
0.8, and the errors d2 and d∞ over the polygons or triangles whose vertices are mapped onto
the disk D. In the second row of Figure 13, we only plot the conformal distortion of thoseD
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Table 1
Spherical Cap: Approximation errors and running time.

Method 1000 4000 16000 64000

DC (0.0102, 0.0137) (0.0034, 0.0048) (0.0014, 0.0020) (0.0010, 0.0014)

HF (0.0023, 0.0078 ) (0.0010, 0.0036) (0.0011, 0.0030) (0.0009, 0.0016)

BD (0.0131, 0.0300 ) (0.0054, 0.0150) (0.0040, 0.0092) (0.0023, 0.0051)

(e2, e∞)

DC (0.0505, 0.1592) (0.0303, 0.1084) (0.0160, 0.0570) (0.0082, 0.0377)

HF (0.0638, 12.9485 ) (0.0270, 1.4460) (0.0169, 1.3563) (0.0085, 0.8276)

BD (0.0829, 0.6582 ) (0.0547, 0.9318) (0.0313, 1.0055) (0.0192, 1.1988)

(d2, d∞)

DC 0.152 0.636 4.54 26.9

HF 1.03 3.14 12.7 53.7

BD 28.4 182 744 3395

timing (sec)

polygons or triangles used to evaluate d2 and d∞.
From Table 1, three methods all converge about linearly in terms of the e2, e∞, and d2

errors. In terms of the absolute value of these approximation errors, BD performs worse than
DC and HF. Only DC has a convergent d∞ error, which is approximately linear. In terms of
running time, DC and HF have a similar performance, while BD is much slower.

Hexagonal Mesh. The Riemann mapping from a planar region to unit disk can be approx-
imated using Thurston’s circle packing. Consider a hexagonal triangulation inside a planar
region. One can explicitly construct a circle packing of unit disk, which is a collection of
closed disks inside a unit disk having the following properties: (1) the interiors of the disks
are disjoint; (2) the nerve of this collection of disks is isomorphic as a graph to the 1-skeleton
of the hexagonal triangulation; (3) the boundary of the disk corresponding to each boundary
vertex of the hexagonal triangulation tangentially touches the unit circle. This construction
induces a map, denoted ugt, from the hexagonal triangulation into the unit disk by mapping
the vertices of the hexagonal triangulation to the centers of the corresponding disks and ex-
tending linearly to the triangles. Figure 14 shows two hexagonal triangulations inside a fixed
planar region and their corresponding circle packings of the unit disk. Rodin and Sullivan [34]
showed that the above-induced map converges to the Riemann mapping from the planar region
to the unit disk as the size of the triangles in the hexagonal triangulation goes to 0.

We run the aforementioned methods over four continuously refined hexagonal triangula-
tions of a planar region of the side lengths 0.2, 0.1, 0.05, and 0.025. The number of vertices
in those triangulations is approximately 1000, 4000, 16000, and 64000. The first row in Fig-
ure 14 shows the input hexagonal triangulations. Note that a circle packing in the unit disk of
a triangulation is not unique. We normalize the circle packing by choosing a vertex, denoted
o for later reference, from the hexagonal triangulation and mapping it to the origin. The
remaining freedom is a rotation, which, however, does not affect the consistency of the error
estimations. To make the normalization consistent across different hexagonal triangulations,
the four chosen vertices o (one from each triangulation) have the same coordinate. See the
second row in Figure 14 for the resulting circle packings of the hexagonal triangulations.D
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Figure 14. Hexagonal meshes and their circle packing. First row: The input hexagonal triangulations with
1000 vertices (left) and 4000 vertices (right). Second row: The circle packing in unit disk to the hexagonal
triangulation above.

For the DC and BD methods, we again choose three vertices {a, b, c} on the boundary
so that they are mapped to the vertices of an equilateral triangle, and then we map the
equilateral triangle onto the unit disk by the inverse of the Schwarz–Christoffel mapping, and
finally we employ an automorphism of the unit disk to obtain the map u with u(o) = 0 and
arg(u(a)) = arg(ugt(a)). For the HF method, we also apply an automorphism of the unit disk
to the computed embedding to obtain the same alignment.

Similarly, since the convergence is often stated for a compact region away from the bound-
ary, we estimate the errors e2 and e∞ over the vertices which are more than 0.4 away from
the boundary of the planar region, and the errors d2 and d∞ over the polygons or triangles
with their vertices satisfying the same requirement. The first row of Figure 15 shows the
embedding of the vertices computed by different methods, and the second row of Figure 15
plots the conformal distortion of the approximated Riemann mapping by different methods.
In Table 2, we show the approximation errors e2, e∞, d2, d∞ and the timing in seconds used
by different conformal flattening methods for computing the embedding. In Table 2, a similar
pattern as Spherical Cap is observed: all of the methods show linear convergence in the errors
e2, e∞, d2, and DC remains converging linearly in the d∞ error. In this example, BD becomes
linearly convergent in the d∞ error. This may be due to the fact that the triangles are all well
shaped in the hexagonal triangulations.D
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DC HF BD

Figure 15. Results for Hexagonal Mesh: The first row shows the planar embedding of the vertices for the
triangulated surface with 1000 vertices. Blue ∗’s denote the ground truth, and the red ◦’s denote the results
computed by different methods. The second row plots the conformal distortion D(h)−1 of the planar embedding
computed by different methods from the triangulated surface with 4000 vertices. Note that for purposes of
comparison, the range of the color map is fixed at [0, 0.11], although the maximal conformal distortion of the
planar embedding by HF and BD is larger than 1.11.

Table 2
Hexagonal Mesh: Approximation errors and running time.

Method 1000 4000 16000 64000

DC (0.0257, 0.0486) (0.0133, 0.0266) (0.0067, 0.0141) (0.0034, 0.0074)

HF (0.0275, 0.0538 ) (0.0142, 0.0305) (0.0070, 0.0154) (0.0035, 0.0079)

BD (0.0273, 0.0524) (0.0137, 0.0280) (0.0069, 0.0153) (0.0035, 0.0081)

(e2, e∞)

DC (0.0650, 0.2000) (0.0326, 0.1088) (0.0163, 0.0490) (0.0081, 0.0259)

HF (0.0883, 0.2238 ) (0.0418, 0.1405) (0.0203, 0.1386) (0.0100, 0.1379)

BD (0.1333, 0.2028 ) (0.0781, 0.1278) (0.0445, 0.0690) (0.0277, 0.0344)

(d2, d∞)

DC 0.096 0.584 3.11 24.5

HF 0.987 3.14 12.0 47.3

BD 19.0 77.8 322 1821

Timing (sec)

Planar Region. The main purpose of this example is to show how the quality of the input
triangulation affects the conformality. We generate a triangulation with 1500 vertices of aD
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Figure 16. The input triangulations of Planar Region with 1500 vertices (left) and 5000 vertices (right).

Table 3
Planar Region: Approximation errors and running time.

Method 1500 5000 20000 80000

DC (0.0553, 0.2692) (0.0286, 0.1292) (0.0144, 0.0738) (0.0072, 0.0401)

HF (0.0881, 0.9840 ) (0.0473, 0.5649) (0.0210, 0.5558) (0.0093, 0.5570)

BD (0.1333, 1.307) (0.0781, 1.285) (0.0445, 1.482) (0.0277, 1.324)

(d2, d∞)

DC 0.096 0.584 3.11 24.5

HF 0.987 3.14 12.0 47.3

BD 74.2 227 940 4204

Timing (sec)

planar region, as shown on the left in Figure 16, and then subdivide the triangulation three
times by adding the midpoints of the edges and splitting each triangle into four smaller ones,
and finally obtain three more continuously refined triangulations of the planar region with
approximately 5000, 20000, and 80000 vertices. The right picture in Figure 16 shows the one
with about 5000 vertices. There are a few triangles, in particular near the boundary, having
the largest angle close to π.

We run the aforementioned methods over these triangulations. The DC and BD methods
map them onto an equilateral triangle, while the HF method maps them onto the unit disk.
In this example, we do not have the ground truth and thus only estimate d2 and d∞ errors, as
shown in Table 3. Note that the errors are estimated over the polygons or triangles with their
vertices more than 1/20 the diameter of the planar region away from the boundary. Figure 17
shows the conformal distortion by different methods from the triangulation with 1500 vertices.
As we can see, the DC method converges linearly in both the d2 and d∞ errors, and the HF
and BD methods only converge in the d2 error. In the embedding computed by HF, there are
some triangles close to the boundary whose orientations get reversed.

Left Hand. The model Left Hand is obtained using 3-dimensional scanning. The original
model has 200k vertices, which is simplified using Meshlab [1] to triangulated surfaces with
800, 2500, 10000, and 40000 vertices. See Figure 18 for two of them. Again, the DC and
BD methods map these triangulated surfaces onto an equilateral triangle and the HF method
maps them onto the unit disk. We estimate the d2 and d∞ errors as shown in Table 4.
Note that the errors are estimated over the polygons or triangles with their vertices moreD
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DC HF BD

Figure 17. Results for Planar Region: The plots of the conformal distortion D(h)− 1 of the planar embed-
ding computed by different methods from the triangulation with 1500 vertices. For purposes of comparison, the
range of the color map is fixed at [0, 0.27], although the maximal conformal distortion of the planar embeddings
computed by HF and BD is larger than 1.27.

Figure 18. The input triangulation of Left Hand with 800 vertices (left) and 10000 vertices (right).

Table 4
Left Hand: Approximation errors and running time.

Method 800 2500 10000 40000

DC (0.7436, 2.1873) (0.3404, 1.1705) (0.1457, 0.4359) (0.0686, 0.2651)

HF (∞,∞) (0.4247, 4.0458) (0.1545, 1.3129) (0.0716, 2.0045)

BD (1.1520, 6.5863) (0.7330, 4.9571) (0.3930, 3.9686) (0.2873, 5.2264)

(d2, d∞)

DC 0.236 1.27 5.84 42.3

HF 0.966 2.24 8.52 37.4

BD 38.0 116 475 1941

Timing (sec)

than 1/60 the diameter of the planar region away from the boundary. Figure 19 plots the
conformal distortions of the planar embedding computed by different methods. For a better
visualization, in this example, we show the plots over the planar embedding.

Again the DC method converges linearly in both the d2 and d∞ errors, and the HF and
BD methods only converge in the d2 error. In the planar embedding of Left Hand with 800D
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DC HF BD

Figure 19. Results for Left Hand: The plots of the conformal distortion D(h)− 1 of the planar embedding
computed by different methods from the triangulation with 10000 vertices. Note that for purposes of compar-
ison, the range of the color map is fixed at [0, 0.44], although the maximal conformal distortion of the planar
embeddings computed by HF and BD is larger than 1.44.

Figure 20. The input triangulations of Eight with 759 vertices (left) and 12000 vertices (right).

Table 5
Eight: Approximation errors and timing.

Method 750 3000 12000 50000 200000

DC (0.1422, 1.5259) (0.1112, 0.4187) ( 0.0290, 0.2091) (0.0184, 0.1071) (0.0085, 0.0361)

HF (0.1133, 0.3985) (0.1236, 3.0128) (0.0828, 6.2417) (0.0325, 4.7646) (0.0343, 14.158)

(d2, d∞)

DC 0.040 0.196 1.12 5.88 59.1

HF 1.58 4.91 19.2 80.6 339

Timing (sec)

vertices computed by the HF method, there are some triangles even away from the boundary
whose orientations get reversed. This is the reason the corresponding d2 and d∞ errors are∞
in this case.

Eight. Finally, we check the convergence for different methods over a model called Eight,
which is a surface with genus 2. We use Loop subdivision to subdivide a triangulated Eight
with about 750 vertices to obtain four more refined triangulated versions of Eight with about
3000, 12000, 50000, and 200000 vertices. Figure 20 shows two of them.

As the implementation of the BD method for surfaces of nondisk topology is not available,
we only show the performance of the DC and HF methods. We estimate the d2 and d∞ errors
as shown in Table 5. Note that the errors are estimated over the polygons or triangles withD
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DC HF

Figure 21. Results for Eight: The conformal distortion D(h)− 1 of the planar embedding computed by DC
and HF from the triangulation with 3000 vertices plotted on the input surface and shown in two different views.
Note that for purposes of comparison, the range of the color map is fixed at [0, 0.42], although the maximal
conformal distortion of the planar embeddings computed by HF is larger than 1.42.

their vertices more than 1/20 the diameter of Eight away from the singular vertices. Again,
the DC method converges linearly in both d2 and d∞ errors. For the HF method, the d2
error decreases but the convergence rate is not clear, and the d∞ error does not even decrease.
In this case, the planar embedding is in fact just an immersion and not necessary globally
one-to-one. To visualize the conformal distortion, we plot it on the input triangulated surface,
as shown in Figure 21.

7.3. More examples and statistics. In this subsection, we present a few more examples
and collect a few statistics showing the performance of our algorithm.

We run our DC method on four more examples: Maxplanck (a disk), Brain (a sphere),
Protein (a torus), and Genus3 (a 3-hole torus). The results are shown in Figure 22. The
d2 and d∞ errors are estimated over the polygonal faces whose vertices are more than 1/60
the diameter of the model away from either the boundary or the singular vertices. Note that
there is no singular points for Protein since its Euler characteristic number is 0. For the model
Genus3, we only choose one singular vertex.

In Table 6, we collect the following statistics when the algorithm runs over various exam-
ples: (1) the number of triangles in the input triangulated surface, labeled #Fin, representing
the input complexity; (2) the number of polygonal faces in the common refinement of T ∪ T ′,
labeled #Fout, representing the output complexity; for surfaces with boundary, we count half
of the faces in T ∪ T ′; (3) the number of diagonal switches needed to transform the input
triangulation T0 to the Delaunay triangulation T , labeled #DelSW ; (4) the running time in
second of the above diagonal switches, labeled tDelSW ; (5) the number of cocircular diago-
nal switches performed during the discrete conformal deformation, labeled #CocSW ; (6) the
running time in second of the above cocircular diagonal switches, labeled tCocSW ; (7) the
number of the Newton iterations, labeled #Newton; (8) the running time in second of the
Newton iterations excluding tCocSW, labeled tNewton. From Table 6, we observe that theD
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(0.0364, 0.2223)

(0.1041, 1.252)

(0.0624, 0.3860)

(0.0557, 0.2780)

Figure 22. Left: The input triangulated surfaces. Right: The planar embedding computed by our algorithm.
The color maps plot D(h) − 1, and the pairs of numbers are the (d2, d∞) errors.
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Table 6
Statistics.

Model #Fin (k) #Fout (k) #DelSW tDelSW #CocSW tCocSW #Newton tNewton

Planar Region 10.22 10.25 3223 0.072 14 0.272 5 0.34

Planar Region 40.86 40.90 14113 0.38 17 1.30 5 2.01

Planar Region 163.47 163.50 59288 1.50 18 5.41 5 13.53

Left Hand 79.98 80.54 14192 0.52 272 30.6 7 4.97

Eight 196.61 196.65 68428 0.34 44 13.84 5 43.1

Maxplanck 47.08 47.27 5969 0.248 93 4.53 6 2.22

Brain 15.00 15.30 1048 0.016 300 4.6 6 1.05

Protein 46.24 46.37 3064 0.072 132 8.07 9 5.34

Genus3 26.62 26.74 12454 0.052 111 4.33 10 4.56

number of faces in T ∪ T ′ is often only a few hundred more than that in T , Newton’s method
converges very fast and takes only 5–10 iterations, and diagonal switch costs very little. Note
that the procedure of cocircular diagonal switch takes more time since it must find the first
edge failing the Delaunay condition along the deforming path.

7.4. Remark. From the above experiments, we observe that our conformality numerically
converges to the classical one as the triangle size goes to 0, at a linear rate. In particular, this
convergence behavior is independent of the quality of the triangles in the input triangulated
surfaces. It is also very efficient compared to the state of the art. One disadvantage of our
method is that we may subdivide the input triangles into the polygonal pieces to accurately
represent the discrete conformal map. This may increase the complexity of the output by our
algorithm. However, from the statistics we show, the increase of the complexity is very little
for most of the prescribed curvatures.

8. Conclusion. We have introduced a new discrete conformality for triangulated surfaces
possibly with boundary, showed a discrete uniformization theorem with this conformality,
described an algorithm for solving the problem of prescribing curvature, and explicitly con-
structed a discrete conformal map between the input triangulated surface and the deformed
triangulated surface. In addition, we have presented the numerical examples to show the
convergence of our discrete conformality and to demonstrate the efficiency and the robustness
of our algorithm.

We point out a few possible directions for future research. In [13], we have presented a
similar discrete conformality for hyperbolic triangulated surfaces and a discrete uniformization
theorem associated to it. We plan to develop an algorithm based on this discrete conformality
to solve the problem of prescribing curvature for hyperbolic triangulated surfaces. Hyper-
bolic triangulation is more natural for surfaces with genus bigger than 1 as their fundamental
domains can be flattened into a hyperbolic plane without choosing any singular vertices. It
remains open whether our discrete conformality and uniformization theorem can be extended
to spherical triangulated surfaces, which is definitely worth investigating in the future. An-
other interesting avenue for future research is to see whether diagonal switches can be used
in inversive distance circle patterns.D
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u′v′ → z′v
vu′ → zz′
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z′v → u′v′
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e

Figure 23. Diagonal switches for the edges of the triangles crossing a segment on the boundary. From left
to right: The edges e = uv, e′ = u′v′ always fail to be Delaunay at the same time. After their switches, the
edges u′v fail to be Delaunay. From right to left: The edges e = zz′, zu′, and vz′ always fail to be Delaunay at
the same time.

Appendix: Proof of Theorem 3.4.
Proof. Denote by (S̃, Ṽ ) the doubled surface of (S, V ) and by d̃ the doubled metric of d.

Prescribe the curvature K̃∗ for (S̃, Ṽ ) by setting K̃∗(v) = 2 ∗ K∗(v) for a vertex v on the
boundary, and K̃∗(v) = K∗(v) for a vertex v in the interior. It is easy to verify that the
curvature K̃∗ satisfies the hypotheses in Theorem 3.2 imposed on a prescribed curvature on
(S̃, Ṽ ). Thus there exists a PL metric d̃′ discrete conformal to d̃, and the discrete curvature
of d̃′ is the curvature of K̃∗. We will show that d̃′ respects the doubling structure and that
the restriction of d̃′ onto S is the PL metric d′ with the property stated in the theorem.

We first show for a PL metric dd on (S̃, Ṽ ) respecting the doubling structure that there is a
Delaunay triangulation T in dd which has the following symmetric property: (1) Any triangle
f in T not crossing the boundary has an identical mirror triangle f ′ = h(f) in T . (2) Let
Fs(T ) be set of triangles in T crossing a segment s ∈ B. Then any triangle f = uu′v ∈ Fs(T )
must have a pair of vertices u, u′ with u′ = h(u), and moreover, if the third vertex v of f is not
the endpoints of the segment s, the neighboring triangle f ′ = v′vu′ ∈ Fs(T ) has the property
that v′ = h(v). Note that the quadrilateral f ∪ f ′ must be cocircular as the segment s is the
common bisector of the edge uu′ and vv′. See Figure 4 for an illustration.

Since one can reach a Delaunay triangulation starting from any triangulation by diagonally
switching the edges which fail to be Delaunay finite many times, we can prove this by induction
on the number of diagonal switches. We start with the triangulation T0 on (S̃, Ṽ ) so that the
restrictions of T0 onto both copies of S are identical triangulations. Note that a segment
s ∈ B must be an edge in T0. Thus Fs(T0) is empty and the symmetric property trivially
holds. Assume that by diagonally switching a set of edges which fails to be Delaunay, we
reach a triangulation Tk satisfying the symmetric property. Assume there is an edge e ∈ Tk

which fails to be Delaunay. If e is not a side of any triangle in Fs(Tk) for any segment s ∈ B,
then its mirror h(e) also fails to be Delaunay. Note that if the edge e itself is a segment on
B, then h(e) = e. Switch both e and h(e) and reach a triangulation Tk+1 which satisfies the
symmetric property. If e is a side of a triangle in Fs(Tk) for some segment s ∈ B, there are two
cases: (i) e crosses s; and (ii) e does not cross e. In the case (i), the endpoints z, z′ of e must
satisfy z′ = h(z), and any edge in the triangles incident to e which crosses s must also fail toD
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be Delaunay. For example, as shown in Figure 23, the edges zu′ and z′v must also fail to be
Delaunay. Switch these edges and reach a triangulation Tk+1 which satisfies the symmetric
property. In the second case, switch both e and e′ = h(e). If the endpoints of e contain no
endpoints of the segment s, as shown in Figure 23, switch the diagonal vu′, as it must also
fail to be Delaunay. The resulting triangulation Tk+1 satisfies the symmetric property. This
proves that there is a Delaunay triangulation T in dd satisfying the above symmetric property.

Let w : Ṽ → Ṽ with
∑

v∈Ṽ w(v) = 0 be the conformal factor such that d̃′ = w ∗ d̃. We

claim w respects the doubling structure, i.e., w(v) = w(h(v)) for any vertex v ∈ Ṽ . Otherwise,
let us define a new conformal factor w′ so that w′(v) = w(h(v)) for any vertex v ∈ Ṽ , and
then w′ �= w, which from Lemma 4.1 implies the metric w′ ∗ d̃ is different from d̃′. However, it
is easy to verify that the curvature of the metric w′ ∗ d̃ is also equal to K̃∗. This contradicts
the uniqueness of d̃′.

Now let w(t) = tw for t ∈ [0, 1] be a path from 0 to w; we have that w(t) respects the
doubling structure for any t. As discussed in section 4, d̃(t) = w(t) ∗ d̃ for t ∈ [0, 1] is a
path in C(d̃). Let 0 = t0 < t1 < t2 < · · · < tm = 1 be a partition of [0, 1] so that for any
0 ≤ i ≤ m−1, d̃(t) with t ∈ [ti, ti+1] is a path inside the cellMD(Ti) for some triangulation Ti.
If d̃(ti) respects the doubling structure and Ti satisfies the symmetric property in the metric
d̃(ti), then Ti remains so in any PL metric d̃(t) for any t ∈ [ti, ti+1]. Indeed, the symmetric
property (1) obviously holds as w(t) respects the doubling structure. To show the symmetric
property (2), it suffices to show that the quadrilateral f ∪ f ′ remains cocircular. This can be
done by verifying that the sum of the cosines of the angles opposite to the diagonal remains
0 along the path w(t). Furthermore, consider the region ∪f∈Fs(Ti)f , as shown in Figure 4.
One can cut it into two geometrically identical subregions using a straight line connecting
the endpoints of the segment s and passing through the midpoints of the edges in Fs(Ti) of
the form uu′ with u′ = h(u). This shows that d̃(t) respects the doubling structure for any
t ∈ [ti, ti+1]; in particular, so does d̃(ti+1). Now by construction, d̃(t0) respects the doubling
structure. From the previous discussion, d̃(t0) lies in the cell MD(T0), where T0 satisfies
the symmetric property. Then, using induction, we show that d̃′ = d̃(1) respects the double
structure. The restriction of d̃′ onto S is the PL metric d′ on (S, V ). Finally, it is easy to
verify that the curvature on S in d′ equals K∗. This proves the theorem.
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