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STEKLOFF EIGENVALUES IN INVERSE SCATTERING*

F. CAKONIf, D. COLTON?¥, S. MENG!, AND P. MONK?

Abstract. We consider a problem in nondestructive testing in which small changes in the
(possibly complex valued) refractive index n(z) of an inhomogeneous medium of compact support
are to be determined from changes in measured far field data due to incident plane waves. The
problem is studied by considering a modified far field operator F whose kernel is the difference of
the measured far field pattern due to the scattering object and the far field pattern of an auxiliary
scattering problem with the Stekloff boundary condition imposed on the boundary of a domain B,
where B is either the support of the scattering object or a ball containing the scattering object in
its interior. It is shown that F can be used to determine the Stekloff eigenvalues corresponding to
B, where, if B # D, the refractive index is set equal to one in B\ D. A formula is obtained relating
changes in n(x) to changes in the Stekloff eigenvalues and numerical examples are given showing the
effectiveness of determining changes to the refractive index in this way.
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1. Introduction. In recent years there has been considerable interest in trans-
mission eigenvalues and their application. For a glimpse at the many different direc-
tions that this research has taken we refer the reader to the special issue of Inverse
Problems edited by F. Cakoni and H. Haddar [7]. Of particular interest to us is the
potential use of transmission eigenvalues in nondestructive testing [6, 8]. In partic-
ular, transmission eigenvalues can be determined from the measured scattering data
and carry information about the refractive index of nonabsorbing media [9].

However the use of transmission eigenvalues in nondestructive testing has two
major drawbacks. The first drawback is that in general only the first transmission
eigenvalue can be accurately determined from the measured data [4] and the deter-
mination of this eigenvalue means that the frequency of the interrogating wave must
be varied in a frequency range around this eigenvalue. In particular, multifrequency
data must be used in an a priori determined frequency range. This also requires the
medium to be nondispersive. The second drawback is that only real transmission
eigenvalues can be conveniently determined from the measured scattering data which
means that transmission eigenvalues cannot be used for the nondestructive testing
of inhomogeneous absorbing media. The purpose of this paper is to overcome these
difficulties by using Stekloff eigenvalues instead of transmission eigenvalues.

The plan of our paper is as follows. In the remainder of this section we will intro-
duce the scattering problem for an inhomogeneous medium that we will be considering
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and establish a connection between a modified far field operator and the Stekloff eigen-
values associated with this inhomogeneous medium. Next, restricting our attention
to the simple case when the refractive index is real valued, in section 2 we establish
the existence of Stekloff eigenvalues in this case and derive a relationship between
small changes in the refractive index and the corresponding change in the Stekloff
eigenvalue. We then proceed in section 3 to make this connection more precise and
show how Stekloff eigenvalues can be determined from a far field equation associated
with this modified far field operator. This is followed in section 4 by consideration
of the non-self-adjoint Stekloff eigenvalue problem for a complex valued refractive in-
dex using Agmon’s theory of non-self-adjoint eigenvalue problems [2]. Our paper is
concluded by providing a variety of numerical examples, mostly for the special case
of nonabsorbing media, showing the efficiency of our approach to determining quali-
tative estimates of changes in the refractive index from measurements of the far field
data.

Although we have assumed throughout this paper that our measured data are far
field data, all of our results can be modified in a straightforward manner to the case
when near field data are used.

Suppose D is a bounded domain in R™, m = 2, 3, with boundary 9D of class C?
and that the origin lies in D. The forward scattering problem we shall consider is to
find u € C2(R™ \ D) N CY(R™ \ D) such that
Au+ k*n(z)u = 0 in R™,

(1.1) u(z) = exp(ikz - d) + u’(x),

m—1

lim r = (é?au — ikus) = 0 uniformly with respect to & := z/|z|,

7—>00 T

where 7 = |z], the refractive index n € L>(R™) satisfies R(n(x)) > 0, S(n(z)) > 0,
and n(x) =1 for z € R™ \ D. Then the far field pattern us of the scattered field u®
is defined by

u®(x) = %um(i‘,d) + 0 (%) , T — 00,

T2 r

where & = z/|x| (cf. [9]).
Now let B either be a ball centered at the origin containing D in its interior or
B =D and let h € C2(R™\ B) N C*(R™ \ B) be such that
Ah 4+ k*h =0 in R™\ B,
h(z) = exp(ikz - d) + h°(x),

h
(1.2) g——i—/\h:Oon 0B,
14
m=1 (Oh®
1Lm P ( 5 ikh5> = 0 uniformly with respect to z,

where v is the unit outward normal to B and A is a constant such that I(A\) > 0. Let

ho(a) = SRR, e dy 40 (%) - 0.

r—z r—2

Note that there exists a unique solution to (1.2) since if h; and hs were two solutions
then h = hq — hs satisfies the radiation condition and
Oh
s [ B s(x)/ b2 ds = 0.
o OV oB
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Thus uniqueness holds by [9, Theorem 2.13] and then existence follows by the straight-
forward use of potential theory (cf. [9, Theorem 3.12] for the Neumann problem).

We now give a heuristic argument linking a modified far field equation with
Stekloff eigenvalues. Suppose g € L?(S) is a nontrivial solution of

(1.3) [ () = e, D)) () = 0
where S := {z : |z| = 1}. If we define the Herglotz wave function by
(1.4) vy(x) = /S exp(ikz - d) g(d) ds(d),

then

(15) ’LU(QJ = g($)+ws(x)v

m-1 [ Qw®
lim "z ( — ikws> = 0 uniformly with respect to z,
T—00 87"

and

Voo ()

/ﬁw@AMMMﬁ@
s
is the far field pattern for
Av + k*v =0 in R™\ B,
v(z) = vg(x) +v°(x),

(1.6) @+/\v:00n 0B,
v

m— 8 S
lim "7 < ; — ikvs> = 0 uniformly with respect to z.

r—00 r

From (1.3) we have that wo (%) = voo(Z), i.€., by Rellich’s lemma w(z) = v(x) in
R™ \ D, where we have used the fact that if B is a ball the solution of (1.2) can be
extended as a solution of Ak + k*h = 0 in R™ \ {0}. In particular, since w(z) is a
solution of the Helmholtz equation in R™ \ D it is necessary that v(x) also has this
property.

Hence w satisfies the boundary value problem

Aw + E*n(z)w = 0 in B,
(1.7) ow

— + A w =0 on 0B.
ov

The solution of (1.7) will be identically zero unless A is a Stekloff eigenvalue. In this
case there exists a nontrivial solution of (1.3), i.e., we can determine the Stekloff
eigenvalues of (1.7) and hence detect changes in n(z). In the following sections we
place the above heuristic arguments on a rigorous basis. We end this section with a
more formal definition of the Stekloff eigenvalue.

DEFINITION 1.1. For fized k, A := A(k) € C is called a Stekloff eigenvalue if the
homogeneous problem (1.7) has a nontrivial solution u € H(B).
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2. The Stekloff eigenvalue problem for real n(x). We now want to pose
the Stekloff eigenvalue problem variationally. From (1.7), we have that w € H'(B)
and \ satisfy

(2.1) (Vw, V) — K2(nw, €) = —Mw, &)V € H'(B),
where

(f,g>=/Bf§dA and <f,g>=/83f§ds.

Provided k? is not an interior Neumann eigenvalue for the Laplacian on B we can
define the Neumann-to-Dirichlet map T : L?(0B) — L?(0B) as follows. Let pu €
L?(dD) and define v, € H'(B) to be the solution of

(2.2) (V0, V) — K2 (nv €) = (1, €) Ve € HI(B).
Then
(2.3) Tu=uvulom.

Thus u € L?(0B) is a Stekloff eigenfunction with eigenvalue \ if and only if it is a
nontrivial solution of

(2.4) — AT = p.

Of course, since Ty € HY/?(0B) and H'/?(0B) is compactly embedded in L?(0B),
we can see that T is compact.

If n is real, then T is also self-adjoint. To see this it suffices to consider real
functions &, u € L?(0B). Then

(T&, ) = (ve, 1) = (Vg, Vo) — kQ(nvg,vﬂ) = (& vu) = (&, Th).

So in this case Stekloff eigenvalues exist, are real, and are discrete. The existence of
Stekloff eigenvalues when n is complex will be proved in section 4.

Now suppose n is perturbed by dn giving rise to a change in eigenfunction w €
H'(B) by dw and eigenvalue by dA. Then dw € H'(B) and 6 satisfy

(V(w + 6w), VE) — k2((n + on)(w + dw), )
= —(A+ 6N {(w + dw),€) Ve e HY(B).

Using the fact that (w, \) are a real eigenpair we have that

(Vow, VE) — k*(6n(w + dw), &) — k* (ndw, €)
= —M(w + dw), &) — MNow, ) V¢ € HY(B).
Choosing £ = w to be an eigenfunction, and using the fact that n is assumed to be

real, we have that
k2 (0n(w + dw), w) = SA{(w + dw), w).

Assuming only small changes we have (neglecting quadratic terms!) that

k2(8
(2.5) §a o B (Onw, w)
(w, w)
Close to a Dirichlet eigenvalue it could occur that w ~ 0 on 9B in which case it may
be that the method becomes very sensitive to changes in n. Note that in general there
is no upper bound for the maximum Stekloff eigenvalue that is independent of k.
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FIG. 1. Stekloff eigenvalues for the unit disk in R? with n(x) = 1 given by (2.6) for different
choices of m as functions of wave number k. For small k the eigenvalues are bounded above. At the
first Dirichlet eigenvalue (in this case k ~ 2.404825558 marked by a dotted line in the graph) the
branch of eigenvalues corresponding to m = 0 has a vertical asymptote and so there is no upper or
lower bound that is k independent.

FExample 1. We now consider an example in R? to illustrate some of the previous
comments. In particular, for a disk of radius 1 in R? with n(z) = n constant, the mth
Stekloff eigenvalue is

S (ky/n)
(2.6) Am = k\/ﬁJm(k\/ﬁ)’ m=0,1,2,...,
where J,,, denotes the Bessel function of order m.

We choose n = 1. As k approaches a Dirichlet eigenvalue, one of the A, has a
vertical asymptote and changes sign across the Dirichlet eigenvalue (see Figure 1).
Note that for fixed k there is in general no possible lower bound although there
does exist an upper bound for \,, provided k is not a Dirichlet eigenvalue (from
the asymptotics of the Bessel function for large m there is no lower bound because
Am — —00 as m — 00, at least for the disk).

We can derive the following upper bound for the Stekloff eigenvalue A if k is small
enough. If w is the eigenfunction corresponding to the eigenvalue A then

_ E*(nw,w) — (Vw, Vw) < k2 nmax (w, w) — (Vw, Vw)

A

)

(w, w) (w, w)
where np.x = maxg(n). But the Poincaré inequality states that
(w,w) < Cp[(Vw, Vw) + (w, w)],

where C), is a constant independent of w. So

(Vw, Vw)

< 2
A < (Cpnmaxk 1) fw,w)

+ kznmaxCp,

and if k? < 1/(Cpnmax) we have

(2.7) A < B2 nnaxCp.
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FIG. 2. The Stekloff eigenvalue for the unit disk in R? with n(x) = 1 given by (2.6) form =0
and the upper bound (2.7) as a function of k for 0 < k <1/Cp (here nmax = 1). The interval where
the bound holds is sharp in this case.

In particular C), = 1/x?, where x? is the first eigenvalue and z € H*(B), z # 0, is
the corresponding eigenfunction satisfying

(Vz, Vo) = x*(z,v) — (z,v) for all v € H'(B).

Example 2. For a disk of radius 1 in R? the eigenvalues of the above equation are
the roots of the transcendental equations xJ! (x)+ Jm(x) =0, m =0,1,.... When
m = 0 we compute the numerical approximation to the first eigenvalue yg ~ 1.256. ..
and hence C)p, =~ 0.6341.... In Figure 2 we show a graph of the Stekloff eigenvalues
for a disk with radius 1 in R? and n = 1, together with the upper bound given by our
estimate (2.7). Clearly, for the special case of this disk, our estimate and its range of
validity are reasonable.

Next we consider the special case of a small perturbation of the background in the
unit disk in R?, where n(z) is given by (1+mn1)? in the disk of radius a < 1 centered at
the origin and n(z) = 1 for a < |z| < 1. Considering the lowest order eigenfunction,
we need to compute the general radially symmetric solution of the Helmholtz equation

Au + k2(1 + XBQ(O)n1)2u =01in Bl(o),

where xp, (o) is the indicator function for the disk in R? of radius a centered at the
origin. The solution is given by

we A Jo(knar), 0<r<a,
- c1Jo(kr) + c2Yy(kr), a<r <1,

where A is an arbitrary constant and, for small ka,
Lo 2 4
co=1- Zk ni(n1 +2)(2In(2) — 21n(ka) — 2y 4+ 1)a® + O ((ka)*),
1
co = —Zk2n1(2 +ny)ma® + O ((ka)*),

where ~ is Euler’s constant. Using the above solution in the Stekloff boundary con-
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dition we obtain, for small ka,
1
A=A+ 5nl(z +n1)(ka)? + O((ka)*),

where )\g is the eigenvalue corresponding to a = 0. Hence the perturbation in the
eigenvalue is proportional to n; and the area of the perturbation (i.e., proportional
to a?) for small @ and ny, as is to be expected from our previous perturbation result
(2.5).

Although, in the above analysis we have assumed that n is real valued, the formu-
lation of the eigenvalue problem remains the same for complex valued n. In particular,
the formulas (2.5) and (2.6) are still valid for complex valued n. However, if n is com-
plex the Stekloff eigenvalue problem is no longer self-adjoint and this case will be
examined in section 4.

3. Determination of eigenvalues from far field data. We now want to
show that Stekloff eigenvalues can be determined from far field data. Throughout
this section we allow for the possibility that n(z) may be complex valued. To this
end, we first discuss some auxiliary results. Let f € H~'/2(9B) and consider the
problem of finding w € H*(B) such that

Aw + k*n(x)w = 0 in B,
(3.1) B
L = fon 0B.
ov

Recalling Definition 1.1 we have the following result.

LEMMA 3.1. Assume that A is not a Stekloff eigenvalue. Then (3.1) has a unique
solution w € HY(B). This solution can be decomposed as u = u® + u®, where u' €
H'(B) solves the Helmholtz equation in B and u® € H} _(R™) is a radiating field
(i.e., satisfies the Sommerfeld radiation condition).

Proof. Solvability of (3.1) when X is not a Stekloff eigenvalue is well known [9].
For later use, we briefly present here an equivalent variational formulation of (3.1)
which reads find v € H'(B) such that

(3.2) / (VuVg — k*nu®) dr + A upds = fods for all p € H'(B).
B aB oB

This leads to a Fredholm equation,
Au+Bu=1¢,

to solve where the coercive bounded linear operator A : H'(B) — H'(B) is defined
by

(B, = [ (VuVF+up) da,
B

the compact bounded linear operator B : H*(B) — H'(B) is defined by

(Bu, ) g1y = —/ (1 + E*n)u®) de + A upds,
B OB
and ¢ € H*(B) is defined by
(33) o = [ rods
OB
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Let us recall that the radiating fundamental solution ®(-, -) of the Helmholtz equation
in R™ is defined by

eik\mfz\
L in R3,

(3.4) O(z,z) =4  Amlr—~]
iHél)(k|x—z|) in R?,

where Hél) denotes a Hankel function of the first kind of order zero. Then Green’s
representation formula applied to the solution v € H!(B) gives

_ du(y) 0% (z,y)
o) = [ (Zelatwn - ) ) ds, -1 [ @) - )t dy

and this provides the desired decomposition, where

(3.5) u'(x) = /BB (ag(yy)fb(x,y) - wwy)) dsy, x € DB,

satisfies the Helmholtz equation in B and

u®(x) == —k? /B O(z,y)(1 —n(y))udy, reR™,

satisfies the Sommerfeld radiation condition. 0
Define F : L2(S) — L%(S) by

(Fo)(@) = [l d) = o (b D] 0(d) ds(d),
Then F is injective unless A is a Stekloff eigenvalue with eigenfunction of the form
w(x) = vg(z) + w*(x) (cf. our discussion in the introduction to this paper and 9,
Theorem 10.9]). Since uo and ho satisfy the reciprocity relation F is injective with
dense range if and only if there does not exist a Stekloff eigenfunction for B which has
the above decomposition (cf. [9, Theorem 3.22]). We will show that Stekloff eigenval-
ues can now be obtained by solving in an appropriate way the following modified far
field equation: find g € L?(S) such that

(36) ]:g = q)oo(j;a Z),

where @ (Z, z) is the far field pattern of the fundamental solution (3.4). Unfortu-
nately, in general the above modified far field equation cannot be solved for any z € B.
Indeed, if g, € L?(S) satisfies (3.6) then by Rellich’s lemma

wi(x) —vl(x) = ®(z, 2) for z € R™\ B,

where w{ and v} are defined by (1.5) and (1.6), respectively, with v, := vy . Thus,
w, must solve the problem

Aw, + k*n(x)w, = 0 in B,

(3.7) ow, 0D(-, 2)
By + w, = - + A®(-,2) on OB
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with the additional property that
(3.8) w, = vy, + W in R™.

Unfortunately, the unique solution of (3.7) (provided that A is not a Stekloff eigenvalue
for fixed k?) in general does not assume a decomposition of the form (3.8) with
vy, being a Herglotz wave function. However according to Lemma 3.1 w, can be
decomposed as w,(x) = w'(z) + wi(z) for z € B, where w! € H'(B) satisfies the
Helmholtz equation in B and wi € HZ _(R™) is a radiating solution to

Aws + E*n(z)ws = k*(1 — n(z))w’

3'9 m— a s
(3:9) lim "z (% — zkwi) = 0 uniformly with respect to Z.
r

in R™,

r—00

Note that 1 — n is supported inside B, more precisely, in D. Hence the kernel g of
the Herglotz function v, that approximates the above w? in the H!(B) norm (cf. [9,
Theorem 5.21]) satisfies

1Fg = oo (-, 2) [ L2s) < €.

Let us define the space of generalized incident waves
Hznc(B) = {’Ui € Hl(B) : A’Ui + kzvi = 0} .

We have that the operator F : L?(S) — L?(S) can be factored as Fg = Bv,, where
B: Hine(B) — L?(S) is defined as

B=GwPp—G,

with G : Hine(B) — L*(S) mapping v’ — v, where vy, is the far field pattern of
v® that solves

Av® + k*v® =0in R™\ B,

ov® s o' i
(3.10) EN + v’ = — ey — v’ on 0B,
lim "7 <Bav — ikvs> = 0 uniformly with respect to z,
—00 r

Pp : Hipe(B) — L?(D) mapping v’ to k*(1—n)v*, and Gy, : L*(D) — L?(S) mapping
f = ws, where wy, is the far field pattern of w® that solves

Aws + E*nwt = f in R™,
(3.11) C m
lim 72
T—>00

ow; . . . .
5 tkw; | = 0 uniformly with respect to Z,
(f = 0 outside D). Note that the solution operators G, and G, are bounded and
compact whereas Pp is bounded. By construction we have that

Bv' = ®. (-, 2), z€D,

has a solution v’ := w’, where w’ is defined by (3.7) and (3.9).

The following two theorems provide a method to compute Stekloff eigenvalues
from far field measured scattering data at a given fixed frequency k (compare to
[5] for transmission eigenvalues). The above discussion is a proof of the following
theorem.
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THEOREM 3.2. Assume that X is a not Stekloff eigenvalue and let z € D. Then,
for every e > 0 there exists a g7 € L*(S) that satisfies

(3.12) lim | Fg? — B, 2)]| 2s) = 0

such that lime_q [|[vg: — wi|| g2 gy = 0 and hence ||vg: || g (p) is bounded as e — 0,
where vy= is the Herglotz wave function with kernel gZ.

Now we show that if X is a Stekloff eigenvalue, then all g7 € L?(S) that satisfy
(3.12) are such that |[lvgz||g1(py blows up as € — 0. Note that if A is a Stekloff
eigenvalue, (3.12) will be satisfied provided F has dense range. This in turn will be
satisfied provided F is injective (cf. the proof of [9, Theorem 3.22]), i.e., the u’ in
Lemma 3.1 is not a Herglotz wave function (cf. [6]).

THEOREM 3.3. Assume that \ is a Stekloff eigenvalue and g? € L*(S) satisfies
(3.12). Then ||vg: || g1 (p) cannot be bounded as € — 0 for almost every z € B,, where
B, C D is an arbitrary ball of radius p.

Proof. Assume to the contrary that for z € B, C D, where B, is a small ball of
radius p, ||vgz| g1 (py is bounded as € — 0, i.e., up to a subsequence the v,- converge
weakly to a v* € H;p(B). By compactness of B we conclude that

lim || Bvg: — Bu'|2(s) = lim | FgZ = Bv'|[12(s) = 0.

Hence Bv' = @, (-, z) and from Rellich’s lemma and the definition of B we see in the
same way as in the above discussion that w := w?® + v%, where w* satisfies (3.9) with
w’ replaced by v* satisfies (3.7). But from Lemma 3.1, (3.7) is solvable if and only
if ¢ defined by (3.3) is orthogonal to each wy in the kernel of the adjoint operator
A* +B*, ie., to wy € H'(D) satisfying

Awy + k*Twy = 0 in B,
ow

ov

/aB (% + Aq’(v@) wx ds = 0,

which from the boundary condition satisfied by wy on OB becomes

/83 < 5, A _(I)("Z)W> ds = 0.

Green’s representation implies that wy(z) = 0 for z in a subset of B with nonzero
measure. The unique continuation principle [9] now implies that wy = 0 in B which
is a contradiction. a

+wy = 0 on dB.

Thus

4. The Stekloff eigenvalue problem for complex n(x). In the interesting
case of absorbing media, i.e., for complex valued refractive index n(x) = n; (a:)+i"27(w),
ni(z) > 0 and ng(z) > 0 (and ng not identically zero) for x € B, the Stekloff
eigenvalue problem is a non-self-adjoint eigenvalue problem. Hence the existence of
its eigenvalues is now a more complicated matter. Obviously, the operator 7" defined
in (2.4) is still compact (but non-self-adjoint) for complex n, and hence we know
that the Stekloff eigenvalue problem satisfies all the spectral properties of a compact
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operator, in particular, the Stekloff eigenvalues form at most a discrete set without an
accumulation point in C. In fact, for complex n there are no real Stekloff eigenvalues,
which can be seen by taking ¢ = u and f =0 in (3.2) to obtain

/ (IVul® — k*n|ul?) dz + )\/ |u|? ds = 0.
B oB

Taking the imaginary part of this equality,
(4.1) %(A)/ luf2 ds = k2/ S(n)[ul? da.
dB B

Noting that, since ny # 0, k% cannot be a Dirichlet eigenvalue of the Laplacian on B,
we conclude () > 0.

The goal of this section is to show that there are indeed infinitely many complex
eigenvalues and to give an indication of where they are in the complex plane. Our
approach to the analysis of Stekloff spectral properties follows [13] and is based on
the spectral theory of non-self-adjoint operators by Agmon [2]. Since our approach
uses pseudodifferential calculus, in this section we must assume that the boundary
OB is of class C*°, and n € C*°(B).

For a fixed z, we introduce an operator B, defined on H? (0B) by

(4.2) B.:awmyg,
where

0
(4.3) g= a—:j —zu

and u € H'(D) satisfies the Dirichlet problem

(4.4) Au+Enu=0 in B,
(4.5) u=a on O0B.

Clearly B, continuously maps Hz(dB) to H2(B), since the fact that n is not real
valued implies that a unique solution to (4.4)—(4.5) exists.

One observes that —\ is a Stekloff eigenvalue if and only if A — z is an eigenvalue
of B,. The analysis of Stekloff eigenvalues will then be obtained from the analysis
of the spectrum of the operator B, or more precisely of its inverse R, that will
be shown to exist for a well-chosen parameter z. To show the latter we need to
prove certain regularity results formulated in the following technical lemma where,
roughly speaking, we show that « is bounded by ¢ in appropriate norms for a set of
appropriately chosen z € C.

LEMMA 4.1. Assume arg z is fized and argz # 0. Let a and g be defined by (4.2)

for o€ H2(8B) and g € H™2(OB). Moreover assume that g € H*~2(8B) for s > 0.
Then for sufficiently large |z|

|| and

1
a3} om) = OEHQHH“%(BB)

o <Clgl,,

H*+% (8B) =5 oB)

for some positive constant C > 0.
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Proof. Let u € H'(B) satisfy (4.4), (4.5). Then B,a = g implies

Au+k*nu=0 in B,
@ —zu=g¢g on O0B.
ov
Classical regularity results for boundary value problems for elliptic operators (see,
e.g., [15]) imply ulpp € H*t2(dB) if g € H*~2(dB).

At this point we need to compute the symbol of the Dirichlet-to-Neuman operator
and to this end we use the results from [12]. Consider a tubular neighborhood of the
boundary 9B and denote by (2’, z3) the local coordinates in this neighborhood (which
in [12, p. 1101] are referred to as the boundary normal coordinates), where 2’ denotes
the local coordinates for the manifold OB in a neighborhood of points on 0B, and
x3 € [0, €) is the coordinate in the inward normal direction to B. We have that in
the tubular neighborhood 9B x (0,¢€), —A — k?n can be written as

1
Dgg + 2H{Dw3 + App — k2n,

where Ayp is the Laplace—Beltrami operator on the manifold 0B, which we assume
to have the Riemannian metric (¢;;), and H is the mean curvature. Recall D; = %@-.
From [12] we have that 82, + Ap —2H (2)9,, is a local realization of A in this tubular
neighborhood of B. Exactly in the same way as in [12, section 1], it can be shown that
the Dirichle-to-Neumann operator for our problem is a pseudodifferential operator of
order one (modulo a smoothing operator). Modifying slightly the calculations in [12]
(to account for the lower order term k?nu which contributes only to the zero order
terms in the symbol) we obtain that

D,, =iop(q1) +iK + P,

where ¢; € SY(0B) (symbol of order one), K € opSY(9B) (operator with symbol of
order zero), and P is a smoothing operator. We refer the reader to Appendix A for
the notation concerning symbols. Furthermore, ¢; can be chosen to be real valued

and to assume the form
@ =/g9€E; for [ >1,

where we use the Einstein summation for g”/¢;¢} and (g*) is the inverse of (gi;).

Since D, corresponds to the inward normal derivative, % — zu = g yields

1 1
—Dg,u—z-u=-g on 0B
i i

which gives
(op(q1) —2)u=9— Ku+iPu on 0B,

where op(q1) denotes the pseudodifferential operator with the symbol ¢;.
Next, let 6 € [—m, 7) with |0] sufficiently small and define

A:={z:argz & (-0,0)},
ARr, :=AN{z:|z| > Ro}.
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Since g1 > 0, this choice of z implies that the operator op(q1) — z is a hypoelliptic
operator with parameter z € A of class op, HS} (0B, A), i.e., its symbol satisfies (A.3)
in Appendix A. Lemma A.1 in Appendix A gives that for z € Ar, with sufficiently
large Ry

1 -1
(4.6) Iop(ar) = 2)" "Nl ot 95y -3 (o) = O]
and

1
(4.7) IHoplar) = 2) " o=t oy o+ (om) £ €

for some positive constant C' > 0. Furthermore estimate (A.2) in Appendix A gives
that

[ KCull Cllull

o1 < ol
H*%(0B) =% (0B)

with a similar estimate for the C* part Pu. Combining the latter estimate with (4.6)
yields

-1 —1
il et oy < € (12179l et o) + 121 il o 3 )

with some positive constant C' > 0. Note that from the above we already know that
1

u € H*"2(9B) for s > 0. Thus choosing z such that |z| > Ry for Ry sufficiently large

gives

< Clel gl ooy

HUHHS*%(aB) oB)’

In a similar way using (4.7) gives

< Clgll

||u”HS+%(aB) = H*~3(0B)

This proves the lemma. ad

With the help of Lemma 4.1 we can now show that the inverse of B, exists for
z € C with modulus sufficiently large.

LEMMA 4.2. Assume n(z) = ni(x) + i"2,£z), where ni(z) > 0 and na(z) > 0
(non-identically zero) for x € B. Then there exists z € C with sufficiently large |z|

such that B, has a bounded inverse R, : H=2(0B) — Hz(dB).

Proof. Choose z that satisfies the assumptions in Lemma 4.1, i.e., arg z # 0 and
1
arg z is fixed. Let g = B o, where a € H2(9B). From Lemma 4.1

el 3 pm < Cllgll

H2(8B) — H™%(8B)

for some constant C' > 0. Consequently B, is injective and has closed range. We now
prove that B, has dense range in H~2(dB). To this end, let h € H2(dB) be such
that

(B.a,h) =0 Vo € H?(9B).

We want to show that h = 0, which proves that B, has dense range. Here (-, -) denotes
H~%, H? duality. Let w € H'(D) be the unique solution of

Aw + (k*ny —ikna)w =0 in B,
w=h on O0B.
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Then
@,h :/ @wds—/ Auwda:—k/ VuVwdzx
al/ 5B al/
= —/(k2n1 +ikn2)uﬁdx+/ VuVwdz
B B
:/ uAEda:—l—/ VEVUCI&::/ 8—wozcls.
B B o OV
Since
ou
<$,h> — (za, h) = (B,a, hy = 0,
then

ow _)
— —2W | ads =
/BB (31/

Noting that « € H 3 (0B) is arbitrary, this implies that

ow
5_15 —zw =0,
and hence
B.h=0.

Applying Lemma 4.1 again, we obtain that h = 0. Since B, is injective and has closed
1
dense range in H ™2 (9B), this proves that B, has a bounded inverse. O

Remark 1. Lemmas 4.1 and 4.2 show that for z € C with |z| large enough
and argz # 0, the resolvent R, is well defined and is bounded from H*~2(8B)
to H5T2(dB) for all s > 0, i.e., it is a smoothing operator of order one.

4.1. Spectral results on the Stekloff eigenvalue problem. Here we prove
the existence of Stekloff eigenvalues and the completeness of the associated eigenvec-
tors. To this end, we fix a z € C with |z| large enough and argz # 0 and consider
the bounded linear operator R, : H'(0B) — H'(0B) which is well defined due to
Lemma 4.2 and Remark 1. We apply the Agmon theory on the spectrum of Hilbert—
Schmidt operators (see [2]).

LEMMA 4.3. Let p > (m — 1)/2, m = 2,3, denote an integer. Then RP :
HY(0B) — HY(0B) is a Hilbert-Schmidt operator.

Proof. The proof follows exactly the lines of the proof of [2, Theorem 13.5] or
n [13, Lemma 4.1]. The main ingredient is the Sobolev embedding theorem applied
to our C*° compact (m — 1)-dimensional manifold 0B, m = 2,3. More precisely, for
p > (m —1)/2 we have that H?(0B) C L*°(0B) and the following inequalities hold
for u € HP(0B):
)] < 75 0m) " el 2

L2(6B)
and 9
u m—1)/2 m—1)/2
7 @| <l tom el e ™

where z € OB and v > 0 depends only on 9B and p. To prove this, since 9B is a
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.....

that for any ¢ in (I'y, ¢¢) the Riemannian metric (g;;) is bounded above and below by
the Eucledian metric, i.e., (1/2)d;; < gi; < 26;;. Then by standard arguments using
a partition of unity (see, e.g., [11]) one can use the Sobolev embedding theorem (see,
e.g., [1, Theorem 4.12]), and the estimate in [2, Lemma 13.2] for open bounded regions
in R™~!, to derive the above inequalities. The result of the lemma now follows from [2,
Theorem 13.5] (see also the proof in [13, Lemma 4.1]) since R? : H(0B) — H**?(dB)
for p > (m —1)/2. O

Remark 2. Note that in the case when B C R?, the above proof shows that R, is
a Hilbert—Schmidt operator, which can also be directly proven using a parametrization
of the curve and an eigenfunction expansion.

We have now all the ingredients to arrive at the final spectral theorem. To this
end we apply the following theoretical result that is a direct consequence of combining
[13, Proposition 4.2] and the proof of [13, Theorem 5]. Indeed the statement here is a
slight modification of the celebrated result of Agmon stated in [2, Theorem 16.4] (see
[2] for the definition of generalized eigenfunctions).

THEOREM 4.4. Let H be a Hilbert space and S : H — H be a bounded linear
operator. If X1 is in the resolvent of S, define

(4.8) Sy =S(I—A\S)" L

Assume SP : H — H is a Hilbert—Schmidt operator for some integer p > 2. For
the operator S, assume there exist N rays with bounded growth where the angle
between any two adjacent rays is less that 5-. More precisely assume there exist
0<60; <0y < -+ < Oy < 271 such that 0, — 01 < Q’T—p for k =2,....N and
2r — Oy + 61 < ;—p satisfying the condition that there exists ro > 0, ¢ > 0 such that
supr>rol|(S)yeion |lH—m < ¢ for k =1,...,N. Then eigenvalues of S exist and the
space spanned by the generalized eigenfunctions corresponding to nonzero eigenvalues

is dense in the closure of the range of SP.
A consequence of this result is the following theorem.

THEOREM 4.5. Assume n(x) = ni(z) + inzT(I), where ny > 0 and ny > 0 (non-
identically zero). Then there are infinitely many eigenvalues of R, and the associated
generalized eigenfunctions are dense in H'(OB).

Proof. For both R? and R? it suffices to apply Theorem 4.4 with S = R, and
p = 2. Note that in R? since R, is Hilbert—Schmidt it is also possible to use a slightly
different version of this theorem for p = 1 (see [13]). Lemmas 4.1 and 4.2 guarantee
that we can find directions 6; as required in Theorem 4.4 for which the bounded
growth condition is satisfied. Note that (R,)x = R.4x, where (R;), is defined by
(4.8) with S replaced by R,. Hence, it only remains to prove that the closure of the
range of R? is dense in H'(9B). By a density argument, it suffices to show the range
of R, is dense in H!(9B). Indeed for any o € HY(0B), let g = B,a be in L?(0B).
Let g, € H'(OB) be such that

ge—g in L*(0B) as{ — +oo.

Then
R.gr — R.g=a in H'(0B)

since R, : L?(0B) — H'(0B) is bounded, which proves that R, has dense range in
H'(0B). Hence the theorem is proven. 0
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We can now state the spectral properties of the Stekloff eigenvalue problem in-
cluding here the case of ny = 0 discussed in section 2. Note that if z is such
that R, is well defined and letting 7 denote the set of Stekloff eigenvalues, then
{p=(—=2)"1, A€ =T} is the set of the eigenvalues of R,.

THEOREM 4.6. Assume n(x) = nq(z) + i"QT(””), where n; > 0 and ny > 0. There
exist infinitely many Stekloff eigenvalues in the complex plane and they form a discrete

set without finite accumulation points. The associated gemeralized eigenvectors are
dense in H'(OB).
We end this section with a result on the location of Stekloff eigenvalues in the

complex plane which is a byproduct of the proof of Lemmas 4.1 and 4.2.

THEOREM 4.7. For arbitrary € > 0, all Stekloff eigenvalues except for finitely
many lie in the e-wedge

S:={ze€C:m—e<arg(z) <},

where we define 0 < arg(z) < 2.

Proof. Consider the ball Br of radius R for R := R, large enough. From the
proof of Lemma 4.2 there are no eigenvalues outside Br U S. Since there are no
interior accumulation points of the eigenvalues, there are only at most finitely many
eigenvalues in Br N'S. We have already proved the positivity of the imaginary part
of the eigenvalue after (4.1). O

Example 3. As in section 2, by separation of variables, one can see that Stekloff
eigenvalues for the unit ball in R? and refractive index n = n; + i are

Jm(kv/n) 7
where j,, denotes a spherical Bessel function of order m. For large m we have that
(see [9])

N A0

Jm(t) = t™/(2m + )N,
gh () =~ mt™ 1/ (2m 4 1)),
which imples that
kynm
N

Hence in this case the (complex) Stekloff eigenvalues tend to the negative real axis.

A &

5. Numerical examples. We now show some numerical results that support
the claims in the paper where, for the sake of simplicity, we restrict our attention to
examples in R? instead of R3. We will show results for three background regions D: (1)
the unit disk as discussed earlier in the paper, (2) the square with sides of length /2,
and (3) an L-shaped domain formed by removing the square [0.1,1.1] x [-1.1,—0.1]
from the square [—0.9,1.1] x [-1.1,0.9] (see Figure 4). Except for section 5.3, we
always use B = D.

5.1. Changes in eigenvalues due to flaws. We start by investigating the
sensitivity of Stekloff eigenvalues to the size and position of flaws by using a finite
element method to find approximations of the lowest Stekloff eigenvalues. For the
circular domain we can also compute the Stekloff eigenvalues exactly via (2.6) so this
case is useful to confirm the accuracy of the inverse algorithm.
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Our Stekloff eigensolver is based on approximating the operator T’ defined in (2.3).
Let V;, denote the space of continuous piecewise cubic finite elements on a mesh 7,
of B consisting of regular triangles of maximum diameter h > 0. The computational
domain is then By, = Uge7, K. Let S, denote the space of traces of functions in V;,
to OBy, (these are just continuous piecewise cubic finite elements on the mesh on 9B,
induced by the volume mesh). Given pu € L?(9B), we can define the discrete analogue
of v, denoted v, , € V} as the unique solution of

(5.1) (Vopn, VE) = k*(nvn, &) = (1,€) V€ € Vi

Since we have assumed that k2 is not a Neumann eigenvalue for the Laplacian on B
we can be sure that if A is small enough this problem has a unique solution. Then we
define Ty, : S, — Sp, by

Thit = vy nloB-

We then see that Ay is a discrete Stekloff eigenvalue with eigenfunction up € Sy if

up # 0 and
M Thpin = pn

which is a direct analogue of (2.4). A matrix representing 7, can be computed by
solving the source problem (5.1) for each nodal basis function in Sj,. The eigenvalues
can then be computed using the MATLAB eig command.

Note that for the disk 0B # 9B, but for the square and L-shaped domain
the computational domain coincides with the true domain. For the disk we still
see convergence of the computed eigenvalues to the exact eigenvalues as the mesh is
refined.

An alternative to this approach is to use (2.1) directly. This will result in a large
sparse eigenvalue problem. Both approaches give good approximations to the eigen-
values of the disk (compared to analytic solutions) and to eigenvalues computed using
a very slight modification of the “Eigenvalues” code from http://pages.uoregon.edu/
siudeja/software.php which computes Stekloff eigenvalues for the Laplace equation in
2 and 3 dimensions using the direct approach mentioned in this paragraph [10]. We
have found that using 7}, is convenient since only approximate Stekloff eigenvalues
are computed.

For each domain we use k = 1 (which give a wavelength of 27) and choose
n(xz) = 4. The “flaw” is a disk C' C B disjoint from 0B centered at the point (x., y.)
and of radius 7. (obviously more physically relevant flaws such as cracks need to be
considered for specific applications—the disk is just a simple example). Then for the
flawed domain we have that

n(z) = 1 forxzeC,
1 4 otherwise.

For each of the example scatterers, we compute eigenvalues A;, j = 1,..., for the
background and A¢ ;(Zc, Ye,7e); § = 1,..., for the flawed medium (ordered by value).
Because we can only determine the first few eigenvalues from the far field data we
limit ourselves to considering A;, 1 < j < 7. Then, in Figure 3, we plot the relative
change defined as

Ac,j* (xca Ye, Tc) - A]

(5.2) | ,

j=1,....1,

where j* is the index that minimizes the magnitude of the above ratio. We use this
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Fi1c. 3. Sensitivity of Stekloff eigenvalues to changes in position and size of flaws (see the text
for the definition of the flaw in each case). We plot the relative change in the first seven Stekloff
eigenvalues for each background shape due to the presence of the flaw (see (5.2)). The numbers in
the legends refer to the computed eigenvalue of the background. Left column: changes due to the
position of the flaw. Right column: changes due to the size of the flaw. Top row: disk. Second row:
square. Bottom row: L-shaped domain.

slightly complicated definition to make sure that as (z., y., r.) changes we always use
the eigenvalue of the flawed medium closest to the background eigenvalue.

Figure 3 shows plots of the relative change in the first seven eigenvalues (defined by
(5.2)) as a function of position (left column) and size (right column) of the flaw. When
examining the sensitivity of the eigenvalues to position, the parameters are as follows:
for the disk we choose the position of the flaw to be y. = 0 and 0 < z, < 0.8 with r. =
0.05. For the square we choose y. = 0 and 0 < z. < 0.8 with r. = 0.05, and for the L-
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shaped domain we choose y. = 0.4 and —0.4 < z, < 0.9 with r. = 0.05. When exam-
ining the sensitivity to the size of the flaw, we consider 0.01 < r, < .2 and, for the disk
and square, (Zc, ye) = (0,0.3), while for the L-shape (z¢,y.) = (0.1,0.4). These posi-
tions are essentially arbitrary and correspond to the results in Figure 7 discussed later.

For all the background shapes the sensitivity of the eigenvalues to change in the
size of the flaw (right column of Figure 3) are broadly similar. In each case at least
one of the eigenvalues shows monotonic change as the size of the flaw increases, and
thus could be used to monitor the size of flaws.

Considering Figure 3 (left column) we see that for the disk, the eigenvalue Ay =
5.126384 shows the most change due to the flaw regardless of the position of the flaw.
For the square, \y = 2.202507 plays almost the same role, although if the flaw is close
to the corner of the square, A3 = —0.908056 is most sensitive to the presence of the
flaw. For the L-shaped domain the eigenfunctions are more complex and the most
sensitive eigenvalue to the presence of the flaw varies depending on the position of
the flaw.

To understand the sensitivity of the eigenvalues to flaws we can use (2.5) with w
chosen to be an eigenfunction for the domain. When the eigenfunction is close to zero
in the neighborhood of the flaw, the corresponding eigenvalue will be insensitive to
the presence of the flaw. In Figure 4 we provide plots of two eigenfunctions for each
background domain. In the top left panel we show the eigenfunction corresponding
to A7 &~ 2.202507 for the disk which corresponds to m = 0 and n = 4 in (2.6). As
is to be expected for k = 1 the eigenfunction corresponding to m = 0 is nonzero
throughout the domain (and decaying towards the boundary). Hence A7 is sensitive
to the presence of the flaw as shown in Figure 3 (top left panel). For the square,
we show in the middle row, left panel of Figure 4, the eigenfunction corresponding
to A7 & —2.918551. This eigenfunction is of small magnitude in the domain 0 <
z < 1 and y ~ 0, so the small flaw positioned there causes a small change in the
eigenvalue and this eigenvalue is insensitive to the presence of the flaw in this part of
the domain. Finally for the L-shaped domain we show, in the bottom row of Figure 4,
the eigenfunctions for A\; ~ 0.124524 (left panel) and A14 (right panel). The nodal line
of this eigenfunction corresponding to roughly = = 0.1 explains the lack of sensitivity
of A1 to flaws in this region shown in Figure 3 (bottom left panel).

We have observed, as shown in the right column of Figure 4, that eigenfunctions
corresponding to larger eigenvalues are typically nonzero in a smaller and smaller
neighborhood of the boundary. This evanescent behavior is unsurprising for the disk
given that the eigenfunctions are Bessel functions, but we have no explanation for this
behavior for the other figures. It suggests that Stekloff eigenvalues of larger magnitude
(even if we could measure them from the far field pattern) would only be sensitive to
flaws near the surface.

5.2. Detecting Stekloff eigenvalues from far field data. In this section we
will demonstrate finding Stekloff eigenvalues from far field data for real n(x). This
includes comparing Stekloff eigenvalues for domains with and without flaws. We first
compute scattering data (approximating u«,), then for several choices of the Stekloff
parameter A\ we approximate the corresponding far field pattern h., using B = D
and then solve a discrete analogue of the far field equation (3.6) using Tikhonov
regularization with a fixed Tikhonov parameter o = 107°. We performed limited
tests using the more usual Morozov procedure [9] but found no advantage and so
opted for the simpler approach here.

For the forward problem, we choose a piecewise constant function n(z) and com-
pute the solution of the forward problem using a cubic finite element method truncat-
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Fia. 4. Density plots of the eigenfunctions for the three domains in this study. Top row: disk
(left: corresponding to Az, right corresponding to A1a). Middle row: square (left: corresponding
to A7, right corresponding to A14). Bottom row: L-shape domain (left: corresponding to A1, right
corresponding to A1a).

ing the mesh by a perfectly matched layer with constant absorption parameters. We
choose meshes where the triangle diameter is approximately 1/30 of the wavelength
in the element.

In each case we use 51 incoming waves with directions d;, j = 1,...,51, uniformly
on the unit circle and hence compute a 51 x 51 matrix U with Up . & teo(de, dim).
Similarly we obtain a matrix H approximating h,. In some experiments we corrupt
the measured data U as follows. We choose € > 0 and set

Ul = Urm(1+ €(Cm + ipem)/V2), 1<€,m <51,

where (g, and fi ., are uniformly distributed random numbers in [—1, 1] computed
using the MATLAB rand command. Setting the data vector b, with fth entry b, , =
Goo(de, z), 1 < € < 51, for some z € B we compute an approximation to the Herglotz
kernel g using Tikhonov regularization, setting F'* = U¢ — H and

ge = ((F)"F* +al) "' (F) b,
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FIG. 5. Results when n(z) = 4 and noise level e = 0. We plot the average of the £2 norm of g
against the Stekloff parameter A. The crosses in each figure show the position of Stekloff eigenvalues
computed by our finite element eigenvalue code. Top left: disk (integers mear the crosses refer to
the order of the Bessel function): Top right: square. Bottom left: L-shaped domain.

where the superscript * denotes the conjugate transpose of the given matrix. This is
repeated for 20 randomly placed z € B and the norm of g is averaged.

As usual we use the £% norm of ¢¢ as surrogate for [|vg||r2(p) and limited testing
suggests this approach yields similar results to the use of the more expensive ||vy[|2(p)-
The choice of 51 directions and 20 points z € B is essentially arbitrary, but we need
sufficiently many incoming waves to enable an approximation of the far field operator.

Our first results in Figure 5 are for e = 0 and n(z) = 4 in each scatterer. For
the square and disk, peaks in the norm of ¢ correspond well to eigenvalues. Higher
eigenvalues cannot be detected. For the more complex L-shaped scatterer there are
spurious peaks in the norm of g¢ to the right of the Stekloff spectrum, and some peaks
appear shifted. We shall return to this observation later in section 5.3.

In Figure 6 we investigate detecting changes in the overall refractive index of
the scatterer for the disk. Using n(x) = 4 and n(z) = 4.1 we can solve the far field
equation as above, and determine shifts in Stekloff eigenvalues from shifts in the peaks
of the averaged norm of g¢. The procedure, at least for this scatterer and eigenvalue,
does not appear to be markedly affected by low levels of noise.

We have shown that Stekloff eigenvalues can detect changes in the overall refrac-
tive index. Another possible application is to detect flaws in objects under test. So
our next results address this problem. For the disk and square background scatterers
we use a circular flaw of radius r. = 0.05. For the disk and square these are centered
at (z¢,y.) = (0.3,0). In Figure 7 we verify that we can detect the expected changes in
the Stekloff eigenvalues from far field data with added noise at ¢ = 0.01 (right column
of Figure 7) and without added noise (left column of the same figure) for the disk
and square background scatterer. Here we concentrate on a single eigenvalue. In the
case of the disk (top row of Figure 7) it is the one eigenvalue most affected by the
flaw (XA = 5.1) and indeed an obvious shift in the peak of the average norm of g indi-
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e = 0.01 (0.57%). Bottom left: e = 0.05 (2.9%). Bottom right: ¢ = 0.15 (8.6%).
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F1G. 7. Results for detecting flaws in a scatter with background n(z) = 4. Top row: disk.
Bottom row: square. Left column: € = 0. Right column: € = 0.01.

cates the change in eigenvalue. The same holds for the square although the change in
eigenvalue is smaller as suggested by the results in the middle row of Figure 3. Note
that the radius of the flaws in these examples is 0.008 wavelengths.

For the L-shaped domain we choose a range of parameters A that includes the
three Stekloff eigenvalues of smallest magnitude that are visible using far field data in
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F1G. 8. Results for detecting flaws in the L-shaped scatterer with background n(z) = 4. Top
row: re = 0.2. Bottom row: r. = 0.3. Left column: € = 0. Right column: € = 0.01.

the bottom left panel of Figure 5. We set (z.,y.) = (.1, .4), and from Figure 3 (bottom
left) we see that this choice of . corresponds to a position where the sensitivity of
the eigenvalues is low. From Figure 3 (bottom right), we see that detecting the flaw
with r. = 0.05 would require a very precise estimate of the eigenvalues, and so in this
case we present results for the larger flaw with r. = 0.2 (top row of Figure 8) and
r. = 0.3 (bottom row of Figure 8). The shift in observed eigenvalues is as predicted
from Figure 3.

5.3. The case B # D. Our theory allows for B to be a disk centered at the
origin containing D in its interior and in this section we perform two preliminary
tests of this case. In the first test we use the same unit circle background scatterer,
but take B to be a disk of radius 1.5 centered at the origin. In Figure 9 we show
detection of Stekloff eigenvalues for fixed n(x) = 4 and the shift in the main peak of
the averaged norm of g¢ when changing from n(z) = 4 to n(x) = 4.1 in the unit disk
(the noise level is € = 0.01 for the latter computation). This should be compared to
Figure 6 (top right panel). The change in the position (value of \) for the peak is
about 1/2 that found when B = D so, at least in this case, the choice B = D appears
to give more sensitivity to changes in n(x).

We have also tried the case B # D when D is the L-shaped domain. In contrast
to our theoretical assumption that B is a disk, in our first test we simply used the
convex hull of D by adding a triangle to the domain. This did not result in any marked
improvement over the case when B = D and is not reproduced here. However, when
we chose B to be a disk of radius 1.5 around the scatterer we found that the most of
the spurious peaks in the graph of the averaged norm of g (those for A positive and
larger than the largest positive eigenvalue) vanish. This result is shown in Figure 10
(left panel). We also computed the shift in the main peak of the average norm of g¢
when n(x) changes from 4 to 4.1 in the L-shaped region. The shift is clearly visible (in
this case the eigenvalues close to A = 0 did not shift appreciably when n is changed).
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F1G. 9. Results for detecting Stekloff eigenvalues and changes in the overall refractive index of
the unit disk scatterer when B # D (in this case B is a disk of radius 1.5 centered at the origin).
The left panel shows detection of Stekloff eigenvalues when n(x) = 4 and should be compared to
Figure 5 (top left panel). The right panel shows the change in the main peak when n(x) changes
from n(z) =4 to n(z) = 4.1 and should be compared to Figure 6 (top left panel).
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F1G. 10. Results for detecting Stekloff eigenvalues for the L-shaped domain when B is a disk
of radius 1.5 (left panel, n(x) = 4 and noise ¢ = 0) and detecting changes in the refractive index
from n(x) = 4 and n(x) = 4.1 (right panel, noise e = 0.01). The results in the left panel should be
compared to Figure 5 (bottom left panel).

Our explanation for the improvement in this case over setting B to be the convex hull
of the vertices of the L-shaped domain is that we are approximating the function
(defined in Lemma 3.1) in B by a Herglotz wave function and for a fixed number of
incident fields (51 in our case); this can be done better for a disk than for the convex
hull of D.

5.4. Complex eigenvalues. First we investigate the sign of the imaginary part
of complex Stekloff eigenvalues using our finite element eigensolver. Results are shown
in Figure 11. In particular we compare Stekloff eigenvalues for the disk and L-shaped
domain for n(z) = 4 and n(z) = 4+4i. In both cases several eigenvalues have strongly
positive imaginary parts.

To demonstrate our claim that Stekloff eigenvalues can be used for absorbing
media, we consider the case of the unit disk with n(xz) = 4 + 4¢ with no noise. By
choosing the parameter A on a grid in the complex plane (here a 61 x 41 rectilinear
grid) we can compute the average norm of the Herglotz kernel g for each \. As proved
in section 3, peaks in this grid function should signal complex Stekloff eigenvalues. In
Figure 12 we show a contour plot of the base 10 logarithm of the averaged norm of g
and also mark the exact Stekloff eigenvalues by asterisks. As we might expect from
our study of Stekloff eigenvalues for real n(x), we can detect the first few complex
Stekloff eigenvalues quite well.
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F1a. 12. A contour plot of the base 10 logarithm of the averaged norm of the Herglotz kernel g
as a function of the real and imaginary parts of the Stekloff parameter \. Exact Stekloff eigenvalues
are marked as white x. The correspondence between peaks in the magnitude of the Herglotz kernel
and complex Stekloff eigenvalues is clear.

6. Conclusion. We have considered the scattering of an incident plane wave by
an inhomogeneous medium of compact support with (possibly complex valued) refrac-
tive index n(x) such that n(z) — 1 has support in a bounded region D. By considering
a modified far field operator we have shown that small changes in the refractive index,
including flaws in D where n(z) = 1, can be detected by using the modified far field
operator to determine the changes in Stekloff eigenvalues corresponding to the partial
differential equation Au+ k?n(x)u = 0 defined in D. A variety of numerical examples
have been given showing the effectiveness of this approach for detecting changes in
n(z). In particular it has been observed that some Stekloff eigenvalues are more sen-
sitive to changes in n(x) than others and that for domains of complicated geometry
it can be advantageous to replace D by a ball containing D in its interior, where n(z)
is set equal to one in B\ D. It has also been shown that complex Stekloff eigenvalues
corresponding to complex refractive indices can be computed through the use of the
same modified far field operator.

Appendix A. Auxiliary results on pseudodifferential calculus. We recall
some notions and results on pseudodifferential operators (see, e.g., [3, 14] for details).
Here X is a C'°° manifold, which for our purpose is assumed to be in R™ and closed.
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We say that the C°°- function a(z, £, \) is a symbol with parameter A in the class
S{(X, A) if it satisfies

(A1) |02 0% alx, €, X)| < Cag(L+ |€] + A

for all o, 8 € N, (x,€) € T*X, where T*X is the cotangent bundle of X, and A € A
where A is a closed cone in the complex plane. Moreover, we denote symbols (without
parameters) in the class S‘(X) if the above inequality holds for A = 0.

Let op, S{(X,A) and opS*(X) be the spaces of pseudodifferetial operators with
symbols in S{(X,A) and S*(X), respectively. It is known that for P € op S*(X) we
have that

(A.2) ”PUHHS*Z(X) < CHUHHS(X)a C > 0.

Next we recall the subclass HS{ (X, A) of hypoelliptic symbols with parameters
which are those where a € S{(X, A) that, in addition, satisfy

(A.3) C1(€] + [A)* < la(z, & V)] < Co(|€] + [A])*

for |€] 4 |\ > R (see [14, pp. 75-76]). Similarly op, HS|(X,A) denotes the space of
pseudodifferential operators with symbol in HS (X, A).

The following lemma plays an important role in our spectral analysis of the
Stekloff eigenvalue problem and is a particular case of [14, Theorems 9.1 and 9.2].

LEMMA A.1. Let Ay € opy HSY(X,A). Then, for all s > 0 there exists R > 0
such that for X € AR the operator Ay is invertible with A;l € op, ’HSl_e(X, AR),
where Ar := AN {X: |\ > R}. Moreover

AL <Ca+|A)*

H ™5 (X)»H* "% (X)

and

AN =3 ey et b oy < CAH DT

for some positive constant C > 0.
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