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We investigate a three-dimensional mathematical thermoelastic scattering problem from an open surface
which will be referred to as a screen. Under the assumption of the local "nite energy of the uni"ed
thermoelastic scattered "eld, we give a weak model on the appropriate Sobolev spaces and derive
equivalent integral equations of the "rst kind for the jump of some trace operators on the open surface.
Uniqueness and existence theorems are proved, the regularity and the singular behaviour of the solution
near the edge are established with the help of the Wiener}Hopf method in the halfspace, the calculus of
pseudodi!erential operators on the basis of the strong ellipticity property and Gas rding's inequality. An
improved Galerkin scheme is provided by simulating the singular behaviour of the exact solution at the
edge of the screen. Copyright ( 2000 John Wiley & Sons, Ltd.
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1. Introduction

Problems connected with the scattering of waves by a very thin obstacle have
became very important, "nding application especially in non-destructive tests of
structure reconstruction. This work presents a complete analysis of three-dimensional
thermoelastic scattering problems from an open surface &screen'. A time-harmonic
incident wave propagating in an isotropic, homogeneous medium is scattered by
a screen, which can be a rigid scatterer or cavity either under constant temperature or
in a thermally insulating condition. The scattered "eld satis"es the governing equa-
tion of coupled Biot system for thermoelastic oscillations together with boundary
conditions on the screen, which depend on the physics of the screen and the incident



wave. Moreover, in all cases the Kupradze asymptotic radiation conditions are
assumed to hold at in"nity.

In Section 2 we introduce the coupled thermoelastic di!erential and boundary
operators, fundamental tensors and a uni"ed formulation of the scattering problem in
terms of the four-dimensional scattered "eld in which the "rst three components
correspond to the displacement "eld and the last one to the temperature "eld. The
mathematical theory of thermoelasticity is systematically given by Kupradze [14],
Leis [15] and Nowacki [16]. Dassios and co-authors in [2, 3, 7] have considered
thermoelastic scattering by a closed &inclusion' in an isotropic medium. The potential
methods for boundary value problems in closed domains are recently developed for
anisotropic media by Jentsch and Natroshvili in [12, 13]. In the present work we
consider the scattering from an open surface, which presents di$culties for both the
mathematical analysis and the numerical approximation due to the fact that the
solutions have a singularity at the edge of the screen. Similar problems have been
investigated by Costabel, Duduchava, Kress, Stephan, Wendland [6, 17}20, 22, 23, 4, 8]
in acoustic wave propagation, elasticity, and Stokes #ows such as crack and screen
problems.

Assuming that the uni"ed thermoelastic scattered "eld has local "nite energy near
the screen, we present a weak model in appropriate Sobolev spaces, prove its unique
solvability and derive equivalent integral equations of the "rst kind for the jump of
some trace operators on the open surface. This is accomplished by using thermoelastic
potential operators and Green's type integral formulae, which are developed in
Appendix A. Although the integral operators possess di!erent kernel singularities,
either weak or hypersingular according to the considered boundary conditions, we
show that they all belong to the class of strong elliptic pseudodi!erential operators. In
Section 4 we prove existence and consider the singular behaviour of the solution near
the edge with the help of the Wiener}Hopf method in the halfspace developed by
Eskin [9]. Duduchava and Wendland [8] avoided the explicit factorization of the
matrix symbol, proving a new implicit version of the factorization theorem. However,
here we can provide the explicit factorization for 4]4 matrix-valued two-dimensional
symbols of the pseudodi!erential operators, and decompose the solution of the
integral equations into a regular and singular part.

We "nally present a Galerkin scheme for the solution of the integral equations on
the screen. In order to improve the asymptotic convergence we augment the boundary
elements with special singular functions according to the singular behaviour of the
exact solution at the edge of the screen. Our boundary element models for the four
thermoelastic screen problems are similar to the boundary element model of the
elastostatic crack problem and of the Stokes problem for an open pipe. For this
reason we refer to the convergence and error analysis previously demonstrated in
[6, 23].

2. Thermoelastic scattering by a screen

Let the open obstacle ! be a bounded, simply connected, orientable smooth surface
in R3 with a smooth non-self-intersecting boundary c. The complement of ! is
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occupied by the medium of propagation, a linear isotropic and homogeneous
thermoelastic medium of Biot type. The Biot medium is characterized by the
LameH constants j, k, the constant mass density o, the coe$cient of thermal di!usity
i and the coupling constants c and g. Suppressing the time-harmonic dependence
e~*ut, the Biot system assumes the following spectral form:

k*u(r)#(j#k)+ (+ ) u(r))#ou2u(r)"c+h(r) (2.1)

*h(r)#
iu
i

h (r)"iug+ ) u (r) (2.2)

where u is the elastic displacement "eld, h denotes the temperature variation "eld,
r"(x

1
, x

2
, x

3
)3R3, and q"iu/i is a spectral thermal constant. A uni"ed formula-

tion of the thermoelastic problem can be obtained by introducing four-dimensional
vector "elds

U(r)"(u(r), h(r))"(u
1
(r), u

2
(r), u

3
(r), h (r)) (2.3)

The system formed by (2.1) and (2.2) is written as

L (R
r
)U(r)"C

(k*#ou2)I
3
#(j#k )++ )

qig+ )

!c+
*#qDU (r)"0 (2.4)

where the time-independent thermoelastic operator L (R
r
) is a 4]4 matrix elliptic

di!erential operator with the determinant of the principal symbol, the positive
constant k2 (j#2k). Note that the thermoelastic operator L (R

r
) is not self-adjoint and

the adjoint operator L*(R
r
) may be obtained from L(R

r
) by replacing c with iug and

vice versa. The lack of the symmetry of the Biot system is re#ected in the lack of
self-adjointness of the operator L (R

r
).

It is known from Kupradze [14] that the solution U3C2(R3 ) of equation (2.4)
admits the following representation:

U(r)"U1(r)#U2(r)#Us(r) (2.5)

with

U1(r)"(u1(r), h1(r)), U2 (r)"(u2(r), h2 (r)), Us(r)"(us(r), 0),

such that the three-dimensional displacement "elds u1(r), u2 (r), us(r), satisfy the
following vectorial Helmholtz equations:

(*#k2
1
)u1(r)"0 (*#k2

2
)u2 (r)"0 (*#k2

s
)us(r)"0

curl u1"0, curl u2"0, div us"0, (2.6)

and the scalar temperature "elds satisfy the following scalar Helmholtz equations:

(*#k2
1
)h1(r)"0, (*#k2

2
)h2(r)"0. (2.7)

Thermoelastic Screen Scattering Problem in R3 443

Math. Meth. Appl. Sci., 23, 441}466 (2000)Copyright ( 2000 John Wiley & Sons, Ltd.



The dispersion relations characterizing (2.4) are given by

k2
1
#k2

2
"q (1#e)#k2

p
, k2

1
k2
2
"qk2

p
, kk2

s
"ou2 (2.8)

where k
1
, k

2
, such that k

j
"u/l

j
#id

j
, l

j
'0, d

j
'0, j"1, 2, are the complex wave

numbers of the elastothermal and thermoelastic waves respectively; k
s
"uJo/k is

the wavenumber of the uncoupled transverse wave; k
p
"uJo/(j#2k) is the

wavenumber of the longitudinal wave in the absence of thermal coupling and
e"cgi/(j#2k) is the dimensionless thermoelastic coupling constant. From (2.8) we
see that the transverse elastic wave is not a!ected by the existence of the temperature
"eld, and it behaves exactly in the same way as it does in the classical theory of
elasticity.

The fundamental uni"ed thermoelastic tensor E(r, r@): R3/M0NPC4]4 is written in
a compact form

E (r, r@)"E1 (r, r@)#E2 (r, r@)#Es (r, r@), (2.9)

where

E1 (r, r@)"
!1

ou2(k2
1
!k2

1
) C

(k2
p
!k2

2
)+

r
+
r

ck2
p
+
r

!igqk2
p
+
r

o(k2
p
!k2

1
)u2D

e*k1 Dr~r@ D

Dr!r@ D
, (2.10)

E2 (r, r@)"
!1

ou2(k2
1
!k2

2
) C

(k2
p
!k2

1
)+

r
+
r

ck2
p
+
r

!igqk2
p
+
r

o(k2
p
!k2

2
)u2D

e*k2 Dr~r@ D

Dr!r@ D
, (2.11)

Es (r, r@)"
1

ou2 C
(k2

s
I
3
)#+

r
+
r

0

0 0D
e*ks Dr~r@ D

Dr!r@ D
(2.12)

and it behaves in any neighbourhood R"Dr!r@ D(e according to

DE
kj

(r, r@) D)
C

R
, K

R
Rx

l1

E
kj

(r, r@) K)
C

R2
, K

R2
Rx

l1
Rx

l2

E
kj

(r, r@) K)
C

R3
(2.13)

for j, k"1, 2, 3, 4, l
1
, l

2
,"1, 2, 3 and C a positive constant.

Let us suppose now that the screen is excited by a given thermoelastic incident wave
'(r) which is an entire solution of the thermoelastic equation (2.4) in R3. The direct
scattering problem asks for the total "eld ( (r)"'(r)#U (r) such that the scattered
"eld U(r) satis"es the thermoelastic equation (2.4) in the exterior of the screen R3/!1
and the boundary condition B (R

r
, n; )U(r)"!B(R

r
, n; )'(r) on the screen !. We also

assume that the scattered "eld satis"es the Kupradze radiation conditions as rPR

for i"1, 2, 3 and j"1, 2

u j(r)"o A
1

rB , R
xi
u j (r)"O A

1

r2B , hj (r)"o A
1

rB , R
xi
h j (r)"O A

1

r2B ,

us (r)"O A
1

rB , r(R
xi
us (r)!ik

s
us(r))"O A

1

rB . (2.14)
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For B (R
r
, n; ) we consider one of the following four thermoelastic boundary operators:

B
1
(R

r
, n; )"I

4
"C

I
3

0

0 1D , (2.15)

B
2
(R

r
, n; )"R(R

r
, n; )"C

T (R
r
, n; ) !cn;

0 R
n
D , (2.16)

B
3
(R

r
, n; )"C

I
3

0

0 R
n
D , (2.17)

B
4
(R

r
, n; )"C

T (R
r
, n; ) !cn;

0 1 D , (2.18)

where n; is the unit normal vector according to the chosen orientation on ! and the
operator T (R

r
, n; ) is the surface traction operator of elasticity given by

T (R
r
, n; )u(r)"2kn; )+u(r)#jn; + ) u(r)#kn;](+]u(r)).

From physical point of view, the "rst condition corresponds to a rigid surface at
constant temperature and is the Dirichlet-type thermoelastic condition. The second
one corresponds to a cavity in thermal insulation and is a Neumann-type condition.
Finally, the third and the fourth correspond to a rigid surface in thermal insulation
and to a cavity at constant temperature, respectively. Both are mixed-type Dirichlet
and Neumann on the displacement and temperature "elds.

3. Boundary integral equations

In order to obtain the total thermoelastic "eld from the knowledge of the incident
"eld, we can consider a boundary value problem with the data produced by the trace
of the incident "eld on the screen. In the slightly more general mathematical model we
choose arbitrary boundary data with a non-zero jump across !. Henceforth, the
orientation of ! de"nes the normal vector n; pointing to the side !

2
. The opposite side

of ! will be denoted by !
1
. Thus, the weak formulation of the original scattering

screen problems reads:
For given G

1
"(g

1
, t

1
) and G

2
"(g

2
, t

2
) two four-dimensional vector-valued

functions de"ned on ! satisfying

(i) in the case of the ,rst boundary value problem (Dirichlet type)

g
1
, g

2
3(H1@2(!))3 ; t

1
, t

2
3H1@2(!) and [g]3 (H3 1@2(!))3 ; [t]3H3 1@2(!) ;

(ii) in the case of the second boundary value problem (Neumann type)

g
1
, g

2
3(H~1@2(!))3 ; t

1
, t

2
3H~1@2(!) and [g]3 (H3 ~1@2(!))3 ; [t]3H3 ~1@2(!) ;
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(iii) in the case of the third boundary value problem (mixed type)

g
1
, g

2
3(H1@2(!))3 ; t

1
, t

2
3H~1@2(!) and [g]3(H3 1@2(!))3 ; [t]3H3 ~1@2(!) ;

(iv) in the case of the fourth boundary value problem (mixed type)

g
1
, g

2
3 (H~1@2(!))3 ; t

1
, t

2
3H1@2(!) and [g]3 (H3 ~1@2(!))3 ; [t]3H3 1@2 (!) ;

,nd U3(H1
-0#

(R3/!1 ))4 which solves the thermoelastic equation (2.4) in R3/!1 , satis"es
the boundary conditions (B

k
U) D!1

"G
1

and (B
k
U) D!2

"G
2

for a given k"1, 2, 3, 4
and Kupradze radiation conditions (2.14) as rPR.

We denote [g]"g
1
!g

2
, [t]"t

1
!t

2
and de"ne for the closed surface R) with

a piece !LR) the spaces Hs(!)"Mu D! : u3Hs (R))N and

H3 s(!)"Mu3Hs (R))N, suppuL!1 , equipped with the Hs (R))-normN.

Theorem 3.1. (;niqueness). ¹he four thermoelastic boundary value problems for the
open set ! have at most one weak solution.

Proof. For the proof and further analysis, we extend ! to an arbitrary smooth, simply
connected, closed, orientable surface R) enclosing the bounded domain )

1
. Further-

more, let B(o, R) be a su$ciently large ball with radius R including )1
1
, and let

)
2
:"B(o, R)W (R3/)1

1
) and RB denotes the boundary of B (o, R). The jump across R)

is de"ned as [ f ]"f
1
!f

2
where the subscripts (1) and (2) indicate the limit respec-

tively from )
1

and R3/)1
1

to R). For the sake of notational consistency, we assume
that the normal vector according to the orientation of the screen is pointed to )

2
.

With R/Rn we denote the exterior normal derivative to the closed surface R).
To concretize we consider the second homogeneous boundary value problem;

U"(u, h )3 (H1
-0#

(R3/!1 ))4 solves the thermoelastic equation (2.4), Kupradze radi-
ation conditions (2.14) and the zero boundary conditions (RU) D!1

"(RU) D!2
"0.

Then U"(u, h)3(H1 ()
1
))4X(H1

-0#
(R3/)1

1
))4 solves the transmission problem

U"U
1

with LU
1
"0 in )

1
,

U"U
2

with LU
2
"0 in R3/)1

1

satisfying radiation conditions (2.14) and the boundary transmission conditions

(Tu
1
!cn; h

1
, Rh

1
/Rn)

1
"(Tu

2
!cn; h

2
, Rh

2
/Rn)

2
on R)

(u
1
, h

1
)
1
"(u

2
, h

2
)
2

on R)/!1 . (3.1)

Applying the thermoelastic Green's integral formulae (see Appendix A.1) in )
1

and
)

2
, adding both equalities and considering the transmission conditions to eliminate

the integral over R) we obtain

2c
iug A P)1

D+h
1
D2du#P)2

D+h
2
D2duB (3.2)

"QRB Au6 2 ) (Tu
2
!cn; h

2
)#

c
iug

hM
2

Rh
2
Rn !u

2
) (Tu6

2
!cn; h1

2
)#

c
iug

h
2

Rh1
2
Rn Bds.
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The radiation conditions (2.14) on the parts u1
2
, u2

2
, h1

2
, h2

2
and some easy modi"ca-

tions yield, as RPR,

2c
iug A P)1

D+h
1
D2du#P)2

D+h
2
D2duB"2iuJok QRB Dus

2
D2ds

#QRB (u6 s
2
) (Tus

2
!iuJokus

2
)!us

2
) (Tu6 s

2
#iuJoku6 s

2
) ds#o(1). (3.3)

It is easy to show that the radiation conditions for the transverse part u
s

may be

rewritten as Tus!iuJokus"o(r~1) and hence Tu6 s#iuJoku6 s"o(r~1). After
passing to the limit in (3.3) as RPR, we obtain

lim
R?=

QRB Dus
2
D2ds"0 and P)1

D+h
1
D2du"P)1

D+h
2
D2du"0.

From the "rst relation, using Rellich's lemma [5] we get that us
2
"0 and by the

transmission formulation us
1
"0. Consequently us"0 in R3/!1 . The second relation

yields h
2
"c and by radiation conditions it satis"es h

2
"0. Moreover, h

1
"c and

hence h
1
"0 by the transmission conditions. Both mean that h"0 in R3/!1 . Finally, if

we substitute the thermoelastic equation (2.4) for the divergence-free part of the
displacement "eld us"0 and the temperature vibration "eld h"0 we get for the
rotation-free part of the displacement "eld u1#u2"0 in R3/!1 . Thus, we conclude
the uniqueness for the second boundary problem.

The uniqueness for the other three boundary problems follows exactly the same
arguments if one considers the associated transmission problem as in (3.1) with the
appropriate boundary transmission conditions, namely:

(i) for the "rst homogeneous boundary value problem

(u
1
, h

1
)
1
"(u

1
, h

2
)
2

on R),

(Tu
1
!cn; h

1
, Rh

1
/Rn )

1
"(Tu

2
!cn; h

2
, Rh

2
/Rn )

2
on R)/!1 ; (3.4)

(ii) for the third homogeneous boundary value problem

(u
1
, Rh

1
/Rn )

1
"(u

2
, Rh

2
/Rn)

2
on R),

(Tu
1
!cn; h

1
, h

1
)
1
"(Tu

2
!cn; h

2
, h

2
)
2

on R)/!1 ; (3.5)

(iii) for the fourth homogeneous boundary value problem

(Tu
1
!cn; h

1
, h

1
)
1
"(Tu

2
!cn; h

2
, h

2
)
2

on R) ,

(u
1
, Rh

1
/Rn )

1
"(u

2
, Rh

2
/Rn)

2
on R)/!1 . (3.6)

For the formulation and analysis of properties of the boundary integral equations on
! we shall need the following property of the traces of the weak thermoelastic
solutions.
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Lemma 3.1. ¸et U"(u, h )3(H1
-0#

(R3/!1 ))4 be the weak solution of :

(a) ¹he ,rst boundary value problem; then

[Tu!cn; h3 ] D!3(H3 ~1@2(!))3 and C
Rh
RnD K !3H3 ~1@2(!). (3.7)

(b) ¹he second boundary value problem; then

[u] D!3(H3 1@2(!))3 and [h] D!3H3 1@2(!). (3.8)

(c) ¹he third boundary value problem; then

[Tu!cn; h3 ] D!3(H3 ~1@2(!))3 and [h] D!3H3 1@2(!). (3.9)

(d) ¹he fourth boundary value problem, then

[u] D!3(H3 1@2(!))3 and C
Rh
RnD K !3H3 ~1@2(!). (3.10)

Note that h and hI are isomorph elements from the Riesz Representation Theorem in
the dual spaces H1@2 and H~1@2, respectively.

Proof. Let the "rst case of Dirichlet condition be considered. For a weak solution
U"(u, h )3 (H1

-0#
(R3/!1 ))4, we apply a test vector-valued function V"(v, 0 )3

(H1
-0#

(R3/!1 ))4 such that supp VLLB (o, R). The thermoelastic variational formula
(see Appendix A.1) for each )

j
, j"1, 2, reads

P)j
AE (u, v)#+u )+v!iug+ ) u0!ch+ ) v!ou2u ) v!

iu
i

h0Bdu

"QR) j
A(Tu!cn; hI ) ) v#

Rh
Rn 0Bds. (3.11)

From the trace theorem, we have that V DR)j
3 (H1@2(R)

j
))4, and by the duality in (3.11)

we conclude that

(Tu!cn; hI ) DR) j
3(H~1@2(R)

j
))3 and

Rh
Rn K R)j

3H~1@2(R)
j
).

Hence, the jumps satisfy

[(Tu!cn; hI )] DR)1
3(H~1@2(R)

1
))3 and C

Rh
RnD K R)1

3H~1@2(R)
1
).

In addition, we see from the transmission formulation (3.4) that

supp[Tu!cn; hI ] DR)1
L!1 and supp C

Rh
RnD K R)1

L!1 .

This proves the assertion in (3.7).
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The other assertions in (3.8)} (3.10) follow from the variational formula (3.11) by
similar arguments.

Remark 3.1. A weak solution of the four boundary screen problems may be written in
the following variational form:

PR3@! AE(u, v)#+u )+v!iug+ ) u0!ch+ ) v!ou2u ) v!
iu
i

h0Bdr

"P! A(Tu!cn; hI )
1
) v

1
#A
Rh
RnB

1

0
1
!(Tu!cn; hI )

2
) v

2
!A
Rh
RnB

2

0
2Bds

for all test vector-valued functions V"(v, 0)3(H1
-0#

(R3/!1 ))4 having support compact
in R3. The boundary conditions related to the considered problem are substituted on
the right-hand side of the above integral equality. Here the subindex (2) denotes the
limit from the side to which the normal vector is pointed and (1) from the other side.

The properties of the boundary data, as stated in Lemma 3.1, enable us to derive
boundary integral equations of the "rst kind with singular kernel equivalent to the
boundary problems.

Green's formula (Appendix A.1) provides a representation of the weak thermoelas-
tic solution U by single- and double-layer potentials. For any "xed r3)

1
we have

U(r)"!

1

4n QR) [U
1
(r@ ) )R*(R

r{
, n; )ET (r, r@)!E (r, r@) )R(R

r{
, n; )U

1
(r@)] ds (r@ ),

(3.12)

0"!

1

4n QR) [U
2
(r@ ) )R*(R

r{
, n; )ET (r, r@)!E(r, r@) )R (R

r{
, n; )U

2
(r@)] ds(r@ ).

(3.13)

This representation formula is known for smooth boundary and smooth layers U
1
,

U
2
. Since the potentials have C= kernels for r3)

1
, they remain valid for a weak

solution as well.
Let us "rst consider the thermoelastic Dirichlet problem. Summing the relations

(3.12), (3.13) using the jump relations of the boundary potentials (Lemma A.1) and the
result of Lemma 3.2 for the jumps [Tu!cn; hI ), [Rh/Rn] together with the assumption
on the boundary data, we obtain

1

2
(U

1
(r)#U

2
(r)) DR)1

"!

1

4n P!
[G](r@) )R*(R

r{
, n; @ )ET(r, r@) ds (r@)

#

1

4n P!
E(r, r@)[Tu!cn; hI , Rh/Rn]T (r@) ds (r@)

#

1

4n QRB [U
2
(r@ ) )R* (R

r{
, n; )ET(r, r@)!E (r, r@) )R(R

r{
, n; )U

2
(r@)] ds (r@ ).

(3.14)
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Thus, restricting this equation to !, letting RPR, and using Kupradze radia-
tion conditions (2.14) which holds for the solution U

2
and as well as for the

thermoelastic fundamental solution E, we obtain for the jump of the thermoelastic
surface traction

S[Tu!cn; hI , Rh/Rn],(r) :"
1

4n P!
E(r, r@)[Tu!cn; hI , Rh/Rn]T (r@) ds(r@ )

"

1

2
(G`#G~)#

1

4n P!
[G](r@) )R*(R

r{
, n; @)ET(r, r@) ds(r@ ) for r3!. (3.15)

The integral equation (3.15) is a boundary integral equation of the "rst kind on ! with
weakly singular kernel which is evident from the asymptotic relations (2.13). Con-
versely, let [Tu!cn; hI , Rh/Rn] D!3(H3 ~1@2(! ))4 be a solution of equation (3.15). Since,
for rN!, E

i, j
(r, r@) D!3H1@2 (!) and (R*(R

r{
, n; @ )ET(r, r@))

i, j
D!3H~1@2(!), together with

their derivatives, it is obvious that the weakly singular potential

K
1
[Tu!cn; hI , Rh/Rn](r)"

1

4n P!
E (r, r@ )[Tu!cn; hI , Rh/Rn]T (r@) ds(r@ )

and Cauchy singular potential

(K
2
[G])(r)"

1

4n P!
[G](r@) )R*(R

r{
, n; @)ET(r, r@) ds(r@)

are well-de"ned for rN!. They are respectively, pseudodi!erential operators of order
!3/2, !1/2 as a mapping from functions on the boundary R) into functions on )

1
and R3/)1

1
. Thus, for [Tu!cn; hI , Rh/Rn]*3 (H3 ~1@2(R)))4 and [G]*3 (H3 1@2(R)))4,

we have that both K
1
[Tu!cn; hI , Rh/Rn]* and K

2
[G]* belong to (H1 ()

1
))4X

(H1
-0#

()
2
))4, where f * is zero extension of f on R)/!1 . Moreover, their di!erence

satis"es the thermoelastic equation, radiation conditions and the given thermoelastic
Dirichlet boundary conditions on both sides of the screen !

1
and !

2
.

In order to determine the order of the mentioned pseudodi!erential operators we
have to calculate their principal homogeneous symbol. We use the known argument
of the local identi"cation of )

2
with R3

`
, )

1
with R3

~
and the boundary R) with R2.

After introducing a basis of orthonormal co-ordinates in the cotangential bundle
¹*

0
(see Eskin [9, pp. 255}256]), we obtain a general representation of the principal

symbol of the operators on the manifold ! that locally coincides with the principal
symbol in the halfspace with boundary R2. Thus, we can "rst take the three-dimen-
sional Fourier transform of the kernels E and R*ET of the integral potentials K

1
and

K
2

in R3
`

with boundary R2 and then patch the local results together. These
calculations yield the transformed kernel E<

E< 1 (m)"!

c( DmD2!k2
1
)~1

ou2(k2
1
!k2

2
) C

!(k2
p
!k2

2
)m ) mT ck2

p
imT

!igqk2
p
im o (k2

p
!k2

1
)u2D , (3.16)
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E< 2 (m)"
c( Dm D2!k2

2
)~1

ou2(k2
1
!k2

2
) C

!(k2
p
!k2

1
)m ) mT ck2

p
imT

!igqk2
p
im o (k2

p
!k2

2
)u2D , (3.17)

E< s (o)"
c( DmD2!k2

s
)~1

ou2 C
k2
s
I
3
!m ) mT 0

0 0D , (3.18)

where m"(m
1
, m

2
, m

3
)3R2, Dm D"Jm2

1
#m2

2
#m

3
and c is a positive constant. For the

calculation of the Fourier image RYE, it is enough to multiply each matrix E< i (m),
i"1, 2, s, with the matrix R) by using the derivative property of the Fourier transform.
Now, from the asymptotic expression

( Dm D2!k2)~1&DmD~2(1#k2 DmD~2#k4 DmD~4#2) for Dm D'Dk D ,

we see that the principal homogeneous symbol p
0
(S) (m) and p

0
(K

2
) (m) are homogene-

ous matrix-valued functions of order !2 and !1, respectively. Therefore K
1

maps
(Hs`1@2(R)

1
))4 into (Hs`2()

1
))4X (Hs`2

-0#
()

2
))4 and K

2
maps (Hs`1@2(R)

1
))4 into

(Hs`1()
1
))4X (Hs`1

-0#
()

2
))4 ((see Eskin [9, 8.2]).

The above analysis proves the following equivalence theorem:

Theorem 3.2. ¸et G
1
"(g

1
, t

1
), G

2
"(g

2
, t

2
)3(H1@2(! ))4 be given with G

1
!G

2
3

(H3 1@2(! ))4. A function U"(u, h )3 (H1
-0#

(R3/!1 ))4 is a weak solution of the ,rst Dirichlet
thermoelastic screen problem if and only if the jump [Tu!cn; hI , Rh/Rn]!3 (H3 ~1@2(! ))4
satis,es the integral equation (3.15).

Let us continue with the second thermoelastic Neumann problem. We follow almost
the same procedure as in the previous case, but before summing, we apply the
operator R(R

r
, n; ) to both the integral relations (3.12) and (3.13). Finally, we conclude

that the jump of the weak solution satis"es the following integral equation of the "rst
kind on the screen !:

D[u, h](r) :"
1

4n
R(R

r
, n; ) P!

[u, h](r@) )R*(R
r{
, n; @ )ET(r, r@) ds (r@)

"!

1

2
(G`#G~)#

1

4n P!
R(R

r
, n; ) )E (r, r@)[G]T(r@ ) ds (r@ )

for r3!. (3.19)

The kernel of the integral operator D is R(R
r
, n; )E (r, r@ )R*T (R

r{
, n; @ ) with hyper-

singular point r@"r.
Conversely, let [u, h] D!3(H3 1@2 (!))4 be a solution of equation (3.19). Since for rN!

E
i, j

(r, r@) D!3H1@2(!) and (R*(R
r{
, n; @)ET(r, r@))

i, j
D!3H~1@2(!) together with their

derivates, it is obvious that the potential

K
2
[u, h](r)"

1

4n P!
[u, h](r@) )R*(R

r{
, n; @)ET (r, r@ ) ds(r@)
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and

K
1
[G](r)"

1

4n P!
E (r, r@ )[G]T(r@ ) ds (r@)

are well de"ned for rN!. The halfspace techniques and the same analysis as in
Dirichlet problem show that K

2
maps continuously (Hs`1@2(R)

1
))4 into

(Hs`1()
1
))4X (Hs`1

-0#
()

2
))4 and K

1
maps (Hs`1@2(R)

1
))4 into (Hs`2()

1
))4X

(Hs`2
-0#

()
2
))4. Hence both K

2
[u, h] and K

1
[G] belong to (H1()

1
))4X (H1

-0#
()

2
))4

which completes the proof of the following equivalence theorem:

Theorem 3.3. ¸et G
1
"(g

1
, t

1
), G

2
"(g

2
, t

2
)3 (H~1@2(! ))4 be given with G

1
!G

2
3

(H3 ~1@2(!))4. A function U"(u, h )3 (H1
-0#

(R3/!1 ))4 is a weak solution of the second
Neuman thermoelastic screen problem if and only if the jump [u, h]!3 (H3 1@2(! ))4
satis,es the integral equation (3.19).

To conclude the same for the third and fourth mixed type thermoelastic screen
problems, we do the previous analysis on the vector-valued operators of potential
type separately for the "rst three components and for the fourth component. We
obtain for the third screen problem the following weakly singular boundary integral
equation of the "rst kind on the screen !

V[Tu!cn; hI , h](r)

:"
1

4n
B

3
(R

r
, n; ) P!

[Tu!cn; hI , h](r@ ) )B*
3
(R

r{
, n; @ )ET(r, r@) ds (r@)

"!

1

2
(G`#G~)#

1

4n P!
B
3
(R

r
, n; )[G](r@ ) )B*

4
(R

r{
, n; @ )ET(r, r@ ) ds (r@)

(3.20)

and for the fourth screen problem the following hypersingular boundary integral
equation of the "rst kind on the screen:

W[u, Rh/Rn](r)

:"
1

4n
B

4
(R

r
, n; ) P!

[u, Rh/Rn](r@ ) )B*
4
(R

r{
, n; @ )ET(r, r@) ds (r@)

"!

1

2
(G`#G~)#

1

4n P!
B
4
(R

r
, n; )[G](r@ ) )B*

3
(R

r{
, n; @ )ET(r, r@ ) ds (r@).

(3.21)

Thus the solution of the third and fourth screen boundary value problem can
be reduced to the resolution of the integral equations (3.20), (3.21), respectively
according to:
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Theorem 3.4. ¸et G
1
"(g

1
, t

1
), G

2
"(g

2
, t

2
)3 (H1@2(! ))3]H~1@2(!) be given with

G
1
!G

2
3 (H3 1@2(!))3]H3 ~1@2(!). A function U"(u, h )3(H1

-0#
(R3/!1 ))4 is a weak

solution of the third thermoelastic screen problem if and only if the jump
[Tu!cn; hI , h]!3(H3 ~1@2(!))3]H3 1@2 (!) satis,es the integral equation (3.20).

Theorem 3.5. ¸et G
1
"(g

1
, t

1
), G

2
"(g

2
, t

2
)3(H~1@2(!))3]H1@2(!) be given with

G
1
!G

2
3 (H3 ~1@2(!))3]H3 1@2(!). A function U"(u, h )3(H1

-0#
(R3/!1 ))4 is a weak

solution of the fourth thermoelastic screen problem if and only if the jump
[u, Rh/Rn]!3 (H3 1@2(!))3]H3 ~1@2(!) satis,es the integral equation (3.21).

4. Existence and regularity results

Theorem 4.1. (Existence). ¹here exists exactly one solution of the integral equations
(3.15), (3.19), (3.20) and (3.21) for the given boundary data on ! in the appropriate
Sobolev spaces according to the considered boundary value problem.

The proof of Theorem 4.1 is based on the following lemma:

Lemma 4.1. ¹he following mappings are continuous for any real number s:

S: (H3 s(!))4P(Hs`1(!))4, (4.1)

D: (H3 s (!))4P(Hs~1(!))4, (4.2)

V: (H3 s (!))3]H3 s(!)P(Hs`1(! ))3]Hs~1(! ), (4.3)

W: (H3 s (!))3]H3 s (!)P(Hs~1(! ))3]Hs`1(!). (4.4)

¹he operators S, D, V, W satisfy a Gas rding1s inequality, i.e. there exist constants c
i
'0,

i"1, 2, 3, 4, and compact operators

O
1
: (H3 ~1@2(!))4P(H1@2`e(! ))4,

O
2
: (H3 1@2(!))4P(H~1@2`e(! ))4,

O
3
: (H3 ~1@2(!))3]H3 1@2(!)P(H1@2`e(! ))3]H~1@2`e(! ),

O
4
: (H3 ~1@2(!))3]H3 ~1@2(!)P(H1@2`e(! ))3]H~1@2`e(! )

such that

1. S(S#O
1
)v, vTL2 (!)*c

1
EvE2H3 ~1@2(!) for all v3(H3 ~1@2(!))4.

2. S(D#O
2
)v, vTL2 (!)*c

2
EvE2H3 1@2(!) for all v3 (H3 1@2(!))4.

3. S(V#O
3
)v, vTL2 (!)*c

3
(EwE2H3 ~1@2(!)#EtE2H3 1@2 (!) )

for all v"(w, t)3(H3 ~1@2(!))3]H3 1@2 (!).
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4. S(W#O
4
)v, vTL2 (!)*c

4
(EwE2H3 1@2(!)#EtE2H3 ~1@2 (!) )

for all v"(w, t)3(H3 1@2(!))3]H3 ~1@2(!).

Proof. Let v be a vector-valued function in (H3 s(!))4. The extension v* by zero on
R)

1
/! belongs to (Hs(R)))4. We consider the vectorial operators S, D, V, W as

mappings from functions on R) into functions on R). Thus, the assertions of the
"rst part of Lemma 4.1 follow from the fact that the operators S, D are tdos of order
!1 and #1, respectively, while the operators V, W are tdos of order !1 and #1,
respectively, considering the "rst three components, and of order #1 and !1,
respectively, considering the last component. We have calculated the principal homo-
geneous symbol of the tdos in R2 (see [9, 17, 6]) to determine their order.

The principal symbol of the operator S is easily obtained by applying the R2-
Fourier transform to the kernel E. The transformed kernel has the same form as

(3.16)} (3.18) but in the considered case m"(m
1
, m

2
)3R2, DmD"Jm2

1
#m2

2
and

( Dm D2!k2
1
)~1@2 substitutes ( Dm D2!k2

1
)~1. Now, using the asymptotic expression

( Dm D2!k2)~1@2&DmD~1 A1#
1

2
k2 DmD~2#

3

8
k4 Dm D~4#2B

for DmD'Dk D , we obtain the two-dimensional principal homogeneous symbol

p
0
(S)(m)"

c

ou2

1

DmD3

]

k2
s
DmD2#A

k2
p
2
!k2

s Bm2
1 A

k2
p
2
!k2

s Bm
1
m
2

0 0

A
k2
p
2
!k2

s Bm
1
m
2

k2
s
DmD2#A

k2
p
2
!k2

s Bm2
2

0 0

0 0 k2
s
DmD2 0

0 0 0 ou2 DmD2

.

Further, we use the relations (Appendix A.3)

SD"K2
2
!1

4
I, DS"K*2

2
!1

4
I (4.5)

which show that S is like a regularizer to D since K
2

and K*
2

are tdo of zero order
mapping a function on R) to a function on R) and therefore compact pertubations.
Note that K*

2
is the adjoint operator of K

2
. Now, taking the R2-Fourier transforma-

tion of the both sides in relations (4.5) and collecting the lower order contributions on
the right-hand side, we get the principal symbol of the tdo D :

p
0
(D)(m)"ou2

c

DmD
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]

1

k2
s

DmD2#A
2

k2
p

!

1

k2
s
Bm2

1 A
2

k2
p

!

1

k2
s
Bm

1
m
2

0 0

A
2

k2
p

!

1

k2
s
Bm

1
m
2

1

k2
s

DmD2#A
2

k2
p

!

1

k2
s
Bm2

2
0 0

0 0
1

k2
s

DmD2 0

0 0 0
1

ou2
DmD2

.

By the combination of the previous calculations componentwise for the operators
V and W, we obtain their R2 homogeneous principal symbol, namely

p
0
(V ) (m)"

c

ou2

1

DmD3

]

k2
s
DmD2#A

k2
p
2
!k2

s Bm2
1 A

k2
p
2
!k2

s Bm
1
m
2

0 0

A
k2
p
2
!k2

s Bm
1
m
2

k2
s
DmD2#A

k2
p
2
!k2

s Bm2
2

0 0

0 0 k2
s
DmD2 0

0 0 0 DmD4

,

p
0
(W ) (m)"ou2

c

DmD

]

1

k2
s

Dm D2#A
2

k2
p

!

1

k2
s
B m2

1 A
2

k2
p

!

1

k2
s
B m

1
m
2

0 0

A
2

k2
p

!

1

k2
s
B m

1
m
2

1

k2
s

DmD2#A
2

k2
p

!

1

k2
s
B m2

2
0 0

0 0
1

k2
s

DmD2 0

0 0 0
1

ou2

.

The principal symbols p
0
(S)(m), p

0
(D)(m), p

0
(V )(m), p

0
(W ) (m) are positive de"nite

4]4 matrix, because all their principal minors have strictly positive determinants.
Thus, the (dos S, D, V, W are strongly elliptic operators. The strong ellipticity
property implies the validity of a Gas rding's inequality [9]

SAv, vTL2(!)*CEvE2H3 p (!)!cEvE2H3 p~g (!) , (4.6)
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where A stands for a strongly elliptic pseudodi!erential operator of order 2p and C, g,
c are constants such that C, g'0, c*0. The claimed Gas rding's inequalities for the
operators S, D, V, W in the second part of Lemma 4.1 are a modi"cation of 4.6 by
means of the Rellich's imbedding theorem. Therefore, the second term on the right-
hand side of the inequality (4.6) is represented by a compact bilinear form in each
considered case.

Now, we are in the position to prove the existence Theorem 4.1. The inequalities
(a)}(d) in the second part of Lemma 4.1 imply that the tdos S, D, V, W are Fredholm
continuous operators of index zero. Moreover, we have proved that the integral
equations are equivalent to the weak formulation of the corresponding screen prob-
lem that has at most one solution. As a result, the operators S, D, V, W are injective in
the determined spaces and therefore bijective, which ends the proof of Theorem 4.1.

The solution of the four thermoelastic screen problems, even for C= data, have
singularity at the edge c of the screen !. In the following we obtain the local behaviour
and a decomposition of the solution of the integral equations into a regular part and
a singular part. Our analysis uses Eskin's procedure [9] applying near the edge the
Wiener}Hopf technique based on the factorization of the homogeneous elliptic
symbols in halfspace. This technique is modi"ed for the 2]2 matrix case by Costabel
and Stephan [6].

We denote by s the parameter of arc length of the smooth closed curve c and o (r)
the distance from r3! to c. Let s (o) be a C= cut-o! function with s,1 for small
o and s,0 for DoD'1. Then the following theorems hold.

Theorem 4.2. ¸et DdD(1/2 and G
1
"(g

1
, t

1
), G

2
"(g

2
, t

2
)3(H3@2`d(!))4 with

G
1
!G

2
3 (H3 3@2`d(!))4. ¹hen, the solution ( :,[Tu!cn; hI , Rh/Rn]! of the integral

equation (3.15) has the form

("b (s)o~1@2s(o)#(
0

(4.7)

with

b(s)3 (H1@2`d(!))4, (
0
3 (H3 1@2`d{(!))4 for any d@(d.

Theorem 4.3. ¸et DdD(1/2 and G
1
"(g

1
, t

1
), G

2
"(g

2
, t

2
)3(H3@2`d(!))4 with

G
1
!G

2
3 (H3 3@2`d(!))4. ¹hen, the solution ( :,[u, h]! of the integral equation (3.19)

has the form

("b (s)o1@2s(o)#(
0

(4.8)

with

b(s)3 (H3@2`d(c))4, (
0
3 (H3 3@2`d(!))4.

Theorem 4.4. ¸et DdD(1/2 and G
1
"(g

1
, t

1
), G

2
"(g

2
, t

2
)3(H3@2`d(!))4 with

G
1
!G

2
3 (H3 3@2`d(!))4. ¹hen, the solution n"((, h ) :,[Tu!cn; hI , h]! of the inte-

gral equation (3.20) has the form

("b (s)o~1@2s(o)#(
0
, h"a (s)o1@2s(o)#t

0
(4.9)
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and for any d@(d

b(s)3 (H1@2`d(c))3, a(s)3H3@2`d(c), (
0
3(H3 1@2`d{(!))3, t

0
3H3 3@2`d(!).

Theorem 4.5. ¸et DdD(1/2 and G
1
"(g

1
, t

1
), G

2
"(g

2
, t

2
)3(H3@2`d(!))4 with

G
1
!G

2
3 (H3 3@2`d(!))4. ¹hen, the solution n"((, h) :,[u, Rh/Rn]! of the integral

equation (3.21) has the form

("b (s)o1@2s(o)#(
0
, h"a (s)o~1@2s(o)#t

0
(4.10)

and for any d@(d

b(s)3 (H3@2`d(c))3, a(s)3H1@2`d(c), (
0
3(H3 3@2`d(!))3, t

0
3H3 1@2`d{(!).

Using the known technique of localization and a partition of unity, the smooth surface
R) is mapped by the C=-isomorphism in every chart into the plane x

3
"0, while its

piece ! is mapped into R2
`

for x
3
"0 and x

2
'0. Then, the edge c of ! is locally

mapped into the line R. The integral equations on ! can be transformed into a "nite
sum of integral equations, each of them being de"ned on a local chart, and the
principal part can be represented with the local mapping by collecting compact
perturbations on the right. The main idea of such a consideration is to deal locally
with the Fourier dual algebraic equations in R2

`
which can be solved by the

Wiener}Hopf techniques. Our proof of the above formulated theorems provides the
factorization of 4]4 matrix principal symbols in a suitable form to perform
the well-developed Wiener}Hopf techniques.

Proof of ¹heorem 4.2. Equation (3.15) can be written as P#S
0
U"G on R2

`
, where

P
`

denotes the projection operator of restriction to R2
`

and S
0

is the (do with
symbol given by p

0
(S). Following the idea of Costabel and Stephan [6], we factorize

the 4]4 matrix p
0
(S)(m) as follows:

p
0
(S)(m)"

ck2
p

2ou2
S
~

(m)S
`

(m), for m"(m
1
, m

2
, 0)

where

S
~

(m)"(m
2
!i Dm

1
D)~3@2

]

m
2
!2i

k2
p

2k2
s
#k2

p

Dm
1
D !im

2
!Dm

1
D 0 0

k2
p
!2k2

s
2k

s
#k2

p

m
1

(m
2
!i Dm

1
D)sign m

1
0 0

0 0
J2k

s
k
p

(m
2
!i Dm

1
D ) 0

0 0 0
J2ou

k
p

(m
2
!i Dm

1
D)

,
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S
`

(m)"(m
2
#i Dm

1
D)~3@2

]

2k2
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J2k

s
k
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(m
2
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1
D ) 0
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k
p

(m
2
#i Dm

1
D)

,

Hence, the determinants are

detS
~

(m)"(m
2
!i Dm

1
D )~1, detS

`
(m)"

2k2
s

k2
p

(m
2
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1
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1

we obtain the inverses
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p

( im
2
#Dm

1
D) 0 0

2k2
s
!k2

p
k2
p

m
1

2k2
s
#k2

p
k2
p

m
2
!2i Dm

1
D 0 0
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J2k
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1
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k
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,
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(m)~1"(m
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#Dm

1
D 0 0

4k4
s
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p
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s
k2
p

m
1 A

2k2
s
#k2

p
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p

m
2
#

2k2
s
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p
2k2

s

i Dm
1
DBsign m

1
0 0
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k
p

J2k
s

(m
2
#i Dm

1
D) 0

0 0 0
k
p
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2
#i Dm

1
D)

,

Now the theorem is proved by exactly the same procedure as in the 2]2 matrix case
of Theorem 3.1 in [6] applied to the "rst two components of the vectorial operator
and as in the scalar case of Theorem 2.9(i) in [19] separately applied to the third and
fourth components.
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Proof of ¹heorem 4.3. Again, in order to apply the Wiener}Hopf technique we
consider the equation P

`
D

0
U"G on R2

`
, where P

`
denotes the projection operator

of restriction to R2
`

and D
0

is the (do with symbol given by p
0
(D). We observe that

p
0
(D)(m)"o2u4p

0
(S@), where p

0
(S@) denotes p

0
(S) with k@

p
, k@

s
instead of k

p
, k

s
and

k@
p
"2/k

p
, k@

s
"1/k

s
.

So, we have immediately a factorization for p
0
(D) as follows:

p
0
(D)"cou2

2

k
p

S@
~

(m)S @̀ (m),

where S@
~

(m), S @̀ (m) are the same as S
~

(m), S
`

(m) with k@
p
, k@

s
instead of k

p
, k

s
. The

resulting regularities follow from Theorem 3.2 of Costabel and Stephan [6] for the
"rst two components of the vectorial operator, working with the 2]2 "rst minor, and
Theorem 2.9(ii) of Stephan [19] for the scalar case applied separately to the third and
fourth components.

Proof of ¹heorems 4.4 and 4.5. The proof of both theorems is a right combination of
the regularity results of Theorems 4.2 and 4.3 considering separately the "rst three
components and the last component.

Remark 4.1. If we relax the assumptions of Theorem 4.3, asking for G
1

and G
2

to
be in (H1@2`d(! ))4 with G

1
!G

2
3(H3 1@2`d(!))4, we obtain the decomposition

'"b (s)o1@2s(o)#(
r
#(

1
, where b (s)3 (H1@2`d(c ))4, '

r
3 (H3 3@2`d(!))4 and (

1
3

L2 (I ; (H1@2`d(c ))4)W (H3 3@2`d{(I ; (L2(c))4 ) for 0(d@(d and !,I]c, I"[0, 1] ( for
details see [6, p. 476]).

5. Boundary elements approximation

In this section we give a Galerkin boundary element scheme to approximate the
exact solution of the thermoelastic scattering from the open set. In the following, we
assume that the jump of the boundary data satis"es [B

i
(] D!"0. This is not an

essential restriction considering that the incident "eld, which excites the scatterer, is
an entire solution of thermoelastic equation. Recalling the previous regularity analysis
of the solution near the edge c, it is appropriate to adapt for our model the improved
Galerkin approach [18, 6, 21]. This consists of incorporating the special behaviour of
the exact solution into the Galerkin scheme by augmenting the "nite element space
via singular elements.

Let us assume that the smooth surface ! is given by a smooth parameter repres-
entation r"/(u, v), (u, v)3DLR2. By the same smooth mapping /, the boundary
RD is mapped onto the edge c of !. With the regular triangulation Dq and the bijective
mapping /, we construct a family of "nite element space on the surface !, with
maximal mesh size h, regular according to Babu\ ska and Aziz (see [1, pp. 83}84]). We
denote the family of "nite element spaces with Sd`1,k

h
(!), for d#1'k*0. The

elements of Sd`1,k
h

(!) are piecewise polynomials of a degree greater or equal to
d belonging to H3 k(!). In this way, two "nite-dimensional subspaces H1

h
and H2

h
,
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namely of H3 1@2(!) and H3 ~1@2(!) are de"ned. Thus, for d#1'k*1 we have

H1
h
(! )"Sd,k~1

h
(!)LHk~1(! )LH3 ~1@2(! ),

H2
h
(! )"Sd`1,k

h
(!)LHk(! )WH3 1 (! )LH3 1@2(! ).

Analogously, the "nite-dimensional space Sd`1,k
h

(c) is de"ned using a regular grid in
the parameter of one-dimensional domain c.

The Galerkin scheme using standard "nite elements gives a very low convergence
rate of O(h1@2~e), which cannot be improved by only using higher order elements, due
to the singular term with o~1@23H~e (! ). However, the asymptotic convergence can
be improved by simultaneously approximating each part b, (, respectively. To this
end we de"ne the augmented "nite spaces:

Z1@2
h

:"Mt
h
"b

h
o~1@2s#t

0h
Db

h
3Sd{`1,k@

h
(c), t

0h
3Sd,k~1

0h
(! )N,

Z3@2
h

:"Mt
h
"b

h
o1@2s#t

0h
Db

h
3Sd{`1,k@

h
(c), t

0h
3Sd`1,k

0h
(! )N,

for d@#1'k@*1 and d#1'k*2. Here t3Sd`1,k
0h

(! ) if t3Sd`1,k
h

(! ) and t"0
on c. It is clear that

Z1@2
h

LZ1@2`dLH3 ~1@2(!) and Z3@2
h

LZ3@2`dLH3 1@2(! ),

where Z1@2`d and Z3@2`d are the spaces of the scalar distribution having the form
bo~1@2s#t

0
, for b3H1@2`d(c), t

0
3H3 1@2`d{(!), d@(d and bo1@2s#t

0
, for

b3H3@2`d(c), t
0
3H3 3@2`d(!), respectively.

The simplest elements belonging to the space Z1@2
h

are continuous piecewise linear
one-dimensional elements b

h
on c and piecewise linear elements t

0h
on ! with

t
0h
3C0 (! ) and t

0h
"0 on c. The simplest elements belonging to the space Z3@2

h
are

continuous piecewise linear one-dimensional elements b
h
on c and piecewise quadratic

elements t
0h

on ! with t
0h
3C1(! ), Dt

0h
"0 and t

0h
"0 on c. The modi"ed

Galerkin schemes for each screen scattering problem reads as follows:

1. ¹he modi,ed Galerkin scheme for the ,rst (Dirichlet) thermoelastic screen scatter-
ing problem. Find (

h
"(ti

h
)4
i/1

with ti
h
3Z1@2

h
(! ) such that for all test functions

v
h
"(vi

h
)4
i/1

with vi
h
3Z1@2

h
(! ) we have

1

4n P! P!
E(r, r@)(

h
(r@) ) vT

h
(r) ds (r) ds(r@)"!P!

'
*/#

(r) ) vT
h
(r) ds (r). (5.1)

2. ¹he modi,ed Galerkin scheme for the second (Neumann) thermoelastic screen
scattering problem. Find (

h
"(ti

h
)4
i/1

with ti
h
3Z3@2

h
(! ) such that for all test func-

tions v
h
"(vi

h
)4
i/1

with vi
h
3Z3@2

h
(! ) we have

1

4n P! P!
R(R

r
, n; )E (r, r@)R*T (R@

r
, n; @ )(

h
(r@))T ) vT

h
(r) ds(r) ds(r@)

"!P!
R(R

r
, n; )'

*/#
(r) ) vT

h
(r) ds (r). (5.2)

3. ¹he modi,ed Galerkin scheme for the third (mix-type) thermoelastic screen scatter-
ing problem. Find (

h
"(t1

h
, t2

h
, t3

h
, h

h
) with ti

h
3Z1@2

h
(! ), i"1, 2, 3 and h

h
3Z3@2

h
(!)
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such that for all test functions v
h
"(vi

h
)4
i/1

with vi
h
3Z1@2

h
(! ), i"1, 2, 3, and

(v4
h
)3Z3@2

h
(!) we have

1

4n P! P!
B
3
(R

r
, n; )E (r, r@)B*T

3
(R@

r
, n; @)(

h
(r@))T ) vT

h
(r) ds (r) ds (r@)

"!P!
B

3
(R

r
, n; )'

*/#
(r) ) vT

h
(r) ds(r). (5.3)

4. ¹he modi,ed Galerkin scheme for the fourth (mix-type) thermoelastic screen
scattering problem. Find (

h
"(t1

h
, t2

h
, t3

h
, h

h
) with ti

h
3Z3@2

h
(! ), i"1, 2, 3 and

h
h
3Z1@2

h
(! ) such that for all the test functions v

h
"(vi

h
)4
i/1

with vi
h
3Z3@2

h
(! ),

i"1, 2, 3, and (v4
h
)3Z1@2

h
(! ) we have

1

4n P! P!
B
4
(R

r
, n; )E (r, r@)B*T

3
(R@

r
, n; @)(

h
(r@))T ) vT

h
(r) ds (r) ds (r@)

"!P!
B

4
(R

r
, n; )'

*/#
(r) ) vT

h
(r) ds(r). (5.4)

The Gas rding's inequalities in Lemma 4.1 imply directly that the approximated
equations have a unique solution. For the convergence and error analysis of the above
boundary element models we refer the readers to [6, 23].

Remark 5.1. (1) In the scattering problems the boundary data are in"nitely smooth. In
this case the solution of the integral equations has still singularity of the form as in
Theorems 4.2}4.5, but with smooth functions a, b, t, ( for a smooth edge curve c. The
Galerkin method can be improved if more singular elements like o3@2, o5@2,2 are
used in the augmented spaces.

(2) Wendland and Zhu have constructed a mixed "nite-boundary elements ap-
proximating approach in order to overcome the di$culty of the numerical implemen-
tation in the above augmented spaces on ! of an arbitrary shape. They suggest "rstly
to approximate the surface ! with the help of curved "nite elements !

h
and then to

construct the boundary element spaces on !
h

by using the method of Lagrangian
multipliers. For details see [22].
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Appendix A

A.1. Green1s integral formulae in thermoelasticity

Let )3R3 be a closed subset, bounded with Lipschitz boundary R). Moreover, let
U"(u, h ), V"(v, 0 ) be two solutions of thermoelastic equation (2.4) such that U,
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V3(C2 ()))4W (C()1 ))4. Then the following identity holds:

P) CE(u, v )#+h )+0!iug+ ) u0!ch+ ) v!ou2u ) v!
iu
i

h0Ddu

"QR) C(Tu!cn; h ) ) v#
Rh
Rn 0Dds. (A.1)

The bilinear symmetric form E (u, v ) is given as

E (u, v)"j (+ ) u)(+ ) v)#k
3
+

p,q/1

Rv
p

Rx
q
A
Ru

p
Rx

q

#

Ru
q

Rx
p
B .

In the case of the two conjugated solutions, we have relation (6.1) as

2c
iug P)

D+hD2du

"QR) Cu6 ) (Tu!cn; h )#
c

iug
hM
Rh
Rn!u ) (Tu6 !cn; hM )#

c
iug

h
RhM
Rn Dds. (A.2)

Let us assume that LU, LV3 (C()1 ))4. The following formula is true:

P)
[U )L*V!V )LU] dr"QR) [U )R*V!V )RU] ds (r) (A.3)

which when applied properly for U and E(r, r@) implies the integral representation

U(r)"!(#)
1

4n QR) [U (r@ ) )R*(R
r{
, n; )ET (r, r@ )

!E (r, r@ ) )R(R
r{
, n; )U (r@)] ds(r@ ) for r3) (r3R3/)1 ).

A.2. ¹hermoelastic single- and double-layer potentials

We de"ne the following thermoelastic potentials for rNR) :

(K
1
V ) (r) :"

1

4n PR)
E (r, r@ )V(r@) ds (r@), (A.4)

(K
2
V ) (r) :"

1

4n PR)
V(r@) )R*(R

r{
, n; @ )ET(r, r@) ds (r@), (A.5)

(K
3
V ) (r) :"

1

4n PR)
V(r@) )B*

3
(R

r{
, n; @)ET (r, r@) ds(r@), (A.6)

(K
4
V ) (r) :"

1

4n PR)
V(r@) )B*

4
(R

r{
, n; @)ET (r, r@) ds(r@), (A.7)

462 F. Cakoni

Math. Meth. Appl. Sci., 23, 441}466 (2000)Copyright ( 2000 John Wiley & Sons, Ltd.



Obviously, K
1

is a single-layer potential with a weak singular kernel, K
2

is a double-
layer potential with a Cauchy singular kernel, while K

3
, K

4
are componentwise of

a di!erent type with a weak singular and Cauchy singular kernel, respectively.

Lemma A.1. ¸et k*0 be an integer, R)3Ck`1,a{ and 0(a(a@. ¹he following
operators are bounded:

K
1
: (Ck,a(R)))4P(Ck`1,a()1 $ ))4, (A.8)

K
2
: (Ck,a(R)))4P(Ck,a()1 $))4, (A.9)

K
3
: (Ck,a(R)))4P(Ck`1,a()1 $ ))3]Ck,a()1 $), (A.10)

K
4
: (Ck,a(R)))4P(Ck,a()1 $))3]Ck`1,a()1 $). (A.11)

¹heir values for r3R) are computed via the following relations on the boundary:

[(K
1
V ) (r)]`"[(K

1
V ) (r)]~,

[R(R
r
, n; ) (K

2
V ) (r)]`"[R(R

r
, n; ) (K

2
V ) (r)]~,

[B
3
(R

r
, n; ) (K

3
V )(r)]`"[B

3
(R

r
, n; ) (K

3
V ) (r)]~,

[B
4
(R

r
, n; ) (K

4
V )(r)]`"[B

4
(R

r
, n; ) (K

4
V ) (r)]~,

[(K
2
V ) (r)]$

"$

1

2
V(r)#

1

4n PR)
V(r@) )R*(R

r{
, n; @ )E (r, r@ ) ds (r@),

[R(R
r
, n; ) (K

1
V )(r)]$

"G

1

2
V(r)#

1

4n PR)
R(R

r
, n; ) )E (r, r@ )V (r@ ) ds (r@),

[B
3
(R

r
, n; ) (K

4
V ) (r)]$

"$

1

2
V(r)#

1

4n PR)
B
3
(R

r
, n; )

][V(r@ ) )B*
4
(R

r{
, n; @ )E (r, r@ )] ds(r@),

[B
4
(R

r
, n; ) (K

3
V ) (r)]$

"G

1

2
V(r)#

1

4n PR)
B
4
(R

r
, n; )

][V(r@ ) )B*
3
(R

r{
, n; @ )E (r, r@ )] ds(r@),

where

[ f (r)]$

" lim
h?0`

f (r$hn; (r)), C
R f

Rn (r)D
$

" lim
h?0`

n; (r) )+ f (r$hn; (r)).

¹he integrals for r3R) are de,ned as Cauchy principal value.

Proof. Let us consider the thermoelastostatic equation for the frequency u"0. The
elements of 4]4 fundamental matrix Eo (r, r@) are

Eo
kj

(r, r@)"(1!d
k4

) (1!d
j4

)!o
kj

(r, r@ )#
cd

j4
(1!d

k4
) (x

k
!x@

k
)

(j#2k) Dr!r@ D
#

2d
4k

d
j4

Dr!r@ D
.
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The following estimates due to Kupradze [14],

DE
kj

(r, r@ )!Eo
kj

(r, r@ ) D)C
2
, K

R
Rx

l1

(E
kj

(r, r@)!Eo
kj

(r, r@ )) K)
C

2
Dr!r@ D

for j, k"1, 2, 3, 4 and l
1
, l

2
"1, 2, 3

K
R2

Rx
l1
Rx

l2

(E
kj

(r, r@ )!Eo
kj

(r, r@)) K)
C

2
Dr!r@ D

for j, k"1, 2, 3 or j"k"4 and l
1
, l

2
,"1, 2, 3

K
R2

Rx
l1
Rx

l2

(E
k4

(r, r@)!Eo
k4

(r, r@ )) K)C
2
,

for k"1, 2, 3 and l
1
, l

2
,"1, 2, 3, show that the thermoelastostatic integral operators

behave near the boundary R) partly as elastostatic single- and double-layer integral
operators (this refers to the "rst three components) and partly as harmonic single- and
double-layer integral operators (this refers to the last component). So, the assertions in
Lemma A.1 follow from [14, 10].

Lemma A.2. ¹he boundary integral potential operators (A.4)}(A.7) can be extended
continuously to the following bounded operators for every s3R:

K
1
: (Hs (R)))4P(Hs`1(R)))4,

K
2
: (Hs (R)))4P(Hs(R)))4,

K
3
: (Hs (R)))4P(Hs`1(R)))3]Hs (R)),

K
4
: (Hs (R)))4P(Hs(R)))3]Hs`1(R)).

Proof. The operator K
1

is (do of order !1 as a mapping of R) into R). Further-
more, the operator K

2
is (do of order 0, while the operators K

3
and K

4
are (do of

order !1 and 0, respectively, referring to the "rst three components and of order
0 and !1, respectively, referring to the last component.

6.3. ¹he proof of the relations (4.5)

Firstly, it is easy to see that the operators K
1
, K

2
are not self-adjoint and the adjoint

operators are namely

(K*
1
V ) (r) :"

1

4n PR)
E*(r, r@ )V(r@) ds (r@), (A.12)

(K*
2
V ) (r) :"

1

4n PR)
V(r@) )R(R

r{
, n; @ )E*T(r, r@ ) ds(r@), (A.13)
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where E*(r, r@ ) is the fundamental solution of the adjoint thermoelastic operator L*
and is obtained by interchanging c with iug in E (r, r@ ). In addition, it satis"es the
relation E*(r, r@)"ET(r@, r). Furthermore, we have for all /3 (C(R)))4 and
t3(C1,a (R)))4

S/, SDtTL2"SS*/, DtTL2

"PR)
K*

1
/ )R (K

2
t) ds"PR)

K
2
t )R* (K*

1
/) ds (A.14)

"PR)
(K

2
!1

2
I)t ) (R*K*

1
#1

2
I)/ds"PR)

(K2
2
!1

4
I )t )/ds.

(A.15)

In equality (A.14) we have used the Green formula (A.3), while equality (A.15) is due to
the jump relation for the single- and double-layer potentials. Obviously, it follows that
SD"K2

2
!1

4
I. In a similar way, it can be shown that the adjoint relation

DS"K*2
2

!1
4
I is also valid.

References

1. Babu\ ska, I. and Aziz, A. K., &Survey lecture on the mathematical foundations of the "nite element
method', ¹he Mathematical Foundations of the Finite Element Method with Applications to partial
Di+erential Equations (Aziz, A. K., ed., pp. 5}359, Academic Press, New York, 1972.

2. Cakoni, F. and Dassios, G., &The coated thermoelastic body within a low-frequency elastodynamic
"eld', Int. J. Engng. Sci., 36, 1815}1838 (1998).

3. Cakoni, F. and Dassios, G., &The Atkinson}Wilcox theorem in thermoelasticity', Quart. Appl. Math.
(accepted).

4. Chapko, R., Kress, R. and MoK nch, L., &On the numerical solution of a hypersingular integral equation
for elastic scattering from a planar crack' (to appear).

5. Colton, D. and Kress, R., Inverse Acoustic and Electromagnetic Scattering ¹heory, Springer-Verlag,
Berlin, 1992.

6. Costabel, M. and Stephan, E. P., &An improved boundary element Galerkin method for three-dimen-
sional crack problems', Integral Equations Operator ¹heory 10, 467}505 (1987).

7. Dassios, G. and Kostopoulos, V., &The scattering amplitudes and cross-sections in the theory of
thermoelasticity', SIAM J. Appl. Math., 48, 79}98 (1988).

8. Duduchava, R. and Wendland, W. L., &The Wiener}Hopf method for systems of pseudodi!erential
equations with an application to crack problems', Integral Equations Operator ¹heory 23, 295}335
(1995).

9. Eskin, G. I., Boundary Problems for Elliptic Pseudo-Di+erential Operators, Transl. of Math. Mon.,
American Math. Soc., Providence, RI, 1981.

10. HaK hner, P., &On acoustic, electromagnetic, and elastic scattering problems in inhomogeneous media',
Preprint, NAM, UniversitaK t GoK ttingen, 1998-01 Habilitation, THD Institut fuK r Numerische und
Angewandte Mathematik, 1998.

11. Hsiao, G., Stephan, E. and Wendland, W., &On the Dirichlet problem in elasticity for a domain exterior
to an arc', J. Comp. Appl. Math., 34, 1}19 (1991).

12. Jentsch, L. and Natroshvili, D., &Thermoelastic oscillations of anisotropic bodies', Preprint 96-1,
Technische UniversitaK t Chemnitz, FakultaK t fuK r Mathematik, 1996.

13. Jentsch, L. and Natroshvili, D., &Interaction between thermoelastic and scalar oscillation "elds',
Integral Equations Operator ¹heory 28, 261}288 (1997).

14. Kupradze, V., ¹hree-dimensional Problems of the Mathematical ¹heory of Elasticity and ¹hermo-
elasticity, North-Holland, New York, 1979.

15. Leis, R., Initial Boundary <alue Problems in Mathematical Physics, Wiley, New York, 1986.
16. W. Nowacki, Dynamic Problems of ¹hermoelasticity, Warsaw, Poland 1975.

Thermoelastic Screen Scattering Problem in R3 465

Math. Meth. Appl. Sci., 23, 441}466 (2000)Copyright ( 2000 John Wiley & Sons, Ltd.



17. Stephan, E. P., &Boundary integral equations for mixed boundary value problems, screen and transmis-
sion problems in R3, Habilitationsschrift', ¹HD-Preprint 848, Math. Dept., TH Darmstadt, 1984.

18. Stephan, E. P., &A boundary integral equation method for three-dimensional crack problems in
elasticity', Math. Meth. in Appl. Sci., 8, 609}623 (1986).

19. Stephan, E. P., &Boundary integral equations for screen problems in R3', Integral Equations Operator
¹heory. 10, 236}257 (1987).

20. Wendland, W. L., &Boundary element methods and their asymptotic convergence', ¹heoretical Acous-
tics and Numerical ¹echniques (Filippi, P., ed.), CISM Courses and Lectures, Vol. 277, pp. 135}215,
Springer-Verlag, Vienna, 1983.

21. Wendland, W. L., Integral Equation Methods for Boundary-<alue Problems, Springer, Berlin, 1997.
22. Wendland, W. L. and Stephan, E. P., &A hypersingular boundary integral method for two-dimensional

screen and crack problems', Arch. Rat. Mech. Anal., 112, 363}390 (1990).
23. Wendland, W. L. and Zhu. J., &The boundary element method of three-dimensional Stokes #ows

exterior to an open surface', Math. Comput. Modelling, 15, 19}42 (1991).

466 F. Cakoni

Math. Meth. Appl. Sci., 23, 441}466 (2000)Copyright ( 2000 John Wiley & Sons, Ltd.


