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Abstract

We prove the existence of transmission eigenvalues corresponding to the inverse
scattering problem for isotropic and anisotropic media for both the scalar problem
and Maxwell’s equations. Considering a generalized abstract eigenvalue problem, we
are able to extend the ideas of Päivärinta and Sylvester [15] to prove the existence
of transmission eigenvalues for a larger class of interior transmission problems. Our
analysis includes both the case of a medium with positive contrast and of a medium
with negative contrast provided that the contrasts are large enough.
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1 Introduction

The interior transmission problem is a boundary value problem in a bounded domain which
arises in inverse scattering theory for inhomogeneous media. Although simply stated, this
problem is not covered by the standard theory of elliptic partial differential equation since
as it stands it is neither elliptic nor self-adjoint. Of particular interest is the spectrum
associated with this boundary value problem, more specifically the existence of eigenval-
ues which are called transmission eigenvalues. We note that the case of a zero contrast
leads to a continuous spectrum for the corresponding eigenvalue problem. On the other
hand, for non-zero contrast, the occurrence of a transmission eigenvalue corresponds to the
scattering matrix having an eigenvalue equal to one. Besides the theoretical importance
of transmission eigenvalues in connection with uniqueness and reconstruction results in

∗Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716-2553, USA
†INRIA Saclay Ile de France / CMAP Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex

FRANCE

1



inverse scattering theory, recently they have been used to obtain information about the in-
dex of refraction from measured data [1], [4]. For information on the interior transmission
problem, we refer the reader to [2], [7] and in particular to the survey paper by Colton,
Päivärinta and Sylvester [9].

Up to now, most of the known results on the interior transmission problem are con-
cerned with when the problem is well-posed. Roughly speaking, two main approaches
are available in this direction, namely integral equation methods [8], [11], and variational
methods typically applied to a fourth order equivalent boundary value problem [3], [5], [6],
[10], [17]. On the other hand, except for the case of spherically stratified medium [7], [9],
until recently little was known about the existence and properties of transmission eigenval-
ues. Applying the analytic Fredholm theory it was possible to show that the transmission
eigenvalues form at most a discrete set with infinity as the only possible accumulation
point. However, nothing was known in general about the existence of transmission eigen-
values untill the recent important result of Päivärinta and Sylvester [15] who were the
first to show that, in the case of (scalar) isotropic media a finite number of transmission
eigenvalues exist provided the index of refraction is bounded away from one. Kirsch [12],
has extended this existence result to the case of anisotropic media for both the scalar case
and Maxwell’s equations. However his approach works only if the index of refraction of
the scattering medium is less then the index of refraction of the background medium.

In this paper, inspired by the ideas of [15], we present a general proof for the existence of
transmission for a wide class of scattering problems. The main idea of our approach makes
use of a generalized eigenvalue problem for a family of positive definite and self-adjoint
operators with respect to a non negative compact operator. The plan of the paper is as
follows. In the next section we develop the abstract analytical framework. Then in Section
3 we give examples of interior transmission problems where we can apply our theory to
prove that transmission eigenvalues exist. In particular, we first recover the results of [15]
and then apply our approach to anisotropic media for both the scalar case and Maxwell’s
equations. We show that if the anisotropic index of refraction is greater than or less than
one everywhere in the scattering medium then finitely many transmission eigenvalues exist
provided that the contrast is big enough. The number of recovered eigenvalues depends
on how large the contrast is and we give explicit estimates for this number in terms of the
support of scattering medium.

We conclude by noting that many questions related to the spectrum of interior trans-
mission problems still remain open. In particular, we mention the analysis of the interior
transmission problem for scattering media with contrast that changes sign or is zero on a
set of finite measure.

2 Abstract analytical framework

Let U be a separable Hilbert space with scalar product (·, ·) and associated norm ‖·‖, and A
be a bounded, positive definite and self-adjoint operator on U . We recall that the operators
A±1/2 are defined by A±1/2 =

∫∞
0
λ±1/2dEλ where dEλ is the spectral measure associated
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with A. In particular, A±1/2 are also bounded, positive definite and self-adjoint operators
on U , A−1/2A1/2 = I and A1/2A1/2 = A. We shall consider the spectral decomposition of
the operator A with respect to self-adjoint non negative compact operators and the next
two theorems indicate the main properties of such decomposition.

Theorem 2.1 Let A be a positive definite and self-adjoint bounded linear operator on U
and let B be a non negative, self-adjoint and compact bounded linear operator on U . There
exists an increasing sequence of positive real numbers (λk)k≥1 and a sequence (uk)k≥1 of
elements of U such that Auk = λkBuk. The sequence (uk)k≥1 form a basis of (A ker(B))⊥

and can be chosen so that (Buk, ul) = δk,l. If ker(B)⊥ has infinite dimension then λk →
+∞ as k →∞.

Proof. This theorem is a direct consequence of the spectral decomposition of the non nega-
tive self-adjoint compact operator B̃ = A−1/2BA−1/2 (known as the Hilbert-Scmidt theorem
see e.g. [16]). Let (µk, vk)k≥1 be the sequence of positive eigenvalues and corresponding
eigenfunctions associated with B̃ such that {vk, k = 1, 2, . . .} form an orthonormal basis
for ker(B̃)⊥. Note that 0 is the only possible accumulation point for the sequence µk.
Then, one can easily check that λk = 1/µk and uk =

√
λk A

−1/2vk for k = 1, 2, . . . sat-
isfiy Auk = λkBuk. Obviously, if w ∈ A ker(B) then w = Az for some z ∈ kerB and
hence (uk, w) = λk(A

−1Buk, w) = λk(A
−1Buk, Az) = λk(Buk, z) = 0 which means that

uk ∈ (A ker(B))⊥. Furthermore, any v ∈ (A ker(B))⊥ can be written as v =
∑

k γkuk =∑
k γk
√
λkA

−1/2vk because it is easy to check that A1/2v ∈
(
ker(A−1/2BA−1/2)

)⊥
. This

ends the proof of the theorem. �

Theorem 2.2 Let A, B and (λk)k≥1 be as in Theorem 2.1 and define the Rayleigh quotient
as

R(u) =
(Au, u)

(Bu, u)

for u /∈ ker(B), where (· , ·) is the inner product in U . Then the following min-max
principles (known as Courant-Fischer formulae) hold

λk = min
W∈UA

k

(
max

u∈W\{0}
R(u)

)
= max

W∈UA
k−1

(
min

u∈(A(W+ker(B)))⊥\{0}
R(u)

)
where UAk denotes the set of all k-dimensional subspaces of (A ker(B))⊥.

Proof. The proof uses classical arguments and is given here for the reader’s convenience.
It is based on the fact that if u ∈ (A ker(B))⊥ then from Theorem 2.1 v we can write
u =

∑
k γkuk for some coefficients γk, where uk are defined in Theorem 2.1 (note that

the uk are orthogonal with respect to the inner-product induced by self-adjoint invertible
operator A). Then using the facts that (Buk, ul) = δk,l and Auk = λkBuk it is easy to see
that

R(u) =
1∑

k |γk|2
∑
k

λk|γk|2.
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Therefore, if Wk ∈ UAk denotes the space generated by {u1, . . . , uk} we have that

λk = max
u∈Wk\{0}

R(u) = min
u∈(A(Wk−1+ker(B)))⊥\{0}

R(u).

Next, let W be any element of UAk . Since W has dimension k and W ⊂ (A ker(B))⊥, then
W ∩ (AWk−1 + A ker(B))⊥ 6= {0}. Therefore

max
u∈W\{0}

R(u) ≥ min
u∈W∩(A(Wk−1+ker(B)))⊥\{0}

R(u) ≥ min
u∈(A(Wk−1+ker(B)))⊥\{0}

R(u) = λk

which proves the first equality of the theorem. Similarly, if W has dimension k − 1 and
W ⊂ (A ker(B))⊥, then Wk ∩ (AW )⊥ 6= {0}. Therefore

min
u∈(A(W+ker(B)))⊥\{0}

R(u) ≤ max
u∈Wk∩(AW )⊥\{0}

R(u) ≤ max
u∈Wk\{0}

R(u) = λk

which proves the second equality of the theorem. �

The following corollary shows that it is possible to remove the dependence on A in the
choice of the subspaces in the min-max principle for the eigenvalues λk.

Corollary 2.1 Let A, B, (λk)k≥1 and R be as in Theorem 2.2. Then

λk = min
W⊂Uk

(
max

u∈W\{0}
R(u)

)
(1)

where Uk denotes the set of all k-dimensional subspaces W of U such that W∩ker(B) = {0}.

Proof. From Theorem 2.2, since UAk ⊂ U it suffices to prove that

λk ≤ min
W⊂Uk

(
max

u∈W\{0}
R(u)

)
.

Let W ∈ Uk and let v1, v2, . . . , vk be a basis for W Each vector vk can be decomposed
into a sum v0

k + ṽk where ṽk ∈ (A ker(B))⊥ and v0
k ∈ ker(B) (which is the orthogonal

decomposition with respect to the scalar product induced by A). Since W ∩ ker(B) = {0},
the space W̃ generated by ṽ1, ṽ2, . . . , ṽk has dimension k. Moreover, W̃ ⊂ (A ker(B))⊥.
Now let ũ ∈ W̃ . Obviously ũ = u − u0 for some u ∈ W and u0 ∈ ker(B). Since Bu0 = 0
and (Au0, ũ) = 0 we have that

R(u) =
(Aũ, ũ) + (Au0, u0)

(Bũ, ũ)
= R(ũ) +

(Au0, u0)

(Bũ, ũ)
.

Consequently, since A is positive definite and B is non negative, we obtain

R(ũ) ≤ R(u) ≤ max
u∈W\{0}

R(u).
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Finally, taking the maximum with respect to ũ ∈ W̃ ⊂ (A ker(B))⊥ in the above inequality,
we obtain from Theorem 2.2 that

λk ≤ max
u∈W\{0}

R(u),

which completes the proof after taking the minimum over all W ⊂ Uk.
�

In the following we formulate the main result of this section which provides the theo-
retical basis of our analysis on the existence of transmission eigenvalues. This theorem is
a simple consequence of Theorem 2.2 and Corollary 2.1.

Theorem 2.3 Let τ 7−→ Aτ be a continuous mapping from ]0,∞[ to the set of self-adjoint
and positive definite bounded linear operators on U and let B be a self-adjoint and non
negative compact bounded linear operator on U . We assume that there exists two positive
constant τ0 > 0 and τ1 > 0 such that

1. Aτ0 − τ0B is positive on U ,

2. Aτ1 − τ1B is non positive on a k-dimensional subspace Wk of U .

Then each of the equations λj(τ) = τ for j = 1, . . . , k, has at least one solution in [τ0, τ1]
where λj(τ) is the jth eigenvalue (counting multiplicity) of Aτ with respect to B, i.e.
ker (Aτ − λj(τ)B) 6= {0}.

Proof. First we can deduce from (1) that for all j ≥ 1, λj(τ) is a continuous function of τ .
Assumption 1. shows that λj(τ0) > τ0 for all j ≥ 1. Assumption 2. implies in particular
that Wk ∩ ker(B) = {0}. Hence, another application of (1) implies that λj(τ1) ≤ τ1 for
1 ≤ j ≤ k. The desired result is then obtained by applying the intermediate value theorem.
�

3 The existence of transmission eigenvalues

Ou goal is to apply Theorem 2.3 to show the existence of one or more transmission eigen-
values corresponding to different scattering problems for inhomogeneous media. In all the
examples presented here, the corresponding interior transmission eigenvalue problem is
formulated as Aτ − τB = 0 where {Aτ} is a family of positive definite self adjoint bounded
linear operators and B is a non negative compact bounded linear operator, both defined on
appropriate Hilbert spaces. Then a transmission eigenvalue is the solution of λ(τ)− τ = 0
where λ(τ) is an eigenvalue of the generalized eigenvalue problem Aτ − λ(τ)B = 0.

Our first application concerns with the existence of transmission eigenvalues corre-
sponding to the scattering problem for an isotropic inhomogenouse medium in R2. This is
the simplest scattering problem for inhomogeneous media where we can present our basic
ideas with the least technicality. Using the analytical framework developed in Section 2,
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we recover the results obtained in [15]. Next, we carry our approach to prove the exis-
tence of transmission eigenvalues for the cases of electromagnetic scattering for anisotropic
media in R3 (the corresponding interior transmission problem is considered in [10] and
[5]) and for the scattering problem for anisotropic media in R2 (the corresponding interior
transmission problem is considered in [6]). We remark that the abstract analytical frame-
work presented here, although in the same spirit as [15], is applicable to a larger class of
problems then the analysis of [15]. In particular, our approach is based on a generalized
eigenvalue problem with respect to a non negative compact operator B which allows us, as
opposed to the approach in [15], to consider cases when the identity operator is no longer a
compact operator. Note that for all the problems considered here it is already known that
the transmission eigenvalues form at most a discrete set with infinity as the only possible
accumulation point [2], [5], [6], [9]-[11], [15] [17].

3.1 Scalar isotropic media

The interior transmission eigenvalue problem corresponding to the scattering problem for
the isotropic inhomogenous medium in R2 reads:

∆w + k2n(x)w = 0 in D (2)

∆v + k2v = 0 in D (3)

w = v on ∂D (4)

∂w

∂ν
=
∂v

∂ν
on ∂D (5)

for w ∈ L2(D) and v ∈ L2(D) such that w − v ∈ H2
0 (D) where

H2
0 (D) =

{
u ∈ H2(D) : u = 0 and

∂u

∂ν
= 0 on ∂D

}
.

Here we assume that n(x) and and 1/|n(x)− 1| > 0 are bounded positive real valued func-
tions defined in D. Furthermore, we assume that D ⊂ R2 is a bounded simply connected
region with piece-wise smooth boundary ∂D and denote by ν the outward normal vector
to ∂D. (Everything in this section holds true for the same equations in R3.) Transmission
eigenvalues are the values of k > 0 for which the above homogeneous interior transmission
has non zero solutions. It is possible to write (2)-(5) as an equivalent eigenvalue problem
for u = w − v ∈ H2

0 (D) for the following forth order equation(
∆ + k2n

) 1

n− 1

(
∆ + k2

)
u = 0 (6)

which in variational form is formulated as finding a function u ∈ H2
0 (D) such that∫

D

1

n− 1
(∆u+ k2u)(∆v + k2nv) dx = 0 for all v ∈ H2

0 (D). (7)
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We now define the following bounded sesquilinear forms on H2
0 (D)×H2

0 (D):

Aτ (u, v) =

(
1

n− 1
(∆u+ τu), (∆v + τv)

)
D

+ τ 2 (u, v)D (8)

Ãτ (u, v) =

(
1

1− n
(∆u+ τnu), (∆v + τnv)

)
D

+ τ 2 (nu, v)D (9)

=

(
n

1− n
(∆u+ τu), (∆v + τv)

)
D

+ (∆u, ∆v)D

and
B(u, v) = (∇u, ∇v)D (10)

where τ := k2 and (· , ·)D denotes the L2(D) inner product. Then (7) can be written as
either

Aτ (u, v)− τB(u, v) = 0 for all v ∈ H2
0 (D), (11)

or
Ãτ (u, v)− τB(u, v) = 0 for all v ∈ H2

0 (D). (12)

Obviously, if 1
n(x)−1

> γ > 0 almost everywhere in D then Aτ is a coersive sesquilinear

form on H2
0 (D)×H2

0 (D) whereas if
n(x)

1− n(x)
> γ > 0 almost everywhere in D then Ãτ is

a coersive sesquilinear form on H2
0 (D)×H2

0 (D). Indeed we have

Aτ (u, u) ≥ γ‖∆u+ τu‖2
L2 + τ 2‖u‖2

L2 ≥ γX2 − 2γXY + (γ + 1)Y 2 (13)

= ε
(
Y − γ

ε
X
)2

+

(
γ − γ2

ε

)
X2 + (1 + γ − ε)Y 2

≥
(
γ − γ2

ε

)
X2 + (1 + γ − ε)Y 2

for γ < ε < γ + 1, where X = ‖∆u‖L2(D) and Y = τ‖u‖L2(D). Furthermore, since
∇u ∈ H1

0 (D)2, using the Poincaré inequality we have that

‖∇u‖2
L2(D) ≤

1

λ0(D)
‖∆u‖2

L2(D) (14)

where λ0(D) is the first Dirichlet eigenvalue of −∆ on D. Hence we can conclude that

Aτ (u, u) ≥ Cτ‖u‖2
H2(D)

for some positive constant Cτ . Similarly if n(x)
1−n(x)

> γ > 0 then

Ãτ (u, u) ≥ γ‖∆u+ τu‖2
L2 + ‖∆u‖2

L2 ≥ (1 + γ)X2 − 2γXY + γY 2 (15)

= ε
(
X − γ

ε
Y
)2

+

(
γ − γ2

ε

)
Y 2 + (1 + γ − ε)X2

≥ (1 + γ − ε)X2 +

(
γ − γ2

ε

)
Y 2 (16)
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for γ < ε < γ + 1, whence as in the above, by using the Poincaré inequality,

Aτ (u, u) ≥ Cτ‖u‖2
H2(D)

for some positive constant Cτ .
Using the Riesz representation theorem we now define the bounded linear operators

Aτ : H2
0 (D)→ H2

0 (D), Ãτ : H2
0 (D)→ H2

0 (D) and B : H2
0 (D)→ H2

0 (D) by

(Aτu, v)H2(D) = Aτ (u, v),
(
Ãτu, v

)
H2(D)

= Ãτ (u, v) and (Bu, v)H2(D) = B(u, v).

Since n is real the sesquilinear formsAτ , Ãτ and B are hermitian and therefore the operators
Aτ , Ãτ and B are self-adjoint. Furthermore, by definition, B is a non negative operator
and if 1

n(x)−1
> γ > 0 then Aτ is a positive definite operator, whereas if n(x)

1−n(x)
> γ > 0

then Ãτ is a positive definite operator. Finally, noting that for u ∈ H2
0 (D) we have that

∇u ∈ H1
0 (D)2, since H1

0 (D)2 is compactly embedded in L2(D)2 we can conclude that
B : H2

0 (D) → H2
0 (D) is a compact operator. Also Aτ and Ãτ depend continuously on

τ ∈ (0, +∞). Hence, depending on the assumptions on n, we have that Aτ and B or Ãτ
and B , τ > 0 satisfy the conditions of Theorem 2.3 with U = H2

0 (D).
To prove existence of eigenvalues we shall prove that under some further assumptions on

n there exist τ0 and τ1 satisfying assumption 1 and assumption 2, respectively, of Theorem
2.3. This result is proven in Theorem 17 of [15] but we present here a slightly modified
proof which can be generalized in a straight forward manner to other applications such as
for anisotropic media and Maxwell’s equations which will be discussed next.

To this end let us set n∗ = infD(n) and n∗ = supD(n), denote by µp(D) > 0 the (p+1)−st
clamped plate eigenvalue (counting the multiplicity) in D and then set

θp(D) := 4
µp(D)1/2

λ0(D)
+ 4

µp(D)

λ0(D)2
.

Theorem 3.1 Let n ∈ L∞(D) satisfying either one of the following assumptions

1) 1 + θp(D) ≤ n∗ ≤ n(x) ≤ n∗ <∞,

2) 0 < n∗ ≤ n(x) ≤ n∗ < 1
1+θp(D)

.

Then, there exist p+ 1 transmission eigenvalues (counting multiplicity).

Proof. First assume that the assumption 1) holds. This assumption also implies that

0 <
1

n∗ − 1
≤ 1

n(x)− 1
≤ 1

n∗ − 1
<∞

and according to the above, Aτ and B, τ > 0 satisfy the assumptions of Theorem 2.3 with
U = H2

0 (D). Fom (13) and (14) we have

(Aτu− τBu, u)H2
0

= Aτ (u, u)− τ‖∇u‖2
L2 (17)

≥
(
γ − γ2

ε
− τ

λ0(D)

)
‖∆u‖2

L2 + τ(1 + γ − ε)‖u‖2
L2
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with γ = 1
n∗−1

and γ < ε < γ+1. Hence Aτ−τB is positive as long as τ <
(
γ − γ2

ε

)
λ0(D).

In particular, taking ε arbitrary closed to γ+1, the latter becomes τ < γ
1+γ

λ0(D) = λ0(D)
supD(n)

.

Then any positive number τ0 smaller then λ0(D)
supD(n)

satisfies assumption 1 of Theorem 2.3.

Set M = supD( 1
n−1

) = 1
n∗−1

. Then, restricting ourselves to functions in H2
0 (D) such

that ‖u‖L2 = 1, and using the Cauchy-Schwarz inequality, we have

(Aτu− τBu, u)H2
0

=

∫
D

1

n− 1
|∆u|2 dx+ τ 2

∫
D

n

n− 1
|u|2 dx

+ τ

∫
D

1

n− 1
(u∆u+ u∆u) dx− τ

∫
D

|∇u|2 dx

≤ M‖∆u‖2
L2 + τ 2(1 +M) + 2τM‖∆u‖L2 − τ‖∇u‖2

L2 .

Applying the Poincaré inequality to u ∈ H1
0 (D) one has

‖∇u‖2
L2 ≥ λ0(D).

Now let us denote by Vp the p+ 1 dimensional eigenspace associated with the lowest p+ 1
clamped plate eigenvalues. In particular, if u ∈ Vp such that ‖u‖L2 = 1 then ‖∆u‖2

L2 ≤ µp.
Note that the kernel of B contains only constant functions which are not in Vp. Hence for
u ∈ Vp we have

(Aτu− τBu, u)H2
0
≤ τ 2(1 +M)− τ

(
λ0(D)− 2Mµp(D)1/2

)
+Mµp(D)

for any τ > 0. In particular, the value of τ1 = λ0(D)−2Mµp(D)1/2

2+2M
minimizes the right hand

side, whence we obtain

(Aτu− τBu, u)H2
0
≤ −

(
λ0(D)− 2Mµp(D)1/2

)2

4 + 4M
+Mµp(D)

which becomes non positive if M ≤ λ0(D)2

4µp(D)1/2(λ0(D)+µp(D)1/2)
which means that

inf
D

(n) ≥ 1 + 4
µp(D)1/2

λ0(D)
+ 4

µp(D)

λ0(D)2
= 1 + θp(D).

We therefore have shown that if assumption 1 holds then Aτ1 − τ1B is non positive on
a p + 1 dimentional subspace of H2

0 (D). The theorem is now proven in this case by an
application of Theorem 2.3

Next we assume that assumption 2) holds. The proof for this case uses similar arguments
as in the previous case after replacing Aτ with Ãτ . In this case we have that

0 <
n∗

1− n∗
≤ n(x)

1− n(x)
≤ n∗

1− n∗
<∞,
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and therefore according to the above, Ãτ and B, τ > 0 satisfy the assumptions of Theorem
2.3 with U = H2

0 (D). From (15) and (14) we have(
Ãτu− τBu, u

)
H2

0

= Ãτ (u, u)− τ‖∇u‖2
L2 (18)

≥
(

1 + γ − ε− τ

λ0(D)

)
‖∆u‖L2 + τ

(
γ − γ2

ε

)
‖u‖2

L2

with γ = n∗
1−n∗ and γ < ε < γ+1. Hence Ãτ−τB is positive as long as τ < (1 + γ − ε)λ0(D).

In particular letting ε be arbitrarily close to γ shows in this case that any τ0 < λ0(D)
satisfies the assumption 1 in Theorem 2.3.

Now set M = supD
n

1−n = n∗

1−n∗ and observe that 1
1−n ≤ M + 1. Then doing the same

type of calculations as above assuming that u ∈ Vp and ‖u‖2
L2 = 1, we obtain(

Ãτu− τBu, u
)
H2

0

=

∫
D

1

1− n
|∆u|2 dx+ τ 2

∫
D

n

1− n
|u|2 dx

+ τ

∫
D

n

1− n
(u∆u+ u∆u) dx− τ

∫
D

|∇u|2 dx

≤ (M + 1)‖∆u‖2
L2 + τ 2M + 2τM‖∆u‖L2 − τ‖∇u‖2

L2

≤ τ 2M − τ
(
λ0(D)− 2Mµp(D)1/2

)
+ (M + 1)µp(D).

The minimizing value of τ of the right hand side is now τ1 = λ0(D)−2Mµp(D)1/2

2M
which gives

(Aτu− τBu, u)H2
0
≤ −

(
λ0(D)− 2Mµp(D)1/2

)2

4M
+ (M + 1)µp(D).

Hence the latter becomes non positive if M ≤ λ0(D)2

4µp(D)1/2(λ0(D)+µp(D)1/2)
which means that

supD(n) ≤ 1/(1 + θp(D)). Consequently if assumption 2 holds then Ãτ1 − τ1B is non
positive on a p + 1 dimentional subspace of H2

0 (D) and the result is proven in this case
again by an application of Theorem 2.3. �

3.2 The anisotropic Maxwell’s equations

Now we turn our attention to proving the existence of transmission eigenvalues correspond-
ing to the electromagnetic scattering problem for an anisotropic medium. Let D ⊂ R3 now
be a bounded simply connected region of R3 with piece-wise smooth boundary ∂D and
denote by ν the outward normal vector to ∂D. Let (·, ·)D denote the L2(D)3 scalar product
and consider the Hilbert spaces

H(curl , D) := {u ∈ L2(D)3 : curl u ∈ L2(D)3},
H0(curl , D) := {u ∈ H(curl , D) : u× ν = 0 on ∂D},
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equipped with the scalar product (u, v)curl = (u, v)D + (curl u, curl v)D and the corre-
sponding norm ‖·‖curl . Next we define

U(D) := {u ∈ H(curl , D) : curl u ∈ H(curl , D)},
U0(D) := {u ∈ H0(curl , D) : curl u ∈ H0(curl , D)},

equipped with the scalar product (u, v)U = (u, v)curl + (curl u, curl v)curl and the corre-
sponding norm ‖·‖U . Let N be a 3× 3 matrix valued function defined on D with L∞(D)
real valued entries, i.e. N ∈ L∞(D,R3×3). We first need to make precise the definition of
a bounded positive definite real matrix field.

Definition 3.1 A real matrix field K is said to be bounded positive definite on D if K ∈
L∞(D,R3×3) and if there exists a constant γ > 0 such that

ξ ·Kξ ≥ γ |ξ|2, ∀ξ ∈ C3 and a.e. in D. (19)

We will assume that N , N−1 and either (N−I)−1 or (I−N)−1 are bounded positive definite
real matrix fields on D. The interior transmission eigenvalue problem for the anisotropic
Maxwell’s equations in terms of electric fields is formulated as the problem of finding two
vector valued functions E ∈ L2(D)3 and E0 ∈ L2(D)3 such that E− E0 ∈ U0(D) satisfies

curl curl E− k2N E = 0 in D

curl curl E0 − k2 E0 = 0 in D

E× ν = E0 × ν on ∂D

curl E× ν = curl E0 × ν on ∂D.

As it is shown in [10] and [5] the transmission eigenvalue problem is equivalent to finding
u = E− E0 ∈ U0(D) such that

(curl curl − k2N)(N − I)−1(curl curl u− k2u) = 0. (20)

Putting (20) into a variational framework and letting τ := k2 we obtain that (20) is
equivalent to the problem of finding u ∈ U0(D) that satisfies

Aτ (u,v)− τB(u,v) = 0 for all v ∈ U0(D), (21)

or
Ãτ (u,v)− τB(u,v) = 0 for all v ∈ U0(D), (22)

where here Aτ , Ãτ and B are the continuous sesquilinear forms on U(D)× U0(D) defined
by

Aτ (u,v) =
(
(N − I)−1(curl curl u− τu), (curl curl v − τv)

)
D

+ τ 2 (u, v)D

Ãτ (u,v) =
(
(I −N)−1(curl curl u− τNu), (curl curl v − τNv)

)
D

+ τ 2 (Nu, v)D

=
(
N(I −N)−1(curl curl u− τu), (curl curl v − τv)

)
D

+ (curl curl u, curl curl v)D

11



and
B(u,v) = (curl u, curl v)D

respectively, with (· , ·)D denoting the L2(D)3 inner product. In a similar way as in Section
3.1, in [5] (Lemma 3.1) and [10] (Lemma 3.3), it is shown that if (N − I)−1 is a bounded
positive definite matrix field on D then Ak is a coercive hermitian sesquilinear form on
U0(D) × U0(D), whereas if N(I − N)−1 is a bounded positive definite matrix field on D
then Ãk is a coercive hermitian sesquilinear form on U0(D)× U0(D). Hence the bounded
linear operators Aτ : U0(D) → U0(D) and Ãτ : U0(D) → U0(D) defined using the Riesz
representation theorem by

(Aτu,v)U0
= Aτ (u,v) and

(
Ãτu,v

)
U0

= Ãτ (u,v)

are positive definite self-adjoint operators if (N − I)−1 and N(I −N)−1, respectively, are
bounded positive definite. It is obvious that the sesquilinear form B(· , ·) is hermitian and
non negative. In [10] (Lemma 3.4) it is shown that the non-negative self-adjoint bounded
linear operator B : U0(D) → U0(D) defined using the Riesz representation theorem by
(Bu,v)U0

= B(u,v) is also compact. Finally, the families of operators Aτ and Ãτ depend
continuously on τ ∈ (0, +∞). Hence, since the eigenvalue problems (21) and (22) are
equivalent to

Aτ − τB = 0 and Ãτ − τB = 0

respectively, we are at the position to apply Theorem 2.3 with U := U0(D). In particular
it remains to check whether the assumptions 1. and 2. of this theorem hold true for the
above generalized eigenvalue problems.

To this end let 0 < η1(x) ≤ η2(x) ≤ η3(x) be the eigenvalues of the positive definite
symmetric matrix N . Recall that the largest eigenvalue η3(x) which coincides with the
Euclidean norm ‖N(x)‖2 is given by by η3(x) = sup‖ξ‖=1(ξ̄ · N(x) ξ) and the smallest

eigenvalue η1(x) is given by η1(x) = inf‖ξ‖=1(ξ̄ ·N(x) ξ). We denote by N∗ = supD η3(x) and
N∗ = infD η1(x). Furthermore, let us consider the eigenvalue problem for the (curl curl )2

operator written in variational form as∫
D

(curl curl u curl curl v − κuv) dx = 0 for all v ∈ W0(D) (23)

where W0(D) := U0(D) ∩H0(div 0, D) with

H0(div 0, D) :=
{
u ∈ L2(D)3 : div u = 0 and ν · u = 0

}
.

The following decomposition is orthogonal with respect to L2(D)3-inner product

U0(D) =W0(D)⊕
{
u := ∇ϕ, ϕ ∈ H1(D)

}
.

Note that

the kernel of B =
{
u ∈ U0(D) such that u := ∇ϕ, ϕ ∈ H1(D)

}
.
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Moreover, W0(D) is continuously embedded in H1(D) (see [14]). It is easily seen that the
eigenvalues of this problem exist, are strictly positive and accumulate only at infinity, and
the corresponding eigenspaces are finite dimensional. The eigenfunctions of this eigenvalue
problem are divergent free functions with zero tangential and normal traces on ∂D and
therefor are in H1

0 (D). Since

∆u = ∇∇ · u− curl curl u = 0

the eigenfunctions of (23) coincide with the divergent free eigenfunctions of the vector bi-
harmonic equation with clamped plate boundary conditions. We denote by κp(D) > 0 the
(p+ 1)-th eigenvalue of (23) (eigenvalues are ordered in increasing order) and set

Θp(D) := 4
κp(D)1/2

λ0(D)
+ 4

κp(D)

λ0(D)2
.

Theorem 3.2 Let N ∈ L∞(D,R3×3) be a positive definite symmetric real matrix field on
D that satisfies either one of the following assumptions

1) 1 + Θp(D) ≤ N∗ ≤
(
ξ̄ ·N(x) ξ

)
≤ N∗ <∞,

2) 0 < N∗ ≤
(
ξ̄ ·N(x) ξ

)
≤ N∗ < 1

1+Θp(D)
.

for every ξ ∈ C3 such that ‖ξ‖ = 1 and for almost all x ∈ D. Then, there exist p + 1
transmission eigenvalues (counting multiplicity).

Proof. First assume that the assumption 1) holds. This assumption also implies that

0 <
1

N∗ − 1
‖ξ‖2 ≤

(
ξ̄ · (N − I)−1 ξ

)
≤ 1

N∗ − 1
‖ξ‖2 <∞

and according to the above, Aτ and B, τ > 0 satisfy the assumptions of Theorem 2.3 with
U = U(D). Hence following [5] and [10] in a similar way as in Section 3.1 we obtain that

(Aτu− τBu, u)U0
= Aτ (u,u)− τ‖curl u‖2

L2 (24)

≥
(
γ − γ2

ε

)
‖curl curl u‖2

L2 + τ(1 + γ − ε)‖u‖2
L2 − τ‖curl u‖2

L2

with γ = 1
N∗−1

and γ < ε < γ + 1. First we observe that since u× ν = 0 on ∂D, then

curl u · ν = 0 on ∂D.

This holds true for Lipshitz boundaries by interpreting the relationship curl u·ν = div∂D(u×
ν) in the weak sense [14]. On the other hand, the continuous embedding of

{u ∈ H0(curl , D) : div u = 0 in D}
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into H1(D)3 implies that curl u ∈ H1
0 (D)3. Then the Poincaré inequality implies that

‖curl u‖2 ≤ 1

λ0(D)
‖∇curl u‖2

L2(D)

where λ0(D) is the first Dirichlet eigenvalue of −∆ in D. Let ṽ be the extension of curl u
by 0 outside D. Then

‖∇curl u‖2
L2(D) = ‖∇ṽ‖2

L2(R3) = ‖curl ṽ‖2
L2(R3)+‖div ṽ‖2

L2(R3) = ‖curl ṽ‖2
L2(D)+‖div ṽ‖2

L2(D).

We therefore obtain that

‖curl u‖2
L2(D) ≤

1

λ0(D)
‖curl curl u‖2

L2(D). (25)

Now from (24) and (25) we obtain

(Aτu− τBu, u)U0
≥
(
γ − γ2

ε
− τ

λ(D)

)
‖curl curl u‖2

L2 + τ(1 + γ − ε)‖u‖2
L2 .

Hence Aτ − τB is positive as long as τ <
(
γ − γ2

ε

)
λ0(D). In particular taking ε arbitrary

close to γ + 1, the latter becomes τ < γ
1+γ

λ0(D) = λ0(D)
supD ‖N‖2

. Then any positive number τ0

smaller then λ0(D)
supD ‖N‖2

satisfies assumption 1 of Theorem 2.3.

Next we setM = supD sup‖ξ‖=1

(
ξ̄ · (N(x)− I)−1 ξ

)
= 1

N∗−1
. Then, restricting ourselves

to functions in U0(D) such that ‖u‖L2 = 1, and using the Cauchy-Schwarz inequality, we
have

(Aτu− τBu, u)U0
≤ M

∫
D

[
(curl curl u− τu) (curl curl u− τu) + τ 2|u|2 − τ |curl u|2

]
dx

= M‖curl curl u‖2
L2 + τ 2(1 +M)‖u‖2

L2 − τ‖curl u‖2
L2

− Mτ

∫
D

(u curl curl u + u curl curl u) dx

≤ M‖curl curl u‖2
L2 + τ 2(1 +M) + 2Mτ‖curl curl u‖L2 − τ‖curl u‖2

L2 .

Now let us denote byWp the p+1 dimensional eigenspace associated with the lowest p+1
eigenvalues of (23). In particular, if u ∈ Wp such that ‖u‖L2 = 1 then ‖curl curl u‖2

L2 ≤ κp.
Furthermore for such u ∈ Wp we have that div u = 0 and u ∈ H1

0 (D), whence arguing as in
the first part of the proof we have that ‖curlu‖L2 ≥ Λ0(D). Hence, restricted to u ∈ Wp,
we have

(Aτu− τBu, u)U0
≤ τ 2(1 +M)− τ

(
λ0(D)− 2Mκp(D)1/2

)
+Mκp(D)
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for any τ > 0. In particular, the value of τ1 = λ0(D)−2Mκp(D)1/2

2+2M
minimizes the right hand

side, whence we obtain

(Aτu− τBu, u)U0
≤ −

(
λ0(D)− 2Mκp(D)1/2

)2

4 + 4M
+Mκp(D)

which becomes non positive if M ≤ λ0(D)2

4κp(D)1/2(λ0(D)+κp(D)1/2)
which means that

inf
D
η1(x) ≥ 1 + 4

κp(D)1/2

λ0(D)
+ 4

κp(D)

λ0(D)2
= 1 + Θp(D)

where η1(x) is the smallest eigenvalue of N(x).
We therefore have shown that if assumption 1 holds then Aτ1 − τ1B is non positive on
a p + 1 dimentional subspace of U0(D). The theorem is then proven in this case by an
application of Theorem 2.3

Next we assume that assumption 2) holds. We proceed in the same way as in the previous
case after replacing Aτ with Ãτ . Now we have that

0 <
N∗

1−N∗
‖ξ‖2 ≤

(
ξ̄ ·N(I −N)−1 ξ

)
≤ N∗

1−N∗
‖ξ‖2 <∞.

Moreover, we have shown that Ãτ and B, τ > 0 satisfy the assumptions of Theorem 2.3
with U = U0(D). Hence following [5] and using (25) we obtain(

Ãτu− τBu, u
)
U0

= Ãτ (u,u)− τ‖curl u‖2
L2 (26)

≥ (1 + γ − ε)‖curl curl u‖2
L2 + τ

(
γ − γ2

ε

)
‖u‖2

L2 − τ‖curl u‖2
L2

≥
(

1 + γ − ε− τ

λ0(D)

)
‖curl curl u‖2

L2 + τ

(
γ − γ2

ε

)
‖u‖2

L2 (27)

with γ = N∗
1−N∗ and γ < ε < γ + 1. Hence Ãτu − τBu is positive as long as τ <

(1 + γ − ε)λ0(D). In particular letting ε be arbitrarily close to γ shows in this case that
any τ0 < λ0(D) satisfies the assumption 1 of Theorem 2.3.

Finally set M = supD sup‖ξ‖=1

(
ξ̄ ·N(x)(I −N(x))−1 ξ

)
= N∗

1−N∗ and observe that ξ̄(I−
N)−1ξ ≤ (M + 1)‖ξ‖2 for any ξ ∈ C3. Then doing the same type of calculations as in the
first case, assuming that u ∈ Wp and ‖u‖2

L2 = 1, we obtain

(Aτu− τBu, u)U0
≤ M

∫
D

(curl curl u− τu) (curl curl u− τu) dx

+

∫
D

(
|curl curl u|2 − τ |curl u|2

)
dx
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= (M + 1)‖curl curl u‖2
L2 + τ 2M‖u‖2 − τ‖curl u‖2

L2

− Mτ

∫
D

(u curl curl u + u curl curl u) dx

≤ (M + 1)‖curl curl u‖2
L2 + τ 2M + 2τM‖curl curl u‖L2 − τ‖curl u‖2

L2 .

≤ τ 2M − τ
(
λ0(D)− 2Mκp(D)1/2

)
+ (M + 1)κp(D).

The minimizing value of τ of the right hand side is now τ1 = λ0(D)−2Mµp(D)1/2

2M
which gives

(Aτu− τBu, u)U0
≤ −

(
λ0(D)− 2Mµp(D)1/2

)2

4M
+ (M + 1)µp(D).

Hence the latter becomes non positive if M ≤ λ0(D)2

4κp(D)1/2(λ0(D)+κp(D)1/2)
which means that

supD ‖N‖2 ≤ 1/(1 + θp(D)). Consequently if assumption 2 holds then Ãτ1 − τ1B is non
positive on a p + 1 dimentional subspace of U0(D) and the result is then proven in this
case again by application of Theorem 2.3.

Remark 3.1 Exactly the same analysis can be applied to prove the existence of trans-
mission eigenvalues for the anisotropic Maxwell’s equations with conducting transmission
conditions, i.e. for the problem considered in [5] with the surface conductivity η being a
bounded and purely complex valued function.

3.3 Scalar anisotropic media

The last example we consider is the interior transmission eigenvalue problem corresponding
to the scattering problem for an anisotropic scalar medium (for a physical model and more
on this interior transmission problem see [6]). Let D again be a bounded simply connected
region in R2 with piecewise smooth boundary ∂D. We consider a real 2× 2 matrix-valued
function A whose entries are bounded functions defined on D, i.e. A ∈ L∞(D,R2×2).
We assume that A, A−1 and either (A−1 − I)−1 or (I − A−1)−1 are bounded positive
definite matrices according to Definition 3.1 where we replace C3 by C2. Then the interior
transmission eigenvalue problem is formulated as

∇ · A∇w + k2w = 0 in D (28)

∆v + k2 v = 0 in D (29)

w = v on ∂D (30)

∂w

∂νA
=
∂v

∂ν
on ∂D (31)

where
∂w

∂νA
(x) := ν(x) · A(x)∇v(x), x ∈ ∂D.

We say that k > 0 is a transmission eigenvalue if (28)-(31) has a nontrivial solution
w, v ∈ H1(D). The main idea to study (28)-(31) is based on making an appropriate
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substitution and rewriting (28)-(31) as an eigenvalue problem for a fourth order differential
equation for which we can apply the machinery developed above. To this end we make the
substitution

w = A∇w ∈ L2(D)2, and v = ∇v ∈ L2(D)2

and hence ∇w = A−1w. Taking the gradient of (28) and (29), we obtain that w and v
satisfy

∇(∇ ·w) + k2A−1w = 0 and ∇(∇ · v) + k2v = 0, in D.

Obviously (31) implies that ν ·w = ν ·v on ∂D. Furthermore, from (28) and (29) we have
that

−k2w = ∇ ·w and − k2v = ∇ · v

and the transmission condition (30) yields ∇ · w = ∇ · v on ∂D. We now formulate the
interior transmission eigenvalue problem in terms of w and v. To this end we introduce
the Sobolev spaces

H(div , D) : =
{
u ∈ L2(D)3 : ∇ · u ∈ L2(D)

}
H0(div , D) : = {u ∈ H(div , D) : ν · u = 0 on ∂D}

and

H(D) : =
{
u ∈ H(div , D) : ∇ · u ∈ H1(D)

}
H0(D) : =

{
u ∈ H0(div , D) : ∇ · u ∈ H1

0 (D)
}

equipped with the scalar product (u,v)H(D) := (u,v)L2(D) + (∇ · u,∇ · v)H1(D).
The interior transmission eigenvalue problem in terms of w and v now reads: Find

w ∈ L2(D) and v ∈ L2(D) such that w − v ∈ H0(D) satisfies

∇(∇ ·w) + k2A−1w = 0 in D (32)

∇(∇ · v) + k2v = 0 in D. (33)

Note that the above boundary conditions for w and v are incorporated in the fact that
w − v ∈ H0(D). From the above analysis we have the following result:

Lemma 3.1 If k is a transmission eigenvalue, i.e. if w ∈ H1(D) and v ∈ H1(D) satisfy
(28)-(31), then w = A∇w ∈ L2(D)2 and v = ∇v ∈ L2(D)2 satisfy w − v ∈ H0(D) and
(32)-(33).

We now formulate (32)-(33) as an eigenvalue problem for a fourth order differential equa-
tion. Hence we have that u = w − v ∈ H0(D) satisfies

∇(∇ · u) + k2u = k2 (I − A−1) w in D. (34)

and from (34) using (32) we obtain the fourth order differential equation

(∇∇ ·+k2A−1) (A−1 − I)−1 (∇∇ · u + k2u) = 0 in D. (35)
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Note that u ∈ H0(D) implies that ν ·u = 0 and ∇ ·u = 0 on ∂D. The eigenvalue problem
for (35) can be written in variational form as the problem of finding u ∈ H0(D) that
satisfies∫

D

(A−1 − I)−1
(
∇∇ · u + k2u

)
·
(
∇∇ · v + k2A−1v

)
dx = 0 for all v ∈ H0(D) (36)

which, setting τ := k2, can be put into the following concise forms

Aτ (u,v)− τB(u,v) = 0 for all v ∈ H0(D) (37)

or
Ãτ (u,v)− τB(u,v) = 0 for all v ∈ H0(D). (38)

The sesquilinear forms Aτ , Ã and B here are defined by

Aτ (u,v) :=
(
(A−1 − I)−1 (∇∇ · u + τu) , (∇∇ · v + τv)

)
L2 + τ 2 (u,v)L2

Ãτ (u,v) : =
(
A−1(I − A−1)−1 (∇∇ · u + τu) , (∇∇ · v + τv)

)
L2

+ (∇∇ · u,∇∇ · v)L2 .

and
B(u,v) := (∇ · u,∇ · v)L2 .

Obviously, Aτ , Ãτ and B are continuous hermitian sesquilinear forms on H0(D)×H0(D).
Let us denote by Aτ , Ãτ and B the bounded linear operators fromH0(D) toH0(D) defined
using the Riesz representation theorem by

(Aτu, v)H0
= Aτ (u,v),

(
Ãτu, v

)
H0

= Ãτ (u,v), and (Bu, v)H0
= B(u,v)

for all v ∈ H0(D). In [6] The following result is proven

Lemma 3.2 The bounded linear operators Aτ : H0(D) → H0(D) and Ãτ : H0(D) →
H0(D) are positive definite and self-adjoint, and depend continuously on τ ∈ (0, +∞). The
bounded linear operator Bτ : H0(D)→ H0(D) is non negative, self-adjoint and compact.

The sesquilinear froms A, Ã and B for the current problem have exactly the same structure
as the respective sesquilinear forms in Section 3.2 where the curl curl operator is replaced
by grad div operator and the space U0(D) is replaced by H0(D). The operator B has a
big kernel, namely all divergence free functions, and since D is simply connected

the kernel of B = {u ∈ H0(D) such that u := curlψ, ψ ∈ H(curl , D)} .

Next, let 0 < α1(x) ≤ α2(x) be the eigenvalues of the positive definite symmetric 2 ×
2 matrix A−1. The largest eigenvalue α2(x), which coincides with the Euclidean norm
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‖A−1(x)‖2, is given by α2(x) = sup‖ξ‖=1(ξ̄ · A−1(x) ξ) and the smallest eigenvalue α1(x) is

given by α1(x) = inf‖ξ‖=1(ξ̄ ·A−1(x) ξ). We denote by A∗ = supD α(x) and A∗ = infD α1(x).
To state our result on the existence of transmission eigenvalues we need to consider the
eigenvalue problem for (∇∇·)2 which can be written in the variational form as∫

D

(∇∇ · u ∇∇ · v − ρuv) dx = 0 for all v ∈ K0(D) (39)

where K0(D) := H0(D) ∩H0(curl 0, D) with

H0(curl 0, D) :=
{
u ∈ L2(D)2 : curl u = 0 and ν × u = 0

}
.

The following decomposition is orthogonal with respect to L2(D)2-inner product

H0(D) = K0(D)⊕ {u := curlψ, ψ ∈ H(curl , D)} .
Again, we can easily see that the eigenvalues of the problem (39) exist, are strictly positive
and accumulate only at infinity and the corresponding eigenspaces are finite dimensional.
The eigenfunctions of this eigenvalue problem coincide with the curl free eigenfunctions of
the vector bi-harmonic operator with clamped plate boundary conditions. We denote by
ρp(D) > 0 the (p + 1)-th eigenvalue of (39) (eigenvalues are ordered in increasing order)
and set

Σp(D) := 4
ρp(D)1/2

λ0(D)
+ 4

ρp(D)

λ0(D)2
.

Exactly in the same way as in the proof of Theorem 3.2 by replacing the operators curl curl
by grad div, and grad by div and the space U0(D) by H0(D) it is now possible to prove
the following theorem.

Theorem 3.3 Let A ∈ L∞(D,R2×2) be a positive definite symmetric real matrix field on
D satisfying either one of the following assumptions

1) 1 + Σp(D) ≤ A∗ ≤
(
ξ̄ · A−1(x) ξ

)
≤ A∗ <∞,

2) 0 < A∗ ≤
(
ξ̄ · A−1(x) ξ

)
≤ A∗ < 1

1+Σp(D)
.

for every ξ ∈ C2 such that ‖ξ‖ = 1 and for almost all x ∈ D. Then there exist p + 1
transmission eigenvalues (counting multiplicity).

4 Conclusions

We have developed an analytical frame work based on a generalized eigenvalue problem
which enables to apply the idea of [15] to prove the existence of transmission eigenvalues for
a much larger class of scattering problems for inhomogeneous medium than that considered
in [15]. We have shown the existence of transmission eigenvalues corresponding to the
scattering problem for the isotropic and anisotropic media for both the scalar case and for
Maxwell’s equations (in the latter case when the contrast is only on one of the constitutive
parameters). Our method can also be adapted to the case of more complicated transmission
conditions such as conducting boundary conditions.
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[15] L. Päivärinta and J. Sylvester, Transmission Eigenvalues, SIAM J. Math. Anal., 40,
738-753 (2008).

[16] M. Reed and B Simon, Functional Analysis Academic Press, 1980.

[17] B. P. Rynne and B.D. Sleeman, The interior transmission problem and inverse scat-
tering from inhomogeneous media, SIAM J. Math. Anal., 22, 1755-1762 (1992).

21


