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Abstract
Determining the geometry and the physical nature of an inclusion within a
conducting medium from voltage and current measurements on the accessible
boundary of the medium can be modeled as an inverse boundary value pro-
blem for the Laplace equation subject to appropriate boundary conditions on
the inclusion. We continue the investigations on the particular inverse problem
with a generalized impedance condition started in Cakoni and Kress (2013
Inverse Problems 29 015005) by presenting an inverse algorithm for the
simultaneous reconstruction of both the shape of the inclusion and the two
impedance functions via a boundary integral equation approach. In addition to
describing the reconstruction algorithm and illustrating its feasibility by
numerical examples we also provide some extensions to the uniqueness results
in Cakoni and Kress (2013 Inverse Problems 29 015005).

Keywords: inverse boundary value problem, integral equations, generalized
impedance boundary condition, iterative method, uniqueness
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1. Introduction

Electrostatic imaging can be modeled in terms of inverse problems for the Laplace equation in
a bounded domain subject to an appropriate boundary condition. In this paper we will
continue our investigations started in [7] for a generalized impedance boundary condition. For
this we assume that Ω is a doubly connected bounded domain in 2 with boundary Ω∂ that
consists of two disjoint C2 smooth closed Jordan curves Γm and Γc such that ∪Ω Γ Γ∂ =: m c
and Γc is contained in the interior of Γm. Here, Γc stands for a corroded surface to be evaluated
and Γm stands for the measurement surface. We denote by Ωc and Ωm the bounded domains
with boundary Γc and Γm, respectively. By ν we denote the unit normal vector to Γc and to Γm

that is directed into the exterior of Ωc and the exterior of Ωm, respectively. (Note, that the
orientation of the normal vector on Γc in this paper differs from that in [7].) We assume that
the electrostatic potential u satisfies

Δ Ω=u 0 in (1.1)

subject to the generalized impedance boundary condition

ν
μ λ Γ∂

∂
+ − =u

s

u

s
u

d

d

d

d
0 on (1.2)c

in terms of arc length s on Γc, where λ Γ∈ C ( )c
1 is non-negative and not identically zero and

μ Γ∈ C ( )c
1 is positive. The inverse problem is to determine both the shape Γc and the

impedance functions λ and μ from a knowledge of a (small) finite number of Cauchy pairs

ν
= = ∂

∂Γ
Γ

f u g
u

: and :
m

m

for solutions u of (1.1) and (1.2), i.e., from applied voltage and measured corresponding
current densities on Γm.

As demonstrated among others in [1, 11, 13, 14], the generalized impedance condition
(1.2) models complex materials with coated or corroded surfaces much more accurate than the
traditional classical impedance condition, i.e., the case where μ = 0. Hence our inverse
generalized impedance problem for both the shape and the impedance functions serves as a
model problem for the identification and characterization of complex targets such as coated
objects via electric imaging applications in non-destructive testing. We emphasize that our
reconstruction algorithm carries over to the Helmholtz equation, i.e., to inverse scattering, by
just substituting the appropriate fundamental solution.

In [7] two of us settled existence and well-posedness for the direct problem with the
generalized impedance condition by boundary integral equations via a single-layer potential
approach involving a hypersingular operator. In particular, given Γ∈f H ( )m

3 2 there exists a
unique harmonic function Ω∈u H ( )2 satisfying the generalized impedance condition (1.2) on Γc
and the Dirichlet boundary condition u = f on Γm. We further provided and tested a numerical
algorithm by a collocation method based on trigonometric polynomial approximations and tri-
gonometric numerical differentiation. For a corresponding convergence analysis we refer to [19].

For the inverse problem, in [7] we obtained a uniqueness result for recovering both
impedance functions λ and μ for a known boundary Γc of the inclusion together with a
reconstruction algorithm based on the uniqueness proof requiring three Cauchy pairs. Further,
in the spirit of the method proposed by Kress and Rundell [20] for an inverse Dirichlet
problem, from Greenʼs representation theorem for harmonic functions we derived a system of
two nonlinear boundary integral equations on Γc and Γm for four unknowns, namely Γc, λ and
μ together with the unknown Dirichlet trace Γu|

c
as a slip-variable. Adopting the approach of
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Johansson and Sleeman [15] for an inverse scattering problem and for a corrosion detection
problem [6], for known impedance functions λ and μ we proposed and tested an inverse
method for iteratively reconstructing the shape of Γc. Given an approximation for Γc, this
algorithm solves the well-posed integral equation on Γc for φ = Γu: |

c
and then, keeping φ fixed

obtains an update for Γc by linearizing the integral equation on Γm with respect to Γc.
In the main part of this paper we follow the ideas in [9, 20] more closely and simultaneously

linearize both equations with respect to the four unknowns Γc, λ, μ and Γu|
c
. Of course, since two

equations will not suffice to determine four unknowns and since each additional Cauchy pair
generates an additional unknown by its Dirichlet trace on Γc we will need at least three Cauchy
pairs to successfully perform this algorithm. This heuristic analysis is also supported by the fact
that we need at least two Cauchy pairs for recovering λ and μ for a known shape Γc, see the
remark after theorem 2.1. For related work in inverse scattering we refer to [3–5].

The plan of the paper is as follows. Section 2 is devoted to some considerations on the
uniqueness issue for the inverse problem. In particular, this includes unique reconstruction of
both Γc and the impedance functions λ and μ from all Cauchy data on Γm. We note that
although this uniqueness result can be extended to the case where the Cauchy data are known
only on part of Γm our reconstruction does not have an immediate extension to this case since
it is based on the use of Greenʼs representation formula. We then proceed in section 3 with the
presentation of the inverse algorithm for the simultaneous reconstruction of the shape Γc and
the impedance functions λ and μ via linearization and iteration. In section 4 we will prove a
corresponding local uniqueness result and in the final section 5 we will provide numerical
examples illustrating the feasibility of the inverse algorithm.

2. Uniqueness revisited

In [7] it is shown that three Cauchy pairs with linearly independent Dirichlet data uniquely
determine the impedance functions λ and μ provided the shape Γc is known. Picking up on
ideas in [2, 21], we show that two Cauchy pairs suffice for uniqueness provided the Dirichlet
data of one of them does not change sign on Γm.

Theorem 2.1. Assume that Γc is C
4 and let ⩾f 01 and f2 be linearly independent. Then the

two Cauchy pairs f g( , )1 1 and f g( , )2 2 for the solutions u1 and u2 of the generalized impedance
problem (1.1)–(1.2) uniquely determine the coefficient functions λ and μ.

Proof. From the proof of theorem 3.3 in [7] we recall that the solution to the generalized
impedance problem is of class C2 up to the boundary Γc provided the latter is C4 smooth.
Hence, we can apply Hopfʼs lemma (see e.g. [12]). Now assume that the minimum of u1 over
Γc is not positive. Clearly each Γ∈x cmin , where this minimum is attained also is a minimal
point of u1 over Ω . Then we have that

= ⩾
u

s
x

u

s
x

d

d
( ) 0 and

d

d
( ) 01

min

2
1

2 min

and therefore

ν
∂
∂

⩽
u

x( ) 01
min

as consequence of the generalized impedance condition (1.2). However, this is a contradiction
to Hopfʼs lemma. Hence, >u 01 on Γc.
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This now can be used to rewrite the WronskianW u u( , )1 2 for the trace of u1 and u2 on Γc

in the form

⎛
⎝⎜

⎞
⎠⎟=W u u u

s

u

u
( , )

d

d1 2 1
2 2

1

which implies that W has at least one zero on Γc. Multiplying the impedance condition for u1
by u2 and the impedance condition of u2 by u1 and subtract as in [7, theorem 3.1] we obtain

μ
ν ν

Γ=
∂
∂

−
∂
∂s

W u u u
u

u
ud

d
( , ) on .c1 2 2

1
1

2

From this, μ is now uniquely determined by integration since the zero ofW u u( , )1 2 forces the
constant occurring in the integration to be zero.

Once we know μ, the remaining function λ can be obtained from the impedance condition
(1.2) for u1 which does not vanish on Γc. □

For constants λ and μ the function

ρλ
λρ ρ

= +
−

u x x( ) 1
1 ln

ln

satisfies (1.2) in Ω ρ= ∈ < <x x{ : | | 1}2 for any value of μ. Hence, in view of the
preceding theorem, at least two Cauchy pairs are required to recover both impedance
functions.

Motivated by the above, we also tried to extend Bacchelliʼs [2] ideas to obtain a
uniqueness result for both the shape and the impedance functions using finitely many Cauchy
pairs. However, so far we did not succeed along these lines. Therefore, here we include a
uniqueness result based on infinitely many Cauchy pairs.

To this end we need to introduce also solutions to the generalized impedance problem
with singularities that we can move towards the interior boundary Γc. For a discussion of
singularities it is advantageous to have the well-posedness of the generalized impedance
problem also available in a Hölder space setting. To abbreviate notations, we define the
generalized impedance operator Ω Γ→ −G H H: ( ) ( )c

2 1 2 by

ν
μ λ= ∂

∂
+ −Gu

u

s

u

s
u:

d

d

d

d
.

The analysis in [7] for the direct problem can also be performed by considering the boundary
integral equation arising from the single-layer potential approach as an equation for an
operator from Γ Γ×α αC C( ) ( )m c

1, 1, into Γ Γ×α αC C( ) ( )m c
2, 0, . From this it can be seen that for

Γ∈ αh C ( )c
0, the unique harmonic function Ω∈u H ( )2 satisfying u = 0 on Γm and Gu = h on

Γc belongs to ΩαC ( )2, and depends continuously on h, that is,

∥ ∥ ⩽ ∥ ∥Ω Γα αu C h (2.1)( )C C( ) c
2, 0,

for some constant C depending only on Ω and the impedance functions. For this we need to
assume that Γc is C

3 smooth (see [16]).
Now, for Ω∈z let Ω∈w H ( )z

2 be the unique harmonic function satisfying =w 0z on Γm
and

Φ Γ+ =( )G w z(·, ) 0 on , (2.2)z c
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where

Φ
π

=
−

≠x y
x y

x y( , ) :
1

2
ln

1
, , (2.3)

denotes the fundamental solution to the Laplace equation in two dimensions.
Further, for Γ∈f H ( )m

3 2 by writing uf we indicate the dependence of the solution to
(1.1)–(1.2) on the Dirichlet values. In addition, we introduce the unique harmonic function

Ω∈ Hv ( )f m
2 with Dirichlet values = fvf on Γm and set

= −∼
Ω

u u: v .f f f

From the double-layer potential approach for the solution to the interior Dirichlet problem and
the well-posedness of the corresponding boundary integral equation it can be deduced that for
any compact set Ω⊂M m the set of harmonic functions

Γ∈{ }( )f Hv :f
M

m
3 2

is dense in C M( )2 (see e.g. [10, theorem 5.26]). Therefore, for any Ω∈z and any domain D
with Ω ⊂ Dc and Ω⊂D m such that ∈z D we can choose a sequence f( )n in ΓH ( )m

3 2 such
that

Φ− → → ∞z nv (·, ) 0, .f
C D( )n 2

By the well-posedness of the inhomogeneous generalized impedance problem this implies
that

⎡⎣ ⎤⎦ν
∂
∂

− → → ∞∼
Γ−

u w n0, . (2.4)
( )

f z
H

n

m
1 2

Theorem 2.2. Assume that Γc
1 and Γc

2 are two interior boundary curves and λ μ,1 1 and λ μ,2 2
two pairs of impedance functions such that for the corresponding solutions uf

1 and uf
2 of

(1.1)–(1.2) with Dirichlet values f on Γm we have that

ν ν
Γ

∂
∂

=
∂
∂

u u
on (2.5)

f f
m

1 2

for all Γ∈f H ( )m
3 2 . Then Γ Γ=c c

1 2, λ λ=1 2 and μ μ=1 2. (Note that it suffices that (2.5) is

satisfied on a dense subset of ΓH ( )m
3 2 .)

Proof. We indicate the quantities associated with Γc
1 and Γc

2 by superscripts and denote by
Ω1,2 the connected component of ∪Ω Ω Ω⧹( )m c c

1 2 that contains Γm as part of its boundary.

Since Ω1,2 is open, for arbitrary z in Ω1,2 we choose D such that ∈z D as well as Ω ⊂ Dc
1

,

Ω ⊂ Dc
2

, and Ω⊂D m. Then from (2.4) we can conclude that

ν ν
Γ

∂
∂

=
∂
∂

w w
on (2.6)z z

m

1 2
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for all Ω∈z 1,2, since from the assumption of the theorem it follows that

ν ν
Γ

∂
∂

=
∂
∂

∼ ∼u u
on

f f
m

1 2

for all Γ∈f H ( )m
3 2 . By Holmgrenʼs theorem, (2.6) implies =w wz z

1 2 in Ω1,2.
Now assume that Γ Γ≠c c

1 2. Then without loss of generality, there exists Ω∈ ∂z 1,2 such

that z∈ Γc
1 and Ω∈z c

2. In particular we have that

η ν Ω= + ∈ = …z z
n

z n: ( ) , 1, 2, ,n
1,2

for a sufficiently small constant η > 0. Then, on one hand from the well-posedness (2.1) we
observe that ∥ ∥ ΓαG wz C

1 2
( )n c

0, 1 remains bounded as → ∞n . On the other hand, because of the

boundary condition for wz
1
n
we have that

Φ∥ ∥ = ∥ ∥ → ∞ → ∞Γ Γα α( ) ( )G w G z n(·, ) , .z C n C
1 1 1

n c c
0, 1 0, 1

This contradicts =w wz z
1 2
n n

for all n and therefore Γ Γ=c c
1 2. Then λ λ=1 2 and μ μ=1 2 finally

follow from theorem 2.1. □

3. The inverse algorithm

We now proceed with describing the inverse algorithm for a simultaneous reconstruction of
the shape of the inclusion and the impedance functions. To this end, in terms of the funda-
mental solution Φ as given by (2.3) we introduce the single- and double-layer potential
operators

Γ Γ Γ Γ→ →− + + + +( ) ( )( ) ( )S H H K H H: and :jk
s

j
s

k jk
s

j
s

k
1 2 1 2 1 2 1 2

defined by

∫φ Φ φ Γ= ∈
Γ

( )S x x y y s y x( ) : 2 ( , ) ( )d ( ), , (3.1)jk k
j

and

∫φ Φ φ Γ= ∂
∂

∈
Γ

( )K x
x y

y
y s y x( ) : 2

( , )

( )
( ) d ( ), , (3.2)jk k

j

for =j k m c, , and − ⩽ ⩽s1 1. Without loss of generality, we assume that there exists a
point xm in Ωm such that − ≠x x| | 1m for all Γ∈x m and a point xc in Ωc such that − ≠x x| | 1c
for all Γ∈x c. Then theorem 3.16 in [17] guarantees that the single-layer operators

Γ Γ→−S H H: ( ) ( )jj k k
1 2 1 2 are injective for =j m c, .

For a solution Ω∈u H ( )2 to (1.1)–(1.2) with Cauchy data (f, g) on Γm we set

φ = Γu:
c
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and, by Greenʼs formula we have that

⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭
⎧⎨⎩

⎫⎬⎭

∫

∫

Φ
ν

φ Φ μ φ λφ

Φ Φ
ν

Ω

= ∂
∂

+ −

+ − ∂
∂

∈

Γ

Γ

u x
x y

y
y x y

s s
y s y

x y g y
x y

y
f y s y x

( )
( , )

( )
( ) ( , )

d

d

d

d
( ) d ( )

( , ) ( )
( , )

( )
( ) d ( ), . (3.3)

c

m

Letting x tend to Γm and Γc from inside Ω, we obtain the integral equations

⎜ ⎟⎛
⎝

⎞
⎠μ φ λφ φ− + = + −S

s s
K f K f S g

d

d

d

d
(3.4)cm cm mm mm

and

⎜ ⎟⎛
⎝

⎞
⎠μ φ λφ φ φ− − + = −S

s s
K K f S g

d

d

d

d
(3.5)cc cc mc mc

for the four unknowns Γ c, λ, μ and φ.
Conversely, assume that for a given Cauchy pair (f, g) on Γm the curve Γc and the

functions λ, μ and φ solve the system of integral equations (3.4) and (3.5) and define a
function u by the right-hand side of (3.3) for all  Ω∈ ⧹∂x 2 . Then from the integral
equations (3.4) and (3.5) and the jump relations it follows that the limits of u obtained by
approaching Γc from inside Ωc and Γm from outside Ωm both vanish. Uniqueness for the
interior and exterior Dirichlet problem together with some consideration on the behavior of
the single-layer potentials at infinity using our geometric assumption on Γc and Γm (see [7])
now imply that u vanishes in  Ω⧹2 . Again the jump relations finally yield that the harmonic
function u in D has Cauchy data (f, g) on Γm, Dirichlet values φ=u on Γc and satisfies the
generalized impedance condition with coefficients λ and μ on Γc. Hence we can state the
following equivalence (see also [7, theorem 3.2]).

Theorem 3.1. The inverse problem for shape and impedance is equivalent to solving the
system of integral equations (3.4) and (3.5) for Γc, λ, μ and φ.

For an approximate solution of (3.4)–(3.5), following ideas first developed by Kress and
Rundell [20], we employ Newton iterations, i.e., given approximations for all four unknows
we linearize both equations with respect to all four unknowns and solve the linearized
equations for updating the unknowns.

Since the equations (3.4)–(3.5) are linear with respect to λ, μ and φ, for the linearization
we only need to be concerned with the derivatives of the operators with respect to the
boundary Γc. To this end without much loss of generality we assume that the C2-boundaries
Γj for =j m c, have parametric representations with counter clockwise orientation

Γ π= ∈{ }z t t( ): [0, 2 ] (3.6)j j

with π2 periodic C2 smooth functions  →z :j
2 such that zj is injective on π[0, 2 ). In view

of (3.1) and (3.2) we introduce parameterized single- and double-layer operators

π π π π→ →∼ ͠− + + + +S H H K H H: [0, 2 ] [0, 2 ] and : [0, 2 ] [0, 2 ]jk
s s

jk
s s

per
1 2

per
1 2

per
1 2

per
1 2
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by

∫ψ
π τ

ψ τ τ π=
−

∈∼ π
S t

z t z
t( )( ) :

1
ln

1

( ) ( )
( )d , [0, 2 ], (3.7)jk

k j0

2

and

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦∫ψ
π

τ τ

τ
ψ τ τ π=

′ −

−
∈͠

π
⊥

K t
z z t z

z t z
t( )( ) :

1 ( ) · ( ) ( )

( ) ( )
( )d , [0, 2 ], (3.8)jk

j k j

k j
0

2

2

for =j k m c, , and − ⩽ ⩽s1 1. Here, we write = −⊥a a a( , )2 1 for any vector =a a a( , )1 2 ,
that is, ⊥a is obtained by rotating a clockwise by 90°.

For the parameterized versions of the integral equations (3.4) and (3.5) we also introduce
transformed impedance functions by

λ λ μ
μ

= ′ ◦ =
◦
′

∼ ∼z z
z

z
: and : . (3.9)c c

c

c

Then, given finitely many Cauchy pairs f g( , ),ℓ ℓ = …ℓ p1, , , the parameterized version of
(3.4) and (3.5) becomes

μ φ λ φ φ′ ′ − + = + −∼∼ ∼∼ ͠ ͠( )( )S K f K f S g (3.10)cm ℓ ℓ cm ℓ ℓ mm ℓ mm ℓ

and

μ φ λ φ φ φ′ ′ − − + = −∼∼ ∼∼ ͠ ͠( )( )S K K f S g (3.11)cc ℓ ℓ ℓ cc ℓ mc ℓ mc ℓ

for = …ℓ p1, , . Here, for convenience, we identified f g,ℓ ℓ and φℓ with ◦ ′ ◦f z z g z, | |ℓ m m ℓ m
and φ ◦ zℓ c, respectively. The system of p2 equations (3.10)–(3.11) needs to be solved for the

+p 3 unknowns λ μ∼ ∼z , ,c and φℓ, = …ℓ p1, , .
The Fréchet derivatives of the operators given by (3.7) and (3.8) with respect to the

boundary are obtained by differentiating their kernels with respect to zc. The derivatives of the
single-layer operators are given by

∫

∫

∫

ψ ζ
π

τ ζ ζ τ

τ
ψ τ τ

ψ ζ
π

τ ζ τ

τ
ψ τ τ

ψ ζ
π

τ ζ

τ
ψ τ τ

= −
− −

−

=
−

−

= −
−

−

∼

∼

∼

π

π

π

[ ] [ ]

[ ] [ ]

[ ] [ ]

S z t
z t z t

z t z

S z t
z t z

z t z

S z t
z t z t

z t z

d , ; ( )
1 ( ) ( ) · [ ( ) ( )]

( ) ( )
( )d ,

d , ; ( )
1 ( ) ( ) · ( )

( ) ( )
( )d ,

d , ; ( )
1 ( ) ( ) · ( )

( ) ( )
( )d (3.12)

cc c
c c

c c

cm c
m c

m c

mc c
c m

c m

0

2

2

0

2

2

0

2

2

for π∈t [0, 2 ]. Note, that the way we set up the parameterized equations we avoided the
explicit occurrence of the arc length parameter ′z| |c in the parameterized single-layer operators
which simplified the derivatives with respect to zc. The kernel of

∼
Sd cc is smooth with diagonal

values

ζ
π

−
′ ′

′
z t t

z t

( ) · ( )

( )
.c

c
2
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The derivatives of the double-layer potentials are slightly more involved and given by

∫

∫

∫

∫

∫

∫

ψ ζ
π

ζ τ τ τ ζ ζ τ

τ
ψ τ τ

π
τ τ τ ζ ζ τ

τ
ψ τ τ

ψ ζ
π

ζ τ τ τ ζ τ

τ
ψ τ τ

π
τ τ τ ζ τ

τ
ψ τ τ

ψ ζ
π

τ ζ

τ
ψ τ τ

π
τ τ τ ζ

τ
ψ τ τ

=
′ − + ′ −

−

−
′ − − −

−

=
′ − − ′

−

+
′ − −

−

=
′

−

−
′ − −

−

͠

͠

π

π

π

π

π

π

⊥ ⊥

⊥

⊥ ⊥

⊥

⊥

⊥

[ ] [ ] [ ]

[ ] [ ][ ]

[ ] [ ] [ ]

[ ] [ ][ ]

[ ] [ ]

[ ] [ ][ ]

K z
z t z z t

z t z

z z t z z t z t

z t z

K z
z t z z

z t z

z z t z z t z

z t z

K z
z t

z t z

z z t z z t z t

z t z

d ˜ , ;
1 [ ( )] · ( ) ( ) ( ) · [ ( ) ( )]

( ) ( )
( )d

2 ( ) · ( ) ( ) ( ) ( ) · [ ( ) ( )]

( ) ( )
( )d ,

d , ;
1 [ ( )] · ( ) ( ) ( ) · ( )

( ) ( )
( )d

2 ( ) · ( ) ( ) ( ) ( ) · ( )

( ) ( )
( )d ,

d , ;
1 ( ) · ( )

( ) ( )
( )d

2 ( ) · ( ) ( ) ( ) ( ) · ( )

( ) ( )
( )d (3.13)

cc c
c c c

c c

c c c c c

c c

cm c
m c c

m c

c m c m c

m c

mc c
m

c m

m c m c m

c m

0

2

2

0

2

4

0

2

2

0

2

4

0

2

2

0

2

4

for π∈t [0, 2 ]. The kernel of the operator K͠d cc is smooth with the diagonal values

ζ ζ

π

ζ

π

′ ″ + ′ ″

′
−

′ ″ ′ ′

′

⊥ ⊥ ⊥[ ] [ ]z t t t z t

z t

z t z t z t t

z t

( ) · ( ) [ ( )] · ( )

2 ( )

( ) · ( ) ( ) · ( )

( )
.c c

c

c c c

c
2 4

Given an approximation λ μ∼ ∼z , ,c and φℓ, = …l p1, , , for a solution of (3.10) and (3.11),
then linearizing both equations with respect to all four unknowns leads to the linear equations

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
μ χ λ χ χ βφ αφ

μ φ λ φ ζ φ ζ

μ φ λ φ φ

′ ′ − + + ′ ′ −

+ ′ ′ − +

= + − − ′ ′ − −

∼

∼

∼

∼ ∼

∼

∼ ∼

∼

∼

∼

͠

͠

͠ ͠

( ) ( )

( )

( ) ( )
( )

( )

S K S

S z K z

f K f S g S K

d , ; d , ;

(3.14)

cm ℓ ℓ cm ℓ cm ℓ ℓ

cm ℓ ℓ c cm ℓ c

ℓ mm ℓ mm ℓ cm ℓ ℓ cm ℓ

and

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

μ χ λ χ χ χ βφ αφ

μ φ λ φ ζ φ ζ

ζ ζ

μ φ λ φ φ φ

′ ′ − − + + ′ ′ −

+ ′ ′ − +

− +

= − − ′ ′ − + −

∼

∼

∼

∼ ∼

∼

∼

∼ ∼

∼

∼

∼

͠

͠

͠

͠ ͠

( ) ( )

( )

( ) ( )
( )

( )

S K S

S z K z

K f z S g z

K f S g S K

d , ; d , ;

d , ; d , ;

(3.15)

cc ℓ ℓ ℓ cc ℓ cc ℓ ℓ

cc ℓ ℓ c cm ℓ c

mc ℓ c mc ℓ c

mc ℓ mc ℓ cc ℓ ℓ ℓ cc ℓ

that has to be solved for ζ α β, , and χℓ, = …l p1, , , to update the given approximation

λ μ∼ ∼z , ,c and φℓ, = …l p1, , , into ζ λ α μ β+ + +∼ ∼z , ,c and φ χ+ℓ ℓ, l = 1,…, p.
Concluding this section, we now can summarize our inverse algorithm as follows:
Step A. For an initial approximation λ μ∼ ∼z , ,c for the boundary shape and the impedance

functions solve the linear equations (3.11) for initial approximations φℓ, = …l p1, , . (For the
well-posedness of (3.11) we refer to [7, theorem 3.3].)
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Step B. Solve the linearized system (3.14)–(3.15) by Tikhonov regularization for ζ α β, ,
and χℓ, = …l p1, , , and replace λ μ∼ ∼z , ,c by ζ λ α μ β+ + +∼ ∼z , ,c and φℓ by φ χ+ℓ ℓ for

= …l p1, , . Repeat this step until some suitable stopping criteria is fulfilled.
Concerning computational costs, in each iteration step B we need to solve p linear

integral equations on Γc for p up-dates for boundary traces plus the up-dates for the boundary
shape and the impedance functions via the least squares procedure for the Tikhonov reg-
ularization. Therefore, although we do not solve forward problems in our algorithm, roughly
speaking one iteration step B can be viewed to be of the same cost as solving p forward
problems.

Before we describe a numerical implementation of this algorithm in more detail and, as a
proof of concept, present some numerical examples in the final section of our paper, in the
following section we address the injectivity of the linearized system (3.14)–(3.15).

4. Local injectivity

We proceed with four lemmas relating the Fréchet derivatives of the single- and double-layer
operators to the boundary traces of the derivatives of certain potentials. For these lemmas we
need to assume that Γc is of class C3 to ensure that ζ π= ′ ∈⊥q z C[ ] [0, 2 ]c

2 for a scalar
function π∈q C [0, 2 ]2 .

Lemma 4.1. For φ π∈ H [0, 2 ]per
2 and ζ π∈ C [0, 2 ]2 of the form ζ = ′ ⊥q z[ ]c we have

⎡⎣ ⎤⎦φ ζ ζ= ◦ + ◦[ ] ( )K z V z zd ˜ , ; 2 2 grad v · (4.1)cc c c c1 1

and

φ ζ = ◦[ ]K z V zd ˜ , ; 2 , (4.2)cm c m1

where

∫
∫

φ τ Φ τ τ ζ τ τ

φ τ Φ τ ζ τ τ

= ′

− ′

π

π

⊥

⊥

( )[ ]( )

( )

V x x z z

x z

( ) : ( ) grad grad , ( ) · ( ) · ( )d

( ) grad , ( ) · [ ( )] d (4.3)

x x c c

x c

1
0

2

0

2

and

∫ φ τ Φ τ τ τ= − ′
π ⊥[ ]( )x x z zv ( ) : ( ) grad , ( ) · ( ) d (4.4)

x c c1
0

2

for  Γ∈ ⧹x c
2 . Both terms on the right-hand side of (4.1) do not have jumps across Γc.

Proof. The proof of lemma 4.1 in [8] for the relation (4.1) carries over to this case and is
related to the proof of Maueʼs formula in theorem 7.32 in [18]. Actually, the required partial
integrations are less involved since here we integrate over a closed curve and have no troubles
with end-point singularities as in the case of an open arc considered in [8]. This also allows
the change in the regularity assumptions on ψ as compared with those in [8]. The relation
(4.1) follows immediately from the representation of Kd ˜

cm in (3.13). □
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Lemma 4.2. For φ π∈ H [0, 2 ]per
2 we set

η μ φ λ φ= ′ ′ − ∼∼: ( ) . (4.5)

Then

⎡⎣ ⎤⎦η ζ ζ= ◦ + ◦[ ] ( )S z V z zd ˜ , ; 2 2 grad v · (4.6)cc c c c2 2

and

η ζ = ◦[ ]S z V zd ˜ , ; 2 (4.7)cm c m2

where

∫ η τ Φ τ ζ τ τ= −
π

( )V x x z( ) : ( ) grad , ( ) · ( ) d (4.8)
x c2

0

2

and

∫ η τ Φ τ τ=
π

( )x x zv ( ) : ( ) , ( ) d (4.9)c2
0

2

for  Γ∈ ⧹x c
2 .

Proof. This is an immediate consequence of the jump relations for single- and double-layer
potentials and the representation of the Fréchet derivatives of the single-layer operators from
(3.12). The jumps of the two terms on the right-hand side of (4.6) have opposite signs. □

Lemma 4.3. For π∈f H [0, 2 ]per
1 2 and π∈ −g H [0, 2 ]per

1 2 we have

ζ ζ ζ− = ◦[ ] [ ] [ ]S g z K f z w zd ˜ , ; d ˜ , ; 2 (grad ) · , (4.10)mc c mc c c

where

⎧
⎨⎪
⎩⎪

⎡⎣ ⎤⎦ ⎫
⎬⎪
⎭⎪

∫π τ
τ

τ τ

τ
τ τ=

−
−

′ −

−

π
⊥

[ ]
w x

x z
g

z x z

x z
f( ) :

1

2
ln

1

( )
( )

( ) · ( )

( )
( ) d (4.11)

m

j m

m
0

2

2

for  Γ∈ ⧹x c
2 .

Proof. This is obvious from (3.12) and (3.13). □

Lemma 4.4. Under the assumptions of lemma 4.1 we can transform

∫ τ φ τ Φ τ τ Γ= − ′ ′ ∈ ⧹
π

( )V x q x z x( ) ( ( ) ( )) , ( ) d , . (4.12)c c1
0

2
2
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Proof. As in the proof for lemma 4.3 in [8], it can be shown that

∫ τ φ τ
τ

Φ τ τ Γ= ′ ∈ ⧹
π

( )V x q x z x( ) ( ) ( )
d

d
, ( ) d , .c c1

0

2
2

From this (4.12) follows by partial integration. □
We are now ready for the main result of this section by deriving an ordinary differential

equation of order four for solutions of the homogeneous form of the linearized integral
equations (3.14) and (3.15).

Theorem 4.5. Let u be solution to (1.1) and (1.2) with Cauchy data (f, g), which implies that
zc, λ∼ and μ∼ and φ = ◦u zc satisfy the integral equations (3.10) and (3.11). Then for any
solution ζ π= ′ ∈⊥q z C[ ] [0, 2 ]c

2 , α π∈ C [0, 2 ]1 , β π∈ C [0, 2 ]1 and χ π∈ H [0, 2 ]2 to the
homogeneous system

⎡⎣ ⎤⎦
μ χ λ χ χ βφ αφ

μ φ λ φ ζ φ ζ

′ ′ − + + ′ ′ −

+ ′ ′ − + =

∼

∼

∼ ∼

∼
∼

∼
͠

͠ [ ]
S K S

S z K z

( ( ) ) ( ( ) )

d ( ) , ; d , ; 0 (4.13)

cm cm cm

cm c cm c

and

⎡⎣ ⎤⎦
μ χ λ χ χ χ βφ αφ

μ φ λ φ ζ φ ζ

ζ ζ

′ ′ − − + + ′ ′ −

+ ′ ′ − +

− + =

∼

∼

∼ ∼

∼

∼

∼

∼
͠

͠

͠

[ ]

[ ] [ ]

S K S

S z K z

K f z S g z

( ( ) ) ( ( ) )

d ( ) , ; d , ;

d , ; d , ; 0 (4.14)

cc cc cc

cc c cm c

mc c mc c

we have that

χ μ φ λ φ= ′ ′ − ∼∼ q( ( ) ) (4.15)

and

φ μχ λχ βφ αφ′ ′ − ′ ′ + − ′ ′ + =q( ) ( ˜ ) ˜ ( ) 0. (4.16)

Proof. In addition to the harmonic functions V V, , v , v1 2 1 2 and w introduced in the preceding
lemmas we further define

∫
∫
∫

χ τ Φ τ τ τ

μχ λχ τ Φ τ τ

βφ αφ τ Φ τ τ

= − ′

= ′ ′ −

= ′ ′ −

π

π

π

⊥[ ]( )

( )

( )

W x x z z

W x x z

W x x z

( ) : ( ) grad , ( ) · ( ) d ,

( ) : ( ( ˜ ) ˜ ) ( ) , ( ) d ,

( ) : ( ( ) ) ( ) , ( ) d

x c c

c

c

1
0

2

2
0

2

3
0

2

for  Γ∈ ⧹x c
2 and set

= + + + +V W V W V W: .1 1 2 2 3
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By Greenʼs integral formula (3.3) we have that

⎧⎨⎩ 

Ω
Ω

+ + =
⧹

w
u

v v
in ,

0 in .
(4.17)1 2 2

Via (3.7), (3.8), (4.1) and (4.6) the homogeneous equation (4.13) implies that

Γ=V 0 on . (4.18)m

From this, due to our geometric assumption on the domain Ω, proceeding as in the proof of
theorem 3.16 in [17], it can be concluded that V = 0 in  Ω⧹ m

2 . Then analyticity of V implies
that V = 0 in  Ω⧹ c

2 .
Using (4.1) and (4.6), from the homogeneous equations (4.14) and (4.17) it can be seen

that the boundary values of V by approaching Γc from inside Ωc satisfy

Γ=V 0 on (4.19)c

and those obtained from inside Ω satisfy

χ ζ◦ + + ◦ =V z u z2 2 · grad 0. (4.20)c c

From (4.19) we have that V = 0 in Ωc, that is, altogether V = 0 in  Γ⧹ c
2 . Hence, in view in

view of ζ ν= ′ = ′ ◦⊥q z q z z[ ] | |c , using the generalized impedance boundary condition for u
we obtain (4.15) from (4.20).

Again from V = 0 in  Γ⧹ c
2 , in view of the definitions of the potentials summing up in V,

using lemmas 4.1 and 4.4 and the jump relations for single- and double-layer potentials we
obtain (4.16). □

Corollary 4.6. Under the assumptions of theorem 4.5, using p = 5 linearly independent
Cauchy pairs in (3.14) and (3.15) ensures injectivity.

Proof. Assume that α βq, , together with χ χ…, ,1 5 solve (3.14) and (3.15) with right-hand
sides equal to zero for p = 5. Inserting (4.15) into (4.16) we obtain a fourth order linear
differential equation with leading coefficient μ∼q 2 that is satisfied for the corresponding
φ = ◦u zℓ ℓ c for = …ℓ 1, , 5. By the homogeneous generalized impedance condition and
Holmgrenʼs uniqueness theorem, the linear independence of the Dirichlet data …f f, ,1 5
implies linear independence of φ φ…, ,1 5. Since a fourth order linear differential equation
with non-vanishing leading coefficient admits only four linearly independent solution we
must have μ =∼q 02 in π[0, 2 ] and the assumption μ > 0 implies that q = 0 in π[0, 2 ]. Then
from (4.15) it follows that χ = 0 in π[0, 2 ] and, finally, from (4.16) we obtain α β= = 0 in

π[0, 2 ]. □

We want to show that p = 5 is optimal in the statement of corollary 4.6 by constructing an
example where four linearly independent Cauchy pairs give rise to non-trivial solutions of
(3.14) and (3.15). To this end let Ω be the annulus bounded by Γ = =x x R: { : | | }m and
Γ ρ= = <x x R: { : | | }c . We consider the complex valued function

⎛
⎝⎜

⎞
⎠⎟θ

ρ
ρ= + θu r

r
b

r
( , ) e (4.21)

n

n n

n

n
in

for ∈n and ∈bn in polar coordinates θr( , ). The generalized impedance boundary
condition on the circle ρ < R with constant μ > 0 and λ > 0 is satisfied provided the constant
bn is chosen such that
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ρ μ λρ
ρ μ λρ

= − −
+ +

b
n n

n n
. (4.22)n

2 2

2 2

In particular, for the input functions in (3.14) and (3.15) we have

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟φ

ρ
ρ

ρ
ρ= + = + = −( )b e f

R
b

R
e g n

R
nb

R
e1 , , (4.23)n n n n

n

n n

n

n n n

n

n n

n

n n

where we have set =e t( ) : en
int. (Note that in (3.14) and (3.15) we understand gn as the normal

derivative multiplied by arc length.)
Applying Greenʼs formula to the harmonic functions θ±r en in for ∈n we obtain that

ρ ρ ρ ρ ρ ρ− = − − = −− − −( ) ( ) ( ) ( )S n e K e e S n e K e e,cc
n

n cc
n

n
n

n cc
n

n cc
n

n
n

n

and consequently

= =S e
n

e K e
1

, 0. (4.24)cc n n cc n

(Note that the parameterized single-layer potentials do not contain the arc length.)
Analogously from

ρ ρ ρ ρ− = − − = −− − −( ) ( ) ( ) ( )S n e K e S n e K e R e0, 2cm
n

n cm
n

n cm
n

n cm
n

n
n

n

we find

ρ ρ= =S e
nR

e K e
R

e, , (4.25)cm n

n

n n cm n

n

n n

and from

ρ− = − − =− −( ) ( ) ( ) ( )S nR e K R e e S nR e K R e2 , 0mc
n

n mc
n

n
n

n mc
n

n mc
n

n

we obtain

ρ ρ= = −S e
nR

e K e
R

e, . (4.26)mc n

n

n n mc n

n

n n

Noting that λ ρλ=∼
and μ μ ρ=∼ we put (4.24)–(4.26) together and conclude that looking

for a solution of (3.14) and (3.15) with constants α βq, , and χ ξ= en n n is equivalent to
solving

ρ
μ λρ ξ ξ β α

ρ
μ λρ ρ+ − + + + + + + + =( ) ( )( ) ( )( )

n
n

n
n b n n b q

1 1
1

1
1 0n n n n

2 2 2
2

2 2

and

ρ
μ λρ ξ ξ β α

ρ
− + − − + + + =( )

n
n

n
n b

n
q

1
( )

1
( ) 1

2
0.n n n

2 2 2

Scaling the solution by setting q = 1 and adding the two equations, in view of (4.23) we see
that in turn they are equivalent to

ξ
ρ

= n2
(4.27)n
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and

β α
ρ

μ λρ+ + + + =( )( ) ( )n b n1
4

0. (4.28)n
2

2
2 2

We now pick two different ∈n n,1 2 and solve the two-by-two system

β α
ρ

μ λρ+ + + + = =( )( ) ( )n b n j1
4

0, 1, 2,j n j
2

2
2 2

j

for α and β and together with q = 1 and ξ ρ= n2n jj
the real and imaginary parts provide a

non-trivial solution of (3.14) and (3.15) for four linearly independent Cauchy pairs.

5. Numerical examples

As proof of concept rather than a documentation of a fully developed code, in this final
section we present some numerical examples. For these the data were obtained by the
integral equations presented in [7]. We note that these boundary integral equations for
creating the data are obtained by a potential approach whereas the integral equations in the
inverse algorithm are based on Greenʼs formula and thus committing an inverse crime is
avoided.

In principle, the parameterization of the update ζ obtained from (3.14) and (3.15) is not
unique. To cope with this ambiguity, we use star-like parameterizations of the form

π= ⩽ ⩽z t r t t t t( ) ( )(cos , sin ), 0 2 , (5.1)c

with a non-negative function r representing the radial distance of Γc from the origin.
Consequently, the perturbations are of the form

ζ π= ⩽ ⩽t q t t t t( ) ( )(cos , sin ), 0 2 , (5.2)

with a real function q. In the approximations we assume r and its update q to have the form of
a trigonometric polynomial of degree Jshape. In all our examples we choose =J 6shape .

For all examples the exact impedance functions are given by

λ μ=
+

=
+

( ) ( )z t
t

z t
t

( )
0.5

1 0.3 sin
and ( )

1

1 0.2 cos 2
(5.3)c c

for π∈t [0, 2 ]. In the inverse algorithm, in all examples we approximated both impedance
functions λ ◦ zc and μ ◦ zc by trigonometric polynomials of degree Jimp. Correspondingly, in

(3.14)–(3.15) we approximated the impedance update functions for λ∼ and μ∼ in the form
α α= ′zˆ| |c and β β= ′zˆ | |c with trigonometric polynomials α̂ and β̂ of degree Jimp. Then α̂ and

β̂ serve as update functions for λ and μ, respectively. In all our examples we used =J 3imp .
For the numerical implementation of the starting step A we discretized the linear

equations (3.11) analogous to the method described in [7] for the direct problem with n2
equidistant collocation and quadrature points π=t j nj , = …j n1, , 2 . For the iteration step
B we collocated the system (3.14)–(3.15) at the points = …t j n, 1, , 2 ,j and solved by
Tikhonov regularization for the nodal values φ = … = …t ℓ p j n( ), 1, , , 1, 2ℓ j , and the

Fourier coefficients of the update trigonometric polynomials q, α̂ and β̂ .
The measurement curve Γm is the circle with the representation

π= ∈z t t t t( ) 0.9(cos , sin ), [0, 2 ],m
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where the factor 0.9 is chosen to satisfy the geometric condition introduced on p. 6. We used
five Cauchy pairs with Dirichlet data

= = = =+( ) ( )f z t ℓt ℓ f z t ℓt ℓ( ) cos , 0, 1, 2, ( ) sin , 1, 2.
ℓ m ℓ m2

The number of collocation and quadrature points is =n2 64 on each curve.
The four regularization parameters and the stopping rule for the iteration are chosen by

trial and error. However, to illustrate the feasibility and the stability of our method we used
the same regularization parameters in all examples. Depending on the mth iteration step, for
exact data the regularization parameters for an H2 penalization with respect to all four
unknowns are chosen as α = 0.8q

m for the shape function, α α= =λ μ 0.1 · 0.8m for the

impedance functions and α =χ
−10 9 for the Dirichlet trace. For noisy data these parameters are

α = 0.95q
m, α α= =λ μ 0.1 · 0.95m and α =χ

−10 9. For the perturbed data, random noise is
added point-wise and the relative error is with respect to the L2 norm. The iterations are
started with an initial guess given by a circle of radius 0.7 centered at the origin and constant
values λ μ= = 0.80 0 . They are stopped after 30 iterations for exact data and 25 iterations for
noisy data.

The three shapes to be reconstructed are a peanut-shaped curve

= +z t t t t( ) 0.5 cos 0.25 sin (cos , sin ), (5.4)c
2 2
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Figure 1. Reconstruction of (5.4) for exact data (above) and 2% noise (below).
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an apple-shape curve

= + +
+

z t
t t

t
t t( )

0.5 0.4 cos 0.1 cos 2

1 0.7 cos
(cos , sin ) (5.5)c

and a kite-shaped curve

= − + +z t t t t( ) ( 0.2 0.4 cos 0.2 cos 2 , 0.4 sin ) (5.6)c

for π⩽ ⩽t0 2 . Note that neither the boundary curves nor the impedance functions belong to
the corresponding approximation spaces.

In figures 1–3 the exact Γc is given as dotted (blue) curve and the reconstruction as full
(red) curve. The measurement curve Γm is dashed-dotted (green) and the initial guess dashed
(magenta). The exact μ is given as dashed (blue) curve and the reconstruction as full (red)
curve, the exact λ is dashed (magenta) and the reconstruction full (green).

In general, we observed that the algorithm sort of first tries to find the shape and only
later on improves on the reconstruction of the impedance function which explains the rather
large iteration number for reasonable accuracy.
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