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Abstract

We exhibit a target signature obtainable from the electromagnetic far field pattern at fixed frequency that allows
one to distinguish a perfect conductor from an anisotropic medium of finite conductivity.
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1. Introduction

This paper can be viewed as a continuation of work initiated by Colton and Kress[9]. In that paper, the
authors suggested “an alternative direction in inverse scattering theory than that pursued to date, where one
only tries to obtain lower and upper bounds for a few relevant features of the scattering object rather than
attempting a complete reconstruction”. In particular, in[9] a lower bound for the arclength of the boundary
of a coated scattering object inR2 was obtained from a knowledge of the location of the eigenvalues of the
far field operator corresponding to the scattering of fixed frequency TM-polarized electromagnetic plane
waves. The result was subsequently extended to the case of elastic waves by Alves and Kress[1]. However,
the methods of[1,9] suffered from the fact that in order to obtain the desired estimate it was necessary
to know the far field pattern of the scattered field for all angles of incidence and observation. In[12], this
problem was overcome by using the far field equation associated with the linear sampling method instead
of the eigenvalues of the far field operator. Unfortunately, the lower bounds obtained in[9,12] were in
general rather crude and required an a priori knowledge of the surface impedance of the scattering object.

In some areas of practical importance in inverse scattering theory even upper and lower bounds are
more than is needed. Indeed, in problems associated with the detection of hostile objects, it is often
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only important to know if the scattering object is coated or not. For example, in the use of elec-
tromagnetic waves to distinguish between a perfectly conducting tank and a wooden decoy of the
same shape coated with metallic paint, it is only desired to determine a “target signature” that dis-
tinguishes between an actual tank and a coated decoy. The purpose of this paper is to exhibit an ap-
propriate target signature for problems of this type, i.e. a number obtainable from a knowledge of
the far field pattern of the scattered electromagnetic wave at fixed frequency that will enable one to
distinguish a perfect conductor from a coated anisotropic object of the same shape. Our approach
to this problem is based on extending the ideas of[12] to the case of electromagnetic waves in an
anisotropic medium with the key ingredient in doing this being the recent result of Haddar establishing
the well-posedness of the interior transmission problem for Maxwell’s equations in an anisotropic medium
[13].

The plan of our paper is as follows. In the next section, we will formulate the mathematical problems
associated with the scattering of electromagnetic waves by a perfect conductor and an anisotropic medium
of finite conductivity. We then use the relationship between the far field operator and the interior trans-
mission problem to exhibit a target signature that distinguishes between these two cases. We conclude by
commenting on the physically important cases of limited aperture far field data, piecewise homogeneous
background media and the limiting case when the width of coating and the resistivity in the coating both
tend to zero.

2. Formulation of the problem

We consider the scattering of a time-harmonic electromagnetic plane wave by a bounded obstacleD
(the scatterer) inR3. In particular letD ⊂ R

3 be a bounded domain having aC2-smooth boundary∂D
such that the exterior domainDe := R

3\D̄ is connected. The unit normal vector to∂D directed into the
exterior ofD is denoted byν. Throughout the paper we denote byΩ the unit sphere inR3.

2.1. Scattering by a perfect conductor

We first assume thatD is a perfectly conducting obstacle. After factoring out a term of the form e−iωt

whereω is the frequency, we are led to the following boundary value problem for the electric fieldE and
magnetic fieldH:

curlE − ikH = 0, curlH + ikE = 0 in De (1)

and

ν × E = 0 on∂D. (2)

The total fieldE andH is given by

E = Ei + Es, H = H i + Hs, (3)

Es andHs are the scattered fields satisfying the Silver–Müller radiation condition:

lim
r→∞ (Hs × x − rEs) = 0 (4)
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uniformly in x̂ = x/|x|, r = |x|, and the incident fieldsEi andHi are given by

Ei(x; d, p) = i

k
curl curlpeikdx = ik(d × p) × d eikdx,

H i(x; d, p) = curlpeikdx = ikd× peikdx, (5)

wherek > 0 is the wave number,d ∈ Ω a unit vector giving the direction of the incident plane wave and
p ∈ R

3 is the polarization. From now on the problems (1)–(5) will be referred to as problem (PC).

2.2. Scattering by an anisotropic medium of finite conductivity

We now assume that the scatterer is a bounded anisotropic medium of finite conductivity. The domainD
(the scatterer) is the support of the anisotropic material. If the scatterer is illuminated by a time-harmonic
electromagnetic plane wave with frequencyω than the total electric and magnetic fieldsẼ andH̃ satisfy

curl Ẽ − iωµ0H̃ = 0, curl H̃ + (iωε(x) − σ(x))Ẽ = 0 in R
3, (6)

where the total fields̃E andH̃ are given by

Ẽ = Ei + Ẽs, H̃ = H i + H̃s, (7)

whereẼs and H̃s are the radiating scattered fields;Ei and Hi the incident plane waves. The electric
permittivity ε0 and magnetic permeabilityµ0 of the exterior domainDe := R

3\D̄ are positive constants
whereas the scatterer has the same magnetic permeabilityµ0 as the exterior medium but the electric
permittivity ε is real 3× 3 matrix-valued function such thatε0 = ε0I in De and the conductivityσ is
a real 3× 3 matrix-valued function such thatσ = 0 in De. If we now defineẼ = (1/

√
ε0)E, H̃ =

(1/
√

µ0)H, N(x) = (1/ε0)(ε(x) + i(σ(x)/ω)) andk2 = ε0µ0ω
2, and defineH := (1/ik) curlE we

obtain the following problem for the electric fieldE:

(i) curl curlE − k2N(x)E = 0, (ii ) E = Es + Ei,

(iii ) lim
r→∞ (curlEs × x − ikrEs) = 0 in R

3, (8)

whereEs andHs are the scattered fields;Ei andHi the incident fields given by (5) and the Silver–Müller
radiation condition (8(iii)) is satisfied uniformly in̂x = x/r.

We assume thatN is a symmetric matrix-valued function whose entries are bounded measurable
complex-valued functions inR3 such thatN = I in De.

Furthermore, we assume that there exists a constantγ > 1 such that, for allξ ∈ C
3, ξ̄ ·Re(N)ξ ≥ γ|ξ|2

almost everywhere inR3 and ξ̄ · Im(N)ξ > 0 in D. The last two assumption are made in order to
guarantee the existence of solution to the interior transmission problem (c.f.[13]). From the point of
view of the application mentioned in the Introduction, we would require Im(N) to be very small except
for a highly conducting portion near∂D. In the sequel the problem (8) will be referred to as problem
(AM).

For the mathematical framework of our problem we need to introduce the following Sobolev spaces. Let-
ting L2(D) and L2(∂D) denote the space of square integrable functions define onD and ∂D,
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respectively, we define

H(curl,D) := {U ∈ (L2(D))3 : curlU ∈ (L2(D))3},
U(D) := {U ∈ H(curl,D) : curlU ∈ H(curl,D)},
L2

t (∂D) := {U ∈ (L2(∂D))3 : ν · U = 0 on∂D},
H

−1/2
div (∂D) := {U ∈ H−1/2(∂D) : ν · U = 0,div∂D U ∈ H−1/2(∂D)},

whereH−1/2(∂D) is the trace space of the Sobolev spaceH1(D) (the space of functions that are inL2(D)

together with their first-order derivatives). Moreover, we denote byHloc(curl,R
3) andUloc(R

3) the space
of functions that are inH(curl,K) andU(K), respectively, for every compact setK ⊂ R

3.
It is already known that both scattering problems are well posed. In particular in[8,15] it is shown that

the problem (PC) has a unique solutionE,H ∈ Hloc(curl,De) and in[14] it is shown that the transmission
problem (AM) has a solutionE,H ∈ Hloc(curl,R

3). Moreover, the Silver–Müller radiation condition
implies that the corresponding scattered fieldsEs andHs has the asymptotic behavior[8]:

Es(x) = eik|x|

|x|
{
E∞(x̂; d, p) + O

(
1

|x|
)}

,

Hs(x) = eik|x|

|x|
{
H∞(x̂; d, p) + O

(
1

|x|
)}

, |x| → ∞,

whereE∞(·; d, p) andH∞(·; d, p) defined on the unit sphereΩ are the electric far field pattern and the
magnetic far field pattern, respectively, corresponding to the incident direction d and polarizationp. These
far field patterns satisfy the relations:

H∞(x̂; d, p) = x̂ × E∞(x̂; d, p), x̂ · H∞(x̂; d, p) = x̂ · E∞(x̂; d, p) = 0.

Assuming that the supportD of the scatterer is already determined by using methods such as synthetic
aperture radar or the linear sampling method, we want to determine if the scattererD is a perfect conductor
or an anisotropic media of finite conductivity from a knowledge of the (measured) electric far field pattern
E∞(x̂; d, p) for x̂,d ∈ Ω0 ⊂ Ω andp ∈ R

3. In particular our aim is to give a “target signature” determined
from the electric far field pattern that will distinguish between these two cases.

3. A target signature

Let us first assume that the electric far field patternE∞(x̂; d, p) is known for allx̂, d on the unit sphere
Ω andp ∈ R

3 (the case of limited aperture data will be discussed in the next section). We can then define
the far field operatorF : L2

t (Ω) → L2
t (Ω) by

(Fg)(x̂) :=
∫
Ω

E∞(x̂; d, g(d))ds(d), g ∈ Lt(Ω). (9)

An electromagnetic Herglotz pair is defined to be a pair of vector fields of the form:

Eg(x) =
∫
Ω

eikxdg(d)ds(d), Hg(x) = 1

ik
∇ × Eg(x) (10)
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with kernelg ∈ L2
t (Ω). Note that an electromagnetic Herglotz pair is an entire solution of Maxwell’s

equations. One can easily see by superposition thatFg is the electric far field pattern corresponding to the
incident field being an electromagnetic Herglotz pair with kernel ikg(d). Next we consider the first kind
integral equation known as the far field equation (the equation associated with the linear sampling method
for finding the support of the scattering object from the knowledge of the far field pattern—c.f.[5,6,13]):

(Fg)(x̂) = Ee,∞(x̂; z, q) (11)

for an arbitrary pointz ∈ R
3 and polarizationq ∈ R

3 whereEe,∞ is the electric far field pattern of the
electric dipole:

Ee(x; z, q) := i

k
curlx curlxqΦ(x, z), He(x; z, q) := curlxqΦ(x, z) (12)

with Φ(x, z) := (1/4π)(eik|x−z|/|x − z|) andq ∈ R
3. In particular,

Ee,∞(x̂; z, q) = ik

4π
(x̂ × q) × x̂ e−ikx̂·z. (13)

If z ∈ D than for everyεn > 0 there exists agn ∈ L2
t (Ω) such that

||(Fgn)(x̂) − Ee,∞(x̂; z, q)||L2
t (Ω) < εn. (14)

This result is proved in[5,6] for the case whenk is not a Maxwell eigenvalue forD andF corresponds to
(PC) and in[13] in for case whenF corresponds to (AM).

In the rest of our paper we want to develop a simple mathematical criteria based on an approximate
(regularized) solution of the far field equation (11) that distinguishes between a perfect conductor and an
anisotropic medium of finite conductivity.

To this end we need the following technical lemma.

Lemma 3.1. Let Es
1, H

s
1 ∈ Hloc(curl,De) and Es

2, H
s
2 ∈ Hloc(curl,De) be radiating solutions of the

Maxwell equations with electric far field patterns E1,∞, E2,∞, respectively. Then∫
∂D

(ν × Es
1 · curl Ēs

2 − ν × Ēs
2 · curlEs

1)ds = −2ik
∫
Ω

E1,∞, · Ē2,∞ ds. (15)

The proof of this lemma for smooth radiating solutions can be found in[10] (Lemma 4.1). It is easy to
see that the proof also holds forHloc(curl,De) radiating solutions.

3.1. An equality for perfect conductors

Let D be the support of a perfectly conducting obstacle andF the far field operator corresponding to the
problem (PC). We consider a sequenceεn tending to zero asn tends to infinity and a fixed pointz ∈ D.
Assume thatk is not a Maxwell eigenvalue forD and letgn ∈ L2

t (Ω) be such that for everyn (14) holds.
In particular it is shown in[5] (if one setsµ = 0) and in[6] (if one setsΓI = ∅) thatgn is the kernel of
the electromagnetic Herglotz pair (Egn

,Hgn
) such that ikEgn

approximates with accuracy of orderεn the
unique solutionE0 of the interior boundary value problem:

curl curlE0 − k2E0 = 0 in D, ν × E0 = −ν × Ee on ∂D, (16)

whereEe := Ee(·; q, z) is the electric field of the electric dipole given by (12).
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Now let us denote byEs
n,H

s
n the unique solution of (PC) corresponding to the incident wave being

the electromagnetic Herglotz pair (ikEgn
, ikHgn

), and letEn = Es
n + ikEgn

be the total electric field. By
applying the second vector Green formula and using the boundary conditionν×En = 0 on∂D we obtain

0 =
∫
∂D

(ν × En · curl Ēn − ν × Ēn · curlEn)ds

=
∫
∂D

(ν × Es
n · curl Ēs

n − ν × Ēs
n · curlEs

n)ds − ik
∫
∂D

(ν × Es
n · curl Ēgn

− ν × Ēgn
· curlEs

n)ds + ik
∫
∂D

(ν × Egn
· curl Ēs

n − ν × Ēs
n · curlEgn

)ds

=
∫
∂D

(ν × Es
n · curl Ēs

n − ν × Ēs
n · curlEs

n)ds

− 2ik Re

(∫
∂D

(ν × Es
n · curl Ēgn

− ν × Ēgn
· curlEs

n)ds

)
. (17)

Hence, making use ofLemma 3.1, we have

0 = ||Fgn
||2

L2
t (Ω)

+ Re(In), (18)

where

In :=
∫
∂D

(ν × Es
n · curl Ēgn

− ν × Ēgn
· curlEs

n)ds.

Since limn→∞ ikEgn
= E0 in H(D, curl), we have that

lim
n→∞ (ν × Es

n) = − lim
n→∞ (ikν × Egn

) = −ν × E0 = ν × Ee

inH
−1/2
div (∂D). Hence, from the continuous dependence of the solution of the problem (PC) on the boundary

condition (c.f.[15]), we have that

lim
n→∞ Es

n = Ee(·; z, q)
in Hloc(curl,De) (note thatgn as well asEs

n depend onz and the polarizationq!).
Therefore

lim
n→∞ In = lim

n→∞

∫
∂D

(ν × Es
n · curl Ēgn

− ν × Ēgn
· curlEs

n)ds

= − 1

ik

∫
∂D

(ν × Ee(y; z, q) · curly Ē0(y) − ν × Ē0(y) · curly Ee(y; z, q))ds. (19)

One can easily show that

ν × Ee(y; z, q) · curly Ē0(y) = − i

k
(−ik) curlz curlz qΦ(y, z) · (ν × H̄0(y))

= −q · curlz curlz Φ(y, z)(ν × H̄0(y)) (20)

and

ν × Ē0(y) · curly Ee(y; z, q) = ikν × Ē0(y) · He(y; z, q) = ikq · curlz Φ(y, z)(ν × Ē0(y)). (21)
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Hence substituting (20) and (21) into (19) and using Stratton–Chu formula yields

lim
n→∞ In = −q · Ē0(z). (22)

But from (14) we have that

lim
n→∞ ||Fgn||L2

t (Ω) = ||Ee,∞||2
L2

t (Ω)
= k2

(4π)2

∫
Ω

((x̂ × q) × x̂) · ((x̂ × q) × x̂)dx̂

and, since((x̂ × q) × x̂) · ((x̂ × q) × x̂) = ||q||2 − (x̂ · q)2, by simple computation we obtain

lim
n→∞ ||Fgn||L2

t (Ω) = ||Ee,∞||2
L2

t (Ω)
= k2

6π
||q||2. (23)

Finally, by taking the limit asn → ∞ in (18) and using (22) and (23) we have the following theorem.

Theorem 3.2. Let D be a perfectly conducting obstacle and assume that k is not a Maxwell eigenvalue
for D. Then

k2

6π
||q||2 − Re(q · E0(z)) = 0, (24)

where E0 is the unique solution of(16)and z an arbitrary fixed point in D.

Note that for different pointsz ∈ D we have different solutionsE0 of (16) since the boundary condition
itself depends onz.

3.2. An equality for anisotropic media of finite conductivity

Now we consider the scattering problem for an anisotropic medium. LetF be the far field operator
corresponding to the problem (AM) andz, εn, andgn be as inSection 3.1. For eachn we again construct
the total fieldEn = Es

n + ikEgn
that is the solution of (8) corresponding to the electromagnetic Herglotz

pair with kernel ikgn as incident field. In particular the scattered fieldEs
n ∈ Uloc(R

3) is the unique solution
of

(i) curl curlEs
n − k2NEs

n = (ik)k2(N − I)Egn
, (ii ) lim

n→∞ (curlEs
n × x − ikrEs

n) = 0 in R
3.

(25)

Our analysis is based on the interior transmission problem associated with (AM). In particular in[13] it
is proved that there exists a unique solutionE,E0 ∈ L2(D) of the interior transmission problem:

curl curlE0 − k2E0 = 0, curl curlE − k2NE = 0 in D;
ν × (E − E0) = ν × Ee, ν × (curlE − curlE0) = ν × curlEe on ∂D, (26)

whereEe = Ee(·; z, q) is the electric field of the electric dipole given by (12).
Indeed, for everyn, gn ∈ L2

t (Ω) which satisfies (14) is the kernel of an electromagnetic Herglotz
pair (Egn

,Hgn
) such that limn→∞ ikEgn

= E0 in L2(D). In [13] it is also shown that limn→∞ Es
n =
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Es in Uloc(R
3), whereEs = Ee for x ∈ De andEs = E − E0 for x ∈ D. Obviously limn→∞ En = E in

L2(D). In particularEs is the unique solution of

(i) curl curlEs − k2NEs = k2(N − I)E0, (ii ) lim
n→∞ (curlEs × x − ikrEs) = 0 in R

3. (27)

To deduce an equality similar to the one inSection 3.1, we again considerEgn
, Es

n andEn = Es
n + ikEgn

and write

k2
∫
D

(N − I)En · Ēn dx

= k2
∫
D

(N − I)(Es
n + ikEgn

) · Ēs
n dx + k2(−ik)

∫
D

(N − I)(Es
n + ikEgn

) · Ēgn
dx. (28)

We first evaluate the imaginary part of the first integral on the right-hand side of (28). To this end we use
(25) and the vector Green formula to obtain

Im

(
k2

∫
D

(N − I)(Es
n + ikEgn

) · Ēs
n dx

)

= Im

(∫
D

(curl curlEs
n − k2Es

n) · Ēs
n dx

)
= Im

(∫
D

curl curlEs
n · Ēs

n dx

)

= Im

(∫
D

curlEs
n · curl Ēs

n dx −
∫
∂D

ν × Ēs
n · curlEs

n ds

)
= −Im

(∫
∂D

ν × Ēs
n · curlEs

n ds

)

= −1

2
Im

(∫
∂D

(ν × Ēs
n · curlEs

n − ν × Es
n · curl Ēs

n)ds

)
. (29)

FromLemma 3.1we can conclude that

Im

(
k2

∫
D

(N − I)(Es
n + ikEgn

) · Ēs
n dx

)
= −k||Fgn||2L2

t (Ω)
. (30)

SinceFgn → Ee,∞ in L2
t (Ω) asn → ∞, using (23) we have that

lim
n→∞ Im

(
k2

∫
D

(N − I)(Es
n + ikEgn

) · Ēs
n dx

)
= −k||Ee,∞||2

L2
t (Ω)

= − k3

3π
||q||2.

Next we evaluate the second integral on the right-hand side of (28). We have

(−ik)k2
∫
D

(N − I)(Es
n + ikEgn

) · Ēgn
dx

= (−ik)k2
∫
D

(N − I)(Es
n + Es) · Ēgn

dx + (−ik)k2
∫
D

(N − I)(ikEgn
− E0) · Ēgn

dx

+(−ik)k2
∫
D

(N − I)(Es + E0) · Ēgn
dx.

We now observe that

lim
n→∞ k2

∫
D

(N − I)(Es
n − Es) · Ēgn

= 0, (31)



F. Cakoni, D. Colton / Mathematics and Computers in Simulation 66 (2004) 325–335 333

lim
n→∞ k2

∫
D

(N − I)(ikEgn
− E0) · Ēgn

= 0. (32)

Furthermore, by using (27) and the vector Green formula, (20) and (21), and the Stratton–Chu formula
together with the fact thatν × Es(y) = ν × Ee(y; z, q) andν × curlEs(y) = ν × curlEe(y; z, q) for
y ∈ ∂D we obtain

(−ik)k2
∫
D

(N − I)(Es + E0) · Ēgn
dy

= (−ik)
∫
D

(curl curlEs − k2Es) · Ēgn
dy = (−ik)

∫
D

(curl curlEs · Ēgn
− Es · curl curlĒgn

)dy

= (−ik)
∫
∂D

(ν × Es(y) · curly Ēgn
(y) − ν × Ēgn

(y) · curly Es(y))ds

= (−ik)
∫
∂D

(ν × Ee(y; z, q) · curly Ēgn
(y) − ν × Ēgn

(y) · curly Ee(y; z, q))ds

= (−ik)(ik)q · Ēgn
(z).

Therefore we have

lim
n→∞ (−ik)k2

∫
D

(N − I)(Es + E0) · Ēgn
dy = ikq · Ē0(z),

where limn→∞ (−ik)Ēgn
(z) = Ē0(z) is interpreted through the use of the mean value theorem as in[12].

Finally, we take the imaginary part of both sides of (28) and letn → ∞ to obtain

lim
n→∞ Im

(
k2

∫
D

(N − I)En · Ēn dx

)
= −k||Ee,∞|| + Im(ikq · Ē0(z)).

Hence

Im

(
k2

∫
D

(N − I)E · Ē dx

)
= − k3

6π
||q||2 + k Re(q · E0(z)).

We have proved the following theorem.

Theorem 3.3. Let D be the support of a conducting anisotropic medium of finite conductivity. Then

k

∫
D

Ē · Im(N)E dx = − k2

6π
||q||2 + Re(q · E0(z)), (33)

where(E0, E) is the unique solution of(26)and z an arbitrary fixed point in D.

Our analysis suggests that a target signature that distinguishes between a perfect conductor and an
anisotropic medium of finite conductivity is the functionE0. In particular, for a fixedq ∈ R

3 andz ∈ D,
Re(q · E0(z)) is equal to (k2/3π)|q|2 if D is the support of a perfect conductor while it is different form
(k2/3π)|q|2 if D is the support of a medium of finite conductivity. Obviously the functionE0 cannot be
computed as long as one does not know the nature of the material of the scattererD. However,E0 can
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be approximated arbitrarily closely by the electric fieldEg of the electromagnetic Herglotz pair with the
kernelg ∈ L2

t (Ω) whereg is an approximate solution of the far field equation:

(Fg)(x̂) = Ee,∞(x̂; z, q). (34)

Thisg is then sought for by applying regularization methods to solve the ill-posed integral equation (34)
(c.f. [7,11]).

4. Physical considerations

We conclude by briefly addressing some questions that arise in connection with the target signature
discussed in the previous section.

4.1. Limited aperture

In most cases of practical interest the far field dataE∞(x̂, d) is restricted to the case whenx̂ anddare on
a subsetΩ0 of the unit sphereΩ, i.e. we are concerned with limited aperture scattering data. This situation
can be handled by using the results of[5]. In particular in[5] it is shown that the set of electromagnetic
Herglotz pairs can be approximated uniformly on compact subsets of a ballBR of radiusRby a Herglotz
pair with kernel supported on a subset ofΩ. The electric field of this new Herglotz pair can now be used
in place ofEg to approximate the target signatureE0.

4.2. Piecewise homogeneous background

Our model problem of the scattering from a perfect conductor or an anisotropic medium of finite con-
ductivity assumes that the scatterer is immersed in a homogeneous background. Obviously in applications
(such as the one mentioned in Introduction) it is important to consider the scatterer in a piecewise homo-
geneous background. There are two ways to treat this situation. Neglecting multiple scattering effects, one
way is to simply subtract the scattering due to the known background when solving the far field equation.
In particular, the far field data used in the far field equation (11) is the difference of the measured far field
data and the far field due to the scattering from the known background. Examples using this approach
for a related problem can be found in[4]. If multiple scattering effects cannot be ignored, then one can
modify the far field equation by incorporating the background in the model as is done in[7].

4.3. Thin coating

In the limiting case where the conductivity become arbitrarily large in a thin layer near∂D and Im(N)
is arbitrarily small in the remainder ofD one obtains the so-called conductive transmission condition on
the coated partΓ 2 of the surface∂D = Γ̄1 ∪ Γ̄2 of the anisotropic mediumD [2]. In particular we are led
to the mixed transmission problem:

(i) ∇ × Es − ikHs = 0 and∇ × Hs + ikEs = 0 in De,

(ii) ∇ × E − ikH = 0 and∇ × H + ikN(x)E = 0 in D,

(iii) ν × Es − ν × E = −ν × Ei on ∂D,



F. Cakoni, D. Colton / Mathematics and Computers in Simulation 66 (2004) 325–335 335

(iv) ν × Hs − ν × H = −ν × H i on Γ1,

(v) ν × Hs − ν × H = −ν × H i + η(x)[ν × (Es + Ei) × ν] on Γ2,

(vi) lim r→∞ (Hs × x − rEs) = 0,

where the positive real-valued functionη > 0 defined onΓ 2 describes the conducting properties of the
thin coating layer. This problem is formulated and studied in[3].

In this limiting case the equality corresponding to the one inTheorem 3.3contains on the left-hand
side ∫

Γ2

η||ν × E||2
L2

t
ds > 0

instead of the integral over the whole domainD.
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