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1. Introduction

In this paper we consider the inverse electromagnetic scattering problem of determining

the shape of a perfectly conducting cavity. In contrast to the typical exterior problems,

such as radar or sonar imaging, the problem we are interested in can be called the interior

inverse scattering problem due to the fact that the sources and measurements are in the

interior of the cavity. This is desirable in some applications of non-destructive testing

such as monitoring the structural integrity of the fusion reactor by electromagnetic waves

[12]. To be precise, we consider a bounded domain D ⊂ R3 such that ∂D is perfectly

conducting. The dipole sources and measurements are on a surface Λ inside D (see Fig.

1). The inverse problem considered in this paper is to determine ∂D from the measured

scattered electric field on Λ due to dipole sources on the same surface. In particular, we

apply the near field linear sampling method to reconstruct the cavity D (see [3]).

To the authors’ knowledge, there are only a few papers dealing with the qualitative

methods for this type of interior inverse scattering problems. In [12] Jakubik and

Potthast used the solutions of the Cauchy problem by potential methods and the range

test to test the integrity of the boudary of some cavity by acoustic waves. In [18], Qin

and Colton applied the linear sampling method to exactly the same problem discussed

in this paper but in 2D case. They further extended their method to reconstruct both

the shape of the cavity and surface impedance in [19]. Nonlinear integral equations have

also been used to reconstruct the cavity [17].

Note that in some ways the interior inverse scattering problem is physically more

complicated since the scattered waves are ”trapped” inside the cavity. Similar to

[18], our numerical reconstructions by the linear sampling method are less satisfactory

than the results for the exterior inverse scattering problem [3]. However, whether this

phenomenon is due to the reconstruction method or the physics of the interior scattering

problem remains unclear at this point.

The rest of our paper is organized as the following. In Section 2, we formulate

the interior scattering problem mathematically and introduce some functional spaces.

In addition, we prove a reciprocity property of the scattered electric field which is

useful for the uniqueness proof and numerical scheme. We show that under suitable

conditions the cavity is uniquely determined from a knowledge of incident dipole sources

and measurements on a surface inside the cavity. In Section 3, we describe how to

employ the near field linear sampling method to reconstruct the cavity. We provide

some preliminary numerical examples to show the viability of the method in Section 4.

Finally in Section 5, we make conclusions and discuss some future works.

2. The scattering problem for a cavity

Let D ⊂ R3 be a simply connected bounded Lipschitz domain in R3, and Λ be a

surface contained in D (see Fig. 1). Let ν be the unit outward normal defined almost

everywhere on ∂D. More generally, in the following ν denotes the unit normal to the
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D

Λ

Figure 1. Explicative picture. The cavity is denoted by D. The surface Λ is inside
D. Dipole sources and measurement locations are distributed on Λ.

indicated surface directed outward to the region bounded by the same surface. We

consider the interior scattering problem of time-harmonic Maxwell’s equations for the

cavity D in terms of the electric field

∇×∇× Es − k2Es = 0, in D, (1)

ν × Es = h, on ∂D, (2)

where k is the wave number, h = −ν × Ei, Ei is the incident wave in the form of the

electric dipole given by

Ei = G(x, z)p :=
i

k
∇x ×∇x × Φ(x, z)p

where G(x, z) is the Green’s tensor, p is the polarization and Φ(x, z) is the fundamental

solution of the Helmholtz equation given by

Φ(x, z) =
1

4π

eik|x−z|

|x− z| .

Thus the scattered electric field depends on x, z,p which is indicated by writing

Es := Es(x, z,p).

For the following discussion, we need to introduce some functional spaces. Let

Γ = ∂D and we define (see, e.g., [15, 2])

H(curl,D) :=
{
u ∈ (L2(D))3 : ∇× u ∈ (L2(D))3

}
,

L2
t (Γ) :=

{
u ∈ (L2(Γ))3 : ν · u = 0 on Γ

}
,

Hs
t (Γ) :=

{
u ∈ (Hs(Γ))3 : ν · u = 0 on Γ

}
, s ∈ [−1, 1],

H
−1/2
div (Γ) :=

{
u ∈ H

−1/2
t (Γ),∇Γ · u ∈ H−1/2(Γ)

}
,

H
−1/2
curl (Γ) :=

{
u ∈ H

−1/2
t (Γ),∇Γ × u ∈ H−1/2(Γ)

}
.

For precise definitions of above spaces and surface divergence ∇Γ· and surface curl ∇Γ×,

we refer the readers to [1, 15]. It is well known that for u ∈ H(curl,D) the traces ν × u
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and (ν × u) × ν are well defined and belong to H
−1/2
div (Γ) and H

−1/2
curl (Γ), respectively.

Furthermore, H
−1/2
div (Γ) and H

−1/2
curl (Γ) are dual of each other with L2

t (Γ) as the pivot

space. In the following we use 〈·, ·〉
H

−1/2
div ,H

−1/2
curl

to denote the duality pairing between

H
−1/2
div (Γ) and H

−1/2
curl (Γ). For any u, v ∈ H(curl,D) we have that

〈γtu, γTv〉H−1/2
div ,H

−1/2
curl

:=

∫

Γ

(ν × u) · v ds =

∫

D

(∇× u · v − u · ∇ × v) dx

where

γtu = ν × u and γTv = (ν × v) × v.

If k is not a Maxwell’s eigenvalue and h ∈ H
−1/2
div (Γ), the well-posedness of the cavity

problem (1) is well-known [3]. We first prove a reciprocity relation for the scattered

electric field.

Theorem 2.1. Let Es(·, z,p) be the scattered field satisfying (1) due to the incident

field given by an electric dipole at z with polarization p. Then we have

q · Es(xq, xp,p) = p · Es(xp, xq,q)

for xp, xq ∈ Λ and p,q ∈ R3.

Proof. By the Stratton-Chu formula (see Thm 9.2 of [15]), we have

E(x) = −∇×
∫

∂D

(ν × E)(y)Φ(x, y) ds(y)

+
1

ik
∇×∇×

∫

∂D

(ν × H)(y)Φ(x, y) ds(y).

Using the fact that Φ is the fundamental solution of the Helmholtz equation and

x 6= y and H = (1/ik)∇× E, we have

1

ik
∇×∇×

∫

∂D

(ν × H)(y)Φ(x, y) ds(y)

= − 1

ik
(∆ −∇∇·)

∫

∂D

(ν × H)(y)Φ(x, y) ds(y)

=
1

ik

∫

∂D

{
k2(ν × H)(y)Φ(x, y) + ∇x[(ν × H)(y) · ∇xΦ(x, y)]

}
ds(y)

= −
∫

∂D

GT (x, y)(ν × (∇× E))(y) ds(y)

since lth entry of the gradient term is

(∇x[(ν × H)(y) · ∇xΦ(x, y)])l =
∂

∂xl

3∑

m=1

(ν × H)m(y)
∂Φ

∂xm
(x, y)

=

3∑

m=1

(ν × H)m(y)
∂2Φ

∂xl∂xm
(x, y).
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Using the fact that ∇xΦ = −∇yΦ, we have

∇×
∫

∂D

(ν × E)(y)Φ(x, y) ds(y) =

∫

∂D

(ν × E)(y)×∇yΦ(x, y) ds(y)

=

∫

∂D

(∇y × (ΦI))T (x, y)(ν × E)(y) ds(y)

=

∫

∂D

(∇y × G)T (x, y)(ν × E)(y) ds(y).

Thus we have shown that

E(x) = −
∫

∂D

(∇y × G)T (x, y)(ν × E)(y)

+ GT (x, y) (ν × (∇× E)) (y) ds(y).

Similar to the proof of Theorem 2.1 in [19], we first employ the above result to the

scattered fields to obtain

Es(xq, xp,p) = −
∫

∂D

(∇y × G)T (xq, y)(ν × Es)(y, xp,p)

+ GT (xq, y) (ν × (∇× Es(y, xp,p)) (y) ds(y) (3)

and

Es(xp, xq,q) = −
∫

∂D

(∇y × G)T (xp, y)(ν × Es)(y, xq,q)

+ GT (xp, y) (ν × (∇× Es(y, xq,q)) (y) ds(y). (4)

Applying Green’s second theorem (see Section 6.2 of [7]) to Es and G and using the fact

that GT (x, y)p is a radiating field, we obtain
∫

∂D

ν × Es(y, xq,q) · ∇ × Es(y, xp,p)

− ν × Es(y, xp,p) · ∇ × Es(y, xq,q) ds(y) = 0 (5)

and ∫

∂D

ν × GT (xq, y)q · ∇ × GT (xp, y)p

− ν × GT (xp, y)p · ∇ × GT (xq, y)q ds(y) = 0. (6)

Multiplying (3) by q and (4) by p yields

q · Es(xq, xp,p) =

∫

∂D

ν × GT (xq, y)q · ∇ × Es(y, xp,p)(y)

− ν × Es(y, xp,p) · ∇ × GT (xq, y)q ds(y)

and

p · Es(xp, xq,q) =

∫

∂D

ν × GT (xp, y)p · ∇ × Es(y, xq,q)(y)

− ν × Es(y, xq,q) · ∇ × GT (xp, y)p ds(y).
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Taking the difference, and using (5) and (6), we obtain

p · Es(xp, xq,q) − q · Es(xq, xp,p) =∫

∂D

ν × E(y, xq,q) · ∇ × E(y, xp,p) − ν × E(y, xp,p) · ∇ × E(y, xq,q) ds(y)

where E is the total electric field. Using the PEC boundary condition (2), we have

p · Es(xp, xq,q) − q · Es(xq, xp,p) = 0

which completes the proof.

The inverse scattering problem we are interested in is to determine D from a

knowledge of tangential components ν×Es of the scattered electric field Es = Es(·, z,p)

measured on Λ for all incident field due to point sources z ∈ Λ and all polarizations

p ∈ R3. To this end, we have the following uniqueness theorem.

Theorem 2.2. If k2 is not a Maxwell’s eigenvalue for the interior of Λ, then D is

uniquely determined from ν × Es(x, z,p) for x, z ∈ Λ and all polarizations p ∈ R3.

Proof. The proof is based on the approach used by Kirsch and Kress for the exterior

scattering problem [13, 14]. Assume D1 6= D2 are two bounded domain and Es
i , i = 1, 2,

satisfy equations (1), respectively. Suppose that ν × Es
1(x, z,p) = ν × Es

2(x, z,p) on Λ

for all z ∈ Λ and let V = Es
1 − Es

2. Then

∇×∇× V − k2V = 0, in Λ̇,

ν × V = 0, on Λ,

where Λ̇ is the interior of Λ. Since k2 is not a Maxwell’s eigenvalue for Λ̇, we have that

V = 0 in Λ̇ ∪ Λ.

Let D0 be the connected component of D1 ∩D2 containing Λ̇. Then by analyticity,

V = 0 in D0, i.e.,

Es
1(x, z,p) = Es

2(x, z,p)

for all x ∈ D0, z ∈ Λ and all polarization p. By the reciprocity relation, we have, for

i = 1, 2, 3,

ei · E1
s(z, x,p) = p · E1

s(x, z, ei) = p ·E2
s(x, z, ei) = ei · E2

s(z, x,p).

Thus we obtain

Es
1(z, x,p) = Es

2(z, x,p)

for all x ∈ D0, z ∈ Λ and all polarization p. Using the same argument as above, we

have that

Es
1(x, z,p) = Es

2(x, z,p)

for all x, z ∈ D0 and all polarization p.
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Without loss of generality, there exists x∗ ∈ ∂D0 such that x∗ ∈ ∂D1 and x∗ /∈ ∂D2.

In particular, we have that

zn := x∗ − 1

n
ν(x∗) ∈ D0

for sufficiently large n. Then, in view of the well-posedness of the cavity problem for

scatterer D2, on one hand we obtain that

lim
n→∞

ν × Es
2(x

∗, zn,p) = ν × Es
2(x

∗, x∗,p).

On the other hand we find that

lim
n→∞

ν × Es
1(x

∗, zn,p) = ∞ for p ⊥ ν(x∗),

because of the boundary condition for Es
1 in terms of the electric dipole located at

zn → x∗ for n→ ∞. This is a contradiction and thus D1 = D2.

3. The Linear Sampling Method

In this section, we employ the linear sampling method [3] to the inverse problem stated

in the previous section. For sake of simplicity, without loss of generality, from now on we

assume that Λ ⊂ D is a sphere centered at the origin, i.e., Λ = {x ∈ R3, |x| = rc > 0}.
We define the near field operator: F : L2

t (Λ) → L2
t (Λ)

(Fφ)(x) :=

∫

Λ

ν(x) × Es(x, y, φ(y)) ds(y). (7)

Since Es is analytic, the operator F is compact. We also define the electric single layer

potential S : H
−1/2
div (Λ) → (H1

loc(curl,R3 \ Λ) given by [9]:

(Sφ)(x) :=

∫

Λ

φ(y)G(x, y) ds(y) (8)

with density φ, i.e.,

(Sφ)(x) :=
i

k
∇x ×∇x ×

∫

Λ

φ(y)Φ(x, y) ds(y). (9)

By superposition, Fφ is the rotated tangential component on Λ of the scattered field

due to Sφ. In the following we prove an important property for F .

Theorem 3.1. The operator F is injective and has dense range if k2 is not a Maxwell’s

eigenvalue in the interior of Λ.

Proof. Let Fφ = 0 and we need to show that φ = 0. Define

W =

∫

Λ

Es(x, y, φ(y)) ds(y), x ∈ D.

It is obvious that W satisfies

∇×∇× W − k2W = 0, in Λ̇,

ν × W = 0, on Λ.
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Since k2 is not a Maxwell’s eigenvalue in the interior of Λ, we have W = 0 in Λ̇. Note

that ∇×∇× W − k2W = 0 in D. Then W = 0 in D by analyticity. In particular,

W = −
∫

Λ

φ(y)G(x, y) ds(y) = 0, x ∈ ∂D.

Define

V(x) = −
∫

Λ

φ(y)G(x, y) ds(y), x ∈ R3 \ Λ.

Then V satisfies

∇×∇× V − k2V = 0, in R3 \ D,

ν × V = 0, on ∂D,

and the Silver-Müller condition

lim
r→∞

r (∇× V × x̂− ikV) = 0

where r = |x| and x̂ = x/|x|. Since the solution of the exterior Dirichlet problem is

unique, V = 0 in R3 \D. The unique continuation principle implies that V = 0 in the

exterior of Λ. By the jump relation for the single layer potential, we have

ν × V− − ν × V+ = 0, ν ×∇× V− − ν ×∇× V+ = φ,

where ν is the unit outward normal to Λ and + and − denote the limit as x→ Λ from

outside and inside of Λ, respectively. Since ν × V+ = ν × ∇× V+ = 0, we have that

ν ×V− = 0 and ν ×∇× V− = φ. Since k2 is not a Maxwell’s eigenvalue in the interior

of Λ, we have V = 0 in the interior of Λ. Hence φ = 0, i.e., F is injective.

The L2 adjoint F∗ : L2
t (Λ) → L2

t (Λ) is given by

(F∗ψ)(x) =

∫

Λ

ν(x) × Es(x, y, ψ(y)) ds(y),

for ψ ∈ L2
t (Λ) and x ∈ Λ. Then we have (F∗ψ)(x) = (Fφ)(x) if φ(z) = ψ(z). Since F

is injective, then F∗ is injective. Moreover, since N(F∗) = (R(F))⊥, F has dense range

in L2
t (Λ).

We remark that the assumption that k2 is not a Maxwell’s eigenvalue in the interior

of Λ is not a restriction since Λ can be chosen such that this assumption is satisfied.

Now we define a linear operator B : H
−1/2
div (∂D) → L2

t (Λ) mapping the boundary

value h to ν×Es on Λ where Es is the corresponding scattered field satisfying (1). Then

we have

F = −B [ν × S|∂D] .

Theorem 3.2. Assume that k2 is not a Maxwell’s eigenvalue either in D or in the

interior of Λ. Then the operator B is injective, compact and has dense range in L2
t (Λ).
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Proof. Since k2 is not a Maxwell’s eigenvalue in D, B is well defined.

Let Bh = 0, i.e., ν × Es = 0 on Λ. Since k2 is not a Maxwell’s eigenvalue in the

interior of Λ, Es = 0 in the interior of Λ. By analyticity Es = 0 in D and h = 0, i.e.,

the operator B is injective.

Next we choose a ball Ω = {x ∈ R3, |x| ≤ r > rc} such that Λ ⊂ Ω ⊂ D. Then we

have

Es(x) = −
∫

∂D

(∇y × G)T (x, y)(ν × Es)(y)

+ GT (x, y) (ν × (∇× Es)) (y)ds(y)

for x ∈ D. We decompose the operator B = B1B2, where

B2 : H
−1/2
div (∂D) → H

−1/2
div (∂Ω) ×H

−1/2
div (∂Ω)

is defined by

(B2h)(x) = (ν × (∇× Es)|∂Ω, ν × Es|∂Ω) =: (h1,h2)

and

B1 : H
−1/2
div (∂Ω) ×H

−1/2
div (∂Ω) → L2

t (Λ)

is defined by

B1(h1,h2)(x) = −
∫

∂Ω

{
(∇y × G)T (x, y)h2(y) + GT (x, y)h1(y)

}
ds(y).

Then B2 is bounded and B1 is compact. Hence, the operator B is compact.

We now show that the operator B has a dense range in L2
t (Λ). Following [7, 15],

let Y m
n be the spherical harmonic and define

M̃m
n = ∇× {xjn(k|x|)Y m

n (x̂)}, Ñm
n =

1

ik
× M̃m

n

where x̂ = x/|x| and jn is the spherical Bessel’s function. Let

En =
n∑

m=−n

an,mM̃m
n + bn,mÑm

n .

Then En satisfies the interior cavity problem with h = En|∂D. Since the spherical

harmonics are complete in L2
t (Λ) and k2 is not a Maxwell’s eigenvalue in the interior of

Λ, B has dense range.

Theorem 3.3. Let G be the Green’s tensor. Then ν × G(x̃, z)p, x̃ ∈ Λ is in the range

of B if and only if z ∈ R3 \D.

Proof. If z ∈ R3 \D, then G(·, z)p is the solution of (1) with h = ν × G(·, z)p|∂D and

Bh = ν × G(x̃, z)p for x̃ ∈ Λ.

Now let z ∈ D \Λ and assume on the contrary that ν × G(x̃, z)p is in the range of

B. Then G(·, z)p is a solution of (1) with h = ν ×G(·, z)p|∂D. However, G(·, z)p is not

in the H(curl,D). This leads to a contradiction which completes the proof.
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Theorem 3.4. Assume that k2 is not a Maxwell’s eigenvalue either in D or in the

interior of Λ. Then the operator S∂D = ν × S|∂D : H
−1/2
div (Λ) → H

−1/2
div (∂D) is injective,

compact and has dense range in H
−1/2
div (∂D).

Proof. It is obvious that S∂D is compact since its kernel is analytic.

To show that S∂D is injective, we first assume that

(S∂Dg)(x) = ν(x) ×
∫

Λ

g(y)G(x, y) ds(y) = 0, x ∈ ∂D.

Define

E(x) =

∫

Λ

g(y)G(x, y) ds(y), x ∈ R3 \ Λ.

Then ν × E(x) = 0 on ∂D. By the same arguments as in the proof that F is injective,

we have that g = 0, i.e. the operator S∂D is injective.

We now show that S∂D has dense range. Let ψ ∈ H
−1/2
curl (∂D) be such that

〈S∂Dg, ψ〉
H

−1/2
div (∂D),H

−1/2
curl (∂D)

= 0

for all g, i.e.
∫

∂D

ν(x) ×
∫

Λ

g(y)G(x, y) ds(y)ψ(x) ds(x) = 0.

We need to show that ψ = 0. By interchanging the order of integration we have
∫

Λ

∫

∂D

ν(x) × G(x, y)ψ(x) ds(x)g(y) ds(y) = 0

for all g. Then

V(z) =

∫

∂D

ν(x) × G(x, z)ψ(x) ds(x) = 0

for all z ∈ Λ. Define

W(z) =

∫

∂D

ν(x) × G(x, z)ψ(x) ds(x), z ∈ R3 \ ∂D.

Then ν × W(z) = 0 on Λ and W satisfies

∇×∇× W − k2W = 0 in Λ̇.

Since k2 is not a Maxwell’s eigenvalue in the interior of Λ, we have W = 0 in the interior

of Λ. By analyticity W = 0 in D. The jump condition for the single layer potential

gives

ν × W− − ν × W+ = 0, ν ×∇× W− − ν ×∇× W+ = ψ.

Since the solution for the exterior Dirichlet problem is unique we have W = 0 in R3 \D.

Hence ψ = 0 and the operator S∂D has a dense range.
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Now we employ the linear sampling method for the inverse problem. Define the

near field equation:
∫

Λ

ν(x) × Es(x, y, φz(y)) ds(y) = ν(x) × G(x, z)p, x ∈ Λ (10)

where p is an artificial polarization and ν is the unit outward normal to Λ. The linear

sampling method is based on solving the above linear near field equation for the indicator

function φz ∈ L2
t (Λ). If z ∈ R3 \D, we can see that if φz is a solution for the near field

equation, the tangential trace of Es and the electric dipole G(x, z)p coincide on ∂D. As

z → ∂D, we have that ‖ν×G(x, z)p‖
H

−1/2
div (∂D)

→ ∞, and hence ‖ν×Es‖
H

−1/2
div (∂D)

→ ∞.

Thus ‖φz‖L2
t (Λ) → ∞ and this behavior determines ∂D (see [3] for the case of the exterior

inverse scattering problem). The above argument is only heuristic because of the ill-

posed nature of (10). However, we can always solve for an approximate solution of the

near field equation and expect the similar behavior of the solution as z → ∂D. The

following theorem is of fundamental importance to the linear sampling method for the

interior inverse scattering problem.

Theorem 3.5. Assume that k2 is not a Maxwell’s eigenvalue either in D or in the

interior of Λ. Then

• If z ∈ R3 \D, then for every ε > 0, there exist a solution φε
z ∈ L2

t (Λ) satisfying

‖Fφε
z(x) − ν(x) × G(x, z)p‖L2

t (Λ) < ε

such that S∂Dφ
z
ε converges to the solution of the problem (1) with h = −ν × Gp as

ε→ 0. Furthermore, for a fixed ε,

lim
z→∂D

‖S∂Dφ
ε
z‖H

−1/2
div (∂D)

= ∞ (11)

and

lim
z→∂D

‖φε
z‖L2

t (Λ) = ∞. (12)

• If z ∈ D \ Λ, then for every ε > 0, there exists a solution φε
z ∈ L2

t (Λ) such that

‖Fφε
z(x) − ν(x) × G(x, z)p‖L2

t (Λ) < ε

such that

lim
ε→0

‖S∂Dφ
ε
z‖H

−1/2
div (∂D)

= ∞

and

lim
ε→0

‖φε
z‖L2

t (Λ) = ∞.

Proof. We first assume that z ∈ R3 \D. Then there exists hz ∈ H
−1/2
div (∂D) such that

Bhz = ν × G(x, z)p for x ∈ Λ. For every ε0 > 0, there exists a function φε0
z ∈ L2

t (Λ)

such that

‖S∂Dφ
ε0
z − hz‖L2

t (∂D) < ε0. (13)
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Since the operator B is bounded, we have

‖BS∂Dφ
ε0
z − Bhz‖L2

t (Λ) < cε0

where c > 0 is a constant. Letting ε = cε0, we have

‖Fφε
z(·) + ν × G(·, z)p‖L2

t (Λ) < ε. (14)

Obviously hz is ν × Gp on ∂D by definition. As z → ∂D, ‖hz‖H
−1/2
div (∂D)

blows up. For

a fixed ε, from (13), we have that (11) holds, and thus (12) also holds.

Now if z ∈ D\Λ, ν×G(·, z)p is not in the range of B. But B has dense range. Hence,

using Tikhonov regularization, for every ε > 0 we can construct a unique regularized

solution hz
α of equation (Bh)(·) = −ν × G(·, z)p given by

hz
α = −

∞∑

j=1

µj

α + µ2
j

(ν × G(·, z)p, yj)xj

where (µj, xj, yj) is a singular system for the compact operator B such that

‖(Bhz
α)(·) + ν × G(·, z)p‖L2

t (Λ) <
ε

2

and

lim
α→0

‖hz
α‖L2

t (∂D) = ∞.

Since S∂D has a dense range, there exists φα
z such that

‖S∂Dφ
α
z − hz

α‖H
−1/2
div (∂D)

<
ε

2c

where c is a constant such that ‖B‖ < c. Hence we have

‖Fφα
z (·) − ν(x) × G(·, z)p‖L2

t (Λ)

≤ ‖BS∂Dφ
α
z − Bhz

α‖L2
t (Λ) + ‖Bhz

α + ν(x) × G(·, z)p‖L2
t (Λ) < ε.

Since limε→0 α(ε) = 0 we have that

lim
ε→0

‖hz
α(ε)‖H

−1/2
div (∂D)

= ∞.

Since S∂D is bounded, we obtain

lim
ε→0

‖φε
z‖L2

t (Λ) = ∞.
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Figure 2. The geometries for two targets, an ellipsoid and a cube, and the meshes
used for the edge element method for the interior scattering problem. The mesh size
h ≈ 0.2. Left: The ellipsoid. Right: The cube.

4. Numerical examples

In this section, we show some preliminary examples using synthetic data. We use finite

element method to solve the interior scattering problems. We first choose the cavity D

and a sphere Λ inside D. Then we generate a tetrahedra mesh T for D (see Fig. 2).

We also generate a tetrahedra mesh for Λ̇ which induces a triangulation T for Λ whose

vertices restricted to Λ, denoted by xi, i = 1, . . . N , are chosen to be positions for the

dipole sources and measurement locations (see Fig. 3). For each dipole source at xi ∈ Λ

and polarization p, we use the linear edge element (see [15]) to solve (1) for the scattered

field Es(·, xi,p) and record the values at all xi’s. All the numerical examples are done

using Matlab on a desktop with 12G memory. Due to the memory restriction and the

3D nature of the scattering problem, the mesh size is restricted to 0.2 which leads to

roughly 10% error (maximum norm) of the scattered field. This is one of the reasons

of the poor reconstruction of the cavity D. However, on the other hand, even with the

inaccurate synthetic data, the position, the size and a rough shape can still be obtained.

After we have recorded the synthetic data on Λ, we turn to the problem of solving

the linear ill-posed integral equations (10). Note that the left hand side of (10) obscures

the dependence of the far field operator on φz. Similar to [15], we will derive an

equivalent form. Let (e1(x), e2(x), ν(x)) be an orthonormal basis on Λ. Then (10)

is equivalent to the two scalar equations,∫

Λ

el(x) · Es(x, y, φz(y)) ds(y) = el(x) · G(x, z)p, x, z ∈ Λ

for l = 1, 2. Since the scattered field satisfies the reciprocity relation, we may rewrite

the above equation as∫

Λ

φz(y) · Es(y, x, el(x)) ds(y) = el(x) · G(x, z)p
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Figure 3. Triangulation T of the unit sphere Λ with 152 triangles and 78 vertices.

for x, y ∈ Λ, z ∈ R3 and l = 1, 2.

The integral in (10) will be approximated by a quadrature. The vertices of each

triangle T ∈ T is denoted by aT
j , j = 1, 2, 3. For any smooth function f on Λ, we have

∫

T

f dA ≈ 1

3
area(T )

3∑

j=1

f(aT
j ).

Suppose the triangulation T has N vertices given by xm, m = 1, . . . , N , we obtain
∫

Λ

f dA ≈
N∑

m=1

ωmf(xm)

where the quadrature weights are ωm, m = 1, . . . , N . We may write φj = φ1,je1 + φ2,je2

where φ1,j, φ2,j ∈ C. The fully discrete problem corresponding to (10) is to find

φ1,j, φ2,j, j = 1, . . . , N such that

N∑

j=1

2∑

n=1

ωjen(xj) · Es(xj, xm, el(xm))φn,j = el(xm) · Φ(xm, z)p

for l = 1, 2, m = 1, . . . , N . We can rewrite this linear system as

A~φ = ~F (15)

where A is a 2N×2N matrix, ~φ is is the vector of unknowns, and ~F is the right-hand side

depending on the sampling point z. Since A comes from a compact operator, we choose

to employ the Tikhonov regularization method for (15). The regularization parameter

is chosen by Morozov’s discrepancy principle as discussed in [5].

To reconstruct the cavity D, we choose a uniform grid of the sampling region, i.e.

a region S contains D in the exterior of Λ. According to the results of previous section,
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‖~φz‖ (where ‖ · ‖ denotes ‖ · ‖l2) should become large as z → ∂D from outside of D and

z ∈ D \Λ. For simplicity, we just choose the sampling region S to be a cube containing

D. After we solve (15) for all the sampling points in S, the reconstruction is done by

plotting an iso-surface such that ‖~φz‖ = C for some constant C. Note that in practice it

is difficult to choose C since ~φz is computed from noisy data using Morozov’s discrepancy

and we have no a priori knowledge of the scatterer. In the following examples we choose

C using the heuristic calibration approach of [8], where the value of C is determined

from the reconstruction of a ball. In both of our examples, we choose

C = 0.4 max
zi

‖~φzi
‖

where zi is the sampling point.

For the first example the cavity D is an ellipsoid with x and y axis 4 and z axis 6.

We choose Λ to be the unit sphere. The left picture of Fig. 2 shows the exact shape of

D and the tetrahedra mesh we use for the interior scattering problem. We first set the

wave number k to be 2. In Fig. 4, for better visualization, we show the contour plot of

1/‖~φ‖ on different planes for the ellipsoid. The dashed lines are the exact boundary of

the cavity on the corresponding planes.

Then we consider other wave numbers. In Fig. 5 we show the iso-surface

reconstructions of the ellipsoid for k = 0.5, k = 1, k = 2 and k = 3. It can be

seen that for the wave numbers we considered, the reconstructions are similar.

The second example is a cube, centered at the origin, whose sides are 4. The right

picture of Fig. 2 shows the exact shape of D and the tetrahedra mesh we use for the

interior scattering problem. We first set the wave number k to be 2 and Λ to be the

unit sphere. In Fig. 6, we show the contour plot of 1/‖~φ‖ on different planes for the

cube. The dashed lines are the exact boundary of the cavity on the corresponding

planes. Fig. 7 is the iso-surface reconstructions of the cube for different wave numbers.

Similarly, the reconstructions are not very different from each other.

Finally, we consider the cases for different locations of the point sources and

measurement. We fix the wave number k = 2. In addition to the unit sphere, we

also choose spheres with radii r = 1.2, 0.8, 0.6 for Λ. We show the reconstructions of the

cube in Fig. 8. Different Λ’s do not change the results significantly, indicating the linear

sampling method is rather stable with respect to source and measurement locations.

5. Conclusions and future work

In this paper, an interior inverse electromagnetic scattering problem for cavities is

considered. We prove a reciprocity relation for the scattered field and a uniqueness

theorem of the inverse problem. Then we employ the linear sampling method to

reconstruct the shape of the cavity. Numerical examples are provided to show the

viability of the method.

Similar to [19], the method can be extended to cavities with impedance boundary

condition which is currently under our consideration. Due to the near field setting of
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Figure 4. The contour plot of 1/‖~φ‖ on different planes for the ellipsoid when k = 2.
The dashed lines are the exact boundary of the cavity on the corresponding planes.

the problem, another qualitative method, the reciprocity gap method should work as

well. We refer the readers to [6, 10, 4, 11, 16] for the details and applications of the

reciprocity gap method.

It can be seen that the reconstruction is not as satisfactory as the results of the

linear sampling method for exterior inverse scattering problems. How to refine the

method to obtain a better reconstruction is another interesting research topic worthy of

effort.
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Figure 5. The reconstruction of the ellipsoid, i.e. the iso-surface of ‖~φ‖ =
0.4 maxzi ‖~φzi‖ for different wave numbers. Upper left: k = 0.5, Upper right: k = 1,
Lower left: k = 2, Lower right: k = 3.
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Figure 7. The reconstruction of the cube, i.e. the iso-surface of ‖~φ‖ = 0.4 maxzi ‖~φzi‖
for different wave numbers. Upper left: k = 0.5, Upper right: k = 1, Lower left: k = 2,
Lower right: k = 3.
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Figure 8. The reconstruction of the cube, i.e. the iso-surface of ‖~φ‖ = 0.4 maxzi ‖~φzi‖
for different Λ’s (k = 2). Upper left: Λ := {x, |x| = 0.6}. Upper right: Λ := {x, |x| =
0.8}. Lower left: Λ := {x, |x| = 1.0}. Lower right: Λ := {x, |x| = 1.2}.
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