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We formulate a number of open problems for time-harmonic inverse electromagnetic scatter-

ing theory focusing on uniqueness theorems, the determination of the support of a scattering

object and the determination of material parameters

1 Introduction

Radar is one of the most important inventions of the twentieth century. However, the

case can easily be made that radar has not yet realized its full potential. In particular,

ever since its invention scientists and engineers have strived not only to detect but also to

identify unknown objects through the use of electromagnetic waves. Indeed, as pointed out

in [28], “Target identification is the great unsolved problem. We detect almost everything;

we identify nothing”. A significant step forward in the resolution of this problem occurred

in the 1960’s with the invention of synthetic aperture radar (SAR) and since that time

numerous striking successes have been recorded in imaging by electromagnetic waves

using SAR [4]. However, as the demands of radar imaging have increased, the limitations

of SAR have become increasingly apparent. These limitations arise from the fact that SAR

is based on the “weak scattering” approximation and ignores both multiple scattering

and polarization effects. Indeed, such incorrect model assumptions have caused some

scientists to ask “how (and if) the complications associated with radar based automatic

target recognition can be surmounted” ([4], p.5).

In recent years, in an effort to avoid such incorrect model assumptions, considerable

effort has been put into nonlinear optimization techniques (c.f. [3], [20], [22], [47]). Such

an approach is in principle relatively straightforward and, where applicable, can produce

striking results. However, it was quickly realized that for many, if not most, practical

applications such an approach has severe limitations. For example, in the case of coated

objects embedded in a piecewise constant background medium the implementation of

nonlinear optimization techniques requires very precise a priori information which is in

general not available. Hence, in recent years, alternative methods for imagining have been

developed which still avoid incorrect model assumptions but, as opposed to nonlinear

optimization techniques, only seek limited information about the scattering object. An

example of such an approach is the linear sampling method [13], [38] which only seeks

to determine an approximation to the shape of a scattering obstacle but in general can
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say little about the material properties of the scatterer (however, see [7], [9]). We refer to

such methods as qualitative methods in inverse scattering theory and direct the reader to

the Introduction in [42] for further discussion.

This is where we are at the moment. Given the increased activity and interest in the

field of electromagnetic imaging, we thought it would be appropriate at this time to take

stock of where we are and try and formulate a few basic mathematical problems which,

if a solution could be found, would be of significant help in moving forward in the use

of electromagnetic waves for target recognition, particularly in the case of the qualitative

approach mentioned above. In this context, we firmly believe that reconstruction al-

gorithms cannot be viewed in isolation but rather as part of an overall view of the inverse

scattering problem for electromagnetic waves. More specifically, issues of uniqueness and

continuous dependence are inseparable from the issue of reconstruction. To clarify these

observations, we note that in many (if not most!) situations neither the shape nor material

properties of the object being imaged are known. For example, it may not be known a

priori if the scattering object is a perfect or imperfect conductor. Hence a uniqueness

result for determining the support of a perfect or imperfect conductor should not depend

on knowing the boundary condition a priori nor should the reconstruction algorithm.

Furthermore, since the inverse scattering problem is ill-posed, in order to restore stability

some type of a priori information is needed and such a priori information needs to be

built into the reconstruction algorithm if successful imaging is to be achieved.

Keeping the above ideas in mind, the plan of our paper is as follows. We begin by

formulating the direct scattering problem for three representative situations, the first being

when the scatterer is a penetrable anisotropic inhomogeneous medium, the second when

the scatterer is an imperfect conductor with variable impedance and the third being the

case when the scatterer is a perfect conductor. In all cases we restrict our attention to the

frequency domain, i.e. our focus is on time-harmonic (deterministic) scattering theory. We

then consider the inverse scattering problem under the assumption that multi-static data

is available and formulate (with motivation!) seven outstanding problems associated with

the qualitative approach to inverse scattering theory which have perplexed us and others

over the past ten years. We also include in the text a variety of directions and additional

open problems that we feel are of importance. We have grouped these problems into three

categories: (1) uniqueness problems, (2) determination of support of the scatterer, and

(3) determination of material parameters. Our hope is that by publishing these problems

fresh ideas will be found to enable others to succeed where we have failed!

2 Electromagnetic scattering problems

We begin by formulating the basic electromagnetic scattering problems that we will be

considering in this paper. We first consider the general case of Maxwell’s equations in an

inhomogeneous anisotropic medium (which, of course, includes the isotropic medium as

a special case). We assume that D ⊂ R3 is a bounded domain with connected complement

such that the boundary Γ is in class C2 with unit outward normal ν. We also introduce

the 3 × 3 symmetric matrix N = N(x) whose entries are piecewise smooth complex valued

functions in R3 such that N is the identity matrix outside D. We will assume that there
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exists γ > 0 such that

Re(Nξ, ξ) � γ|ξ|2; ξ ∈ C3, x ∈ R3 (2.1)

and

Im(Nξ, ξ) > 0; ξ ∈ C3 \ {0}, x ∈ D. (2.2)

We further assume that N − I is invertible in D and Re(N − I)−1 is uniformly positive

definite in D. Let H(curl, D) be the Hilbert space

H(curl, D) :=
{
u ∈ (L2(D))3: curl u ∈ (L2(D))3

}

equipped with the inner product

(u, v)H(curl,D) := (u, v)L2(D) + (curl u, curl v)L2(D) .

We denote by Hloc(curl,R3) the Fréchet space of functions in (L2
loc(R

3))3 such that u ∈
H(curl, K) for all compact sets K ⊂ R3.

Now we consider the incident electromagnetic plane wave (with the term e−iωt being

factored out where ω is the frequency)

Ei(x) =
i

k
curl curl p eikx·d

(2.3)
Hi(x) = curl p eikx·d

where Ei and Hi represent the incident electric and magnetic fields respectively, p is the

(constant) polarization vector and d is the direction of the plane wave with |d| = 1. Then

the direct scattering problem corresponding to the scattering of the electromagnetic plane

wave (2.3) by an anisotropic inhomogeneous medium D with constant permeability and

refractive index N is to determine an electric field E ∈ H(curl, D) such that

curl curlE − k2 N(x)E = 0, x ∈ R3 (2.4)

E = Es + Ei (2.5)

lim
r→∞

(curlEs × x − ikr Es) = 0 (2.6)

uniformlly in x̂ = x/|x| where r = |x|. The proof of the following theorem can be found

in [33] (see also [38]).

Theorem 1 There exists a unique solution E ∈ Hloc(R
3) to (2.4)–(2.6). For every ball BR of

radius R centered at the origin such that D ⊂ BR there exists a constant C = C(R) such that

‖E‖H(curl,BR ) � C‖Ei‖H(curl,BR ).

Now assume that the scattering object D is an imperfect conductor, i.e. ‖ImN(x)‖ is

very large for x inside D except for a thin region in the neighborhood of the boundary

Γ . Then to successfully solve the direct problem (2.4)–(2.6) or the inverse problem using

optimization techniques, the scattering problem (2.4)–(2.6) must be replaced by a simpler

model which reflects the above properties of the refractive index N. Such a model is given
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by the impedance boundary value problem. In particular, let X(D) be the space

X(D) :=
{
u ∈ H(curl, D) : ν × u|Γ ∈ L2

t (Γ )
}

equipped with the inner product

(u, v)X(D) := (u, v)H(curl,D) + (u, v)L2
t (Γ )

where L2
t (Γ ) denotes the space of square integrable tangential vector fields defined on Γ

and let λ ∈ L∞(Γ ), λ(x) � λ0 > 0, be the surface impedance. Let De := R3 \ D and define

Xloc(De) in the obvious way. Then the impedance boundary value problem is to find an

electric field Es ∈ Xloc(De) such that

curl curlEs − k2Es = 0, x ∈ De (2.7)

ν × curl (Es + Ei) − iλ(x)(ν × (Es + Ei)) = 0 x ∈ Γ (2.8)

lim
r→∞

(curlEs × x − ikr Es) = 0. (2.9)

The proof of the following theorem can be found in [8] (see also [38]).

Theorem 2 There exists a unique solution Es ∈ Xloc(De) to (2.7)–(2.9). For every ball BR of

radius R centered at the origin such that D ⊂ BR there exists a constant C = C(R) such that

‖Es‖X(De∩BR ) � C‖Ei‖X(De∩BR ).

Finally, we consider the case when the scattering object D is a perfect conductor, i.e.

‖ImN(x)‖ is very large for x everywhere inside D. Let H
−1/2
div (Γ ) denote the trace space

of H(curl, BR), i.e. for a u ∈ H(curl, BR), ν × u is in

H
−1/2
div (Γ ) :=

{
u ∈ H−1/2(Γ ) : ν · u = 0, divΓ u ∈ H−1/2(Γ )

}
.

Then the scattering problem (2.4)–(2.6) can be modeled by the scattering problem for a

perfect conductor, i.e. defining Hloc(curl, De) in an obvious way, to find an electric field

Es ∈ Hloc(curl, De) such that

curl curlEs − k2Es = 0, x ∈ De (2.10)

ν × (Es + Ei) = 0 x ∈ Γ (2.11)

lim
r→∞

(curlEs × x − ikr Es) = 0. (2.12)

The proof of the following theorem can be found in [38].

Theorem 3 There exists a unique solution Es ∈ Hloc(curl, De) to (2.10)–(2.12). For every ball

BR of radius R centered at the origin such that D ⊂ BR there exists a constant C = C(R)

such that

‖Es‖H(curl,De∩BR ) � C‖Ei‖
H

−1/2
div (Γ )

.

Having formulated the above electromagnetic scattering problems, we will now turn

our attention to the corresponding inverse problems. We begin with the problem of

determining uniqueness theorems for inverse scattering problems.
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3 Uniqueness problems

There are many inverse problems in scattering theory. However, the inverse problems we

are concerned with in this survey paper are to determine the support D of a scattering

obstacle from far field data and, in the case of a penetrable inhomogeneous medium,

information about the material properties of the scatterer.

We begin by considering the uniqueness of a solution to the inverse problem. For each

of the three problems considered in the previous section it can be shown [15] that the

scattered field Es has the asymptotic behavior

Es(x) =
eikr

r

(
E∞(x̂, d, p) + O

(
1

r

))
(3.1)

as r → ∞ where E∞ is known as the electric far field pattern and is an infinitely

differentiable tangential vector field for x̂ on the unit sphere Ω.

The first inverse scattering problems we are interested in are (2.7)–(2.9) and (2.10)–(2.12)

where we want to determine D from a knowledge of E∞(x̂, d, p) for x̂, d ∈ Ω and p ∈ R3

without knowing a priori which of these two scattering problems E∞ is associated with.

The proof of the following theorem is based on the ideas of Kirsch & Kress [32] (see [35]

and Theorem 7.1 in [15]). We note that these ideas are also closely related to the linear

sampling method for reconstructing D from noisy far field data which we will discuss in

the next section of this paper.

Theorem 4 Let E∞ be the electric far field pattern corresponding to (2.7)–(2.9) or (2.10)–

(2.12). Then D is uniquely determined by E∞(x̂, d, p) for x̂, d ∈ Ω, p ∈ R3. Furthermore, in

the case of (2.7)–(2.9), λ = λ(x) is uniquely determined.

Remark Since E∞(x̂, d, p) in an analytic function of x̂ and d on Ω, it suffices to know E∞
for x̂ and d on an open subset of Ω. Furthermore, since E∞(x̂, d, p) is linear in p, it suffices

to know E∞ for three linearly independent vectors p1, p2, p3.

Proof of Theorem 4 We only prove that D is uniquely determined and refer the reader to

[35] for the unique determination of λ. Assume that there are two different domains D1

and D2 giving rise to the same far field pattern E∞. By Rellich’s lemma, and the fact that

an entire solution to Maxwell’s equations satisfying the Silver-Müller radiation condition

must be identically zero, we can restrict our attention to the case when D1 ∩ D2 � 0.

Finally, by using the mixed reciprocity relation of Potthast [42], we can assume that

the scattered fields Es
1,e(x, z, p) and Es

1,e(x, z, p) corresponding to the scattering of electric

dipoles with source point z and polarization p by D1 and D2 coincide for all x, z in the

unbounded component G of D1 ∪ D2 and all polarizations p.

Since D1 � D2, without loss of generality, there exists x∗ ∈ ∂G such that x∗ ∈ Γ1

and x∗ � Γ2 where Γj is the boundary of Dj , j = 1, 2. In particular, we have that

zn := x∗ + n−1ν(x∗) ∈ G for n sufficiently large. Then, by using either Theorem 2 or Theo-

rem 3, we have that Es
2,e(x

∗, zn, p) remains bounded in X(D2,e ∩BR) or H(curl, D2,e ∩BR)

as n → ∞ but on the other hand Es
1,e(x

∗, zn, p) cannot remain bounded in X(D1,e ∩ BR) or
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H(curl, Di,e ∩BR) as n → ∞ due to the dipole at x = x∗. But this contradicts Es
1,e = Es

2,e in

G and therefore D1 = D2. �

In the case of acoustic scattering by a sound-soft obstacle it has been shown by Colton &

Sleeman [19] and Rondi [44] that only a finite number of incident plane waves is sufficient

to determine D (see also [1] and [11]. The exact number of waves needed depends on

a priori information on the size of the obstacle). This brings us to our first open

problem.

Open Problem Assume that D is a perfect conductor. Is D uniquely determined by the elec-

tric far field pattern E∞(x̂, d, p) for x̂ ∈ Ω, p ∈ R3 and a finite number of directions d. Under

what conditions is D determined by a single incident plane wave?

We now return our attention to the uniqueness questions for inverse problems associated

with the scattering problem (2.4)–(2.6). We first assume that the medium is isotropic, i.e.

the refractive index N(x) is of the form n(x)I where n(x) is a scalar. The proof of

the following theorem is quite technical and hence we only give the key steps in the

proof. The result is due Colton & Päivärinta [17] with a subsequent simplification being

given by Hähner [26]. Generalizations to the case of variable permeability have been

given by Ola, Päivärinta & Somersalo [40], Ola & Somersalo [41] and Sun & Uhlmann

[45].

Theorem 5 Let E∞ be the electric far field pattern corresponding to (2.4)–(2.6) for N(x) =

n(x)I where n is a scalar complex valued function such that n ∈ C1,α(R3) for 0 < α < 1,

Re (n) > 0, Im (n) � 0 and n(x) = 1 for x ∈ De. Then n is uniquely determined by E∞(x̂, d, p)

for x̂, d ∈ Ω, p ∈ R3.

Remark The remark after the statement of Theorem 4 also holds in this case.

Proof of Theorem 5 The key steps in the proof are as follows. Full details can be found

in [17].

(1) It is shown that the set of all solutions to (2.4)–(2.6) for N(x) = n(x)I , d ∈ Ω, p ∈ R3

is complete in the closure in L2(B) of all solution to

curl curlE − k2n(x)E = 0 (3.2)

in B where B is a ball containing D.

(2) If there exist two refractive indices n1 and n2 having the same electric far field

pattern, then it is shown using step 1 that

∫

R3

E1(x) (n1(x) − n2(x))E2(x) dx = 0 (3.3)

where Ej is any solution of (3.2) in B with n = nj , j = 1, 2.
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(3) A solution E of (3.2) is constructed such that E has the form

E(x) = eiζ·x [
η + Rζ(x)

]
(3.4)

where ζ, η ∈ C3, η · ζ = 0 and ζ · ζ = k2.

(4) Choose Ej to be of the form (3.4) where ζ = ζj with ζ1 + ζ2 = ξ ∈ R3. By choosing

ηj = η(ζj) appropriately and substituting Ej into (3.3) we have, letting |ζj | → ∞,

that ∫

R3

eiξ·x (n1(x) − n2(x)) dx = 0.

Hence, by the Fourier integral theorem, n1(x) = n2(x) for all x ∈ R3.

�

The proof of the above theorem breaks down if n is not continuously differentiable

in R3, in particular if n has a jump discontinuity across Γ . Unfortunately, in almost all

practical applications n does have a jump across Γ . A first step in treating the case when

n is discontinuous across Γ was taken by Hähner [25], who assumed that n was constant

in a neighborhood of Γ . This brings us to our next open problem.

Open Problem In the scattering problem (2.4)–(2.6) assume that N is of the form N(x) =

n(x)I where n ∈ C1(D) but n(x) is not necessarily equal to one for x ∈ Γ . Show that n is

uniquely determined by the electric far field pattern E∞(x̂, d, p) for x̂, d ∈ Ω, p ∈ R3.

Standard examples show that for anisotropic media (i.e. when N is a matrix) Theorem 5

is not valid, i.e. N is not uniquely determined from E∞ [46]. However it can be shown that

the support D of I − N is uniquely determined [6]. The proof of the following theorem

is based on the idea used in Theorem 4 together with a detailed analysis of a modified

version of the interior transmission problem of finding a solution E, E0 ∈ (L2(D))3 such

that E − E0 ∈ H(curl, D) and curl(E − E0) ∈ H(curl, D) of

curl curlE − k2N(x)E = 0

curl curlE0 − k2E0 = 0
in D (3.5)

(E − E0) × ν = E × ν

curl (E − E0) × ν = curl E × ν
on Γ (3.6)

where E is an electric dipole with source z ∈ D (For more information on the interior

transmission problem we refer the reader to [23] and Chapters 9 and 10 of [15]). We will

meet the interior transmission problem again in the next section of this paper.

Theorem 6 Let E∞ be the electric far field pattern corresponding to (2.4)–(2.6), and assume

that either

(1) ξ̄ Re(N) ξ � γ|ξ|2, or

(2) ξ̄ Re(N−1) ξ � γ|ξ|2,
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for all ξ ∈ C3, x ∈ D, where γ > 1 is a constant. Then the support D of I − N is uniquely

determined by E∞(x̂, d, p) for x̂, d ∈ Ω, p ∈ R3.

The remark after the statement of Theorem 4 again holds in the case of Theorem 6.

Noting that in the isotropic case

n(x) :=
1

ε0

(
ε(x) + i

σ(x)

ω

)

where ε0 is the permittivity of the background medium, ε = ε(x) the permittivity of D

and σ = σ(x) the conductivity of D we see that in this case conditions (1) and (2) of the

above theorem imply that ε(x) > ε0 for all x ∈ D or ε(x) < ε0 for all x ∈ D. To us, this

restriction seems artificial. Hence we have the following open problem.

Open Problem Show that if E∞ is the electric far field pattern for the scattering problem

(2.4)–(2.6) then the support of D of I −N is uniquely determined by E∞(x̂, d, p) for x̂, d ∈ Ω

and p ∈ R3 (without making the assumptions (1) and (2) of Theorem 6).

4 Determination of the support of a scattering object

As already mentioned in the introduction, a considerable effort has been made in recent

years to develop algorithms that determine only certain relevant physical properties of the

scattering object rather than trying to reconstruct the complete model of the scattering

problem. The aim of this program is of course the hope that such algorithms will be

faster and more robust than those methods that try to reconstruct complete information

of the scatterer. Probably the most important physical property of a scattering object

is its support D and hence in this section we will address ourselves to the problem of

determining (an approximation to) D from a knowledge of the electric far field pattern.

In particular, we want an algorithm that determines D without requiring the a priori

knowledge that the electric far field pattern is associated specifically with either of the

scattering problems (2.4)–(2.6), (2.7)–(2.9) and (2.10)–(2.12). A method for doing this is the

linear sampling method which was first introduced for acoustic waves by Colton & Kirsch

[14] and Colton et al. [18], and for electromagnetic waves by Kress [34], Colton et al. [12]

and Haddar & Monk [24]. Here we present a heuristic introduction to the method,

refering the reader to [13] and [38] for its mathematical justification and numerical

implementation.

We begin by defining the far field operator F : L2
t (Ω) → L2

t (Ω) by

(Fg)(x̂) :=

∫
Ω

E∞(x̂, d, g(d))ds(d) (4.1)

where E∞ is the electric far field pattern of (2.4)–(2.6), (2.7)–(2.9) or (2.10)–(2.12). We

further define a Herglotz wave function with kernel g ∈ L2
t (Ω) by

Eg(x) :=

∫
Ω

eikx·dg(d)ds(d). (4.2)
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We note that by superposition we have that Fg is the electric far field pattern for (2.4)–(2.6),

(2.7)–(2.9) and (2.10)–(2.12), respectively, corresponding to Eh(x) and Hh(x) := 1
ik
curlEh(x),

h = ikg, as the incident electromagnetic field. Finally, we define the far field equation by

Fg(x̂) = E∞(x̂, z, q) (4.3)

where

E∞(x̂, z, q) =
ik

4π
(x̂ × q) × x̂ eikx̂·z

is the electric far field pattern of the electric dipole

E(x, z, q) =
i

k
curlx curlx q Φ(x, z)

H(x, z, q) = curlx q Φ(x, z)

with

Φ(x, z) =
1

4π

eik|x−z|

|x − z| , x� z.

We are now in a position to introduce the basic idea of the linear sampling method.

Suppose that for each z ∈ D there exists g(·, z) ∈ L2
t (Ω) such that the far field equation

(4.3) is satisfied. Then by Rellich’s lemma∫
Ω

Es(x, d, g(d)) ds(d) = E(x, z, q) (4.4)

for x ∈ De and in particular for x ∈ Γ . As z → x ∈ Γ we have that E(x, z, q) → ∞ and

hence from (4.4) and the regularity of Es we must have that

lim
z → x ∈ Γ
z ∈ D

‖g(·, z)‖L2
t (Ω) = ∞.

Under the above assumptions it is also possible to conclude that the Herglotz wave

function with kernel g becomes infinite as z → Γ . Hence Γ is characterized by points

where the solution of the far field equation becomes unbounded as a function of z.

The above argument is purely heuristic since in general there is no solution g ∈ L2
t (Ω)

of the far field equation! Indeed, it can be shown that for z ∈ D a solution to the far field

equation exists if and only if, in the cases of (2.7)–(2.9) and (2.10)–(2.12), the solution

of the corresponding interior problems (2.7)–(2.9) and (2.10)-(2.12) with De replaced by

D and Ei replaced by the electric dipole Ee is a Herglotz wave function and, in the

case of (2.4)–(2.6), the function E0 in the definition of the interior transmission problem

(3.5)–(3.6) is a Herglotz wave function [15], [23]. In general this is not true for any of the

above problems and hence a solution to the far field equation does not exist. A second

problem is that even the above heuristic argument breaks down if z ∈ De. However, it is

possible to prove the following theorem (see [13] for references). Recall that a Maxwell

eigenvalue is a value of k such that there exists a nontrivial solution to the homogeneous

interior problem corresponding to (2.10)–(2.11) (i.e. De = D and Ei = 0) and a transmission

eigenvalue is a value of k such that there exists a nontrivial solution to the homogeneous

interior transmission problem (i.e. E = 0 in (3.5)–(3.6)) [15, 23].
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Theorem 7 Assume that k is neither a Maxwell eigenvalue nor a transmission eigenvalue.

Then if F is the far field operator corresponding to (2.4)–(2.6), (2.7)–(2.9) or (2.10)–(2.12),

respectively, the following is true:

(1) If z ∈ D then for every ε > 0 there exists a solution gε(·, z) = gε(·, z, q) ∈ L2
t (Ω) of

the inequality

‖Fgε(·, z) − Ee,∞(·, z, q)‖L2
t (Ω) < ε

such that

lim
z→Γ

‖Egε (·, z)‖Y = ∞ and lim
z→Γ

‖gε(·, z)‖L2
t (Ω) = ∞

where Y = L2(D), X(D) or H(curl, D), respectively.

(2) If z ∈ De then for every ε > 0 and δ > 0 there exists a solution gδ,ε(·, z, q) ∈ L2
t (Ω)

of the inequality

‖Fgε,δ(·, z) − Ee,∞(·, z, q)‖L2
t (Ω) < ε

such that

lim
δ→0

‖Egε,δ (·, z)‖Y = ∞ and lim
δ→0

‖gε,δ(·, z)‖L2
t (Ω) = ∞

where Y = L2(D), X(D) or H(curl, D), respectively.

It is also possible to consider limited aperture far field data, in which case in the

definition of F the region of integration Ω is replaced by Ω0 ⊂ Ω and in the above

theorem L2
t (Ω) is replaced by L2

t (Ω1) where Ω1 ⊂ Ω [5].

For the above theorem to be meaningful, it is clearly important to know that the set of

Maxwell eigenvalues and the set of transmission eigenvalues form (at most) discrete sets.

This is well known for the case of Maxwell eigenvalues [39]. However, except for the case

of a spherical symmetric scalar index of refraction [15], it is unknown if transmission eigen-

values even exist, much less form a discrete set! Hence we are led to our next open problem.

Open Problem Show that transmission eigenvalues exist and form a discrete set.

In the scalar case for a spherically stratified index of refraction it has been shown that

the transmission eigenvalues uniquely determine the index of refraction [37]. If the above

open problem has a positive solution, it would be of considerable interest to prove an

analogous result for (3.5)–(3.6) in the case when N(x) is a scalar. Finally, there exists the

problem of numerically constructing the approximate solution gε and gε,δ whose existence

is given by Theorem 7. In practice this is typically done by using the method of Tikhonov

regularization and Morozov’s generalized discrepancy principle [13, 21]. However, the

question remains as to whether or not the solution obtained by such regularization

methods in fact constructs a function that behaves like the above approximate solution.

In all numerical examples constructed to date this is indeed the case, but this connection

has not been proved except for certain problems in the scalar case [2]. Hence we have the

following open problem.
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Open Problem Show that the use of Tikhonov regularization and Morozov’s generalized

discrepancy principle applied to the far field equation yields a function that behaves like the

function gε and gε,δ whose existence is given by Theorem 7.

In the scalar case, the problem of the numerical reconstruction of gε and gε,δ led

Andreas Kirsch to introduce a new method for reconstructing the support of a scattering

object called the factorization method [29, 30, 31]. The main idea behind this approach

is to replace the far field operator by another operator whose range can be explicitly

characterized in terms of the support D. For example, in the case of the scattering of

acoustic waves, Kirsch considered the far field equation

F
1/2
# g = Φ∞(·, z)

where Φ∞(x̂, z) = exp(−ikx̂ · z), F# := |ReF | + ImF where F is the acoustic far field

operator and |ReF |, ImF and F
1/2
# are defined by the spectral decomposition of F . He was

then able to show that z ∈ D if and only if Φ∞ is in the range of F
1/2
# . Such a result leads to

straightforward methods for reconstructing D without having to deal with delicate issues

of regularization theory as is the case for the linear sampling method. Hence it would be

highly desirable to extend the results of Kirsch to the case of Maxwell’s equations.

Open Problem Extend Kirsch’s factorization method to the case of the scattering problems

(2.4)–(2.6), (2.7)–(2.9) and (2.10)–(2.12).

The factorization method requires a knowledge of the far field pattern for x̂ and d on

the unit sphere Ω whereas the linear sampling method requires a knowledge of the far field

pattern for x̂ and d on an open subset of Ω. Its would be highly desirable to reduce the

amount of data needed to determine the support of the scattering object. However doing

so is problematic since, as we have seen in the previous section, it is not known whether

or not the electric far field pattern for a fixed incident direction d uniquely determines

the support of a perfect conductor (nor, for that matter, the support of a penetrable

inhomogeneous medium). In the scalar case a promising start to the problem of using

reduced data has been made by Kusiak and Sylvester [36] and Potthast, Sylvester and

Kusiak [43] who have shown that a knowledge of the far field pattern for a fixed incident

direction d determines the convex scattering support which is a subset of the convex hull

of the support of any scatterer that produces the given far field pattern. It would be of

considerable interest to extend the results of Potthast, Sylvester and Kusiak to the case of

electromagnetic waves.

5 Determination of material parameters

The support is of course not the only quantity of physical interest associated with a

scattering object. Indeed, very recently efforts have been made to determine various

coefficients in the boundary condition of a scatterer that has been coated by a thin

layer of highly absorbing material [7, 9]. In particular, consider the impedance boundary

value problem (2.7)–(2.9). It is not difficult to show that both the support D and surface
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impedance λ = λ(x) are uniquely determined by the electric far field pattern E∞(x̂, d, p) for

x̂, d ∈ Ω and p ∈ R3 (Recall again the remark after Theorem 4) [35]. Under the assumption

that the regularized solution of the far field equation approximates the function gε and

gε,δ of Theorem 7, D can be determined by the linear sampling method (without needing

to know λ = λ(x) a priori!). Furthermore, if g is the regularized solution of the far field

equation and Eg is the Herglotz wave function with kernel g, then ikEg approximates the

solution Ez ∈ X(D) of

curl curlEz − k2Ez = 0, x ∈ D

ν × curl (Ez + E) − iλ(x) [ν × (Ez + E)] = 0 x ∈ Γ

where E = E(·, z, q) is an electric dipole. A straightforward (but lengthy) use of Green’s

formula and the Stratton-Chu formula [7] now show that for Wz := Ez + E(·, z, q) and

every two points z1 and z2 in D and polarization q ∈ R3 we have

2

∫
Γ

(
Wz1

)

 · λ(x)

(
Wz1

)

 ds (5.1)

= −|q|2A(z1, z2, k, q) + k
(
q · Ez1

(z2) + q · Ez2
(z1)

)

where u
 := (ν × u) × ν and

A(z1, z2, k, q) =
k3

6π

[
2j0(k|z1 − z2|) + j2(k|z1 − z2|)(3 cos2 φ − 1)

]

with j0 and j2 being spherical Bessel functions of order 0 and 2 respectively and φ is the

angle between (z1 − z2) and q. By varying z1 and z2 over a ball Br of radius r contained

in D one can now use (5.1) to determine ‖λ‖L∞(Γ ) [7]. In particular, when λ is a positive

constant and setting z1 = z2 = z0 ∈ Br we obtain

λ =
− k2

6π
|q|2 + kRe

(
q · Ez0

)
‖(Wz0

)
‖2
L2
t (Γ )

. (5.2)

It would be of considerable interest to derive analogous expressions for physical

parameters of scattering objects that can be computed from a knowledge of the electric

far field pattern. A step in this direction can be found in [9] where an expression similar

to (5.2) is given for the surface conductivity of a coated dielectric. An interesting aspect

of the results of [7] and [9] is that they remain valid for partially coated objects as well

where it is not necessary to know the extent of the coating a priori! In the case of the

scattering problem (2.4)–(2.6) it seems reasonable to expect that an expression analogous

to (5.2) could be found for ‖N‖ where ‖ · ‖ is the operator norm on
(
L2(D)

)3
. However,

this has not yet been done.

Open Problem Let N(x) be the matrix index of refraction in the scattering problem (2.4)–

(2.6). Derive an expression for ‖N‖ that can be computed from a knowledge of the electric

far field pattern E∞(x̂, d, q) for x̂, d ∈ Ω and p ∈ R3.
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In closing we note that the spectral properties of the far field operator contain con-

siderable information about both the material and geometric properties of the scattering

object. This has been examined to some extent in the scalar case [16, 27] but much remains

to be done. In our opinion, this is a particularly promising area for further research for

both the scalar and vector case. Further work is also needed in making clever use of

multi-frequency data. An example of promising work in this direction is the recent paper

by Bao & Li [3]. Finally, in most practical problems the scattering object is situated in a

(known) nonhomogeneous background medium rather than a homogeneous background.

In many applications one can assume a piecewise-constant background medium, but such

situations still present formidable problems in attempting to solve the inverse problem.

In particular, new methods are needed which have the simplicity of the linear sampling

method but at the same time avoid the need to know the (dyadic) Green’s function for the

background medium as is currently the case for the linear sampling method in a piecewise

constant background medium (c.f. [13]). An example of progress in this direction is the

recent paper by Cakoni et al. [10] but this is only a starting point and much remains to

be done.
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