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Abstract

We exhibit a target signature obtainable from the electromagnetic far field pattern at fixed frequency that allows
one to distinguish a perfect conductor from an anisotropic medium of finite conductivity.
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1. Introduction

This paper can be viewed as a continuation of work initiated by Colton and [&je$s that paper, the
authors suggested “an alternative direction in inverse scattering theory than that pursued to date, where one
only tries to obtain lower and upper bounds for a few relevant features of the scattering object rather than
attempting a complete reconstruction”. In particulaf9ia lower bound for the arclength of the boundary
of a coated scattering objectlif was obtained from a knowledge of the location of the eigenvalues of the
far field operator corresponding to the scattering of fixed frequency TM-polarized electromagnetic plane
waves. The result was subsequently extended to the case of elastic waves by Alves afid kitessever,
the methods of1,9] suffered from the fact that in order to obtain the desired estimate it was necessary
to know the far field pattern of the scattered field for all angles of incidence and observafit2], this
problem was overcome by using the far field equation associated with the linear sampling method instead
of the eigenvalues of the far field operator. Unfortunately, the lower bounds obtaif@d 2hwere in
general rather crude and required an a priori knowledge of the surface impedance of the scattering object.

In some areas of practical importance in inverse scattering theory even upper and lower bounds are
more than is needed. Indeed, in problems associated with the detection of hostile objects, it is often
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only important to know if the scattering object is coated or not. For example, in the use of elec-
tromagnetic waves to distinguish between a perfectly conducting tank and a wooden decoy of the
same shape coated with metallic paint, it is only desired to determine a “target signature” that dis-
tinguishes between an actual tank and a coated decoy. The purpose of this paper is to exhibit an ap
propriate target signature for problems of this type, i.e. a number obtainable from a knowledge of
the far field pattern of the scattered electromagnetic wave at fixed frequency that will enable one to
distinguish a perfect conductor from a coated anisotropic object of the same shape. Our approach
to this problem is based on extending the idea$l@j to the case of electromagnetic waves in an
anisotropic medium with the key ingredient in doing this being the recent result of Haddar establishing
the well-posedness of the interior transmission problem for Maxwell’s equations in an anisotropic medium
[13].

The plan of our paper is as follows. In the next section, we will formulate the mathematical problems
associated with the scattering of electromagnetic waves by a perfect conductor and an anisotropic mediun
of finite conductivity. We then use the relationship between the far field operator and the interior trans-
mission problem to exhibit a target signature that distinguishes between these two cases. We conclude b
commenting on the physically important cases of limited aperture far field data, piecewise homogeneous
background media and the limiting case when the width of coating and the resistivity in the coating both
tend to zero.

2. Formulation of the problem

We consider the scattering of a time-harmonic electromagnetic plane wave by a bounded @bstacle
(the scatterer) ilR3. In particular letD c R® be a bounded domain having23-smooth boundary D
such that the exterior domaib, := R3\ D is connected. The unit normal vectora®d directed into the
exterior ofD is denoted by. Throughout the paper we denote @the unit sphere ifR>.

2.1. Scattering by a perfect conductor

We first assume thd is a perfectly conducting obstacle. After factoring out a term of the foritf e
wherew is the frequency, we are led to the following boundary value problem for the electri&faid
magnetic fieldH:

curlE —ikH =0, curlH+ikE=0 in De (2)
and

vx E=0o0naD. ()
The total fieldE andH is given by

E=FE + ES, H=H+ H° ©)
E® andHS are the scattered fields satisfying the Silver—Muller radiation condition:

lim (HSx x —rE® =0 (4)

r—>0o0
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uniformly in x = x/|x|, r = |x|, and the incident field& andH' are given by

E'(x;d, p) = - curleurlp kX _ ik(d x p) x d ek
H'(x;d, p) = curl p& ¥ = ikd x p &k -

wherek > 0 is the wave numbed, € £2 a unit vector giving the direction of the incident plane wave and
p € R3is the polarization. From now on the problems (1)—(5) will be referred to as problem (PC).

2.2. Scattering by an anisotropic medium of finite conductivity

We now assume that the scatterer is a bounded anisotropic medium of finite conductivity. Theldomain
(the scatterer) is the support of the anisotropic material. If the scatterer is illuminated by a time-harmonic
electromagnetic plane wave with frequenrgyhan the total electric and magnetic fieldland H satisfy

curl E — iwpoH = 0, curl H + (iwe(x) —o(x))E=0 in RS (6)
where the total field&€ and A are given by
E=E +ES, H=H + H°, 7)

where ES and HS are the radiating scattered fields; andH' the incident plane waves. The electric
permittivity €o and magnetic permeabilify, of the exterior domaiD, := R3\ D are positive constants
whereas the scatterer has the same magnetic permeakyjlig the exterior medium but the electric
permittivity € is real 3x 3 matrix-valued function such thag = ¢g/ in De and the conductivity is

a real 3x 3 matrix-valued function such that = 0 in De. If we now defineE = (1//€)E, H =
(1//mo)H, N(x) = (1/€0)(e(x) + i(o(x)/w)) andk? = epuow?, and defineH := (1/ik) curl E we
obtain the following problem for the electric fiekd

(i) curlcurl E — k>N(x)E = 0, (i) E= ES+ E',

(iii) lim (curlES x x —ikrE®) =0 in RS (8)
whereE® andHS are the scattered fieldg' andH' the incident fields given by (5) and the Silver—Miiller
radiation condition (8(iii)) is satisfied uniformly it = x/r.

We assume thall is a symmetric matrix-valued function whose entries are bounded measurable
complex-valued functions iR3 such thatV = I in De. _

Furthermore, we assume that there exists a congtant such that, for af € C3, £-Re(N)E > y|€|?
almost everywhere ifR® and£ - Im(N)é > 0 in D. The last two assumption are made in order to
guarantee the existence of solution to the interior transmission problenfil@]¥. From the point of
view of the application mentioned in the Introduction, we would requiréNjito be very small except
for a highly conducting portion neaD. In the sequel the problem (8) will be referred to as problem
(AM).

For the mathematical framework of our problem we need to introduce the following Sobolev spaces. Let-
ting L2(D) and L?(3D) denote the space of square integrable functions defineD oand aD,
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respectively, we define

H(curl, D) := {U € (L?(D))® : curlU e (L*(D))3},
U(D) :={U € H(curl, D) : curlU € H(curl, D)},
L%(D) := {U € (L*D))*: v-U = 00ndD},

Hy?(0D) := {U € H™¥2(8D) : v- U = 0, divyp U € HY2(3D)},

whereH~Y2(3D) is the trace space of the Sobolev sp&c&D) (the space of functions that arefid(D)
together with their first-order derivatives). Moreover, we denotéligy(curl, R%) andif.(R?) the space
of functions that are iH(curl, K) andi/(K), respectively, for every compact sktc R3.

Itis already known that both scattering problems are well posed. In particy&d it is shown that
the problem (PC) has a unique solutiBnH € Hoc(curl, De) and in[14] itis shown that the transmission
problem (AM) has a solutiol, H € Hyc(curl, R%). Moreover, the Silver—Miiller radiation condition
implies that the corresponding scattered fid@landHS® has the asymptotic behavif8]:

ik|x|

Ei) = & {Eoooc; d,p)+0 (i)} ,
N N

ik|x| 1
| x| |x|

whereE..(-; d, p) and Hy(+; d, p) defined on the unit sphere are the electric far field pattern and the
magnetic far field pattern, respectively, corresponding to the incident direction d and polazatase
far field patterns satisfy the relations:

H3(x) =

Hoo(X; d, p) = X x Exo(X; d, p), X-Hy(X;d, p) =% Ex(x;d, p) =0.

Assuming that the suppol} of the scatterer is already determined by using methods such as synthetic
aperture radar or the linear sampling method, we want to determine if the sctieegperfect conductor

or an anisotropic media of finite conductivity from a knowledge of the (measured) electric far field pattern
Eo(3:d, p)fork,d e 2o C 2andp e R3. Inparticular our aimis to give a “target signature” determined
from the electric far field pattern that will distinguish between these two cases.

3. Atarget signature
Let us first assume that the electric far field pattBgp(x; d, p) is known for allx, d on the unit sphere
2 andp e R3 (the case of limited aperture data will be discussed in the next section). We can then define
the far field operatoF : L2(2) — L?(2) by
FO® = [ Enliid @) dsd). g€ L. ©)

2

An electromagnetic Herglotz pair is defined to be a pair of vector fields of the form:

. 1
E,(x) = /Q e (d) ds(d), Hy(x) = EV x E,(x) (10)



F. Cakoni, D. Colton/Mathematics and Computers in Simulation 66 (2004) 325-335 329

with kernelg € L?(£2). Note that an electromagnetic Herglotz pair is an entire solution of Maxwell's
equations. One can easily see by superpositiorRtp&t the electric far field pattern corresponding to the
incident field being an electromagnetic Herglotz pair with kerkgld). Next we consider the first kind
integral equation known as the far field equation (the equation associated with the linear sampling method
for finding the support of the scattering object from the knowledge of the far field patterri5;6,1.3):

(FOR) = EeoolX; 2, 9) (11)

for an arbitrary point € R® and polarization; € R3 whereE . is the electric far field pattern of the
electric dipole:

Eo(x: 2,9) 1= %curlx CUlq®(x,2),  He(x: z, ) i= curlgd(x, 7) (12)
with @(x, z) 1= (1/4m)(€**2l/|x — z|) andg € R3. In particular,
ik -
Eeoo(k;2,q) = — (& x q) x X2, (13)
’ 47

If z € D than for every, > 0 there exists g, € L2(£2) such that
[[(FG.)(X) — Eeoo(X; 2, @Il 12(2) < €n- (14)

This result is proved ifB,6] for the case whekis not a Maxwell eigenvalue fdd andF corresponds to
(PC) and in13] in for case wherf corresponds to (AM).

In the rest of our paper we want to develop a simple mathematical criteria based on an approximate
(regularized) solution of the far field equation (11) that distinguishes between a perfect conductor and an
anisotropic medium of finite conductivity.

To this end we need the following technical lemma.

Lemma 3.1. Let E, H} € Hoc(curl, D) and E3, HS € Hoc(curl, Dg) be radiating solutions of the
Maxwell equations with electric far field patterng &, E, ~, respectively. Then

/ (v x ES-curlE5 —v x E5-curl E9)ds = —2ik/ E1 oo, - E2.00 Os. (15)
oD 2

The proof of this lemma for smooth radiating solutions can be fourjdiOh(Lemma 4.1). It is easy to
see that the proof also holds f&f,:(curl, D) radiating solutions.

3.1. An equality for perfect conductors

Let D be the support of a perfectly conducting obstacleRiitk far field operator corresponding to the
problem (PC). We consider a sequenrgéending to zero an tends to infinity and a fixed pointe D.
Assume thak is not a Maxwell eigenvalue fdd and letg, € L?(£2) be such that for eveny (14) holds.

In particular it is shown if5] (if one setsu = 0) and in[6] (if one setsl"; = @) thatg, is the kernel of
the electromagnetic Herglotz paiE( , H,,) such thatkE,, approximates with accuracy of orderthe
unique solutiork, of the interior boundary value problem:

curlcurlEg — k*Eg =0 in D, vx Eg=—vx Ee on aD, (16)
whereE, ;= E¢(:; g, 2) is the electric field of the electric dipole given by (12).
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Now let us denote bye>, Hy the unique solution of (PC) corresponding to the incident wave being
the electromagnetic Herglotz paikF,, , ikH,,), and letE, = E; + ikE,, be the total electric field. By
applying the second vector Green formula and using the boundary conditiég)y = 0 ondD we obtain

0=/ (vx E,-curlE, —v x E, -curl E,) ds
oD
=/ (vxEz-curIEfL‘—vxEi-curlEi)ds—ik/ (v x ES-curlE,,
oD oD
—vx Eg, -curlES)ds + ik/ (v x Eg, -CUrlES —v x ES - curlE,,) ds
oD

=/ (vx ES-curlES —v x ES-curl E3) ds
oD

— 2ik Re</ (vx ES-curlE,, — v x E, - curlE}) ds) . 17)
D
Hence, making use dfemma 3.1 we have
0= [|Fg, 1172, + Re,), (18)
where

I, ;= f (vx ES-curlE, — v x Eg, -curl ES)ds.
oD

Since lim,_,  IKE,, = Egin H(D, curl), we have that
lim (vx E}) =—lim (ikv x E;)) = —vx Eg=v X E¢
n— 0o n—o00

in H(;Vl/z(aD). Hence, fromthe continuous dependence of the solution of the problem (PC) on the boundary
condition (c.f.[15]), we have that

lim E? = Ee(-;2,9)

n—oo

in Hioc(curl, De) (note thatg, as well asE? depend orz and the polarization!).
Therefore

n—>oo n—oQ

lim I, = lim / (vx ES -curlE,, — v x Eg, - curl ES) ds
aD

1 _ _
= _E/ (v x Ee(y: z,q) - curly Eo(y) — v x Eo(y) - curl, Ee(y; z, g)) ds. (19)
aD

One can easily show that

v x Ee(y; z,q) - curly Eq(y) = —IE(—ik) curl, curl, g®(y, z) - (v x Ho(y))
= —q - curl, curl, ®(y, 2) (v x Ho(y)) (20)

and
v x Eo(y) - curly Ee(y; z, q) = ikv x Eo(y) - He(y; z, q) = ikq- curl, @(y, 2)(v x Eo(y)).  (21)
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Hence substituting (20) and (21) into (19) and using Stratton—Chu formula yields
lim Hn =—q- EO(Z)' (22)
But from (14) we have that

. k? n N N Ay A
n“_)moo HFOull 20 = ||Ee,oo||ig(g) = ng (A xq) xXx) - ((x xq) xx)dx

and, sincg(x x ¢q) x X) - ((k x g¢) x %) = ||q]1?> — ( - ¢)%, by simple computation we obtain

: k?
Jm 11FGll200) = 1 Eecoll7z o) = g Ilall" (23)
Finally, by taking the limit as — oo in (18) and using (22) and (23) we have the following theorem.

Theorem 3.2. Let D be a perfectly conducting obstacle and assume that k is not a Maxwell eigenvalue
for D. Then

k2
o 19I” = Re(g - Eo(2)) =0, (24)
7T
where g is the unique solution fL6) and z an arbitrary fixed point in D

Note that for different points € D we have different solutiong, of (16) since the boundary condition
itself depends om.

3.2. An equality for anisotropic media of finite conductivity

Now we consider the scattering problem for an anisotropic mediumF Lt the far field operator
corresponding to the problem (AM) aagke,, andg, be as inSection 3.1For eachn we again construct
the total fieldE, = E} + iKE,, that is the solution of (8) corresponding to the electromagnetic Herglotz
pair with kernelkg, as incident field. In particular the scattered figffie Ujoc(R3) is the unique solution
of

(i) curlcurl ES — k°NES = (ik)k*(N — DE,,, (i) lim (curl ES x x —ikrES) =0 in R3
(25)

Our analysis is based on the interior transmission problem associated with (AM). In partiddla} iin
is proved that there exists a unique solutionEy € L?(D) of the interior transmission problem:

curlcurl Eg — k*Eg = 0, curlcurlE —k¥*>NE=0 in D:
vx (E— Eg) =v x Eg, vx (curlE —curlEg) =v x curlEe on 4D, (26)
whereEe. = Ee(-; z, q) is the electric field of the electric dipole given by (12).

Indeed, for every:, g, € L?(£2) which satisfies (14) is the kernel of an electromagnetic Herglotz
pair (E,,, H,,) such that lim_, ., ikE,, = Eg in L?(D). In [13] it is also shown that lim, o E =
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ESin Uppe(R®), whereES = E.for x € De andES = E — Eg for x € D. Obviously lim,_.» E, = E in
L?(D). In particularES is the unique solution of

(i) curlcurl ES — k®°NE° = k*(N — I)Eo, (i) lim (curlESx x —ikrE® =0 in R3. (27)

n—oo

To deduce an equality similar to the oneSaction 3.1we again considek, , E} andE, = E; + iKE,,
and write

kZ/ (N — DE, - E, dx
D
= k2/ (N — D(ES +iKE,,) - ESdx + kz(—ik)/ (N — D(ES +iKE,,) - E,, dx. (28)
D D

We first evaluate the imaginary part of the first integral on the right-hand side of (28). To this end we use
(25) and the vector Green formula to obtain

Im (kZ/ (N — D)(ES +iKE,) - ES dx>
D

=Im (/ (curlcurl ES — k?ES) - ES dx) =1Im </ curlcurlES - E® dx)
D D

:Im(/ curIE;j-curlEﬁdx—/ vfo,-curIE,fds>:—Im</ vin-CurlEl‘:‘ds)
D oD aD

:—%Im (faD(vxEi-curlEﬁ—vxEi-curlEi)ds). (29)
FromLemma 3.1we can conclude that
Im (kZ/D (N — D(E; +ikE,) - E} dx> = —k|IFgull72q)- (30)
SinceFg, — Ee in L?(£2) asn — oo, using (23) we have that

_ : - k®
lim Im (kZ/D (N — D(E; +iKE,) - ES dx) = —k||Ee,oo||it2(9) = —gllqllz.

n—oo

Next we evaluate the second integral on the right-hand side of (28). We have
(—ik)kZ/D (N — D(ES +iKE,,) - E,, dx
= (—ik)kaD (N —D(E; + E% - E, dx+ (—ik)kZ/D (N — D(KE,, — Eo) - E,, dx
+(—ik)k2/D (N — D(E®+ Eo) - Eg, dx.
We now observe that

lim kZ/ (N — D(ES — E% - E,, =0, (31)
D

n—oo
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lim sz (N — D(KE,, — Eg) - E,, = 0. (32)
D

n—oo

Furthermore, by using (27) and the vector Green formula, (20) and (21), and the Stratton—Chu formula
together with the fact that x ES(y) = v x Ee(y; z,q) andv x curl ES(y) = v x curl E¢(y; z, g) for
y € dD we obtain

(—ik)sz (N — D(E®+ Eo) - E,, dy
D
= (—ik)/ (curl curl ES — k?E®) - E,, dy = (—ik)/ (curlcurlES- E, — ES-curlcurl E, ) dy
D D
= (—ik)/ (v x E*(y) -curly Eg, (y) — v x E,, (y) - curly ES(y)) ds
aD

= (—ik)/ (v X Ee(y; 2, q) - curly Eq (y) — v x E,, (y) - curly, Ee(y; z, q)) ds
oD
= (—ik)(ik)q - Eq, (2).
Therefore we have

lim (—ik)kZ/ (N — D(E®+ Eo) - Eg, dy = ikq- Eo(2),
n— oo D

where lim,_, » (—ik)Egn (z) = Eo(z) is interpreted through the use of the mean value theorem[&8]in
Finally, we take the imaginary part of both sides of (28) and let oo to obtain

lim Im (kZ/ (N—-DE, -E, dx) = —k||Eeool| + IM(ikq- Eo(2)).
D

n—oo

Hence
2 7 k3 2
Im(k“| (N—DE-Edx ) =——I|lql|°+ kRelg - Eo(2)).
D 6w
We have proved the following theorem.

Theorem 3.3. Let D be the support of a conducting anisotropic medium of finite conductivity. Then

_ k2
€[ E-m@nEdy =~ llgl? + Relg - Eo(a), (33)
D s
where(Ep, E) is the unique solution d26) and z an arbitrary fixed point in D

Our analysis suggests that a target signature that distinguishes between a perfect conductor and ar
anisotropic medium of finite conductivity is the functi&g. In particular, for a fixedy € R® andz € D,
Re(q - Eo(2)) is equal to k?/3)|q? if D is the support of a perfect conductor while it is different form
(k?/37)|gf? if D is the support of a medium of finite conductivity. Obviously the funcigrcannot be
computed as long as one does not know the nature of the material of the sdatteli@rever,Eqy can
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be approximated arbitrarily closely by the electric figlgof the electromagnetic Herglotz pair with the
kernelg € L?(£2) whereg is an approximate solution of the far field equation:

(FP(X) = Eeo(X; 2, 9). (34)

This g is then sought for by applying regularization methods to solve the ill-posed integral equation (34)
(c.f.[7,11)).

4. Physical considerations

We conclude by briefly addressing some questions that arise in connection with the target signature
discussed in the previous section.

4.1. Limited aperture

In most cases of practical interest the far field dagax, d) is restricted to the case whe&mndd are on
a subser?, of the unit sphere?, i.e. we are concerned with limited aperture scattering data. This situation
can be handled by using the resultd%sjf. In particular in[5] it is shown that the set of electromagnetic
Herglotz pairs can be approximated uniformly on compact subsets of BjaflradiusR by a Herglotz
pair with kernel supported on a subset@fThe electric field of this new Herglotz pair can now be used
in place ofE, to approximate the target signatug

4.2. Piecewise homogeneous background

Our model problem of the scattering from a perfect conductor or an anisotropic medium of finite con-
ductivity assumes that the scatterer isimmersed in a homogeneous background. Obviously in application:
(such as the one mentioned in Introduction) it is important to consider the scatterer in a piecewise homo-
geneous background. There are two ways to treat this situation. Neglecting multiple scattering effects, one
way is to simply subtract the scattering due to the known background when solving the far field equation.
In particular, the far field data used in the far field equation (11) is the difference of the measured far field
data and the far field due to the scattering from the known background. Examples using this approach
for a related problem can be found[d]. If multiple scattering effects cannot be ignored, then one can
modify the far field equation by incorporating the background in the model as is d¢rie in

4.3. Thin coating

In the limiting case where the conductivity become arbitrarily large in a thin layeraizand Im(\)
is arbitrarily small in the remainder & one obtains the so-called conductive transmission condition on
the coated parf’, of the surfac®D = I'; U I'; of the anisotropic mediur® [2]. In particular we are led
to the mixed transmission problem:

(i) Vx E°—ikH®*=0andV x H®+ikE> = 0in D,

(i) VxE—ikH=0andV x H+IkNx)E =0in D,
(i) vx E5—vx E=—vx E'onaD,
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(iv) vaS—vaz—vafonFl, _
(V) vx HS—vx H=—vx H +n(x)[vx (ES+ E") x v]on I3,
(Vi) lim,_ o (H® x x —rES) =0,

where the positive real-valued functign> 0 defined onl", describes the conducting properties of the
thin coating layer. This problem is formulated and studief8in

In this limiting case the equality corresponding to the on@heorem 3.Xontains on the left-hand
side

/ nllv x E||i[2ds >0
I;

instead of the integral over the whole dom&in
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