
Computers and Mathematics with Applications 74 (2017) 2769–2783

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

The imaging of small perturbations in an anisotropic media
Fioralba Cakoni a,*, Isaac Harris b, Shari Moskow c

a Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA
b Department of Mathematics, Texas A& M University, College Station, TX 77843, USA
c Department of Mathematics, Drexel University, Philadelphia, PA 19104, USA

a r t i c l e i n f o

Article history:
Available online 7 August 2017

Dedicated to Peter Monk on the occasion of
his 60th birthday

Keywords:
Inhomogeneous media
Anisotropic media
Inverse scattering
MUSIC
Transmission eigenvalues
Asymptotic methods

a b s t r a c t

In this paper, we employ asymptotic analysis to determine information about small volume
defects in a known anisotropic scattering medium from far field scattering data. The
location of the defects is reconstructed via theMUSIC algorithm from the range of themulti-
static responsematrix derived from the asymptotic expansion of the far field pattern in the
presence of small defects. Since the same data determines the transmission eigenvalues
corresponding to the perturbed media, we investigate how the presence of the defects
changes the transmission eigenvalues and use this information to recover the strength of
the small defects. We provide convergence results on transmission eigenvalues as the size
of the defects tends to zero as well as derive the first correction term in the asymptotic
expansion of the simple transmission eigenvalues. Numerical examples are presented to
show the viability of our imaging method.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The imaging of anisotropic media from scattering data is a challenging problem mainly due to the non-uniqueness
issue [1]. Yet, in many applications in medical imaging and non-destructive testing, the scattering media exhibit anisotropic
properties in the interactionwith probingwaves. The so-called qualitativemethods in inverse scattering [2] provide imaging
techniques to obtain information on changes in material properties of a known anisotropic media. This work concerns the
imaging of small volume (possibly anisotropic) perturbations of a known anisotropic inhomogeneousmedia in acousticwave
propagation (for the case of R3) or specially polarized electromagnetic wave propagation (for the case of R2). Combining
asymptotic analysis with MUSIC and the related transmission eigenvalue problem we derive a range test for the location
of small perturbations and computable formulas that provide information about the strength (involving the contrast and
geometrical features) of the small perturbation. There is a vast literature on the MUSIC algorithm for a variety of scattering
problems [3–7] and we recall here its formulation for the anisotropic inhomogeneous media. The asymptotic analysis of the
transmission eigenvalue problem for isotropic media is studied in [8] and [9]. One of the main contributions of this study is
the asymptotic analysis of the transmission eigenvalue problem for anisotropicmediawith the first order correction term for
the perturbation of the eigenvalues. Note that the transmission eigenvalue problem is non-linear and non-selfadjoint, and
the mathematical structure of this problem for anisotropic media is different from the isotropic case. In addition, we show
how to use the asymptotic expansion for the perturbation of transmission eigenvalues together with the MUSIC algorithm
to image small volume perturbations of anisotropic media.

Let us now precisely formulate the problem under consideration. To this end let D ⊂ Rd (for d = 2 or 3) be a bounded
domain with piecewise smooth boundary which denotes the support of the anisotropic media to be tested. The real valued
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symmetric matrix A(x) ∈ C1(D,Rd×d) with smooth entries and the smooth function n ∈ C1(D) represent the constitutive
parameters for the unperturbed (‘‘healthy’’) anisotropic media. Without loss of generality we assume that outside the
scatterer D the background media has refractive index scaled to one, i.e. A(x) = I and n(x) = 1 in x ∈ Rd

\ D, where I
denotes the identity matrix. We define

Ab(x) =

{
I x ∈ Rd

\ D
A(x) x ∈ D and nb(x) =

{
1 x ∈ Rd

\ D
n(x) x ∈ D.

Now the scattering of a time harmonic incident plane wave eikx·ŷ with incident direction ŷ ∈ S by the unperturbed media
(i.e. without defects) is mathematically formulated as: find ub ∈ H1

loc(R
d) with ub = us

b + eikx·ŷ such that

∇ · Ab(x)∇ub + k2nb(x)ub = 0 in Rd (1)

lim
r→∞

r
d−1
2

(
∂us

b

∂r
− ikus

b

)
= 0, (2)

where S denotes the unit circle/sphere, r = |x|, and the Sommerfeld radiation condition (2) is satisfied uniformly with
respect to x̂ = x/|x|. Here ub is the total field in the background (including the homogeneous part and the media of compact
support D) and us

b is the scattered field due to the region D. Recall that the scattered radiating field us
b(·, ŷ), which depends

on the incident direction ŷ, has the following asymptotic expansion [10]

us
b(x, ŷ) =

eik|x|

|x|
d−1
2

{
u∞

b (x̂, ŷ) + O
(

1
|x|

)}
as |x| → ∞ (3)

where x̂ := x/|x|, and u∞

b (x̂, ŷ), which depends on the incident direction ŷ and observation direction x̂, is the corresponding
far field pattern. Nowwe consider the small defective regions that are given by zm + εBm where Bm is a smooth deformation
of a ball centered at the origin. Let Am and nm be constant constitutive parameters for the defective regions given by zm +εBm
and assume that

|zi − zj| ≥ c0 > 0 for all i ̸= j with i, j = 1, 2, . . . ,M and
dist(zm, ∂D) ≥ c0 > 0 for allm = 1, 2, . . . ,M.

The union of the defective regions is denoted by Dε =
⋃M

m=1(zm + εBm) and we let

Aε(x) =

{
Am x ∈ (zm + εBm)

Ab(x) x ∈ Rd
\ Dε

and nε(x) =

{
nm x ∈ (zm + εBm)

nb(x) x ∈ Rd
\ Dε.

The scattering problem for the media with the defective region Dε now reads: find uε ∈ H1
loc(R

d) with uε = us
ε + eikx·ŷ such

that

∇ · Aε(x)∇uε + k2nε(x)uε = 0 in Rd (4)

lim
r→∞

r
d−1
2

(
∂us

ε

∂r
− ikus

ε

)
= 0. (5)

Similarly since us
ε is a radiating solution to the Helmholtz equation in Rd

\ D, it assumes a similar asymptotic expansion as
(3), and we denote by u∞

ε (x̂, ŷ) its corresponding far field pattern. In this study we assume that the media is non-absorbing,
and infx∈Dn(x) = n0 > 0, nm > 0, and

inf
x∈D

inf
|ξ |=1

ξ · A(x)ξ = Amin > 0 and sup
x∈D

sup
|ξ |=1

ξ · A(x)ξ = Amax < ∞. (6)

For later use let us denote

min
m=1 ...M

inf
|ξ |=1

ξ · Amξ = amin > 0 and max
m=1 ...M

sup
|ξ |=1

ξ · Amξ = amax < ∞. (7)

The inverse problemwe consider here is to determine the location {zm}m=1,M of the perturbations and information about Am
and nm from knowledge of u∞

ε (x̂, ŷ) for several x̂, ŷ ∈ S, provided that Ab(x) and nb(x) are known.
In general, the support Dϵ of the defects can be determined from the far field operator

(Fg)(x̂) =

∫
S

[
u∞

ε (x̂, ŷ) − u∞

b (x̂, ŷ)
]
g(ŷ) dŷ x̂ ∈ S (8)

via the factorizationmethod [11]. In addition, it iswell-known [2] that the far field operator F determines the real transmission
eigenvalueswhich are defined below.
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Definition 1.1. Transmission eigenvalues are the values kε ∈ C for which there is a non-trivial solution (w, v) ∈ H1(D) ×

H1(D) of

∇ · Aε∇w + k2εnεw = 0 and 1v + k2εv = 0 in D (9)

w = v and
∂w

∂νAε

=
∂v

∂ν
on ∂D, (10)

where ∂u/∂νA = ν · A∇u.

These transmission eigenvalues can be used to obtain information about Aϵ and nϵ [2]. In this paper we will make use of
the small volume feature of the defects and use asymptotic analysis to determine the locations zm,m = 1 . . .M of the small
inhomogeneities. Then, based on the perturbation formulas of the transmission eigenvalues, we determine geometric and
physical information about these small defects via polarization tensors in the asymptotic formulas.

2. Asymptotic formulas and the MUSIC algorithm

To avoid technical difficultieswith asymptotic expansions, we assume that the anisotropicmedia is homogeneous, i.e. the
matrix A and the scalar n are constant. We derive the multi-static response matrix by exploiting the fact that the each of the
defective regions has small volume as in [7],whichwill be used to reconstruct the defective regions. Themulti-static response
matrix can be seen as the discrete version of the far field operator F given by (8). To this end we first recallG(·, ·) the Green’s
function for the background layered media, i.e. the solution of

∇ · A(x)∇G(·, z) + k2n(x)G(·, z) = −δ(· − z) in Rd

lim
r→∞

r
d−1
2

(
∂G(·, z)

∂r
− ikG(·, z)

)
= 0.

Let G∞(· , z) ∈ L2(S) be its far field pattern. Since A(x) is a symmetric constant positive definite matrix for x ∈ D and n(x) is
a positive constant for x ∈ Dwe have by Theorem 5.1 in [11] that

G∞(x̂, z) = γ ub(z, −x̂) where γ =
eiπ/4

√
8πk

in R2 and γ =
1
4π

in R3. (11)

It can be shown (see [5]) by using Green’s identities and the Sommerfeld radiation condition that uε satisfies the Lippmann–
Schwinger representation formula given by

uε(x, ŷ) = ub(x, ŷ) +

M∑
m=1

k2
∫
zm+εBm

(nm − n)G(x, z)uε(z, ŷ) dz +

∫
zm+εBm

(A − Am)∇zG(x, z) · ∇uε(z, ŷ) dz. (12)

By linearity it is clear that the scattered field us
= us

ε − us
b is due to the defective regions Dε and from (12) an asymptotic

expansion for u∞(x̂, ŷ) can be obtained by combining the asymptotic results from [5] and [12] together with (11). Thus we
obtain

u∞(x̂, ŷ) = γ εdk2
M∑

m=1

|Bm|
(
nm − n

)
ub(zm, −x̂)ub(zm, ŷ) + γ εd

M∑
m=1

M(m)
∇ub(zm, −x̂) · ∇ub(zm, ŷ) + o(εd), (13)

where the polarization tensorM(m) is given by

M(m)
i,j = ei · (Am − A)ej +

∫
∂Bm

[
ν(y) · (Am − A)ej

]
φ+

i (y) dsy

with ei being the ith basis vector in Rd and φi is the solution to

∇ · A(x)∇φi = 0 in Rd
\ Bm

∇ · Am∇φi = 0 in Bm

φ−

i − φ+

i = xi on Q∂Bm

∂

∂νAm
φ−

i −
∂

∂νA
φ+

i =
∂

∂νA
xi on ∂Bm

φi(x) = O
(

1
|x|d−1

)
.

We now wish to use the leading term in (13) to determine the location of the defective regions zm + εBm. To this end
assume that there are N incident and observation directions given by ŷj, x̂i ∈ S for i, j = 1, 2, . . . ,N . Now we define the
multi-static response matrix F ∈ CN×N given by

Fi,j = γ εd
M∑

m=1

k2|Bm|
(
nm − n

)
ub(zm, −x̂i)ub(zm, ŷj) + γ εd

M∑
m=1

M(m)
∇ub(zm, −x̂i) · ∇ub(zm, ŷj). (14)
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Remark 2.1. The asymptotic expansion in (13) as well as themulti-static responsematrix F given by (14) can be constructed
for the more general case of an inhomogeneous background (i.e. where A(x) is a matrix valued function and n(x) is a scalar
function in D). In this case A and n are replaced by A(zm) and n(zm). A general mixed reciprocity for inhomogeneous media is
proven in [13].

The range of multi-static response matrix F determines the location of small inhomogeneities assuming that the data is
collected at sufficiently many directions (see [3,14] and references therein). In particular, we define the vectors gz ∈ CN and
gz,b ∈ CN for any point z ∈ Rd and b ̸= 0 ∈ Cd by

gz =
(
ub(z, −x̂1), . . . , ub(z, −x̂N )

)⊤

gz,b =
(
b · ∇ub(z, −x̂1), . . . , b · ∇ub(z, −x̂N )

)⊤
,

and let

gz,(1,b) = gz + gz,b.

Then the following range test can be proven (see [3,14] and references therein), which essentially says that z ∈ {zm : m =

1, . . . ,M} if and only if gz,(1,b) is in the range of FF∗.

Theorem 2.1. Let wj be the jth orthonormal eigenvector of FF∗ and let r = Rank
(
FF∗

)
. Assume that the set S = {x̂i : i ∈ N} is

dense in S such that any analytic function that vanishes on S also vanishes on S. If z ∈ D then there is a number N0 ∈ N such that
for all N ≥ N0 we have that

I(z) =

⎡⎣ N∑
j=r+1

⏐⏐(gz,(1,b),wj
)
ℓ2

⏐⏐2⎤⎦−1

< ∞ if and only if z ∈ {zm : m = 1, . . . ,M}.

Numerical Validation of the MUSIC Algorithm

We present here the numerical implementation of the MUSIC algorithm in the R2 case. To this end, we use simulated
far-field data to reconstruct the defects in a square scatterer. The simulated data comes from solving the direct scattering
problems (1)–(2) and (4)–(5) using a cubic finite element method with a perfectly matched layer. From this wewill have the
approximated scattered fields us

ε(· , x̂) and us
b(· , x̂). The multi-static response matrix will be defined as

F =
[
u∞

ε (x̂i, x̂j) − u∞

b (x̂i, x̂j)
]N
i,j=1,

where the far-field patterns are given by the solutions of the direct problems using the finite element method. In the
following we use N different directions on the unit circle given by

x̂i =

(
cos (2π (i − 1)/N) , sin (2π (i − 1)/N)

)
for i = 1, . . .,N.

In all examples we take D = [−2, 2]2 and we fix the wave number k = 1.
We want to illustrate the performance of the MUSIC algorithm in reconstructing the defective regions zm + εBm inside

D. We give examples with random noise added to the simulated data for u∞
ε (x̂i, x̂j). The random noise level is given by δ

where the noise is added to the far-field data u∞
ε (x̂i, x̂j)+ δEi,j and the randommatrix E is such that ∥E∥2 = 1. Since we have

that A, n and D are known for non-destructive testing we can assume that the far-field pattern u∞

b (x̂i, x̂j) is computed from
solving the scattering problem for the known background. Reconstruction examples are presented in Figs. 1–3 where the
configuration and reconstruction parameters are explained in the respective labels.

3. Convergence of the transmission eigenvalue spectrum

Recall that the multi-static data used for the MUSIC algorithm can also determine the transmission eigenvalues
corresponding to the perturbed media. Having reconstructed the location of the small defects, we would like to obtain
information about the strength of the perturbations Am and nm from the transmission eigenvalues. To this end,we investigate
how the small defects affect the transmission eigenvalues. For the convergence analysis of the transmission eigenvalues we
assumemore regularity on the coefficients of the unperturbed (without defects) media, i.e. they are given by the symmetric
matrix A(x) ∈ C2(D,Rd×d) and n(x) ∈ C1(D). We start by showing that the eigenvalues kε for the perturbed media converge
to the eigenvalues for the unperturbed media as ε → 0. Then we derive an asymptotic formula with correction term of the
first order that can be used to obtainmore information about the small defects. To analyze (9)–(10) we define the variational
space X(D) :=

{
(w, v) : w, v ∈ H1(D) | w − v ∈ H1

0 (D)
}
equipped with the H1(D) × H1(D) inner product. It is clear that the

variational form of (9)–(10) is given by∫
D
Aε∇w · ∇ϕ1 − ∇v · ∇ϕ2 − k2ε(nεwϕ1 − vϕ2) dx = 0 for all (ϕ1, ϕ2) ∈ X(D).
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Fig. 1. Reconstruction of an ellipse Dϵ centered at (0.5, −1) with axes equal 0.5 and 0.3 inside D := [−2, 2] × [−2, 2]. The material parameters in D are
A = 0.5I and n = 5, and in Dϵ are A1 = I and n1 = 1, i.e. the defective region is a void. The figure on the left shows the reconstruction without noise and
on the right with 10% noise. Here N = 64.

Fig. 2. Reconstruction of the defective regionDϵ which is the union of disks centered at (1, 1) and (−1, −1)with radius ε = 0.3 insideD := [−2, 2]×[−2, 2].
The material parameters in D are A = 0.5I and n = 5, and in Dϵ are A1 = I and n1 = 1. The figure on the left shows the reconstruction without noise and
on the right with 10% noise. Here N = 20. Notice the estimated centers of the reconstructed disks.

Fig. 3. Reconstruction of the defective regionDϵ which is the union of disks centered at (−1, 1) and (1, −1)with radius ϵ = 0.3 insideD := [−2, 2]×[−2, 2].

Thematerial parameters in the anisotropicD are A =

(
10 1
1 10

)
and n = 5, and inDϵ are A1 = I and n1 = 1. The figure on the left shows the reconstruction

without noise and on the right with 2% noise. Here N = 32.
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For convenience we define the bounded sesquilinear forms

Aε

(
(w, v); (ϕ1, ϕ2)

)
:=

∫
D
Aε∇w · ∇ϕ1 + Aminwϕ1 dx −

∫
D
∇v · ∇ϕ2 + vϕ2 dx,

Bε

(
(w, v); (ϕ1, ϕ2)

)
:=

∫
D
nεwϕ1 − vϕ2 dx,

C
(
(w, v); (ϕ1, ϕ2)

)
:=

∫
D
Aminwϕ1 − vϕ2 dx.

Therefore we have that (9)–(10) can be written as for all (ϕ1, ϕ2) ∈ X(D)

Aε

(
(w, v); (ϕ1, ϕ2)

)
− k2εBε

(
(w, v); (ϕ1, ϕ2)

)
− C

(
(w, v); (ϕ1, ϕ2)

)
= 0. (15)

Let us define by Aϵ, Bϵ and C : X(D) → X(D) the bounded linear operators defined from Aε

(
· ; ·

)
, Bε

(
· ; ·

)
and C

(
· ; ·

)
by

means of the Riesz representation theorem. The unperturbed media corresponds to ε = 0, where A0 := A, n0 := n and
k0 := k. It can be shown using T-coercivity that if Amin and amin > 1 that Aϵ is invertible with the norm of the inverse
independent of ε ≥ 0. To this end we consider the isomorphism T(w, v) = (w, −v + 2w) : X(D) ↦→ X(D) (it is easy to check
that T = T−1). Then⏐⏐Aε

(
(w, v);T(w, v)

)⏐⏐ ≥

∫
D
Aε∇w · ∇w + Amin|w|

2 dx +

∫
D
|∇v|

2
+ |v|

2 dx − 2
⏐⏐⏐⏐ ∫

D
∇vε · ∇wε + vεwε dx

⏐⏐⏐⏐
and by Young’s inequality we obtain that⏐⏐Aε

(
(w, v);T(w, v)

)⏐⏐ ≥

(
α −

1
δ

)
∥w∥

2
H1(D) + (1 − δ)∥v∥

2
H1(D).

wherewe letα = min{Amin, amin}. Thereforewehave proven thatAε

(
(w, v);T(w, v)

)
is coercive provided that δ ∈ (1/α, 1),

implying Aϵ is invertible for ϵ ≥ 0. Similar arguments hold for Amax and amax < 1 where Amin is replaced by Amax in Aε

(
· ; ·

)
and C

(
· ; ·

)
withT(w, v) = (w−2v, −v). It is clear that in either case that Bϵ and C are compact operators by appealing to the

compact embedding of H1(D) in L2(D). Now by (15) it is clear that (w, v) are eigenfunctions corresponding to the eigenvalue
kε provided that(

I − k2εA
−1
ε Bε − A−1

ε C
)
(w, v) = (0, 0). (16)

Let us denote the eigenvalue parameter τε = k2ε and define Tε : X(D) → X(D)

Tε(τε) := A−1
ε Bε +

1
τε

A−1
ε C. (17)

We can now rephrase (15) as a non-linear eigenvalue problem

τεTε(τε)(w, v) = (w, v), ϵ ≥ 0. (18)

Note that it is clear that Tε(τ ) depends analytically on τ in any subset of the complex plane that does not include the origin.

Convergence of the spectrum

In this section, we study the convergence of Tε(τ ) in the operator norm to the unperturbed operator T0(τ ) and then use
results from [15] to prove convergence for the transmission eigenvalues and eigenfunctions. To this end, notice that Bε and
C are compact operators and that ∥A−1

ε ∥ is uniformly bounded with respect to ϵ, so we can conclude that Tε(τ ) is compact
for all ε ≥ 0. Hence the convergence of Tε(τ ) would then imply the convergence of the transmission eigenvalues. We start
by studying the convergence of the operator Bε to B0.

Theorem 3.1. Bϵ → B0 in the operator norm. Moreover for some α ∈ (0, 1) we have that ∥Bε − B0∥ ≤ Cεα in Rd for some C
independent of ε, d = 2, 3.

Proof. By definition we have that⏐⏐(Bε(w, v); (ϕ1, ϕ2)
)
−

(
B0(w, v); (ϕ1, ϕ2)

)⏐⏐ =

⏐⏐⏐⏐ ∫
Dε

(nε − n)wϕ1 dx
⏐⏐⏐⏐

≤ ∥(nε − n)w∥L2(Dε )∥(ϕ1, ϕ2)∥X(D).

Therefore, we have that
(

Bε − B0
)
(w, v)


X(D) ≤ ∥(nε−n)w∥L2(Dε ). Now sincew ∈ H1(D) we have from Sobolev’s embedding

in R2 or R3 that w ∈ Lp(D) for some p ≥ 2 (see e.g. [16] for embedding results). We then conclude that |w|
2

∈ Lp/2(D). Now
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let q be defined by 1
p/2 +

1
q = 1 notice that 1

q =
p−2
p . Therefore by using the duality between Lp/2(D) and Lq(D) along with

Sobolev’s embedding we have that(
Bε − B0

)
(w, v)

2
X(D) ≤ ∥(nε − n)∥2

∞
∥w∥

2
L2(Dε )

≤ C∥ |w|
2
∥Lp/2(D)∥χDε∥Lq(D)

= C |Dε|
1/q

∥w∥
2
Lp(D) ≤ Cεd/q

∥(w, v)∥2
X(D).

Hence, we have that

∥Bε − B0∥ ≤ Cεd/2q for d = 2, 3

where the constant C incorporates the norm of the contrasts but is independent of ε. Now for the R2 for any choice of p > 2
we have that 1

q < 1 giving the result. For the case in R3 we can choose p < 6 giving that 1
q < 2/3 and therefore d/2q < 1,

which gives the result in R3. □

We are now interested in the convergence of A−1
ε Bε and A−1

ε C as ε tends to zero. Recall that A−1
ε exists as a bounded linear

operator for all ε ≥ 0 where the norm of A−1
ε is uniformly bounded with respect to ε. To study the convergence of A−1

ε Bε

and A−1
ε Cwe first need some regularity results pertaining to B0 and C. Notice that by the variational definition of B0 we have

that for any (f , g) ∈ X(D) if we denote B0(f , g) = (w, v) then

− 1w + w = nf and 1v + v = g in D. (19)

Therefore by elliptic regularity we have thatw and v are in H3
loc(D) provided that n is continuously differentiable, and for any

Ω ⊂ D

∥w∥H3(Ω) + ∥v∥H3(Ω) ≤ C
(
∥f ∥H1(D) + ∥g∥H1(D)

)
.

Next, as for the operator C we have that for any (f , g) ∈ X(D) if we denote C(f , g) = (w, v) then

− 1w + w = Aminf and 1v + v = g in D,

and we have the elliptic regularity estimates for any Ω ⊂ D

∥w∥H3(Ω) + ∥v∥H3(Ω) ≤ C
(
∥f ∥H1(D) + ∥g∥H1(D)

)
.

Theorem 3.2. We have that

A−1
ε Bε → A−1

0 B0 and A−1
ε C → A−1

0 C

in the operator norm as ε → 0.

Proof. Consider the pair (wε, vε) and (w, v) in X(D) defined by (wε, vε) = A−1
ε (f , g) and (w, v) = A−1

0 (f , g) for any
(f , g) ∈ X(D). By definition we have that

Aε

(
(w − wε, v − vε); (ϕ1, ϕ2)

)
=

∫
Dε

(Aε − A)∇w · ∇ϕ1 dx,

whence using the T-coercivity we conclude that(
A−1

ε − A−1
0

)
(f , g)


X(D) ≤ C∥(Aε − A)∇w∥L2(Dε ).

Next we have that A−1
0 B0(f , g) = (w, v) due to the variational form of A0 satisfies

− ∇ · A(x)∇w + Aminw = −1p + p and 1v + v = −1q + q in D.

Recalling B0(f , g) = (p, q) we have ∥p∥H3(Ω) + ∥q∥H3(Ω) ≤ C
(
∥f ∥H1(D) + ∥g∥H1(D)

)
where Ω ⊂ D and by elliptic regularity

given any Ω ′
⊂ Ω ⊂ D we have that

∥w∥H3(Ω ′) + ∥v∥H3(Ω ′) ≤ C
(
∥p∥H3(Ω) + ∥q∥H3(Ω)

)
≤ C∥(f , g)∥X(D).

Fixing Ω ′ and Ω such that Dε ⊂ Ω ′
⊂ Ω ⊂ D for all ε sufficiently small and using that H3(Ω ′) ⊂ C1(Ω ′) we have the

following estimates(
A−1

ε − A−1
0

)
B0(f , g)


X(D) ≤ C∥w∥C1(Ω ′)∥χDε∥L2(D)

≤ Cεd/2
∥w∥C1(Ω ′).

Now appealing to the continuity of the embedding of H3(Ω ′) into C1(Ω ′) and the regularity estimate we have that(
A−1

ε − A−1
0

)
B0(f , g)


X(D) ≤ Cεd/2

∥(f , g)∥X(D).

Using thatA−1
ε Bε − A−1

0 B0
 ≤

A−1
ε

(
Bε − B0

) +
(

A−1
ε − A−1

0

)
B0


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along with the uniform boundedness of ∥A−1
ε ∥ and the norm convergence of Bε to B0 implies that A−1

ε Bε → A−1
0 B0 in norm.

The same arguments work for showing that A−1
ε C → A−1

0 C in norm, which ends the proof. □

Corollary 3.1. Let the operators Aε , A0, Bε , B0 and C be defined by the variational forms given above. Then we have that for
d = 2, 3(

A−1
ε − A−1

0

)
B0

 = O(εd/2),
(

A−1
ε − A−1

0

)
C
 = O(εd/2),

and
A−1

ε

(
Bε − B0

) = O(εα) for some α ∈ (0, 1) .

Combining the above results we have:

Theorem 3.3. Let the operator Tε(τ ) be as defined in (17) and τ ∈ U with U being any bounded subset of Cwith zero not a limit
point of U. Then we have that

∥Tε(τ ) − T0(τ )∥ −→ 0 as ε → 0.

Moreover if nε = n for all ε ≥ 0 then we have that

∥Tε(τ ) − T0(τ )∥ = O(εd/2).

Having proven the convergence of the operator Tε(τ ) we are ready to study the convergence of the real transmission
eigenvalues using the abstract result from [15].

Lemma 3.1. Let τ be a non-linear eigenvalue of T0 and assume that T0 and Tε are both meromorphic as functions of τ in some
region U of C containing τ . Also assume that Tε(τ ) → T0(τ ) in the operator norm. Then for any ball around τ there exists a
ε0 > 0 such that Tε has a non-linear eigenvalue in the ball for all ε < ε0. Conversely if τε is a sequence of non-linear eigenvalues
of Tε that converges as ε → 0, then the limit τ is a non-linear eigenvalue of T0.

By Theorem 3.3 we have that Tε(τ ) → T0(τ ) in the operator norm in any in region U of C \ {0} and from the definition
of the operator Tε(τ ) we have that it depends analytically on τ in any subset of the complex plane that does not include the
origin. Finally to conclude the convergence of the eigenvalues, we need bounds on the eigenvalues independent of ϵ. The
existence of real transmission eigenvalues andmonotonicity property with respect to the refractive index are proven in [17]
and [18]. The monotonicity property implies ϵ-independent bounds on these real transmission eigenvalues since Aϵ and nϵ

are bounded above and below uniformly with respect to ϵ > 0 (more specifically such bounds can be obtained bymodifying
the proof of Theorem 2.6 and Theorem 2.10 in [18] in a similar way as in the proof of Corollary 2.6 in [17].)

4. Asymptotic formula for the transmission eigenvalues

Having proven the convergence of the real transmission eigenvalues, we now want to obtain an asymptotic formula
for the real transmission eigenvalues. To this end, we need to construct an appropriate corrector that will give an explicit
formula for the first term in the asymptotic expansion for the transmission eigenvalues. For technical reasons that have to
do with the rate of convergence of Bϵ to B0 (which will be explained later on) we derive this corrector for the case when
there is no contrast in the lower term, i.e. nϵ = n. To avoid technicalities in the presentation, the corrector will be derived
for a homogeneous anisotropic media and the results can be generalized for an inhomogeneous media as in [9]. Hence in
this section we again assume that the coefficients A and n are constant in D.

Correction for the Operator A−1
ε − A−1

0

Consider the pair (wε, vε) and (w, v) in X(D) defined by

(wε, vε) = A−1
ε (f , g) and (w, v) = A−1

0 (f , g) (20)

and we assume that w is a smooth function. Without loss of generality in the following we perform the calculations only
for one inhomogeneity. For multiple inhomogeneity one simply sum the correctors. To this end, assume that the defective
region is of the form εBwhere B is centered at the origin with constant matrix A1 being the constitutive parameter. Wemake
the scaling y = x/ε and D̃ =

1
ε
D and let w(1)

ε (y) ∈ H1
0 (̃D) be the unique solution to∫

D̃
Ã∇yw

(1)
ε · ∇yϕ + Aminw

(1)
ε ϕ dy =

∫
∂B

[
(A1 − A)∇xw(0) · ν

]
ϕ dsy (21)

with Ã = A1 χB + A(1 − χB).

Theorem 4.1. Assume that (wε, vε) and (w, v) are defined by (20) with w being a smooth function, then we have that

∥wε(x) − w(x) − εw(0)w(1)
ε (x/ε)∥H1(D) + ∥vε(x) − v(x)∥H1(D) = O(εd/2+1). (22)
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Proof. Recall that x = εy and we define the error functions in X (̃D)
(
note thatw(1)

ε (y) ∈ H1
0 (̃D)

)
ew
ε = wε(εy) − w(εy) − εw(0)w(1)

ε (y) and ev
ε = vε(x) − v(x).

Now let (ϕ1, ϕ2) ∈ X(D̃) and define the sesquilinear form

Ãε

(
(ew

ε , ev
ε ); (ϕ1, ϕ2)

)
:=

∫
D̃
Ã∇yew

ε · ∇yϕ1 + Aminew
ε ϕ1 dy −

∫
D̃
∇yev

ε · ∇yϕ2 + ev
εϕ2 dx.

Using (20) we have that

Ãε

(
(ew

ε , ev
ε ); (ϕ1, ϕ2)

)
=

∫
B
(A1 − A)∇yw(εy) · ∇yϕ1 dy − εw(0)

∫
D̃
Ã∇yw

(1)
ε · ∇yϕ1 + Aminw

(1)
ε ϕ1 dy.

Using integration by parts and (21) gives that

Ãε

(
(ew

ε , ev
ε ); (ϕ1, ϕ2)

)
= ε2

∫
B
ϕ1∇x · (A − A1)∇xw(εy) dy + εw(0)

∫
∂B

[
(A1 − A)(∇xw(εy) − ∇xw(0)) · ν

]
ϕ1 dsy.

Recall that w is smooth, therefore ∇x · (A − A1)∇xw(εy) is bounded in B. Also notice that by Taylor’s expansion we have
that the term (∇xw(εy)− ∇xw(0)) = O(ε). Therefore, we can conclude that there is a constant C independent of ε such that⏐⏐Ãε

(
(ew

ε , ev
ε ); (ϕ1, ϕ2)

)⏐⏐ ≤ Cε2
∥(ϕ1, ϕ2)∥H1(D̃)×H1(D̃)

Using the T-coercivity of the sesquilinear form Ãε

(
· ; ·

)
in X (̃D) gives that

∥wε(εy) − w(εy) − εw(0)w(1)
ε (y)∥H1 (̃D) + ∥vε(εy) − v(εy)∥H1 (̃D) ≤ Cε2, (23)

and the result follows from scaling. □

Notice that from (21) we have that ∥w(1)
ε (y)∥H1 (̃D) is bounded independently of ε by the Lax–Milgram lemma. Therefore

by scaling we have that ∥w(1)
ε (x/ε)∥H1(D) ≤ Cεd/2−1 with C independent of ε, which gives the following result.

Corollary 4.1. Assume that (wε, vε) and (w, v) are defined by (20) with w being a smooth function then we have that

∥wε(x) − w(x)∥H1(D) + ∥vε(x) − v(x)∥H1(D) = O(εd/2). (24)

Notice that the corrector w(1)
ε (y) depends on ε, hence we now wish to construct a corrector that is independent of the

small parameter ε. To this end, we define the function w(1)(y) ∈ H1(Rd) such that for all ϕ ∈ H1(Rd)∫
Rd

Ã∇yw
(1)

· ∇yϕ + Aminw
(1)ϕ dy =

∫
∂B

[
(A1 − A)∇xw(0) · ν

]
ϕ dsy. (25)

Note that the variational problem (25) implies that

− ∇y · Ã∇yw
(1)

+ Aminw
(1)

= 0 in Rd
\ ∂B.

We now have
⏐⏐w(1)

⏐⏐ → 0 as |y| → ∞, exponentially fast [10]. This gives that ∇yw
(1) decays faster than the gradient of a

solution to Laplace’s equation, therefore

∥∇yw
(1)(x/ε)∥L∞(∂D) = o(εd) for d = 2, 3.

Theorem 4.2. Let w(1)
ε and w(1) be defined as the solutions to (21) and (25) respectively, then we have that

∥w(1)
ε (x/ε) − w(1)(x/ε)∥H1(D) = o(εd/2+2) for d = 2,

∥w(1)
ε (x/ε) − w(1)(x/ε)∥H1(D) = o(εd/2+5/2) for d = 3.

Proof. Let uε = w(1)
ε (y) − w(1)(y), there exists a constant α > 0 such that

α∥uε∥
2
H1 (̃D) ≤

∫
D̃
Ã∇yuε · ∇yuε + Amin|uε|

2 dy

=

∫
D̃
Ã∇yw

(1)
ε · ∇yuε + Aminw

(1)
ε uε dy −

∫
D̃
Ã∇yw

(1)
· ∇yuε + Aminw

(1)uε dy

=

∫
∂B

[
(A1 − A)∇xw(0) · ν

]
uε dsy −

∫
D̃
Ã∇yw

(1)
· ∇yuε + Aminw

(1)uε dy.

Notice that the variational form (25) implies that(
A
∂w(1)

∂νy

)+

−

(
A1

∂w(1)

∂νy

)−

= (A1 − A)∇xw(0) · ν on ∂B.
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Therefore integration by parts gives that∫
∂B

[
(A1 − A)∇xw(0) · ν

]
uε dsy −

∫
D̃
Ã∇yw

(1)
· ∇yuε + Aminw

(1)uε dy

=

∫
∂B

[
(A1 − A)∇xw(0) · ν

]
uε dsy +

∫
D̃
uε(∇y · Ã∇yw

(1)
− Aminw

(1)) dy

−

∫
∂B

[(
A
∂w(1)

∂νy

)+

−

(
A1

∂w(1)

∂νy

)−
]
uε dsy +

∫
∂D̃

A
∂w(1)

∂νy
uε dsy.

Now by using the boundary value problem for w(1) we have that

α∥uε∥
2
H1 (̃D) ≤

⏐⏐⏐⏐ ∫
∂D̃

A
∂w(1)

∂νy
uε dsy

⏐⏐⏐⏐ = ε1−d
⏐⏐⏐⏐ ∫

∂D
(A∇yw

(1)(x/ε) · ν)uε(x/ε) dsx

⏐⏐⏐⏐
≤ Cε1−d

∥∇yw
(1)(x/ε)∥L∞(∂D)∥uε(x/ε)∥H1(D).

By the scaling we have that

∥uε∥
2
H1 (̃D) ≤ Cε1−d/2

∥∇yw
(1)(x/ε)∥L∞(∂D)∥uε(x/ε)∥H1 (̃D).

Since

∥∇yw
(1)(x/ε)∥L∞(∂D) = o(εd) for d = 2, 3

we can conclude that

∥uε∥H1(D̃) = o(ε2) for d = 2 and ∥uε∥H1(D̃) = o(ε5/2) for d = 3,

which gives the result by scaling the norm back to the domain D. □

By appealing to the triangle inequality we have the following result.

Corollary 4.2. Let w(1) be the solutions to (25), also assume that (wε, vε) and (w, v) are defined by (20) with w being a smooth
function then we have that

∥wε(x) − w(x) − εw(0)w(1)(x/ε)∥H1(D) = O(εd/2+1). (26)

The arguments used in this section carry over to the case of multiple inhomogeneities. Indeed, for multiple inhomo-
geneities centered at zm with anisotropic material parameter Am we have that by using translation and summing over a
finite number of inhomogeneities gives that the corrector takes the form

w̃(1)(x/ε) =

M∑
m=1

w(zm)w(1)
m (x/ε)

where w
(1)
m (x/ε) is the solution to∫
Rd

Ãm∇yw
(1)
m · ∇yϕ + Aminw

(1)
m ϕ dy =

∫
∂Bm

[
(Am − A)∇xw(zm) · ν

]
ϕ dsy

for allϕ ∈ H1(Rd) with Ãm = Am χBm +A(1−χBm ). The convergence results in this section still hold forw(0)w(1)(x/ε) replaced
by w̃(1)(x/ε).

Asymptotic formulas

Finallywehave all the ingredients to give an asymptotic formula for the transmission eigenvalues using the results in [15].
Note that we have assumed that contrast in the defect is only in the matrix valued material parameter (i.e. nε = n for all
ε > 0), andwe still takeA andAm constantmatrices. Under this assumptionwehave that the operatorTε(τ ) = A−1

ε B0+
1
τ
A−1

ε C
converges in the operator norm.

∥Tε(τ ) − T0(τ )∥ = O(εd/2)

Wenowrecall Theorem4.1 of [15]which is a generalization ofOsborn’s Theorem (see [19] forOsborn’s result) to nonlinear
eigenvalue problems.

Theorem 4.3. Let X be a Hilbert space and Tε(τ ) : X → X be a compact operator valued functions of τ which are analytic in a
region U of the complex plane, such that ∥Tε(τ ) − T0(τ )∥ → 0 for all τ ∈ U. Now assume that τ is a simple nonlinear eigenvalue
of T0(τ ) with normalized eigenfunction φ. Then if

τ 2
(

d
dτ

T0(τ )φ, φ

)
̸= −1
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we have that

τε = τ + τ 2

(
(T0(τ ) − Tε(τ ))φ, φ

)
1 + τ 2

( d
dτ T0(τ )φ, φ

) + O
(
sup
τ∈U

∥(Tε(τ ) − T0(τ ))φ∥
(T∗

ε (τ ) − T∗

0(τ ))φ
)

with τε is a nonlinear eigenvalue for Tε(τ ).

Theorem 4.3 only holds for simple eigenvalues. Notice that we have established the order of convergence of the operator
defined by the transmission eigenvalue problem. In particular, the results in the previous section (see Eq. (24)) give that

∥Tε(τ )(wτ , vτ ) − T0(τ )(wτ , vτ )∥ = O(εd/2).

We now consider the point wise convergence for the adjoint operator.

Lemma 4.1. Let (wτ , vτ ) ∈ X(D) be the smooth eigenfunction corresponding to the eigenvalue τ of the operator T0(τ ), then we
have thatT∗

ε (τ )(wτ , vτ ) − T∗

0(τ )(wτ , vτ )
 = O(εd/2+1).

Proof. Notice that T∗
ε (τ ) = B0A−1

ε +
1
τ
CA−1

ε where we define (w, v) = A−1
0 (wτ , vτ ) and (wε, vε) = A−1

ε (wτ , vτ ). Now for any
(ϕ1, ϕ2) ∈ X(D)(

B0(A−1
ε − A−1

0 )(wτ , vτ ); (ϕ1, ϕ2)
)

= B0
(
(wε − w, vε − v); (ϕ1, ϕ2)

)
.

Since the sesquilinear form B0 only has L2(D) terms, we have that⏐⏐(B0(A−1
ε − A−1

0 )(wτ , vτ ); (ϕ1, ϕ2)
)⏐⏐ ≤ C∥(wε − w, vε − v)∥L2(D)∥(ϕ1, ϕ2)∥X(D).

By rescaling the L2 norm in Eq. (23) gives that

∥wε(x) − w(x)∥L2(D) + ∥vε(x) − v(x)∥L2(D) = O(εd/2+1).

therefore
B0(A−1

ε − A−1
0 )(wτ , vτ )


X(D) = O(εd/2+1). A similar argument gives that

C(A−1
ε − A−1

0 )(wτ , vτ )

X(D) = O(εd/2+1),

proving that claim. □

Remark 4.1. This result shows why the case where nε ̸= n cannot be handled by this analytic framework. In particular, the
rate of convergence in Theorem 3.1 for B0 −Bε is not fast enough to provide an improved convergence rate for T∗

ε (τ )− T∗

0(τ )
which is necessary to apply Theorem 4.3.

We have just shown that the remainder term for the non-linear eigenvalue corrector formula is of the order εd+1. To
construct an asymptotic formula for the transmission eigenvalues we need to construct an asymptotic formula for(

T0(τ )(wτ , vτ ) − Tε(τ )(wτ , vτ ); (wτ , vτ )
)
X(D)

where (wτ , vτ ) are the eigenfunctions for ε = 0. By Eq. (15) we have that B0(w, v) +
1
τ
C(w, v) =

1
τ
A0(w, v). Since the

operator Aε is self-adjoint for all ε ≥ 0 the definition of Tε(τ ) in (17) gives that(
Tε(τ )(wτ , vτ ) − T0(τ )(wτ , vτ ); (wτ , vτ )

)
X(D)

=
1
τ

(
A0(wτ , vτ );

(
A−1

ε − A−1
0

)
(wτ , vτ )

)
X(D)

.

This gives that we only need to construct an asymptotic formula for

A0
(
(wτ , vτ );

(
A−1

ε − A−1
0

)
(wτ , vτ )

)
.

We now derive an asymptotic formula for A−1
ε − A−1

0 with respect to the sesquilinear form A0
(
· ; ·

)
which is given in the

following result.

Theorem 4.4. Let (wτ , vτ ) be the eigenfunctions for ε = 0 with transmission eigenvalue τ and define (w, v) = A−1
0 (wτ , vτ ),

then we have that

A0
(
(wτ , vτ );

(
A−1

ε − A−1
0

)
(wτ , vτ )

)
= εd

M∑
m=1

(A − Am)|Bm|∇wτ (zm) · ∇w(zm)

+ εd
M∑

m=1

wτ (zm)w(zm)
∫

∂Bm

[
(A − Am)∇w

(1)
m (y) · νy

]
dsy + o(εd).
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Proof. We will prove the result for a single defect centered at the origin then by using translation and summing a finite
number of such inhomogeneities, the asymptotic result follows. Letting (wε, vε) = A−1

ε (wτ , vτ ), we have that

A0
(
(wτ , vτ ); (wε − w, vε − v)

)
= (A0 − Aε)

(
(wτ , vτ ); (wε, vε)

)
= (A0 − Aε)

(
(wτ , vτ ); (wε − w − εw(0)w(1), vε − v)

)
+ (A0 − Aε)

(
(wτ , vτ ); (w + εw(0)w(1), v)

)
. (27)

Recall, that by elliptic regularity we have that for any Ω such that εB ⊂ Ω ⊂ D the eigenfunctions are in C1(Ω). Using this
along with the support of A − Aε and Corollary 4.2 we can now estimate the first term⏐⏐(A0 − Aε)

(
(wτ , vτ ); (wε − w − εw(0)w(1), vε − v)

)⏐⏐
=

⏐⏐⏐⏐∫
εB
(A − A1)∇wτ · ∇wε − w − εw(0)w(1) dx

⏐⏐⏐⏐ ≤ C∥wτ∥H1(εB)∥wε − w − εw(0)w(1)
∥H1(D)

≤ Cεd/2+1
∥χεB∥L2(D)∥wτ∥C1(Ω) ≤ Cεd+1

∥wτ∥C1(Ω).

We now consider the second term of (27) which is given by

(A0 − Aε)
(
(wτ , vτ ); (w + εw(0)w(1), v)

)
=

∫
εB
(A − A1)∇wτ · ∇w + εw(0)w(1) dx

=

∫
εB
(A − A1)∇wτ · ∇w dx + εw(0)

∫
Dε

(A − A1)∇wτ · ∇w(1) dx

= εd(A − A1)|B|∇wτ (0) · ∇w(0) + εw(0)
∫

εB
(A − A1)∇wτ · ∇w(1) dx + o(εd)

where we have used Taylor’s expansion about the origin to estimate the first integral. Now by the divergence theorem we
have that the volume integral involving the eigenfunction and the corrector is given by

ε

∫
εB
(A − A1)∇wτ · ∇w(1) dx = ε

∫
εB

wτ (x)∇ · (A − A1)∇w(1)(x/ε) dx + ε

∫
∂(εB)

wτ (x)
[
(A − A1)∇w(1)(x/ε) · νx

]
dsx.

Now by rescaling the second integral for x = εy and using a Taylor’s expansion we have that integration is given by

ε

∫
εB
(A − A1)∇wτ · ∇w(1) dx = εd+1

∫
B
wτ (εy)∇ · (A − A1)∇w(1)(y) dy

+ εdwτ (0)
∫

∂B

[
(A − A1)∇w(1)(y) · νy

]
dsy + o(εd)

proving the result. □

Nowwehave allweneed for an asymptotic formula for simple transmission eigenvalues. Notice that d
dτ T0(τ ) = −

1
τ2
A−1
0 C,

therefore we have that

τ 2
(

d
dτ

T0(τ )(wτ , vτ ), (wτ , vτ )
)

= −C
(
(wτ , vτ );A−1

0 (wτ , vτ )
)
.

For convenience let the constant

qm =

∫
∂Bm

[
(A − Am)∇w

(1)
m (y) · νy

]
dsy. (28)

Therefore we have that simple transmission eigenvalues have the expansion.

Theorem 4.5. Let (wτ , vτ ) be the eigenfunctions for ε = 0 with simple real transmission eigenvalue τ and define (w, v) =

A−1
0 (wτ , vτ ), then we have that

τε = τ + τεd
M∑

m=1

(Am − A)|Bm|∇wτ (zm) · ∇w(zm) + qmwτ (zm)w(zm)
1 − C

(
(wτ , vτ ); (w, v)

) + o(εd)

where qm is given by (28) and

C
(
(wτ , vτ ); (w, v)

)
=

∫
D
Aminwτw − vτv dx.
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Table 1
The estimated order of convergence for two eigenvalues where D0 is two
disks of radius ε centered at (0.25, 0) and (−0.25, −0.25).

ε EOC1 EOC2

1/4 – –
1/8 2.4423 0.8252
1/16 2.3365 2.0673
1/32 2.0881 2.0001
1/64 2.1705 2.1549

Table 2
The estimated order of convergence for two eigenvalues where D0 is the disk
of radius ε centered at the origin.

ε EOC1 EOC2

1/4 – –
1/8 1.9304 2.2957
1/16 2.1519 2.2278
1/32 2.1161 2.0304
1/64 3.1701 2.5851

Numerical validation of the asymptotic formula

The asymptotic formula given in Theorem 4.5 can potentially be used to determine the strength of the small defective
region(s). Notice that theMUSIC algorithm gives the location of the defect(s) and recall that the transmission eigenvalues for
the perturbed media τε can be computed from the same scattering data needed for MUSIC but for a range of wave numbers
k (see [2,20,21]), whereas the transmission eigenvalues τ and eigenfunctions (wτ , vτ ) for the unperturbed media can be
computed since A and n are assumed to be known. In particular, denoting by Fϵ :=

(
uϵ(x̂i, xj, k)

)
i,j=1...N , the far field matrix

due to the inhomogeneity D with perturbation Dϵ , where we indicate its dependence on k, to determine the τϵ := k2ϵ we
solve the regularized equation

(α + F∗

ϵFϵ)g(k) = F∗

ϵ (e
ikz·x̂i )i=1...N , z ∈ D

for g(k) for a range of k. The transmission eigenvalues are those values of k for which ∥g(k)∥ℓ2 blows up. To compute
the transmission eigenvalues for the unperturbed media we use a continuous finite element method with the eigenvalue
searching technique described in [21,22] and [23]). In order to use the asymptotic formula in Theorem 4.5 one also needs the
functions (w, v) = A−1

0 (wτ , vτ )which can be solved for (e.g. using the FEM) since A and (wτ , vτ ) are known. Having identified
the location of the defect(s) from the MUSIC algorithm (i.e. the points zm are known) one can determine the strength of
the defect(s) which is given by (Am − A)|Bm| and qm from the knowledge of two transmission eigenvalues (actually 2M
transmission eigenvalues whereM is the number of inhomogeneities). Notice, that the strength of the defect(s) only depend
on the constitutive coefficients and geometry of the defect(s).

We first consider a few examples to illustrate the convergence of the transmission eigenvalues as ε → 0 in R2. To do
so, we denote the transmission eigenvalues for the unperturbed media by k2j and the first transmission eigenvalue for the
perturbed media by k2j (ε). To test our asymptotic formula we will check the order of convergence for two transmission
eigenvalues. We compute the error and estimated order of convergence by

Ej(ε) =
⏐⏐k2j − k2j (ε)

⏐⏐ and EOCj = log
(
Ej(ε)/Ej(ε/2)

)
/log(2).

In our calculations we see that the order of convergence seems to be approximately second order which is what is predicted
by Theorem 4.5

Example 1. Here we let D = [−1, 1]2 where D0 is given by two disks of radius ε centered at (0.25, 0) and (−0.25, −0.25).
For this case we take n = nε = 1 for all ε with

A =

(
10 1
1 10

)
and Aε = 2I . In Table 1 we show estimated order of convergence for two transmission eigenvalues.

Example 2. Here we let D =

{
(x1, x2) ∈ R2

:
x21
4 + x22 < 1

}
where D0 is the disk centered at the origin of radius ε. For this

case we take n = nε = 1 for all ε with A = 10I and Aε = 2I . In Table 2 we show estimated order of convergence for two
transmission eigenvalues.
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Fig. 4. Reconstruction of the defective region Dϵ centered at (0.25, 0). The figure on the left shows the reconstruction without noise, where the estimated
location is (0.255, 0.005). The figure on the right shows the reconstruction with 10% noise, where the estimated location is (0.267, 0.017). Here N = 20.

Next we provide an example on how to use the asymptotic formula in Theorem 4.5 to obtain information about the
strength of the perturbation. For the case of a homogeneous isotropic unit disk Dwith A = αI with α a positive constant and
n = 1 we have that the radially symmetric eigenfunctions corresponding to the eigenvalues k2 are given by

wk(r) = J0(k)J0
(
k/

√
α r

)
and vk(r) = J0

(
k/

√
α
)
J0(kr).

Here J0 is the first kind Bessel function of order zero. Using the variational formulation, the solution to A0(w, v) = (wk, vk)
can be show to be

w(r) = c1I0(r) + α−1wk(r) and v(r) = c2I0(r) − vk(r)

where the constants c1 and c2 satisfy[
I0(1) −I0(1)
αI′0(1) −I′0(1)

][
c1
c2

]
=

[
−(α−1

+ 1)wk(1)
(1 − α)w′

k(1)

]
where here I0 is the third kind Bessel function of order zero. This implies that the corrector term in Theorem 4.5 is known up
to the weighted contrast (Am − A)|Bm| and ‘polarization’ constant qm. Assuming that two transmission eigenvalues for the
unperturbedmedia are known and the corresponding two eigenvalues for the perturbedmedia is computed via the far-field
data, by ignoring the o(εd) term in the asymptotic formula given in Theorem4.5 one obtains a 2×2 linear systemof equations
to determine the weighted contrast and polarization constant. For proof of concept, we consider the case where D is the unit
disk with D0 being the disk of radius ε centered at (0.25, 0) where coefficients are taken to be A = 10I and Aε = 2I . We
assume that for this configuration the center of the disk is reconstructed using MUSIC as shown in Fig. 4. Using the first two
radially symmetric eigenvalues and functions we wish to determine the contrast for the particular case of ε = 1/2. In this
example the contrast is given by −8 and solving the 2 × 2 linear system derived from the asymptotic formula recovers a
contrast of −7.3465 if the exact location is used in the formula. Using the reconstructed center (0.255, 0.005) for the case
without noise in Fig. 4 we obtain that the contrast is−7.1222, and using the reconstructed center (0.267, 0.017) for the case
with 10% noise in Fig. 4 we obtain that the contrast is −6.6147. This preliminary example shows that one can determine
information about the location andmaterial properties of the small defects from a knowledge of the far-field data. Of course
further investigation is needed to numerically validate our imaging method.
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