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ABSTRACT. We introduce a combinatorial curvature flow for piecewise con-
stant curvature metrics on compact triangulated 3-manifolds with boundary
consisting of surfaces of negative Euler characteristic. The flow tends to find
the complete hyperbolic metric with totally geodesic boundary on a mani-
fold. Some of the basic properties of the combinatorial flow are established.
The most important one is that the evolution of the combinatorial curvature
satisfies a combinatorial heat equation. It implies that the total curvature
decreases along the flow. The local convergence of the flow to the hyperbolic
metric is also established if the triangulation is isotopic to a totally geodesic
triangulation.

1. INTRODUCTION

1.1. The purpose of this paper is to construct a combinatorial curvature flow which
is a 3-dimensional analog of the flows considered in [CL|. In [CL], we introduced a
2-dimensional combinatorial curvature flow for triangulated surfaces of non-positive
Euler characteristic. It is shown that for any initial choice of PL metric of circle
packing type, the flow exists for all times and converges exponentially fast to the
Andreev-Koeb-Thurston’s circle packing metrics. In the 3-dimensional case, it is
shown that the curvature evolution equation of the combinatorial curvature flow
satisfies a combinatorial heat equation. Furthermore, the flow tends to find the
complete hyperbolic metric of totally geodesic boundary on the 3-manifold.
Following Hamilton [Hal, a curvature flow should deform the metrics in such a
fashion that, as the metric evolves, the curvature evolves according to some heat
type equation. It indicates infinitesimally, the metrics tend to improve themselves.
In the case of combinatorial curvature flow, instead of using the space of all Rie-
mannian metrics, we consider the space of all piecewise constant curvature metrics
supported in a fixed triangulation. The goal is to produce a flow, or a vector field, in
the space so that the combinatorial curvature evolves according to a combinatorial
Laplace equation. The most general form of a combinatorial Laplacian is defined as
follows. Given finite graph with vertices labelled by {1,2,...,n}, a combinatorial
Laplace operator is a negative semidefinite n x n matrix A = [aij]nxn so that it
acts on the space of all functions defined on vertices by the linear transformation
A. To be more precise, suppose = = [x1,...,%,]" is a function (representated as a
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A COMBINATORIAL CURVATURE FLOW 13

column vector) whose value at the ith vertex is z;; then the combinatorial Laplace
operator sends x to Az. In the construction of the combinatorial curvature flow,
we are guided by the principle that the curvature evolves according to some combi-
natorial Laplacian operator. Finding the correct combinatorial Laplacian, or more
precisely, the negative semidefinite matrix, is the main ingredient of the paper. The
combinatorial Laplacian operator used in this paper is obtained as the Hessian of
the hyperbolic volume function with dihedral angles as variables. That the hyper-
bolic volume function for a hyperideal tetrahedron is strictly concave in terms of
the dihedral angles was first observed by J. Schlenker [Sc|. The author thanks Igor
Rivin for bringing him this earlier work of Schlenker. In fact, for strictly hyper-
ideal polytopes of the same combinatorial type, the hyperbolic volume, viewed as
a function of the dihedral angles, is smooth and strictly concave ([Sc]).

1.2.  The basic building blocks for a 2-dimensional flow are hyperbolic and Eu-
clidean triangles in [CL|. In the 3-dimensional case, the basic building blocks are
the strictly hyperideal tetrahedra discovered by Bao and Bonahon [BB|. See also
Frigerio and Petronio [FP].

Given an ideal triangulation of a compact 3-manifold with boundary consisting
of surfaces of negative Euler characteristic, we replace each (truncated) tetrahedron
with a strictly hyperideal tetrahedron by assigning the edge lengths. The isometric
gluing of these tetrahedra gives a hyperbolic cone metric on the 3-manifold. The
combinatorial curvature of the cone metric at an edge is 27 less the sum of dihe-
dral angles at the edge. The combinatorial curvature flow that we propose is the
following system of ordinary differential equations:

(].].) d(Ei/dt:Kl‘,

where z; is the length of the ith edge and K is the combinatorial curvature of the
cone metric (z1,...,x,) at the ith edge. The equation (I captures the essential
features of the 2-dimensional combinatorial Ricci flow in [CL]. The most important
of all is that the combinatorial curvature evolves according to a combinatorial heat
equation. Thus the corresponding maximum principle applies. The flow has the
tendency of finding the complete hyperbolic metric of totally geodesic boundary
on the manifold. By analyzing the singularity formations in equation (IJ), it is
conceivable that one could give a new proof of Thurston’s geometrization theorem
for these manifolds using (ICT]). Furthermore, the flow (1) will be a useful tool to
find algorithmically the complete hyperbolic metric.

1.3. Suppose M is a compact 3-manifold whose boundary is non-empty and is
a union of surfaces of negative Euler characteristic. Let C(M) be the compact
3-manifold obtained by coning off each boundary component of M to a point. In
particular, if M has k boundary components, then there are exactly k cone points
{v1,...,vx} in C(M) so that C(M) — {vy,..., v} is homeomorphic to M — IM.
An ideal triangulation (or truncated triangulation) T of M is a triangulation 7
of C(M) such that the vertices of the triangulation are exactly the cone points
{v1,...,v;}. By Moise [Mo], every compact 3-manifold can be ideally triangulated.
We identify M with a subset of C(M) as follows. Take st(vy,...,vx) to be the
open star of the vertices {v1,..., v} in the second barycentric subdivision of the
triangulation. Then we take M = C (M) —st(vy,...,v). By abuse of the language,
the edges, triangles and tetrahedra in M in the ideal triangulation T" are defined to
be the intersection a N M, where a is an i-dimensional simplex in the triangulation
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FIGURE 1. The six edges of a hyperideal tetrahedron are the in-
tersections of its hexagonal faces.

T of C(M) for i = 1,2,3 respectively. Note that the boundary OM of M has
the induced triangulation from 7. The 1-simplex and 2-simplex in the boundary
triangulation of OM are not called edges or triangles in the ideal triangulation.

Following Bao-Bonahon [BB], a strictly hyperideal tetrahedron in the 3-dimen-
sional hyperbolic space is a compact convex polyhedron that is diffeomorphic to a
truncated tetrahedron in the 3-dimensional Euclidean space and its four hexagonal
faces are right-angled hyperbolic hexagons. (Note that two compact subsets of R™
are diffeomorphic if there is a diffeomorphism between two open neighborhoods
of them sending one compact set to the other.) See Figure 1. In [BBJ|, Bao and
Bonahon give a complete characterization of hyperideal convex polyhedra. As a very
special case of their work, they obtained a characterization of strictly hyperideal
tetrahedra using dihedral angles. This characterization of a hyperideal simplex was
also obtained by Frigerio and Petronio [FP]. Recall that an edge in a hyperideal
tetrahedron is the intersection of two hexagonal faces. The works [BB| and [FP]
show that the strictly hyperideal tetrahedra are completely characterized by their
six dihedral angles at the six edges such that the sum of three dihedral angles
associated to edges adjacent to each vertex is less than w. In particular, the space
of all strictly hyperideal tetrahedra forms an open convex polytope in R® when
parametrized by the dihedral angles.

The main technical observation is the following. We were informed by I. Rivin
that this was first known to J. Schlenker in [Sc].

Theorem 1 (Schlenker). The wvolume of a strictly hyperideal tetrahedron is a
strictly concave function of its dihedral angles.

The Hessian of the volume is a negative definite matrix by Theorem [l This
provides a basis for constructing the combinatorial Laplacian operator for the cur-
vature evolution equation.

Given an ideal triangulated 3-manifold (M,T), let E be the set of edges in
the ideal triangulation and let n be the number of edges in E. An assignment
z: E — Ry is called a hyperbolic cone metric associated to the ideal triangulation
T if for each tetrahedron ¢ in T' with edges eq,...,eq, the six numbers z; = z(e;)
(i=1,...,6) are the edge lengths of a strictly hyperideal tetrahedron in H®. The
set of all hyperbolic cone metrics associated to T is denoted by L(M,T), which
will be regarded as an open subset of R” = RF by measuring the edge lengths.
The combinatorial curvature of a cone metric € L(M,T) is the map K : E — R
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sending an edge e to the combinatorial curvature of = at the edge e. Again we
identify the set of all combinatorial curvatures {K | x € L(M,T)} with a subset
of R™. The combinatorial curvature flow is the vector field in L(M,T) defined
by equation (L], where K; = K;(t) on the right-hand side is the combinatorial
curvature of the metric © = (z1,...,z,) at time ¢ at the ith edge.

Theorem 2. For any ideal triangulated 3-manifold, under the combinatorial cur-
vature flow (), the combinatorial curvature K;(t) evolves according to a combi-
natorial heat equation,

(12) dKi(t)/dt: zn:ainj(t),
j=1

where the matriz [a;jlnxn s symmetric negative definite. Furthermore, the com-
binatorial curvature flow is the negative gradient flow of a locally strictly convex
function.

Corollary 3. For any ideal triangulated 3-manifold (M, T), under the combinato-
rial curvature flow (L),

(a) the total curvature Y i, K2(t) is strictly decreasing along the flow unless
K;(t) =0 for all i;

(b) the equilibrium points of the combinatorial curvature flow (L) are the com-
plete hyperbolic metric with totally geodesic boundary;

(¢c) each equilibrium point is a local attractor of the flow.

Another consequence of the convexity is the following local rigidity result for
hyperbolic cone metrics without constrains on cone angles. Note that by [HK],
hyperbolic cone metrics with cone angles at most 27 are locally rigid.

Theorem 4. For any ideal triangulated 3-manifold (M, T), the curvature map II :
L(M,T) — R"” sending a metric x to its curvature K (z) is a local diffeomorphism.
In particular, a hyperbolic cone metric associated to an ideal triangulation is locally
determined by its cone angles.

1.4. In the rest of the paper, we prove the results. In the last section, we pro-
pose several questions related to the combinatorial curvature flow whose resolution
will lead to a new proof of Thurston’s geometrization theorem for this class of
3-manifolds.

1.5. Acknowledgment. We thank Ben Chow for conversations on the topic of
Ricci flow and X. S. Lin for discussions. I thank Igor Rivin for informing me about
the earlier work of Schlenker [Sc]. This work was supported in part by the NSF
and a research grant from Rutgers University.

2. PROOFS

In this section we prove theorems and corollaries stated in .

2.1. Proof of Theorem [II Suppose z1,...,xg are the lengths of the six edges
of a strictly hyperideal tetrahedron so that the corresponding dihedral angles are
ai,...,ag. Let a = (a1,...,0a6), © = (x1,...,%¢), and let V' be the volume of the
strictly hyperideal tetrahedron. By the results of [BB| and [FP], x = z(a) is a
function of a. Conversely, a = a(z) is a function of z. This is due to the following
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results on convex polyhedron. First of all, by the Cauchy rigidity of a convex
polytope, the isometry class of the convex polytope in the hyperbolic 3-space is
determined by the intrinsic geometry of the boundary surface. In particular, the
dihedral angles are determined by the induced metric on the boundary surface. On
the other hand, the metric on the boundary surface is determined by the metrics
on the four hexagonal faces since the other four faces are triangles. Finally, the
metric on a right-angled hyperbolic hexagon is determined by the three lengths
of its three pairwise non-adjacent edges. Thus a = a(z). Obviously, these two
functions @ = a(x) and © = z(a) are inverses of each other. Next we claim that
both functions a = a(z) and = x(a) are smooth (in fact real analytic functions).
Indeed, to express z; in terms of a, we use the cosine law for the triangular faces of
the strictly hyperideal tetrahedron. The cosine law expresses twelve edge lengths
y; of these four triangles in terms of a analytically. Next, we use the cosine law
for the right-angled hexagon to express the length xz; analytically in terms of the
y;’s. Thus we see that = z(a) is an analytic map. Conversely, we use the cosine
law for hexgonal faces to express y; analytically in terms of x;’s. Then we use the
cosine law for triangles to express a; analytically in terms of y;’s. Thus we see that
both ¢ = a(z) and = = z(a) are local diffeomorphisms. In particular, the Jacobi
matrix [0z;/0a;lexe is non-singular.

Now consider the volume V = V(a) as a function of the dihedral angles a. By
the Schlaefli formula, we have 0V/0a; = —x;/2. This implies that —0xz;/0a; =
—0x;/0a; for all i,j due to the symmetry of the Hessian matrix. Since the space
of all strictly hyperideal tetrahedra parametrized by dihedral angles is connected
and the matrix [0z;/0a;]exe is non-singular, the signature of the symmetric matrix
[0z;/0a;l6xe is independent of the choice of the strictly hyperideal tetrahedra.
One checks directly that if the strictly hyperideal tetrahedron is regular (i.e., all
x;’s are the same and all a;’s are the same), the Jacobian matrix is positive definite.
Using the Schlaefli formula, this implies that the Hessian of the volume function
V is locally strictly concave. Since the domain is convex by [BB], we see that the
volume is a strictly concave function of the dihedral angles. ([l

We do not have a proof that the volume function defined on the space of all
strictly hyperideal tetrahedra parametrized by the dihedral angles can be extended
continuously to all hyperideal tetrahedra. This fact should be true and may follow
from [Us]. See also the related work [Lul.

Since the inverse of a symmetric positive definite matrix is again symmetric and
positive definite, we conclude:

Corollary 5. For a strictly hyperideal tetrahedron with dihedral angle a; and length
x; at the ith edge, the matriz [Da;/0xjlexe is symmetric and positive definite. In
particular, the function F =2V + 2?21 a;x; 1s a locally strictly convex function of
the length variables (x1,. .., 2q).

Indeed, it suffices to verify that the Hessian matrix [0%F/0x;0z;] is strictly
positive definite. Now, by construction,
6
OF/dx; = 20V/0x; + a; + Y xi0a;/0x;
i=1
6 6
=2 Z(@V/aai)(aai/axj) +a; + Z z;0a;/0x;.

i=1 i=1
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By the Schlaefli formula, 0V/da; = —x;/2. Thus

6 6
(2.1) OF/0z; = — Zmiaai/é‘xj +a; + Zmiaai/axj = a;.
i=1 i=1
As a consequence, we see that the Hessian of F with respect to (x1,...,x¢) is

exactly [0a;/0x;]6x6, which is known to be positive definite. This shows that the
function F' is a strictly locally convex function. Unfortunately, the space of all
strictly hyperideal simplices parametrized by the edge lengths is not convex. Thus
there is no global convexity for F'.

2.2. Proof of Theorem [2l To prove Theorem [ one uses equation (1) and
Corollary[Bl To begin with, we assume that there are n edges labelled by 1,2,...,n
The length of the ith edge is x; and the combinatorial curvature at the ith edge is
K;. If r is a tetrahedron in the ideal triangulation, let I(r) be the set of all indices
i so that the ith edge is a codimension-1 face of r. If ¢ € I(r), we use af = af(x)
to denote the dihedral angle of the strictly hyperideal simplex r at the ith edge in
the hyperbolic cone metric z. Define a] = 0 if i ¢ I(r). Let T®) be the set of all
tetrahedra in the ideal triangulation. Then the combinatorial curvature K; is given
by 2m — > < aj by definition. In particular,

dK;/dt = — Y daj /dt.
reT®)
On the other hand, by the chain rule, we can express
n
daj /dt = " (daj /0x;)(dx; /dt) = Z da’ |0z K
j=1
Thus we have,

n
dKi/dt = Z Z(—@af/(‘)m]KJ)
reT®) j=1
In particular, if we express dK;/dt = Zn a;; Kj, then a;j = — ) e Oaj /Ox;.
Since the Jacobian matrix [0a;/0z;]exe is symmetric, we have da} /0z; = da’; /0x;.
(Indeed, by definition Qa]/0z; = 0 unless ¢,j € I(r). In the latter case, it follows
from Corollary [5l) Thus a;; = a;;. To finish the proof, we need to show that the
matrix [a;j]nxn is negative definite. To this end, take a vector (u1,...,u,) in R™,
and consider the quadratic expression

(2.2) zn: wiugag =— Y Zn: uiujdag /Ox;.

4,J=1 reT®) i,j=1

For any fixed tetrahedron € T3 let 7 = x; when i € I(r). Then

n

Z wju;0a; /0x; = Z u;u;0a; /0]

3,j=1 i,5€I(r)
By Corollary Bl the expression — Zi,jel(r) u;ujOaj /0xY is less than or equal to zero,
and is zero if and only if u; = 0 for all indices ¢ € I(r). This shows first of all that
the expression (Z2) is less than or equal to zero. Furthermore, if it is zero, then all
u; = 0 since each edge is adjacent to some tetrahedron. We have thus established
that fact that the matrix [a;;]nxn is symmetric and negative definite.
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To see that the flow ([[T]) is the gradient flow, recall that L(M,T) denotes the
open subset of R™ consisting of the hyperbolic cone metrics associated to the ideal
triangulation. To be more precise, if z = (z1,...,2,) € L(M,T), then z; is the
length of the ith edge in the cone metric. For x € L(M,T), let V. = V(x) be
the volume of the cone metric which is the sum of all hyperbolic volumes of its
strictly hyperideal tetrahedra. Now define a function H : L(M,T) — R by H(z) =
2V (z) — i, ;K; where K is the curvature of the metric = at the ith edge. We
can express the function H as the sum

(2.3) H= Z (2%(3:) + Z xiaf) —ZWixi

reT®) 1el(r)

where V,.(z) is the volume of the tetrahedron r in the metric. By (1)) in the
proof of Corollary B, we have 0(2V;.(2) +3_,c(, ziai)/0z; = aj. This implies that
OH/0xj = ), cpwe aj — 21 = —K;. Furthermore, the Hessian matrix [h;;] of H
is given by hi; = —0K;/0x; = Y, .y 0aj/0x; = —as; where ag; is the quantity
used in the above proof. By the argument above, we see that the Hessian of H is
positive definite. Thus the function H is strictly locally convex in L(M,T). O

2.3. Proof of Corollary Bl This corollary easily follows from Theorem [2 by
standard tools of differential equations.

To see (a), that f(t) = Y1, K;(t)? is strictly decreasing in ¢, let us take the
derivative df (t)/dt. We find f'(t) = 2 | K;(t)dK;/dt = 22%11 ai; KG;K; <0
unless K;(t) = 0 for all 4.

To see (b), first of all, observe that at the equilibrium points of (), all curva-
tures K;(t) = 0 for all &. Thus there are no singularities at the edges. This shows
that the cone metric is a smooth complete hyperbolic metric with totally geodesic
boundary. Since the matrix [a;;] in (I2]) is negative definite, the equilibrium points
are always a local attractor. Thus (c) follows. O

We do not know if the equilibrium point is unique.

2.4. Proof of Theorem H. Consider the smooth map IT : L(M,T) — R" sending
a metric x to its curvature II(z) = (K1,...,K,). By theorem[, this map is the
same as the gradient map V(—H) : L(M,T) — R". Since the function —H is
shown to be strictly locally concave, the gradient map is a local diffeomorphism.
This ends the proof. O

3. SOME REMARKS AND QUESTIONS

This work and [CI] are motivated by the work of Richard Hamilton [Ha] on the
Ricci flow. The strategy of [Ha] is to find a flow deforming metrics such that its
curvature evolves according to a heat-type equation. The main focus of study then
shifts from the evolution of the metrics to the evolution of its curvature using the
maximum principle for heat equations. As long as one has control of the curvature
evolution, one gets some control of the metric evolutions by studying either the
singularity formation or the long time convergence. Theorem [ above seems to
indicate that the combinatorial flow (1)) deforms the cone metrics in the “right”
direction. There remains the task of understanding the singularity formations in
(L) which corresponds to the degeneration of the strictly hyperideal tetrahedra.
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This is being investigated. Below are some thoughts on this topic. The motivations
come from [Th], [CV], [Ri2], [Le] and [CL].

3.1. To understand the singularity formation, we will focus our attention on the
function H in (Z3). Following [CV] and [Ri2], our goal is to find the (linear) condi-
tions on the ideal triangulation which will guarantee the existence of critical points
for H. The existence of the ideal triangulation satisfying the (linear) condition will
be related to the topology of the 3-manifold and will be resolved by topological
arguments.

Suppose (M,T) is an ideal triangulated compact 3-manifold such that each
boundary component of M has negative Euler characteristic. A pair (e, t), where
e is an edge and t is a tetrahedron containing e, is called a corner in T'. Following
Rivin [Ri], and Casson and Lackenby [Lal], we say that the triangulated manifold
(M, T) supports a linear hyperbolic structure if one can assign to each corner of T' a
positive number called the dihedral angle so that (1) the sum of dihedral angles of
all corners adjacent to each fixed edge be 27, and (2) the sum of dihedral angles of
every triple of corners (e1,t), (e2,t), (e3,t), where ey, e, es are adjacent to a fixed
vertex, be less than 7. By [BB], given a linear hyperbolic structure on (M, T), we
can realize each individual tetrahedron by a strictly hyperideal tetrahedron whose
dihedral angles are the assinged numbers so that the sum of the dihedral angles at
each edge be 2. It can be shown that if (M, T) supports a linear hyperbolic struc-
ture, then the manifold M is irreducible without incompressible tori. One would
ask if the converse is also true. The work of Lackenby [La2] gives some evidences
that the following may have a positive answer. See also [KR].

Question 1. Suppose M is a compact irreducible 3-manifold with incompressible
boundary consisting of surfaces of negative Euler characteristic. If M contains no
incompressible tori and annuli, is there any ideal triangulation of M which supports
a linear hyperbolic structure?

The next question is the 3-dimensional analog of the 2-dimensional singularity
formation analysis presented in [CV], [Ri2] and [Le].

Question 2. Suppose (M, T) is an ideal triangulated 3-manifold which supports a
linear hyperbolic structure. Does H have a local minimal point in the space L(M,T)
of all cone metrics associated to (M,T)?

Positive resolutions of these two questions will produce a new proof of Thurston’s
geometrization theorem for this class of 3-manifolds.

3.2. Suppose (M, T) supports a linear hyperbolic structure. We define the volume
of a linear hyperbolic structure to be the sum of the volumes of its strictly hyper-
ideal tetrahedra. Let LH(M,T) be the space of all linear hyperbolic structures on
(M, T). Tt can be shown, using Lagrangian multipliers, that the volume function is
strictly concave on LH(M,T) whose maximal point is exactly the complete hyper-
bolic metric on M. The situation is the same as for ideal triangulations of compact
3-manifolds whose boundary consists of tori. In this case, one realizes each tetra-
hedron by an ideal tetrahedron in the hyperbolic space. It can be shown that the
complete hyperbolic metric of finite volume is exactly equal to the maximal point
of the volume function defined on the space of all linear hyperbolic structures given
in [Ril]. This was also observed by Rivin [Ri3].
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3.3.  We remark that the moduli space of all strictly hyperideal tetrahedra para-
metrized by their edge lengths z1,...,2¢ is not a convex subset of R®. This is
the main reason that we have only local convergence and local rigidity in Corollary
Bl and Theorem Bl However, it is conceivable that Theorem [4 may still be true
globally. We do not know yet if the space L(M,T) of all cone metrics associated
to the ideal triangulated manifold is homeomorphic to a Euclidean space. It is
likely to be the case. In fact, one would hope that there is a diffeomorphism
h : Rsg — R so that if we parameterize the space of all strictly hyperideal
tetrahedra by (t1,...,t6) = (h(x1),...,h(xs)), then the space becomes convex in
t-coordinate. Evidently, if this holds, it implies that the space L(M,T) is convex
in the t-coordinate.
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