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Abstract

We discuss a novel approach for imaging local faults inside an infinite bi-periodic layered
medium in R3 using acoustic measurements of scattered fields at the bottom or the top of the
layer. The faulted area is represented by compactly supported perturbations with erroneous
material properties. Our method reconstructs the support of perturbations without knowing
or reconstructing the constitutive material parameters of healthy or faulty bi-period layer;
only the size of the period is needed. This approach falls under the class of non-iterative
imaging methods, known as the generalized linear sampling method with differential mea-
surements, first introduced in [2] and adapted to periodic layers in [25]. The advantage of
applying differential measurements to our inverse problem is that instead of comparing the
measured data against measurements due to healthy structures, one makes use of periodicity
of the layer where the data operator restricted to single Floquet-Bloch modes plays the role
of the one corresponding to healthy material. This leads to a computationally efficient and
mathematically rigorous reconstruction algorithm. We present numerical experiments that
confirm the viability of the approach for various configurations of defects.

Keywords:
Fast Reconstruction Methods, Local Perturbations, Infinite Bi-periodic Layered Medium,
Differential Imaging, Inverse Scattering Problem.

1. Formulation of the Problem

We consider nondestructive testing of an infinite bi-periodic penetrable layer in R3 by
means of acoustic waves. This is an important problem with growing interest since periodic
structures are part of many fascinating modern technological designs with applications in
(bio)engineering and material sciences. In many sophisticated devises the periodic structure
is complicated or difficult to model mathematically, hence evaluating its Green’s function,
which is the fundamental tool of many imaging methods, is computationally expensive or
even impossible. On the other hand, when looking for faults in such complex media, the
option of reconstructing everything, i.e. both periodic structure and the defects, may not be
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viable. Here we propose an approach that reconstructs the support of local anomalies without
knowing explicitly or reconstructing the constitutive material properties of the periodic layer,
except for the size of the period. The support of local perturbations is visualized by means of
its indicator function computable from scattering data, leading to computationally efficient
non-iterative imaging method. The connection between scattering data and the support
of local perturbations is made through a rigorous mathematical analysis of the scattering
problem by the bi-periodic layer with and without local perturbations.
To be more specific and set the notations, let x := (x1, x2, x3) ∈ R3, and assume that the
scattering media is a penetrable infinite layer periodic in the x1 and x2 variables with period
L1 and L2, respectively. Given a 2-dimensional vector L = (L1, L2), we call a function w
defined in R3 L-periodic if w is periodic in x1 and x2 with periods L1 and L2, respectively.
With this notation, we assume that the refractive index of the periodic layer np ∈ L∞(R3)
is L-periodic such that Re (np) > 0 and Im (np) ≥ 0. Furthermore, we assume that there
exists an h > 0 such that np = 1 for |x3| > h, hence the support of (np − 1) represents the
bi-periodic layer of width 2h. The scattering of a time harmonic incident field ui (to become
precise later) is governed by {

∆u+ k2npu = 0 in R3,

u is L-periodic
(1)

where u := ui + us is the total field, us is the scattered field and k > 0 is the wave number
proportional to interrogating frequency. Scattering of time-harmonic acoustic or electro-
magnetic waves by periodic structures such as gratings, inhomogeneous layers or waveg-
uides, is a research topic that has received enormous attention due to contemporary ap-
plications in material science. Among vast literature in the topic, we refer the reader to
[1, 3, 4, 5, 12, 14, 15, 19, 20, 21, 24, 25, 27] (the list is not exclusive by any means). For
these type of scattering problems, both the incident field and scatterer field are assumed
to be periodic in the horizontal directions, but the periods need not be the same. In such
situations, one may multiply the fields by a quasi-periodicity-factor to restore overall peri-
odicity. This allows to pose the problem on the unit cell, where an application of well-known
techniques from analysis such as variational methods and analytic Fredholm theory [14], pro-
vides existence and uniqueness of the solution. For the purpose of this study we will always
assume that the scattering problem (1) is well-posed, and refer the reader to aforementioned
references for more details.
Our main interest is in the case when local perturbations are present inside the bi-periodic
layer. We denote by ω the support of perturbations, such that ω is a compact set with
connected complement R3 \ ω. We may assume without loss of generality (up to a possible
rearrangement of the cell), that ω is located in one period (see Figure 1). The refractive index
of the bi-periodic layer together with perturbations, which is no longer periodic function, is
denoted by n ∈ L∞(R3), and it satisfies Re (n) ≥ n0 > 0, Im (n) ≥ 0. Note that ω is the
support of n − np. The well-posedness of the scattering problem for the locally perturbed
bi-periodic layer is handled by considering it as rough layer due to loss of periodicity. For
the analysis and numerical implementations of the scattering of waves by rough penetrable
layers or gratings we referee the reader to [11, 9, 10, 22, 25, 26].
Our goal is to determine the support of the damaged region ω by using the measured scattered
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Figure 1: Sketch of the geometry for the L−periodic problem. The healthy bi-periodic layer consists of a
homogenous layer occupying −h ≤ x3 ≤ h with periodically distributed inhomogeneities indicated by red
balls. Blue balls indicate the compactly supported perturbations ω located in one period denoted by Ω0.

fields outside the layer due to appropriate incident fields. The challenging task however is
to resolve ω without an explicit knowledge of np (which in practice can have a complicated
form) nor reconstructing it, but just using the fact that np is L-periodic. This problem
was first considered in [25], where the GLSM with differential measurements introduced
in [2] was modified to the current periodic configuration. In this context, as oppose to
[2], the response of the periodic background does not need to be measured. It is replaced
by the extraction of measurements associated with a single Floquet-Bloch mode to encode
some differential behavior for an appropriately designed indicator functions. This extraction
requires information only on the period size of the background. The analysis in [25] was
further developed in [8] and [26], where numerical examples were also presented only for
the 2-dimensional case. However, the imaging method was justified under some restrictive
assumptions on the location of local perturbations. In the current work, we remove these
restrictions and complete the justification of the imaging method for a general setting of
local perturbations. In particular, our analysis includes for the first time the case where
components in some periodic cells are missing, or where the perturbation is entirely inside a
component. In addition, this paper presents numerical examples for local perturbations of
a bi-periodic layer in R3, which are much more challenging and closer to real applications.
To achieve this, for technical reasons, we must replace the infinite bi-periodic layer with
M actual periods truncation (containing the defective period) for M = (M1,M2) ∈ N2

sufficiently large and then extend it as ML-periodic layer. As it is shown in [18], this
truncation is equivalent to approximating the problem in the Floquet-Bloch domain using
uniform discretization of the Floquet-Bloch variable and a trapezoidal rule to approximate
the discretized solution. However, it is important to notice that this technical process of
truncation and ML-periodic extension is needed only for the analysis of derivation of the
indicator function of the set ω, and is not involved in the computation of this indicator
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function. We also remark that many available inversion methods (see e.g. [6] and [23])
do not require this technical assumption in the analysis, but all of them rely an explicit
knowledge of the Green’s function of the periodic layered background, which is not the case
for our method. Although it is desirable to remove this technical step, one could see it as a
trade-off for not using any a priori information on np, except for the fact that it L-periodic.
Hence, from now on, the scattering by perturbed bi-periodic layer is replaced by the following
problem for the total field u := ui + us{

∆u+ k2nu = 0 in R3,

u is ML-periodic
(2)

where ui is the probing incident field and us is the scattered field. Here M = (M1,M2) ∈ N2

with the natural numbers M1 and M2 sufficiently large, refers to the number of periods we
consider in the x1 and x2 directions respectively. Thanks to ML-periodicity, solving (2) is
equivalent to solving it in the period

Θ :=
⋃

m=(m1,m2)∈Z2
M

[
−L1

2
+m1L1,

L1

2
+m1L1

]
×
[
−L2

2
+m2L2,

L2

2
+m2L2

]
× R.

Adapting the notation [a, b] := [a1, b1] × [a2, b2] for any two generic vectors a and b in R2,
we can rewrite Θ equivalently as

Θ =
[
M−

L ,M
+
L

]
× R,

where M−
L :=

[ ⌊
−M1

2

⌋
L1 +

L1

2
,
⌊
−M2

2

⌋
L2 +

L2

2

]
, M+

L :=
[ ⌊

M1

2

⌋
L1 +

L1

2
,
⌊
M2

2

⌋
L2 +

L2

2

]
,

and Z2
M := {m = (m1,m2) ∈ Z2,

⌊
−Mℓ

2

⌋
+ 1 ≤ mℓ ≤

⌊
Mℓ

2

⌋
, ℓ = 1, 2}, with ⌊·⌋ denoting

the floor function and Z the set of integers.

Note that in (2) we still call n theML-periodic extension of n|Θ and without loss of generality
assume that the defective period is

Ω0 :=

[
−L

2
,
L

2

]
× R =

[
−L1

2
,
L1

2

]
×
[
−L2

2
,
L2

2

]
× R. (3)

We now specify the incident wave ui we will use in our algorithm. To this end, we consider
down-to-up or up-to-down incident plane waves of the form

ui,±(x, j) =
−i

2 β#(j)
eiα#(j)·x±iβ#(j)x3 , with x = (x, x3) ∈ R2 × R (4)

where for each mode j = (j1, j2) ∈ Z2

α#(j) :=
(

2π
M1L1

j1,
2π

M2L2
j2

)
∈ R2 and β#(j) :=

√
k2 − |α#(j)|2, Im (β#(j)) ≥ 0.

We remark that in terms of (17), considering these plane waves is formally equivalent to
illuminating the media with periodic point sources (see also [16]). In addition, the scattered
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field us is outgoing which is expressed by imposing a radiation condition in the form of
Rayleigh expansions: us(x, x3) =

∑
ℓ∈Z2 ûs

+
(ℓ)ei(α#(ℓ)·x+β#(ℓ)(x3−h)), ∀ x3 > h,

us(x, x3) =
∑

ℓ∈Z2 ûs
−
(ℓ)ei(α#(ℓ)·x−β#(ℓ)(x3+h)), ∀ x3 < −h,

(5)

where the Rayleigh coefficients ûs(ℓ) are given by

ûs
+
(ℓ) :=

1

M1L1M2L2

∫
[M−

L ,M
+
L ]
us(x, h)e−iα#(ℓ)·x dx ,

ûs
−
(ℓ) :=

1

M1L1M2L2

∫
[M−

L ,M
+
L ]
us(x,−h)e−iα#(ℓ)·x dx .

(6)

Recall that the
[
M−

L ,M
+
L

]
is a rectangle on x1x2-plane which is restricted by M1 periods

along x1 andM2 periods along x2 directions. Evidently, the area of the rectangle
[
M−

L ,M
+
L

]
is M1L1M2L2. We shall use the notations

Θh :=
[
M−

L ,M
+
L

]
×]− h, h[ and

Γh
M :=

[
M−

L ,M
+
L

]
× {h}, Γ−h

M :=
[
M−

L ,M
+
L

]
× {−h}.

We denote by H1
#(Θ

h) the restrictions to Θh of functions that are in the Sobolev space

H1
loc(|x3| ≤ h) and are ML-periodic. The space H

1/2
# (Γh

M) is then defined as the space of

traces on Γh
M of functions in H1

#(Θ
h) and the space H

−1/2
# (Γh

M) is defined as the dual of

H
1/2
# (Γh

M) with similar definitions for H
±1/2
# (Γ−h

M ).

More generally we consider the following direct problem: given f ∈ L2(Θh) find w ∈ H1
#(Θ

h)
satisfying

∆w + k2nw = k2(1− n)f (7)

together with the Rayleigh radiation condition (5). We remark that the solution w ∈ H1
#(Θ

h)
of (7) can be extended to a function in Θ satisfying ∆w + k2nw = k2(1 − n)f , using the
Rayleigh expansion (5), and hence by ML-periodicity to a solution in the entire R3. Note
that the scattering problem for L-periodic layer (1) is equivalent to (7) where w := us, f :=
ui|hΘ and n := np, whereas the scattering problem for ML-periodic layer (2) is equivalent to
(7) where w := us and f := ui|hΘ. Throughout the paper we make the following assumption:

Assumption 1. The refractive index n and k > 0 are such that (7) as well as (7) with n
replaced by np are both well-posed for all f ∈ L2(Θh).

For sufficient conditions that guarantee Assumption 1 we refer the reader to [26], [20], [25]
and the references therein. If Φ(np; ·) is the fundamental solution to

∆Φ(np; ·) + k2npΦ(np; ·) = −δ0(·),

Φ(np; ·) is ML− periodic,

and the Rayleigh radiation condition (5).

(8)
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then the solution w of (7) has the representation as

w(x) = −
∫
D

(
k2(np − n)w + k2(1− n)f

)
(y)Φ(np;x− y) dy . (9)

Finally, as it becomes clear latter in the paper, our inversion algorithm is well-suited to
the case when a period of healthy L-periodic layer consists of several compactly supported
inhomogeneities sitting in homogeneous structure (see Figure 1), which is the case in many
applications. For sake of presentation we assume that the homogenous base structure of the
L-period media has refractive index one. With this in mind, we introduced the following
notations which will be used throughout the paper. To this end, let us first denote by ab
the element wise multiplication of two generic vectors a = (a1, a2) and b = (b1, b2), that is

ab = (a1b1, a2b2).

Notation 1. Recalling that Ω0 is the period containing ω, we denote by

Dp := Supp(np − 1) D := Supp(n− 1) and ω := Supp(n− np)

and assume that the exterior of each of Dp, D and ω is connected. Next we denote by

O the union of components of Dp ∩ Ω0 that intersect ω

Oc its complement in Dp ∩ Ω0 Λ := O ∪ ω and D̂ := Oc ∪ Λ

Let νm := (mL, 0) ∈ R3 be the translation vector Ω0 7→ Ωm (m-th period) for m ∈ Z2 and
denote by

Op :=
⋃

m∈Z2
M

O + νm, Oc
p :=

⋃
m∈Z2

M

Oc + νm, Λp :=
⋃

m∈Z2
M

Λ + νm D̂p :=
⋃

m∈Z2
M

D̂ + νm

which are L-periodic copies of the respective aforementioned regions. Finally we denote by
ωmis := ω \ D (possibly part of) missing components of Dp and ωmis

p its L-periodic copies.

Note that D̂p is periodic and D̂p ⊇ D ∪Dp.

We refer the reader to Figures 2-3 for an illustration of type of defects ω we consider in this
paper and for an illustration of the notation introduced above.

Remark 1. In the special case when the defect ω consists only of missing components of
Dp in Ω0, that in when n = 1, we have D̂p = Dp and Λ = O = ωmis ∩ Ω0.

Remark 2. All the results presented here can be readily extended to the case when the
homogeneous base structure of the L-period media has refractive index given by a constant
different from one. In this case, the free space with refractive index one is replaced by a flat
layer with refractive index one in |x3| > h and constant different from one in |x3| ≤ h.
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The domain Dp = Supp(np − 1)

The domain D = Supp(n− 1)

The domain ω = Supp(np − n)

Figure 2: Two dimensional illustration for D, Dp and ω

The domain Λp :=
⋃

m∈Z2
M
Λ + νm

The domain D̂p :=
⋃

m∈Z2
M
D̂ + νm

The domain Oc
p :=

⋃
m∈Z2

M
Oc + νm

Figure 3: Two dimensional illustration for the domains Oc
p, Λp and D̂p associated with the configuration in

Figure 2.

The imaging method discussed in this paper falls into the recently developed qualitative
approach to inverse scattering or otherwise referred to as non-iterative methods [7]. The
underlying idea is to design an indicator function of the support of perturbation solely from
the scattering data without involving any partial differential model, hence the support of
perturbation is reconstructed without knowing the physical properties of the perturbation.
In its standard presentation this approach requires an expression for the Green’s function
of unperturbed background. However, in many applications an accurate modeling of the
background is difficult to compute, hence one way to avoid this is to use differential mea-
surements. This idea was first introduced in [2] where two sets of scattering data, one for
the healthy structure and the other in a latter time, were mathematically analyzed to arrive
at an indicator function for the support of perturbation to the healthy based structure. This
idea was latter adapted to periodic layers in [25] (see also [17]). The advantage of applying
differential measurements to the inverse problem for periodic layer like the one considered
here, is that instead of comparing the measured data against measurements corresponding
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to the healthy structure, one makes use its periodicity. More precisely, the measurement op-
erator restricted to single Floquet-Bloch modes plays the role of data operator corresponding
to the healthy background. As a result, the support ω of perturbations is obtained without
knowing or reconstructing the constitutive material properties of the periodic background.
The analysis of a non-standard boundary value problem for two elliptic partial differential
equations, referred to as the interior transmission problem, is at the core of this comparison.
The interior transmission problems related to the problems considered here, are studied in
details in [8, 26].
In this paper we provide a comprehensive presentation of this novel imaging method for
locally perturbed bi-periodic layer in R3 in acoustic scattering. We include in our discussion
new configurations of defective areas, including missing components or part of components
of the healthy cell. In addition, we present the first 3D numerical implementation of the
imaging algorithm. The paper is organized as follows. In the next section, we develop the
analytical tools of our inversion method, in particular the properties of the data (near field)
operator corresponding the faulty periodic layer, and its restriction to single Floquet-Bloch
modes. Based on this analysis, in Section 3 we design an imaging algorithm for the support
ω of the defective region. In addition, we implement numerically this algorithm, and present
a large collection of 3D numerical examples for a various type of defects.

2. The Inverse Problem

We start by defining precisely the scattering data. As described above we have two
choices of interrogating waves. If we use down-to-up (scaled) incident plane waves ui,+(x; j)
defined by (4), then the (measured) scattering data is given by the Rayleigh coefficients

ûs
+
(ℓ; j), (j, ℓ) ∈ Z2 × Z2,

(that is the transmitters are under the layer whereas the receivers are above the layer),
whereas if we use up-to-down (scaled) incident plane waves ui,−(x; j) defined by (4) then
the (measured) scattering data is given by the Rayleigh coefficients

ûs
−
(ℓ; j), (j, ℓ) ∈ Z2 × Z2,

(that is the transmitters are above the layer whereas the receivers are under the layer).

The inverse problem reads: from a knowledge of Rayleigh sequences
{
ûs

+
(ℓ; j)

}
ℓ∈Z2

due to

all incident waves ui,+(x; j) for j ∈ Z2 (or Rayleigh sequences
{
ûs

−
(ℓ; j)

}
ℓ∈Z2

due to all

incident waves ui,−(x; j) for j ∈ Z2) determine ω = Supp(n − np) without knowing n and
np but only the fact that np is bi-periodic with period L = (L1, L2) and that the layer is
situated between x3 = −h and x3 = h, for some h > 0.

To fix the idea, from now on we consider the Rayleigh sequences
{
ûs

+
(ℓ; j)

}
ℓ,j∈Z2×Z2

due

to incident waves ui,+(x; j), and to simplify the notation we let ûs(ℓ; j) := ûs
+
(ℓ; j) and

ui(x; j) := ui,+(x; j) for all ℓ ∈ Z2 and j ∈ Z2. This scattering data defines the so-called
near field (or data) operator N : ℓ2(Z2) → ℓ2(Z2) by

{N(a)}ℓ∈Z2 =
∑
j∈Z2

a(j) ûs(ℓ; j), for a = {a(j)}j∈Z2 ∈ ℓ2(Z2) (10)
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(recall that ℓ2(Z2) is the Hilbert space of square summable sequences in Z2). This operator
is one of the main objects of our imaging method. We show that its properties are connected
to the reconstruction D (i.e. the support on n − 1). To this end, we define the Herglotz
operator H : ℓ2(Z2) → L2(D) by

Ha :=
∑
j∈Z2

a(j)ui(·; j)
∣∣
D
. (11)

Its adjoint H∗ : L2(D) → ℓ2(Z2) is given by

H∗φ := {φ̂(j)}j∈Z2 , where φ̂j :=

∫
D

φ(x)ui(·; j)(x) dx . (12)

Let us denote by Hinc(D) the closure of the range of H in L2(D). We then consider the
compact operator G : Hinc(D) → ℓ2(Z2) defined by

G(f) := {ŵ(ℓ)}ℓ∈Z2 , (13)

where {ŵ(ℓ)}ℓ∈Z2 is the Rayleigh sequence of the solution w ∈ H1
#(Θ

h) of (7). Then by
linearity N : ℓ2(Z2) → ℓ2(Z2) we have

N(a) = GH(a). (14)

The properties of G and H are crucial to our inversion method. To state them, we must
recall the standard interior transmission problem: find (u, v) ∈ L2(D) × L2(D) such that
u− v ∈ H2(D) and satisfying

∆u+ k2nu = 0 in D,

∆v + k2v = 0 in D,

u− v = φ on ∂D,

∂(u− v)/∂ν = ψ on ∂D,

(15)

for given (φ, ψ) ∈ H3/2(∂D) × H1/2(∂D) where ν denotes the outward normal on ∂D.
The wave number k is called a (standard) transmission eigenvalue if the corresponding
homogeneous problem, i.e. (15), with φ = 0 and ψ = 0, has non-trivial solutions. Up-to-
date results on this problem can be found in [7, Chapter 3] where in particular one finds
sufficient solvability conditions. Without loss of generality we may assume that ∂D∩∂Ω0 = ∅
where Ω0 is given by (3). If the boundary of D intersects the vertical sides of the boundary
Ω0, then the previous interior transmission problem should be augmented with periodicity
conditions on ∂D ∩ ∂Θ (intersection of D with horizontal sides of the boundary Ω0 causes
no problems). For sake of presentation, since this case does not affect the assumptions on
the solvability of the interior transmission problem (in H2(D) with periodic conditions on
∂D∩∂Θ), we omitting it in our discussion. In the sequel we make the following assumption.

Assumption 2. ∂D ∩ ∂Ω0 = ∅, and the refractive index n and the wave number k > 0 are
such that (15) has a unique solution.
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In particular, if Re (n− 1) > 0 or −1 < Re (n− 1) < 0 uniformly in a neighborhood of ∂D
inside D the interior transmission problem (15) satisfies the Fredholm alternative, and the
set of real standard transmission eigenvalues is discrete (possibly empty) without interior
accumulation points. Thus Assumption 2 holds as long as k > 0 is not a transmission
eigenvalue.
The next three proposition proven in [17] summarize the main properties of the operators
H and G in relation to the operator N which is available from the measurements.

Proposition 1 (Lemma 3.3 in [17]). The operator H : ℓ2(Z2) → L2(D) is compact and
injective. The closure of the range of H in L2(D), denoted by Hinc(D), is given by

Hinc(D) := {v ∈ L2(D) : ∆v + k2v = 0 in D}. (16)

Let us denote by Φ̂(·; z) := {Φ̂(ℓ; z)}ℓ∈Z2 for z ∈ Θh the Rayleigh sequences of Φ(1, z) given
by (8) in the special case when np ≡ 1 (i.e. corresponding to the free space), whose entries
are given by

Φ̂(ℓ; z) := i
2M1L1M2L2β#(ℓ)

e−i(α#(ℓ)·z−β#(ℓ)|z3−h|), z = (z, z3). (17)

Proposition 2 (Theorem 3.5 in [17]). Under Assumptions 1 and 2 the operator G : Hinc(D) →
ℓ2(Z2) defined by (13) is injective with dense range. Moreover Φ̂(·; z) belongs to R(G) if and
only if z ∈ D.

Finally we introduce the solution operator T : L2(D) → L2(D) given by

Tf := k2(n− 1)(f + w|D) (18)

with w being the solution of (7). By construction we have the following relation

Gf = H∗Tf

which leads to the following symmetric factorization of N

N = H∗TH, (19)

This symmetric factorization applied to an appropriate operator given in terms of N allows
us to characterize D in terms of the scattering data. To this end, let us define

N♯ := |Re (N)|+ |Im (N)| (20)

where Re (N) := 1
2
(N + N∗), Im (N) := 1

2i
(N− N∗), and N∗ : ℓ2(Z2) → ℓ2(Z2) denotes

the adjoint of N : ℓ2(Z2) → ℓ2(Z2). Similarly, letting T♯ := |Re (T)| + |Im (T)| we have the
following result:

Proposition 3 (Theorem 4.2 in [17]). Under Assumptions 1 and 2 we have that

N♯ = H∗T♯ H, (21)

where T♯ : L
2(D) → L2(D) is self-adjoint and coercive on Hinc(D). Moreover, z ∈ D if and

only if Φ̂(·; z) ∈ R
(
(N♯)

1/2
)
.
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Proposition 3 provides a mathematically rigorous criteria to determine D, which includes
the support of periodic inhomogeneities in the healthy bi-periodic layer together with the
defective region, from the data operator N. In particular that Picard series for the range of
N♯ converges if and only if the sampling point z is in D. However, for complicated periodic
structures and relatively small defects or defects with peculiar location such as ω ⊂ Dp,
reconstructing D is unsatisfactory. Our aim is to design an indicator function of the set ω
without knowing or recovering Dp in the same spirit as the criterion in Proposition 3. To
achieve this, the idea of using the data (near field) operator corresponding to one Floquet-
Bloch mode and perform the same type of analysis to it as for N was first introduced in [25].
This operator plays the role of the data operator corresponding to unperturbed background
used in the sampling method with differential measurements in [2]. The main difference
here is that this operator is computationally extracted from the measurement operator N
without extra measurements. Indeed for a fixed q ∈ Z2

M we consider only q + ℓM Rayleigh
coefficients of scattered waves ûs(q+ℓM ; q+jM ) generated by incident waves ui(·; q+jM ).

Thus, single Floquet-Bloch mode data operator: Nq : ℓ
2(Z2) → ℓ2(Z2) is defined by

{Nq(a)}ℓ∈Z2 =
∑
j∈Z2

a(j) ûs(q + ℓM ; q + jM ), for a = {a(j)}j∈Z2 . (22)

The operators Nq and N are related through the projection operator Iq : ℓ2(Z2) → ℓ2(Z2)
given by

(Iqa)(ℓ) =

{
a(j), if ℓ = q + jM

0, else.
(23)

with its adjoint I∗q : ℓ
2(Z2) → ℓ2(Z2) given by (I∗qb)(j) = b(q + jM ).

Hence we have

Nq a = I∗q N Iq a. (24)

(In the figure on the left the Rayleigh coefficients that define

Nq are indicated by red squares).

From physical point of view, Nq is associated with αq−quasi-periodic fields with period
L, where αq = 2π

ML
q, since the sequence Nq a corresponds to the Fourier coefficients of

αq−quasi-periodic component of the scattered field. Recall that a function u is called
αq−quasi-periodic fields with period L = (L1, L2) if

u(x+ jL, x3) = eiαq ·(jL)u(x, x3), for all j ∈ Z2.

To understand the operator Nq we need the αq−quasi-periodic fundamental solution Φq(·)
that satisfies

∆Φq(· − z) + k2Φq(· − z) = −δz in Ω0 (25)
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for z ∈ Rd. Its Rayleigh coefficients Φ̂q(·; z) of Φq(· − z) are given by

Φ̂q(j; z) =

{
i

2L1L2β#(q+M ℓ)
e−i(α#(q+M ℓ)·z−β#(q+M ℓ)|z3∓h|) if j = q +Mℓ, ℓ ∈ Z2,

0 if j ̸= q +Mℓ, ℓ ∈ Z2.
(26)

Similarly to the Herglotz operator H, the single Floquet-Bloch mode Herglotz operator
Hq : ℓ

2(Z2) → L2(D) is defined by

Hqa := H Iqa =
∑
j

a(j)ui(·; q + jM )|D, (27)

where we note that Hqa restricted to Dp is also αq−quasi-periodic function with period L

(see Remark 3 if missing (parts of) components are present). Note that R(Hq) is character-
ized in Proposition 4. Then the factorization (19) along with (24) immediately implies

Nq = H∗
q THq, (28)

where T is defined by (18). The role of G given by (13) with respect to Nq is now played by

Gq : R(Hq) → ℓ2(Z2) by
Gq = H∗

qT|R(Hq)
. (29)

Observing that
φ(j;x) := eiα#(j)·x = e

2π
ML

j·x, j ∈ Z

is a Fourier basic of ML periodic function in L2(ΩM), we have that any w ∈ L2(ΩM) which
is ML periodic, has the expansion

w(x) =
∑
j∈Z

ŵ(j, x3)φ(j;x), where ŵ(j, x3) :=
1

M1L1M2L2

∫
ΩM

w(x)φ(j;x) dx , (30)

(here the line over φ denotes the conjugation whereas x = (x1, x2)). Splitting j by module
M component by component (i.e. splitting jℓ by module Mℓ, ℓ = 1, 2) we can arrange the
expansion of w as

w(x) =
∑
q∈Z2

M

∑
ℓ∈Z2

ŵ(q +Mℓ, x3)φ(q +Mℓ;x), (31)

where φ(q +Mℓ;x) is αq−quasi-periodic with period L. We also have that

wq :=
∑
ℓ∈Z2

ŵ(q +Mℓ, x3)φ(q +Mℓ;x)

is αq−quasi-periodic with period L. Thus any ML−periodic function w ∈ L2(ΩM) can be
decomposed

w =
∑
q∈Z2

M

wq (32)
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where wq is αq−quasi-periodic with period L. Moreover, by the orthogonality of the Fourier
basis {φ(j; ·)}j∈Z, we have that

ŵq(j) = 0 if j ̸= q +Mℓ, ℓ ∈ Z2 and ŵ(q +Mℓ) = ŵq(q +Mℓ) (33)

where ŵq(j) the Rayleigh sequence of wq defined in (6). From the definition of Gq, we see that
Gq(f) is the Rayleigh subsequence of ŵ(j) corresponding to the indices j = q+Mℓ, ℓ ∈ Z2,
where w is solution of (7).
The above discussion is helpful to proving the following properties for Hq and Gq that are
the counterpart results to Proposition 1 and Proposition 2 needed to analyze the range of
the operator Nq.

Proposition 4. The operator Hq : ℓ
2(Z2) → L2(D) is injective. Furthermore the closure of

its range is given by R(Hq) = Hq
inc(D) where

Hq
inc(D) := {v ∈ L2(D), ∆v + k2v = 0 in D and v is αq−quasi-periodic in Dp}. (34)

We remind the reader that our discussion in the following heavily relies on Notation 1. Before
we prove the preposition, we make some clarification in the remark below.

Remark 3. If ω contains missing (part of) components of Dp in (34) we mean that v has
an extension as αq−quasi-period in Dp. More specifically this extension is defined as

Hq
inc(D) :=


v ∈ L2(D), ∆v + k2v = 0 in D such that ṽ(x) ∈ L2(D ∪Dp) defined by:

ṽ(x) =

{
v(x), ∀ x ∈ D
v(x+L)e−iαq ·L, ∀ x ∈ Dp \D

is αq−quasi-periodic in Dp

(35)
Note also that, in the case Dp ⊆ D (this is the case studied in [8]), i.e. there are no missing
components, the definition in (34) becomes

Hq
inc(D) := {v ∈ L2(D), ∆v + k2v = 0 in D and v|Dp is αq−quasi-periodic}. (36)

Proof of Proposition 4. Injectivity of Hq follows from injectivity of the operators H and Iq.
Hence it suffices to show that H∗

q is injective in Hq
inc(D). The case when ω ⊂ D corresponds

to Lemma 3.1 in [8]. We sketch here this proof to confirm that it works also in the case
when ω ̸⊂ D. In particular, ω is considered to be the entire component O or a part of the
component O. To this end, let φ ∈ Hq

inc(D) and assume H∗
q(φ) = 0. Then we define

u(x) :=
1

M1M2

∫
D

Φq(x− y)φ(y) dy .

where Φq has the Rayleigh coefficients given by (26). By the definition of u and using (26)
we see that the Rayleigh coefficients of u are given by û(j) = 0 for all j ̸= q + Mℓ and
û(q +Mℓ) = (H∗(φ)) (q + Mℓ) = (H∗

q(φ))(ℓ) = 0. Therefore u has all zero Rayleigh
coefficients, which implies that u = 0 for x3 > h and x3 < h. We now observe that for all
y ∈ D, ∆Φq(·;y) + k2Φq(·;y) = 0 in the complement of D̂p. This implies that

∆u+ k2u = 0 in R3 \ D̂p.
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Using a unique continuation argument we infer that u = 0 in ΩM\D̂p. Therefore, u ∈ H2
0 (D̂p)

by the regularity of volume potentials. We remark that ω may include components that are
part of O but are missing in D. For configurations where this does not happen, we can
proceed exactly in the same way as [8, pages 11-12 in the proof fo Lemma 3.1]. For this
reason, here we focus on the case where the defect occupies a region in O that is missing (or
partially missing) in D. Specifically in this case, ω = Dp \ D, and n = 1 in ω. Therefore

D̂p = Dp and D ∩ ω = ∅. We then obtain u ∈ H2
0 (Dp), and it rewrite it as

u(x) =
1

M1M2

∫
Dp

Φq(x− y)φ(y) dy − 1

M1M2

∫
ω

Φq(x− y)φ(y) dy ,

where φ is αq−quasi-periodic in Dp. From the definition of u(x), we first observe that u(x)
is αq−quasi-periodic. Indeed

u(x+mL) :=
1

M1M2

∫
D

Φq(x+mL− y)φ(y) dy

= eiαq ·mL 1

M1M2

∫
D

Φq(x− y)φ(y) dy = eiαq ·mLu(x),

for all m ∈ Z2
M . We now consider x ∈ Dp ∩ Ω0. By the αq−quasi-periodicity of Φq and φ

with period L, we have

1

M1M2

∫
Dp

Φq(x− y)φ(y) dy =

∫
Dp∩Ω0

Φq(x− y)φ(y) dy ,

and hence

u(x) =

∫
Dp∩Ω0

Φq(x− y)φ(y) dy − 1

M1M2

∫
ω

Φq(x− y)φ(y) dy

=

∫
D̂p∩Ω0

Φq(x− y)φ(y) dy +
M1M2 − 1

M1M2

∫
ω

Φq(x− y)φ(y) dy , ∀x ∈ Dp ∩ Ω0.

Next, we define φ̃(x) for all x ∈ Dp ∩ Ω0 by

φ̃(x) =

 φ(x), ∀ x ∈ D̂p ∩ Ω0

M1M2−1
M1M2

φ(x), ∀ x ∈ ω

we have
∆u+ k2u = −φ̃(x), ∀x ∈ Dp ∩ Ω0.

Evidently, extending φ̃ as αq−quasi-periodic to Dp we have

∆u+ k2u = −φ̃(x), ∀x ∈ Dp.

Furthermore, linearity of the Laplace operator and the fact that φ(x) satisfies equation
∆φ+ k2φ = 0 in Dp implies that

∆φ̃+ k2φ̃ = 0, ∀ x ∈ Dp. (37)
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Since u ∈ H2
0 (Dp) we then have

∥φ̃∥2L2(Dp)
= −

∫
Dp

(∆u+ k2u)φ̃ = 0,

which implies φ̃ = 0 in Dp. In particular, φ̃ = 0 in Dp∩Ω0. IfM1M2 = 1, then the definition

of φ̃ implies φ = 0 in D̂p ∩ Ω = D, which ends the proof. Otherwise, when M is such that
M1M2 ≥ 2 we have φ = 0 in Dp ∩ Ω0 , and therefore by the quasi-periodicity φ = 0 in
Dp ⊃ D. This proves the injectivity of (H±)∗ on Hq

inc(D) and hence proves the Lemma.

In the case of missing component, we assume that f ∈ Hq
inc(D) then f̃ (defined by the same

way as ṽ in (35)) is αq−quasi-periodic in Dp. Furthermore, since in this case, n = 1 in ω,
solution w to equation (7) associated with data f satisfy

∆w + k2nw = k2(1− n)f̃ = k2(1− np)f̃ + k2(np − n)f̃ . (38)

Using decomposition (32) for the solution w of (7) along with the facts that np is periodic,
f̃ is αq−quasi-periodic and that n− np is compactly supported in one period ω ⊂ Ω0, then
(7) in terms of the coefficients wq in (32) for this w takes the form

∆wq + k2npwq = k2(np − n)w + k2(1− n)f̃ in Ω0. (39)

However, since f = f̃ in the support of n− 1, (39) becomes

∆wq + k2npwq = k2(np − n)w + k2(1− n)f in Ω0. (40)

Therefore, operator Gq : R(Hq) = Hq
inc(D) → ℓ2(Z2) can be equivalently defined by

Gq(f) := I∗q{ŵq(ℓ)}ℓ∈Z2 , (41)

where wq solves (40), w is solution to (7), and {ŵq(ℓ)}ℓ∈Z2 is the Rayleigh sequence of wq.

We need to introduce one more interior transmission problem that is related to the charac-
terization of the range of Gq.

Definition 1. Given (φ, ψ) ∈ H3/2(∂Λ)×H1/2(∂Λ), find (u, f) ∈ L2(Λ)× L2(Λ) such that
u− f ∈ H2(Λ) satisfying

∆u+ k2nu = k2(np − n)S̃k(f) in Λ,

∆f + k2f = 0 in Λ,

u− f = φ on ∂Λ,

∂(u− f)/∂ν = ψ on ∂Λ,

(42)

where

S̃k : L
2(Λ) → L2(Λ) :

f 7→ −
∫
Λ

k2(1− np)f(y)
( ∑

0̸=m∈Z2
M

eiαq ·mLΦ(np;x−mL− y)
)
dy , (43)

Φ(np; ·) is the ML-periodic fundamental solution given by (8) and ν denotes the unit normal
on ∂Λ outward to Λ.
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This problem is first introduced in [17] and we refer the reader to this paper for the analysis
of its solvability. We here make the following assumption on its solvability.

Assumption 3. The refractive index n and k > 0 are such that the interior transmission
problem in Definition 1 has a unique solution.

Theorem 1. Suppose that Assumptions 1, 2, 3 hold, and Assumption 2 holds in addition
when (n,D) is replaced by (np, Dp). Then the operator Gq : Hq

inc(D) → ℓ2(Z2) is injective
with dense range.

Proof. As in the previous proof, we only consider the case where the defect is constituted
by components in Dp that are missing in D, i.e. ω ⊆ O and ω ∩ D = ∅. The other cases
can be treated as in [8, Theorem 3.2]. Assume that f ∈ Hq

inc(D) such that Gq(f) = 0 and
f̃ ∈ L2(Dp) is an extension of f given in (35). Let w be solution of (7) with data f . We
have that

Gq(f) := I∗q{ŵq(ℓ)}ℓ∈Z2 ,

where and wq is solution to

∆wq + k2npwq = k2(np − n)w + k2(1− n)f in Ω0 (44)

Note that ∆wq + k2wq = 0 in ΩM \Dp. Using a similar unique continuation argument as in
the beginning of proof of Proposition 4, we deduce that

wq = 0 in ΩM \Dp.

In other words, wq = 0 outside Dp. From now to the end of the proof, we consider only
the period Ω0. Since Supp(n− np) ∩ Supp(1− n) = ω ∩D = ∅, and n = np in D, (44) can
be split into two equations

∆wq + k2npwq = k2(np − 1)w in ω, (45)

where w ∈ H1
loc(Θ) is solution to (7) and

∆wq + k2npwq = k2(1− np)f in Ω0 ∩D. (46)

Observe that w satisfies ∆w+k2w = 0 in ω. Therefore, from (45) (wq,−w) ∈ H2
0 (ω)×L2(ω)

and satisfies {
∆wq + k2npwq = k2(np − 1)w in ω,

∆w + k2w = 0 in ω.
(47)

Assumption 2 with (n,D) replaced by (np, Dp) implies that (47) has only the trivial solution
and therefore

wq = −w = 0 in ω.

We again see that, in the domain Ω0 ∩D, (wp, f) ∈ H2
0 (Ω0 ∩D)× L2(Ω0 ∩D) and satisfies{

∆wq + k2npwq = k2(1− np)f in Ω0 ∩D,

∆f + k2f = 0 in Ω0 ∩D.
(48)
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Assumption 2 with (n,D) replaced by (np, Dp) again implies that (48) has only the trivial
solution, and therefore

wq = f = 0 in Ω0 ∩D.

This proves the lemma.

Finally we can prove exactly in the same way as in the proof of [8, Theorem 3.5] the following
range test related to the operator Gq which plays an important role in the design of our
imaging method.

Theorem 2. Suppose that Assumptions 1, 2 and 3 hold. Then, I∗qΦ̂q(·; z) ∈ R(Gq) if and

only if z ∈ D̂p.

We now have all the ingredients to arrive at our imaging method in the next section.

3. A Differential Imaging Algorithm

We now apply theoretical results of Section 2 to design an algorithm that provides us with
an indicator function of the support of the defect ω without reconstructing Dp or computing
the Green’s function of the periodic media. Such an indicator function is based on the
analysis of the range of operators N and Nq in relation to interior transmission problems
discussed in Section 2. Roughly speaking we can construct three appropriate sequences aα,z,
aα,z
q and ãα,z

q (to become precise latter), as nearby solutions to

∥Naα,z − Φ̂(·; z)∥ℓ2 ≤ α, ∥Naα,z
q − Φ̂q(·; z)∥ℓ2 ≤ α, ∥Nqã

α,z
q − I∗qΦ̂q(·; z)∥ℓ2 ≤ α (49)

as α → 0, where Φ̂(·; z) are the Rayleigh coefficients of Φ(1, z) (i.e. Φ(np; z) defined by (8)

with with np = 1) given by (17), and Φ̂q(·; z) are the Rayleigh coefficients of Φq(· − z) given
by (26). Then we show that these nearby solutions satisfy:

• z ∈ D if and only if lim
α→0

⟨N♯a
α,z,aα,z⟩ <∞.

The domain D = Supp(n− 1)

• z ∈ Dp \ ωmis
p if and only if lim

α→0

〈
N♯a

α,z
q ,aα,z

q

〉
<∞.

The domain Dp \ ωmis
p

• z ∈ D̂p if and only if lim
α→0

〈
Nq,♯ã

α,z
q , ãα,z

q

〉
<∞.
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The domain D̂p :=
⋃

m∈Z2
M
D̂ + νm

An appropriate combination of these three indicator functions yield a visualization of the
support of local perturbation. In the following we introduce and mathematically justify the
algorithm.

Next we show rigorously how to obtain the nearby solutions with the behavior as in (49).
To this end, let N♯ be defined by (20) and Nq,♯ := I∗qN♯Iq. Then for given ϕ and a in ℓ2(Z2)
we define the functionals

Jα(ϕ,a) := α ⟨N♯a,a⟩+ ∥Na− ϕ∥2,

Jα,q(ϕ,a) := α ⟨Nq,♯a,a⟩+ ∥Nqa− ϕ∥2,
(50)

here ⟨·, ⟩ denotes the inner product in ℓ2(Z2).

Let aα,z, aα,z
q and ãα,z

q in ℓ(Z2) satisfy (i.e. minimizing sequences)

Jα(Φ̂(·; z),aα,z) ≤ inf
a∈ℓ2(Z2)

Jα(Φ̂(·; z),a) + c(α)

Jα(Φ̂q(·; z),aα,z
q ) ≤ inf

a∈ℓ2(Z2)
Jα(Φ̂q(·; z),a) + c(α)

Jα,q(I
∗
qΦ̂q(·; z), ãα,z

q ) ≤ inf
a∈ℓ2(Z2)

Jα,q(I
∗
qΦ̂q(·; z),a) + c(α)

(51)

with c(α)
α

→ 0 as α → 0. The standard analysis of the generalized linear sampling method
(see e.g. [7, Section 2.2]) making use of the factorization of N♯ in Theorem 3 along with
all the properties of the involved operators developed in Section 2 can be used to prove the
lemma below.

Lemma 1. Under assumptions 1, 2 3 the following results hod true:

(i) z ∈ D if and only if lim
α→0

⟨N♯a
α,z,aα,z⟩ < ∞. Moreover, if z ∈ D then Haα,z → vz

in L2(D) where (uz, vz) is the solution of problem (15) with φ = Φ(1; z) and ψ =
∂Φ(1; z)/∂ν on ∂D.

(ii) z ∈ Dp \ ωmis
p if and only if lim

α→0

〈
N♯a

α,z
q ,aα,z

q

〉
<∞. Moreover, if z ∈ Dp \ ωmis

p then

Haα,z
q → vz in L

2(D) where (uz, vz) is the solution of problem (15) with φ = Φq(· − z)
and ψ = ∂Φq(· − z)/∂ν on ∂D.

(iii) z ∈ D̂p if and only if lim
α→0

〈
Nq,♯ã

α,z
q , ãα,z

q

〉
< ∞. Moreover, if z ∈ D̂p then Hqã

α,z
q →

hz in L2(D) where hz is defined by

hz =

{
−Φq(· − z) in Λp

vz in Oc
p

if z ∈ Oc
p

hz =

{
v̂z in Λp

−Φq(· − z) in Oc
p

if z ∈ Λp

(52)
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where (uz, vz) is the solution of problem (15) with φ = Φq(· − z) and ψ = ∂Φq(· − z)/∂ν
on ∂D and (ûz, v̂z) is αq−quasi-periodic extension of the solution (u, f) of the interior
transmission problem in Definition 1 with φ = Φq(· − z) and ψ = ∂Φq(· − z)/∂ν on
∂Λ.

Here H : ℓ2(Z2) → L2(D) is defined by (11) and Hq : ℓ
2(Z2) → L2(D) is defined by (27).

Proof. For the proof of the items (i) and (ii), we refer to Theorem 3.5 and Lemma 4.7 in
[17]. The proof of items (iii) is a direct application of Theorem A.4 in [17] in combination
with Theorem 2.

We then consider the following imaging functional, that characterizes the defects and the
defective components of the periodic background,

Iα(z) =

(
⟨N♯a

α,z,aα,z⟩

(
1 +

⟨N♯a
α,z,aα,z⟩

D(aα,z
q , ãα,z

q )

))−1

(53)

where for a and b in ℓ2(Z2),

D(a, b) := ⟨N♯(a− Iqb), (a− Iqb)⟩ .

Theorem 3. Under Assumptions 1, 2 and 3, we have that

z ∈ D \ Oc
p if and only if lim

α→0
Iα(z) > 0.

Thus we reconstruct the support of defects that do not intersect healthy components together
with periodic copies of the components that intersect the defective region as illustrated below.

The domain D \ Oc
p

Proof. This theorem complements Theorem 5.2 in [8] where the configuration with D \Oc
p =

Λp was investigated only. Thus the same arguments as in the proof of Theorem 5.2 in [8]
show that limα→0 Iα(z) = 0 for all z /∈ D and z ∈ Oc

p. Therefore we only need to show that

lim
α→0

Iα(z) > 0 for all z ∈ D \ Oc
p.

Note that D \Oc
p ⊂ Λp (see the figure above and Figure 3 for an illustration). By Lemma 1,

factorization of Nq,♯ and identity Nq,♯ = I∗qN♯Iq we obtain

(N♯Iqã
α,z
q , Iqã

α,z
q ) → (T♯hz, hz) < +∞, α → 0

where hz ∈ L2(D̂p) is defined by (52). Let us split domain D \ Oc
p into (D \ Oc

p) \ Dp and
(D \ Oc

p) ∩Dp, and treat each domain separately.
Case 1: We assume that z ∈ (D \Oc

p) \Dp (parts of the defect that do not intersect healthy
components of the periodic layer). By Lemma 1(ii) (N♯a

α,z
q ,aα,z

q ) → +∞ as α → 0. This
implies,

D(aα,z
q , ãα,z

q ) ≥
∣∣∣(N♯a

α,z
q ,aα,z

q )− (N♯Iqã
α,z
q , Iqã

α,z
q )

∣∣∣→ +∞.
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We then conclude that limα→0 Iα(z) > 0.
Case 2: We assume that z ∈ (D \ Oc

p) ∩ Dp. The case (D \ Oc
p) ∩ Dp = Op is treated in

[8]. The case (D \ Oc
p) ∩Dp ̸= Op corresponds to the case where ωmis ̸= ∅. In this domain

n = 1 and np ̸= 1. If z is not in ωmis
p (i.e. one of the periodic copies of ωmis) then the

same arguments as in [8] apply and show that D(aα,z
q , ãα,z

q ) remains bounded away from 0
as α → 0. This is due to the fact that hz ̸= vz where vz and hz are defined in Lemma 1
(ii) and (iii), respectively. This implies limα→0 Iα(z) > 0. The case where z ∈ ωmis

p \ ωmis

can treated similarly to Case 1. By Lemma 1 (ii) and (iii),
〈
N♯a

α,z
q ,aα,z

q

〉
→ ∞ while〈

N♯a
α,z
q ,aα,z

q

〉
remains bounded as α → 0. Consequently D(aα,z

q , ãα,z
q ) → ∞ as α → 0.

Lemma 1 (i) indicates that ⟨N♯a
α,z,aα,z⟩ remains bounded as α → 0. The last two items

show that limα→0 Iα(z) > 0, which ends the proof of the theorem.

3.1. Numerical Studies

In this section we present some numerical examples using simulated data in R3 showing
viability of our imaging method. In our examples, the probing region is ΩM containing
M1×M2 periods including the defective cell. Data is generated by a family of incident plane
waves as described in (4) with the indices j = (j1, j2) in the set

Z2
inc := {j = (j1, j2)|j = q +Mℓ with ℓ ∈ [−Nmin,Nmax]}.

Here, q ∈ Z2
M is fixed and Nmin,Nmax ∈ Z2

+ are given. The scattered wave associated
with each individual incident wave is computed numerically by implementing the Floquet-
Bloch transform and volume integral method described in [18]. The collection of Rayleigh
coefficients corresponding to ℓ ∈ Z2

inc of the scattered wave associated with each individual
incident wave form the data for the inverse problem. Thus, if Ninc denotes the number of
incident waves, then the measurements

{
ûs(ℓ; j)

}
ℓ,j∈Z2

inc
form a Ninc ×Ninc matrix

N :=
[
ûs(ℓ; j)

]
ℓ,j∈Z2

inc
. (54)

Since in practice the measured data is always corrupted by noisy, we simulate the noise in
our computed data. In particular, if δ > 0 is the noise level, the noisy near-field operator Nδ

is computed by adding random noise to N, that is

Nδ(j, ℓ) := N(j, ℓ)
(
1 + δA(j, ℓ)

)
, ∀(j, ℓ) ∈ Z2

inc × Z2
inc (55)

where A = [A(j, ℓ)]Ninc×Ninc
is a matrix of uniform complex random variables with real and

imaginary parts in [−1, 1]2. We define the functionals Jδ
α and Jδ

α,q associated with the noisy
data, by

Jδ
α(ϕ,a) := α

(〈
Nδ

♯a,a
〉
+ δ∥Nδ

♯∥∥a∥2
)
+ ∥Nδa− ϕ∥2,

Jδ
α,q(ϕ,a) := α

(〈
Nδ

♯Iqa, Iqa
〉
+ δ∥Nδ

♯∥∥a∥2
)
+ ∥Nδ

qa− ϕ∥2.
(56)

We then consider aα,z
δ , aα,z

q,δ and ãα,z
q,δ in ℓ2(Z2) as minimizing sequences of

Jδ
α(Φ̂(·; z),a), Jδ

α(Φ̂q(·; z),a), and Jδ
α,q(Φ̂q(·; z),a), (57)
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respectively. The noisy indicator function takes the form

Iδ
α(z) =

(
Gδ(aα,z

δ )

(
1 +

Gδ(aα,z
δ )

Dδ(aα,z
q,δ , ã

α,z
q,δ )

))−1

, (58)

where for a and b in ℓ2(Z2),

Dδ(a, b) :=
〈
Nδ

♯(a− Iqb), (a− Iqb)
〉

and
Gδ(a) :=

〈
Nδ

♯a,a
〉
+ δ∥Nδ

♯∥∥a∥2.

In order to speed up the inversion algorithm and adopt an automatic choice of the regular-
ization parameter using the Morozov principle we choose to replace

〈
Nδ

♯a,a
〉
with ∥Nδ

♯∥∥a∥2.
More specifically, the sequence aα,z

δ is computed as the minimizer of the functional

α(1 + δ)∥Nδ
♯∥∥a∥2 + ∥Nδa− Φ̂(·; z)∥2, (59)

which can be viewed as the Tikhonov regularization of Nδa = Φ̂(·; z) with regularization
parameter αapp := α(1 + δ)∥Nδ

♯∥. Associated with each sampling point z, the minimizer

aα,z
δ of the functional given by (59) is aα,z

δ = [(Nδ)∗Nδ + αappI]
−1(Nδ)∗Φ̂(·; z), where the

regularization parameter αapp is determined using the generalized Morozov’s discrepancy

parameter as proposed in [13], i.e, αapp is such that ∥Nδaα,z
δ − Φ̂(·; z)∥ = δ∥aα,z

δ ∥. We
observe that the results obtained using the indicator function (58) have qualitatively the
same accuracy as those obtained by using the sequences associated with minimizing (56)
using α = αapp/((1 + δ)∥Nδ

♯∥). Similar procedure is applied to aα,z
q,δ and ãα,z

q,δ .

In order to visualize a 3D approximation of D \ Oc
p we plot the set of sampling points z

defined as
{z : Iδ

α(z) ≥ κmax(Iδ
α)} (60)

where κ is a tuning visualization parameter. We choose κ = 0.45 and keep it fixed for all
examples below. The focus of the numerical study is on testing the viability of the indicator
function for different configurations of the defects (defects inside, outside or intersecting the
periodic domain Dp). We therefore shall also keep the following parameters fixed:

np = 2, n = 4, k = π, Lx = Ly = 2π, M = (3, 2), q = (1, 1), δ = 5% (61)

and set the width of the periodic layer h = 1.5λ, where λ := 2π/k denotes the wavelength.

Example 1:. In the first example, the periodic layer is made of two cubes in each pe-
riod with edge length 0.6λ and 0.5λ. In the period Ω0, these two cubes are centered at
(0.6λ,−0.6λ,−0.3λ) and (−0.5λ, 0, 0), respectively. The local perturbation is a ball of the
radius r = 0.3λ non-intersecting with the periodic components (see Figure 4(a) and 4(b) for
a 3D plot and a slice in the y direction through the center of the ball, respectively). The
reconstruction of the defect using the indicator function Iδ

α is depicted in Figure 4(c) for the
3D view given by (60) and in Figure 4(d) for the slice view. They demonstrate the efficiency
of our differential indicator function for this configuration of the defect.
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(a) (b)

(c) (d)

Figure 4: (a) exact geometry of the domain D with a defect being a ball (see details in the description of
Example 1), (b) a slice of D in the y direction passing through the center of the ball, (c) a 3D view of the
reconstruction given by (60), (d) a slice view of the indicator function Iδ

α that corresponds to (b).

Example 2: . The periodic background in this example is the same in Example 1. The
perturbation ω is a ball that intersects the smaller cube (see Figures 5(a) and 5(b)). In
this example n = 4 in the part of the ball inside the cube and n = 3 in the rest of the
ball (see Figure 5(b)). The 3D reconstruction using the indicator function (60) is displayed
in Figure 5(c) and Figure 5(d) displays the indicator function at the slice plane. Theorem
3 indicates that the values of Iδ

α(z) are positive for z inside the perturbation and in the
periodic copies of the background that intersects the perturbation. However, we do not have
quantitative information about the values of Iα(z) at each point in the probing region. A
careful observation of iso-surfaces in the reconstructions presented in Figure 5 suggests that
the value of I(z) at the points z in the periodic copies of the part of the cube intersecting
the defect is much smaller than the values at the points in the perturbed region. One can
argue that this difference clearly distinguishes the true defect from the periodic artifacts.
The presence of periodic copies of intersection subsets also indicates whether the defective
region overlaps with components of the healthy periodic layer or not (compare to Example
1).
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(a) (b)

(c) (d)

Figure 5: (a) exact geometry of the domain D with a defect being a ball that intersects the periodic domain
Dp (see details in the description of Example 2), (b) a slice of D in the y direction passing through the center
of the ball, (c) a 3D view of the reconstruction given by (60), (d) a slice view of the indicator function Iδ

α

that corresponds to (b).

Example 3: . In this example, we change the configuration of the periodic background which
now includes two cubes and one ball in each period (see Figure 6(a)) with refractive index
nb = 2. We consider a local perturbation of the refractive index that changes the value of nb

inside the ball in Ω0 (see Figure 6(b)). We set n = 4 in this defective component. According
to the theoretical result in Theorem 3 the indicator function Iα(z) should visualize periodic
copies of this ball. This is what is observed in Figures 6(c) and 6(d)). We also observe that
the values of the indicator function are larger in the ball inside Ω0 which may also be used
as an indicator for the location of the defect.
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(a) (b)

(c) (d)

Figure 6: (a) exact geometry of the domain D with a defect being a ball that coincides with one component
of the periodic domain Dp (see details in the description of Example 3), (b) a slice of D in the y direction
passing through the center of the ball, (c) a 3D view of the reconstruction given by (60), (d) a slice view of
the indicator function Iδ

α that corresponds to (b).

Example 4.. We end our numerical investigations by showing three more numerical examples
illustrating a case where a whole component of the periodic domain Dp is missing (see Figure
7), a case where only a part of a component of Dp is missing (see Figure 8), and a case where
both scenarios are present (see Figure 9).
The 3D reconstruction obtained in Figure 7 confirms the result of our theory as we obtain
periodic copies of the missing component except in Ω0.
In the case of a partially missing component presented in Figure 8, the 3D reconstruction
resembles the case of an entire component missing: only the missing part is repeated peri-
odically except in Ω0. In the last case presented in Figure 9, we have a partially missing
component and an additional defect in the form of ball intersecting the component that has
a missing part. This is indeed a complication over the previous case and the obtained re-
constructions are compatible with what one would expect from the theory, i.e. the indicator
function shows the defective component repeated periodically.
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(a) (b)

Figure 7: This example illustrates the case of a defect consisting of a missing component of Dp as shown in
(a). (b) displays a 3D view of the reconstruction given by (60).

(a) (b)

(c) (d)

Figure 8: (a) exact geometry of the domain D with a defect being partially missing component of the periodic
domain Dp, (b) a slice of D in the y direction passing through the middle of the defective component, (c) a
3D view of the reconstruction given by (60), (d) a slice view of the indicator function Iδ

α that corresponds
to (b).
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(a) (b)

(c) (d)

Figure 9: (a) exact geometry of the domain D with a defect being partially missing component of the
periodic domain Dp and a ball intersecting this defective component, (b) a slice of D in the y direction
passing through the middle of the defective component, (c) a 3D view of the reconstruction given by (60),
(d) a slice view of the indicator function Iδ

α that corresponds to (b)
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