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Abstract. In this paper we revisit the transmission eigenvalue problem for an

inhomogeneous media of compact support perturbed by small penetrable ho-

mogeneous inclusions. Assuming that the inhomogeneous background media is
known and smooth, we investigate how these small volume inclusions affect the

transmission eigenvalues. Our perturbation analysis makes use of the formu-

lation of the transmission eigenvalue problem introduced Kirsch in [8], which
requires that the contrast of the inhomogeneity is of one-sign only near the

boundary. Thus, our approach can handle small perturbations with positive,

negative or zero (voids) contrasts. In addition to proving the convergence rate
for the eigenvalues corresponding to the perturbed media as inclusions’ volume

goes to zero, we also provide the explicit first correction term in the asymptotic
expansion for simple eigenvalues. The correction term involves computable in-

formation about the known inhomogeneity as well as the location, size and

refractive index of small perturbations. Our asymptotic formula has the po-
tential to be used to recover information about small inclusions from knowledge

of the real transmission eigenvalues, which can be determined from scattering

data.

1. Introduction. The transmission eigenvalue problem is intrinsic to the scatter-
ing theory for inhomogeneous media [2]. Real transmission eigenvalues are related
to non-scattering frequencies and can be determined from scattering data [1] and
[9], hence they can be used to obtain information about the inhomogeneity (see
e.g. [3] for monotonicity results on real transmission eigenvalues in terms of the
refractive index in the media). One possible application is to identify small volume
perturbations of a known inhomogeneity using measured transmission eigenvalues.
In this case, asymptotic analysis is needed to quantify the effect of small pertur-
bations on transmission eigenvalues. This task is complicated due to the fact that
the transmission eigenvalue problem is non-selfadjoint and most of its mathemat-
ical formulations lead to nonlinear eigenvalue problems. The celebrated paper by
Osborn [12], generalized to nonlinear problems in [11], provides a mathematical
approach to obtain asymptotic formulas with first order correction term for per-
turbation of eigenvalues of a non-selfadjoint eigenvalue problem. This perturbation
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approach has been used in [5] and [6] to obtain asymptotic expressions for trans-
mission eigenvalues for the isotropic case and in [4] for the anisotropic case, where
in the latter preliminary results on the use of these asymptotic formulas to solve
the inverse problem have been presented. Unfortunately, bounded by the mathe-
matical formulation of the transmission eigenvalue problem, all the aforementioned
work required that the contrast in the known inhomogeneous media as well as in
the small perturbations does not change sign in the support of the inhomogeneity.
This assumption significantly restrict the class of problems where our method can
apply. More recent papers on the transmission eigenvalue problem [16], [13], [14]
have obtained spectral results under the assumption that the contrast keep the same
sign only in a neighborhood of the boundary. Under this assumption, the formu-
lation introduced by Kirsch [8], which is a variational writing of the transmission
eigenvalue problem formulation first introduced by Sylvester [16], provides a con-
ducive framework to apply perturbation analysis in [12], [11], and the goal of this
paper is to do exactly this. More specifically, the main result of our paper is obtain-
ing convergence and asymptotic formulas with correction term for the transmission
eigenvalues corresponding to isotropic inhomogeneous media of compact support
perturbed by small penetrable homogeneous inclusions. The only assumption on
the media, besides physical ones, is that the contrast in the refractive index of the
known inhomogeneity is one sign only in a neighborhood of the boundary of its
support. This allows for the known inhomogeneity to have more general contrast
inside the support, as well as for the small volume perturbations to have positive,
negative or zero (voids) constant contrasts simultaneously. Although the calcula-
tions are presented here for real transmission eigenvalues and real valued refractive
index (motivated by the practical fact that only real transmission eigenvalues are
determined from scattering data) our analysis can be carried through for complex
eigenvalues and complex-valued refractive index with obvious modifications when
computing the adjoint operators. We remark that, although the convergence anal-
ysis can be done for multiple eigenvalues, our asymptotic formula is obtained only
for simple eigenvalues due to technical difficulties stemming from the non-linearity
of the eigenvalue problem as pointed out in [11].

2. Formulation of the transmission eigenvalue problem. In this section we
state a formulation of the transmission eigenvalue problem by Kirsch [8], which gave
a variational formulation for the transmission eigenvalue problem formulation first
introduced by Sylvester [16]. This formulation has the advantage of allowing for
a much more general class of contrasts in the media. Here we translate Kirsch’s
variational version back to an operator form, which we find convenient to work with.

Let D ⊂ Rd (d = 2, 3) be a given C2 domain with coefficient (e.g. squared index
of refraction) given by (1 + q) ∈ L∞(D). Consider the transmission eigenvalue
problem of finding k2 and nontrivial V,W such that

∆V + k2(1 + q)V = 0 in D(1)

∆W + k2W = 0 in D(2)

W = V on ∂D(3)

∂W

∂ν
=
∂V

∂ν
on ∂D.(4)

If one subtracts the second equation from the first and sets λ := −k2, v := V −W
and w := −k2W , the transmission eigenvalue problem may be written: find λ ∈ C
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such that there exists nontrivial w ∈ L2(D) and v ∈ H2
0 (D) satisfying

∆v − λ(1 + q)v = qw in D(5)

∆w − λw = 0 in D.(6)

We define the Hilbert space X := L2(D)×H2
0 (D) equipped with the inner product

(7) (w, v;φ, ψ)X := (w, φ)L2(D) + (∆v,∆ψ)L2(D) for (w, v), (φ, ψ) ∈ X.

One may check that a weak formulation of (5)-(6) on X is to find λ ∈ C and
nontrivial (w, v) ∈ X such that (see e.g. [8])

(8)

∫
D

(∆ψ − λψ)w dx+

∫
D

(∆v − λ(1 + q)v)φ− qwφdx = 0

for all (φ, ψ) ∈ X. Now we define the linear operator on X

(9) Aλ =

(
−q ∆− λ(1 + q)

(∆∆)−1(∆− λ) 0

)
.

Here (∆∆)−1 : H−2(D)→ H2(D) is defined by the weak solution of the equation

(10) ∆∆u = f, u ∈ H2
0 (D) and f ∈ H−2(D),

that is, u solves

(11) (u, φ)H2
0 (D) = (f, u)L2(D), for all φ ∈ H2

0 (D).

Similarly, ∆ : L2(D)→ H−2(D) is defined by

(12) (u,∆φ)L2(D) = 〈∆u, φ〉H−2(D), φ ∈ H2
0 (D).

We abuse notation slightly and also use ∆ to denote the usual mapping ∆ :
H2(D) → L2(D). We will also use the sesquilinear form corresponding to Aλ
(introduced in [8]) defined by

(13) aλ(w, v;φ, ψ) = (Aλ(w, v); (φ, ψ))X for all (w, v), (φ, ψ) ∈ X.

Clearly the operator Aλ given by (9) is bounded on X. Furthermore, a straight-
forward calculation shows that (w, v) ∈ Ker(Aλ) if and only if (w, v) is a solution
to the weak formulation of the transmission eigenvalue problem (8). So the trans-
mission eigenvalue problem can be written as: Find λ ∈ C and U = (w, v) ∈ X =
L2(D)×H2

0 (D) such that

AλU = 0.

3. Decomposition into invertible plus compact. In [16] and afterwards in [8]
it was shown with some restrictions on q (near the boundary only) that the set
of transmission eigenvalues is discrete. We redo the result from [8] here both for
completeness and to show uniformity for families of q. Additionally, the operator
form (9) simplifies some of the proofs.

Note that Aλ is not self adjoint even for real λ; however, it would be if we were
to shift it slightly. To this end define the bounded operator on X

(14) Âλ =

(
−q ∆− λ

(∆∆)−1(∆− λ) 0

)
,

and its associated sesquilinear form

(15) âλ(w, v;φ, ψ) =
(
Âλ(w, v); (φ, ψ)

)
X
.
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Note that now for λ ∈ R, Âλ is self-adjoint with respect to the inner product on X.
We also define the operator

(16) Kµ,λ = Aµ − Âλ =

(
0 λ− µ(1 + q)

(∆∆)−1(λ− µ) 0

)
,

noting that
Aµ = Âλ +Kµ,λ.

We would like to find λ such that Âλ is invertible and Kµ,λ is compact. The second
is the easier of the two.

Proposition 3.1. For any λ, µ ∈ C and q ∈ L∞(D), Kµ,λ is compact.

Proof. This is obvious; the top right component of Kµ,λ is multiplication by (λ −
µ(1 + q)) as a mapping from H2

0 (D) to L2(D), which is clearly compact by Sobolev
embedding. The bottom left component is the mapping (∆∆)−1 from L2(D) to
H2

0 (D). By standard elliptic regularity theory, (∆∆)−1 takes L2(D) functions into
H4(D), which embeds compactly into H2

0 (D).

We first prove a lemma that is essential for the next proposition.

Lemma 3.2. Let λ > 0 and wj be a sequence in L2(D) that weakly converges to 0.
Then, there exists a sequence zj ∈ H2(D) defined by{

−∆zj + λzj = wj in D
zj = 0 on ∂D

that converges to 0 weakly in H2(D).

Proof. The bilinear form on H1
0 (D)×H1

0 (D)

(17) a(z, φ) := (∇z,∇φ)L2(D) + λ(z, φ)L2(D)

is coercive, so by Lax Milgram, the partial differential equation

(18)

{
−∆z + λz = g in D
z = 0 on ∂D

has a unique weak solution z ∈ H2(D) ∩H1
0 (D) for any g ∈ L2(D). By standard

elliptic regularity, z satisfies the inequality

(19) ‖z‖H2(D) ≤ C‖g‖L2(D).

For each j, let g = wj and define zj as the solution to (18). Since wj converges
weakly, it is norm bounded in L2(D), hence there exists an M > 0 such that

(20) ‖zj‖H2(D) ≤M.

Since the sequence {zj} is bounded in H2(D), there exists a subsequence (we will
again denote it by zj) that converges to some z ∈ H2(D) weakly. From this weak
convergence and the equation for zj , for any φ ∈ H1

0 (D),∫
D

(−∆z + λz)φ dx = lim
k→∞

∫
D

(−∆zj + λzj)φ dx

= lim
k→∞

∫
D

wjφ dx

= 0,

which implies that z solves

−∆z + λz = 0 in D.
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By taking another subsequence, we must have the convergence strong in H1
0 , which

implies that z = 0 on ∂D, and hence we have z = 0. The result follows.

We now introduce a family of operators so we may state our final theorems of
the section, and we do this by first defining the parameter family {qε} ⊂ L∞(D).

Assumption 3.3. We assume the family {qε} ⊂ L∞(D) satisfies the following
properties:

1. ε ∈ I where I is a compact subset of R.
2. The family {qε} is uniformly bounded in L∞(D).
3. Let R be a neighborhood of the boundary ∂D; that is, R is an open set contained

in D with ∂D ⊂ R. We assume qε is of one sign on R with either qε > α > 0
or −qε > α > 0 holding in R.

4. The family has the property that for each ε, ε′ ∈ R, qε−qε′ = 0 except on some
measurable subset D(ε, ε′) ⊂ D \R satisfying m(D(ε, ε′))→ 0 as ε→ ε′ where
m is the Lebesgue measure on Rd.

The following Lemma and Proposition are generalizations of Kirsch’s results in
[8]. The arguments are nearly identical to those of Kirsch, with the exception of a
few modifications to allow for a family {qε}.

Lemma 3.4 (Kirsch, [8], Lemma 2.3). Let {qε} be a family of functions satisfying
Assumption 3.3. Then, there exists a λ0 > 0 such that∫

D\R
|qε||w|2 dx ≤ 1

2

∫
R

|qε||w|2dx

for all ε > 0 and all w ∈ L2(D) solving ∆w − λ0w = 0 in D.

Proof. Let λ > 0 and let R be the neighborhood of the boundary defined in As-

sumption 3.3. Let R′ be another neighborhood of ∂D such that d̂ := dist(D \R,R′)
is positive. This implies that R′ ⊂ R. Define ρ ∈ C∞c (D) to satisfy ρ = 1 on D \R′.
For w ∈ L2(D) solving ∆w − λw = 0, from standard elliptic regularity we know
that w is in C∞loc(D) , so ρw ∈ C∞(D) and we can apply Green’s representation
theorem for ∆− λ:

(21) (ρw)(x) = −
∫
D

[(∆(ρw)(y)− λ(ρw)(y)]
e−
√
λ|x−y|

4π|x− y|
dy.

The product rule yields

(22) ∆(ρw) = w∆ρ+ 2∇ρ · ∇w + ρ∆w,

which gives

(23) (ρw)(x) = −
∫
D

[w∆ρ+ 2∇ρ · ∇w + ρ∆w − λ(ρw)(y)]
e−
√
λ|x−y|

4π|x− y|
dy.

Note that ρ∆w − λ(ρw) = 0 from the equation for w, and so we have

(24) (ρw)(x) = −
∫
D

[w∆ρ+ 2∇ρ · ∇w]
e−
√
λ|x−y|

4π|x− y|
dy.

Since ρ = 1 on D \R′, ∆ρ = ∇ρ = 0 on D \R′ and so

(25) (ρw)(x) = −
∫
R′

[w∆ρ+ 2∇ρ · ∇w]
e−
√
λ|x−y|

4π|x− y|
dy.
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We integrate the second term by parts to find

(26) (ρw)(x) =

∫
R′

[
−∆ρ

e−
√
λ|x−y|

4π|x− y|
+ 2divy

(
∇ρe

−
√
λ|x−y|

4π|x− y|

)]
w dy,

where the boundary term disappears since ρ ∈ C∞c (D) and ∇ρ = 0 on D\R′ implies
that ∂ν+ρ = 0 on ∂R′.

Now, letting x ∈ D \R′, we have

(27) |w(x)| ≤ Ce−d
√
λ

∫
R′
|w|dy

where C depends only on D, R, R′, and ρ. By Cauchy-Schwartz and R′ ⊂ R, we
deduce

|w(x)|2 ≤
(
Ce−d

√
λ

∫
R′
|w|dy

)2

≤C2e−2d
√
λ
(
‖χR′‖L2(R)‖w‖L2(R)

)2
≤C2e−2d

√
λ|R′|

∫
R

|w(y)|2 dy.(28)

Since qε > α on R, we have

(29) |w(x)|2 ≤ C2e−2d
√
λ|R′|

∫
R

|qε(y)|
α
|w(y)|2 dy.

As R′ ⊂ R, the above inequality holds for x ∈ D \ R. We multiply by |qε(x)| and
integrating with respect to x over D \R:

(30)

∫
D\R
|qε(y)||w(y)|2 dy ≤ C2e−2d

√
λ|R′||D \R|‖qε‖2L∞(D)

∫
R

|w(y)|2 dy.

Since qε is uniformly bounded, we can choose a λ0 large enough so that the result
holds.

This next proposition states that the family of operators {Âελ0
} is uniformly

weakly coercive. Again, our arguments follow [8] with the only difference that here
we make sure that all estimates hold uniformly in ε ∈ I.

Proposition 3.5 (Kirsch [8], Theorem 2.4). Let {qε} be a family of functions satis-

fying Assumption 3.3, and for each ε, let {Âελ0
} be the operator (14) corresponding

to q = qε and λ = λ0, and let âελ0
denote their associated sesquilinear forms. Then

there exists a λ0 > 0 and a c > 0 such that for all ε ∈ I,

(31) sup
(φ,ψ) 6=0

âελ0
(w, v;φ, ψ)

‖(φ, ψ)‖X
≥ c‖(w, v)‖X for all (w, v) ∈ X

where c is independent of ε.

Proof. Assume that the estimate (31) does not hold, in which case we have a se-
quence (εj , wj , vj) ∈ R×X where (wj , vj) has norm 1 in X and

(32) lim
j→∞

sup
(φ,ψ) 6=0

â
εj
λ0

(wj , vj ;φ, ψ)

‖(φ, ψ)‖X
→ 0.

Now, since Uj is of norm 1 and X is a Hilbert Space, it has a subsequence (denoted
Uj for simplicity) that converges weakly to some U ∈ X. We will first prove that
U = 0.
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Since εj ∈ I, there is a subsequence (which we abuse notation and denote {εj})
such that εj → ε∗ as j →∞. From Lemma 3.4 there exists a λ0 such that

(33)

∫
D\R
|qε||w|2 dx ≤ 1

2

∫
R

|qε||w|2dx

for all ε ∈ I and all w solving ∆w− λ0w = 0. Define Uj = (wj , vj) and Φ = (φ, ψ).
Then,

((Â
εj
λ0
− Âε∗λ0

)Uj ,Φ)X

‖Φ‖X
=

(Uj , (Â
εj
λ0
− Âε∗λ0

)Φ)X

‖Φ‖X

≤‖Uj‖X
‖Φ‖X

‖(Âεjλ0
− Âε

∗

λ0
)Φ‖X(34)

since the operators are self adjoint. We claim

(35) ‖(Âεjλ0
− Âε

∗

λ0
)Φ‖X → 0.

Indeed, for Ψ = (φ1, ψ1) ∈ X,

((Â
εj
λ0
− Âε

∗

λ0
)Φ,Ψ)X =

∫
D

(qεj − qε∗)φφ1 dx(36)

=

∫
D(εj ,ε∗)

(q1 − q0)φφ1 dx(37)

where D(εj , ε
∗) is the set defined in Assumption 3.3. Thus,

((Â
εj
λ0
− Âε

∗

λ0
)Φ,Ψ)X ≤ ‖q1 − q0‖L∞D‖φ‖L2(D(εj ,ε∗))‖Ψ‖X → 0(38)

by the dominated convergence theorem. This proves assertion (35) after taking the
supremum over all Ψ ∈ X. Combining (34) and (35) yields

(39)
(Â

εj
λ0
Uj ,Φ)X

‖Φ‖X
=

(Âε
∗

λ0
Uj ,Φ)X

‖Φ‖X
+ o(1).

Next, by (32), for any Φ ∈ X, we have

(40) lim
j→∞

â
εj
λ0

(Uj ,Φ)X

‖Φ‖X
→ 0,

and therefore, (39) becomes

(41)
(Âε

∗

λ0
Uj ,Φ)X

‖Φ‖X
→ 0.

Recall Uj converges weakly to some U ∈ X. Therefore, for any Φ ∈ X,

(42) lim
j→∞

(Âε
∗

λ0
Uj ,Φ)X = (Âε

∗

λ0
U,Φ)X .

Then, (42) and (41) gives

(43) (Âε
∗

λ0
U,Φ)X = 0

for any Φ ∈ X. We will show that this implies U = 0. Choosing Φ = (−w, v), (43)
implies

(44)

∫
D

−(∆v − λ0v)w + (∆v − λ0v)w − qε∗ |w|2 dx = 0.
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By taking the real part, we have

(45)

∫
D

qε∗ |w|2 dx = 0.

Since qε∗ is of one sign on R,

(46)

∫
R

|qε∗ ||w|2dx =

∣∣∣∣∫
R

qε∗ |w|2 dx

∣∣∣∣ ,
and from (45) and Lemma 3.4,

(47)

∣∣∣∣∫
R

qε∗ |w|2 dx

∣∣∣∣ =

∣∣∣∣∣
∫
D\R

qε∗ |w|2 dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
D\R
|qε∗ ||w|2 dx

∣∣∣∣∣ ≤ 1

2

∫
R

|qε∗ ||w|2dx.

Thus, (46) and the above imply w = 0 on R because

(48)

∫
R

|qε∗ ||w|2dx ≤ 1

2

∫
R

|qε∗ ||w|2dx

and qε∗ > α on R. Since w solves ∆w − λ0w = 0 in D, w is analytic by an
extension of Weyl’s theorem (see Corollary 11.4.13 [7]). We may then use analytic
continuation to conclude w = 0 on D. This also implies v = 0, since by choosing
Φ = (v, 0) and substituting Φ into (43),

(49)

∫
D

(∆v − λ0v)v dx = −
∫
D

|∇v|2 + λ|v|2 dx = 0.

Assuming (31), we will show ‖Uj‖X → 0, which contradicts that each Uj has norm
1. Recall that in our case the bilinear form is not fixed.

Let R′ be a neighborhood of R so that R′ ⊂ R ∪ ∂D. We take a non-negative
ρ1 ∈ C∞(D) defined to be

(50) ρ1(x) =

{
1 x ∈ R′
0 x ∈ D \R

and construct the sequence Φj = (−ρ1wj , ρ1vj) ∈ X. Of course, due to (32) we
have that

(51)
â
εj
λ0

(Uj ,Φj)

‖Φj‖X
→ 0.

More explicitly,

(52)
1

‖Φj‖X

∫
D

(∆(ρ1vj)− λ0ρ1vj)wj − (∆vj − λ0vj)ρ1wj − qερ1|wj |2dx→ 0.

Given the support of ρ1, we have

(53)
1

‖Φj‖X

∫
R

(∆(ρ1vj)− λ0ρ1vj)wj − (∆vj − λ0vj)ρ1wj − qερ1|wj |2dx→ 0.

From the product rule,

(54) ∆(ρ1vj) = vj∆ρ1 + 2∇ρ1 · ∇vj + ρ1∆vj .

We substitute this into (53) and take the real part which yields

(55) Re
1

‖Φj‖X

∫
R

vjwj∆ρ1 + 2wj∇ρ1 · ∇vj − qερ1|wj |2dx→ 0.

Since ‖Φj‖X ≤ ‖Uj‖X = 1 by construction, we must have

(56) Re

∫
R

vjwj∆ρ1 + 2wj∇ρ1 · ∇vj − qερ1|wj |2dx→ 0
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since Uj ⇀ 0, vj ⇀ 0 in H2(D). Since H2(D) is compactly embedded in H1(D), we
have vj converges strongly to 0 in H1(D), since the inclusion operator is compact
and maps weakly convergent sequences to strongly convergent sequences. Therefore,
the first two terms in (56) go to 0, implying

(57)

∫
R

qερ1|wj |2dx→ 0.

Using the assumption that qε > α > 0 on R and ρ1 = 1 on R′, the previous line
implies wj → 0 in L2(R′).

We again define a neighborhood R′′ of ∂D such that its closure is in R′ ∪ ∂D.
For this neighborhood, we define a non-negative ρ2 ∈ C∞(D) such that

(58) ρ2(x) =

{
0 x ∈ R′′
1 x ∈ D \R′.

Furthermore, we construct a sequence {zj} ⊂ H2(D) which for each j solves

(59)

{
∆zj − λ0zj = wj in D

zj = 0 on ∂D.

By choosing Φ′j = (0, ρ2zj), we may conclude from (32) that

(60)
1

‖Φ′j‖X

∫
D

(∆(ρ2zj)− λ0ρ2zj)wjdx→ 0.

We use the product rule to obtain

(61) ∆(ρ2zj) = zj∆ρ2 + 2∇ρ2 · ∇zj + ρ2∆zj ,

so that ∫
D

(∆(ρ2zj)− λ0ρ2zj)wjdx

=

∫
D

(zj∆ρ2 + 2∇ρ2 · ∇zj + ρ2∆zj ,−λ0ρ2zj)wjdx

=

∫
D

(zj∆ρ2 + 2∇ρ2 · ∇zj + ρ2wj)wjdx,(62)

using that zj solves (59). From Lemma 3.2, zj ⇀ 0 in H2(D), and therefore zj → 0
strongly H1(D). Therefore,

(63)
1

‖Φ′j‖x

∫
D

(zj∆ρ2 + 2∇ρ2 · ∇zj)wj dx→ 0,

from which (62) and (60) imply

(64)

∫
D

ρ2|wj |2dx→ 0.

From the definition of ρ2 this implies that wj → 0 in L2(D \ R′). Thus, we have
that wj → 0 in L2(D).

Finally, we can show vj → 0 in H2(D). Take Φ′′ = (∆vj − λ0vj , 0) ∈ X. We
then have by (32),

(65)
1

‖Φ′′j ‖X

∫
D

|∆vj − λ0vj |2 − qεjwj(∆vj − λ0vj) dx→ 0.
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Of course,

(66)
1

‖Φ′′j ‖X

∫
D

qεjwj(∆vj − λ0vj) dx

≤ 1

‖∆vj − λ0vj‖D
‖qε‖L∞(D)‖wj‖L2(D)‖∆vj − λ0vj‖L2(D) → 0

since wj → 0 in L2(D) and qεj is bounded uniformly in εj . From this, (65) implies

(67) ‖∆vj − λ0vj‖D → 0.

Since vj ⇀ 0 in H2(D), it converges strongly in L2(D), which implies from the
previous line that ∆vj → 0 in L2(D). Therefore, vj → 0 in H2(D). This proves
that ‖Uj‖X → 0, which is impossible as ‖Uj‖X = 1 for all j.

Corollary 3.6. Let Âελ be defined by (14) and the family qε satisfy Assumption 3.3.

Then there exists a λ0 > 0 such that the operator Âελ0
is invertible for every ε ∈ I,

and the inverse operator is bounded uniformly with respect to ε ∈ I.

Proof. Choose λ0 as in the statement of Proposition 3.5. Then, the result of Propo-
sition 3.5 is sufficient to apply a generalized version of Lax Milgram (see Theorem
2.22 in [10]) which yields the result.

We end the section by combining the previous results to show following theorem,
which was first shown in [16].

Theorem 3.7. For a fixed q satisfying Assumption 3.3, the set of transmission
eigenvalues is discrete in C without any finite accumulation point.

Proof. We have shown that the transmission eigenvalue problem defined by (8) may
be written as finding a k > 0 such that

(68) A−k2 = Âλ0
+K−k2,λ0

has a non trivial kernel, where Âλ0 is given by (14) and K−k2,λ0
is given by (16).

From Corollary 3.6, we can select λ0 as so that Âλ0
is invertible. Since k2 →

K−k2,λ0
is analytic and K is compact, the result follows from the analytic Fredholm

theorem.

Remark 3.8. For a fixed q ∈ C∞(D) satisfying Assumption 3.3, the existence of
an infinite set of transmission eigenvalues as well as completeness of generalized
eigenfunctions are proven in [14]. In this case results on the counting function
for transmission eigenvalues can be found in [13], [15]. However, techniques from
semiclassical analysis used in these papers restrict the existence results to smooth q.
For L∞ contrast q, but under the assumption that q is one sign in D, the existence
of an infinite set of real transmission eigenvalues is shown in [3].

4. Transmission eigenvalue problem in the presence of small volume in-
homogeneities. We now introduce the class of inhomogeneities studied in the
remainder of this paper. We present here our convergence analysis and asymp-
totic formulas for real transmission eigenvalues. This is motivated by the fact that
only real transmission eigenvalues can be determined from the scattering data (see
e.g. [2]). However our results can be formulated and proven exactly in the same
way (with obvious modifications when writing the adjoint operators) for complex
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transmission eigenvalues. Hence from now on we set τ := −k2 and assume that
τ ∈ R.

For simplicity of exposition, we first consider the case of a single inhomogeneity
centered at the origin. Let q0 ∈ C∞(D) be such that q0 satisfies

(69) q0(x) > α > 0 in R,

a neighborhood of the boundary of D as defined in Assumption 3.3. (One could
equivalently assume q0 is negative on R.) Let now B be any open set containing
the origin. Consider ε > 0, and assume that

(70) qε =

{
q0 x ∈ D \ (εB)
q1 x ∈ εB

where q1 ∈ R. We will assume ε is small enough such that εB ⊂ D \ R. It is
straightforward to check that this family of qε satisfy the conditions in Assumption
3.3.

Assume that λ0 is not a transmission eigenvalue and is such that the coercivity
in Proposition 3.5 holds. We define for λ ≥ λ0,

(71) Aε := Âελ =

(
−qε ∆− λ

(∆∆)−1(∆− λ) 0

)
,

and

(72) Kε(τ) := Kε
τ,λ =

(
0 λ− τ(1 + qε)

(∆∆)−1(λ− τ) 0

)
.

We further note that Aε is self adjoint with respect to the inner product on X, but
Kε(τ) is not. Its adjoint is given by

(73) K∗ε =

(
0 λ− τ

(∆∆)−1((λ− τ)− τqε) 0

)
.

In what follows we will use ∗ to denote the adjoint with respect to the inner product
on X. Define

(74) Tε(τ) := −1

τ
A−1ε Kε(τ).

Then, the transmission eigenvalue problem with scatterer qε may now be written as
finding τε such that for U = (w, v) ∈ X,

(75) τεTε(τε)U = U

has a nontrivial solution.

5. Preliminary estimates. We now will prove several lemmas about the opera-
tors Aε and Kε, which we will later need to apply the perturbation theory.

Lemma 5.1. Let τ ∈ R and Kε be defined by (71). Then we have the operator
norm estimate

‖Kε(τ)−K0(τ)‖L(X) ≤ C|τ |εd/2.
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Proof. Let U := (w, v),Φ := (φ, ψ) ∈ X. Then,

((Kε(τ)−K0(τ))U,Φ)X =− τ
∫
D

(qε − q0)vφdx

=− τ
∫
εB

(q1 − q0)vφdx

≤|τ |‖q1 − q0‖L∞(D)‖v‖L∞(D)

∫
D

χεB |φ|dx

≤C|τ |‖v‖H2
0 (D)‖χεB‖L2(D)‖φ‖L2(D)

≤C|τ |εd/2‖U‖X‖Φ‖X(76)

where we used Sobolev embedding and the definition of X.

Lemma 5.2. Let Aε and R be defined by (71) and (69) respectively. Choose D′ ⊂
D \R to contain εB for all ε ∈ I. Then, for U ∈ X,

AεU → A0U and A−1ε U → A−10 U

in the X norm. If in addition we know that the first component of U is in L∞(D′),
we have

‖AεU − A0U‖X ≤ Cεd/2.
Furthermore, given F ∈ X and U0 = A−10 F , if the first component of U0 is in

L∞(D′), then

‖A−1ε F − A−10 F‖X ≤ Cεd/2.

Proof. We will prove the statement about Aε first and use that result to prove the
statement about the inverse. Let U,Φ ∈ X. Then,

((Aε − A0)U,Φ)X =

∫
D

(q0 − qε)wφdx∫
εB

(q0 − q1)wφdx

≤ ‖q0 − q1‖L∞(D)‖w‖L2(εB)‖φ‖L2(D)

≤ o(1)‖Φ‖X .(77)

This proves the first statement. The second follows from the estimate

((Aε − A0)U,Φ)X =

∫
D

(q0 − qε)wφdx∫
εB

(q0 − q1)wφdx

≤ ‖q0 − q1‖L∞(D)‖w‖L∞(D)‖χεB‖L2(D)‖φ‖L2(D)

≤ Cεd/2‖Φ‖X(78)

when w ∈ L∞(D′) where εB ⊂ D′.
Now, we will prove the estimate on the inverse. Let F ∈ X and define

(79) AεUε = F and A0U0 = F.

Then, for U0 := (w0, v0), we obtain

(Aε(Uε − U0),Φ)X =((A0 − Aε)U0,Φ)X

≤ ‖(A0 − Aε)U0‖X‖Φ‖X .(80)
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Dividing by ‖Φ‖X and taking the supremum, we use Proposition 3.5 to obtain

(81) ‖(A−1ε − A−10 )F‖X = ‖Uε − U0‖X ≤
1

c
‖(A0 − Aε)U0‖X .

Since Aε converges strongly to A0, we have the strong convergence of the inverse
from (81). Furthermore, if the first component of U0 is in L∞(D′), we have the
desired estimate on the inverse from (78) and (81).

We now have an estimate on the composition of the operators.

Lemma 5.3. Let τ ∈ R. Define Aε and Kε(τ) by (71). Then,

‖A−1ε Kε(τ)− A−10 K0(τ)‖L(X) ≤ Cεd/2 max {|τ |, 1} .

Proof. Observe that we can write

(82) A−1ε Kε(τ)−A−10 K0(τ) = A−1ε (Kε(τ)−K0(τ)) + (A−1ε −A−10 )K0(τ) := I+ II.

Since A−1ε converges in the strong topology by Lemma 5.2, its norm is bounded by
the Uniform Boundedness Principle. This norm bound and Lemma 5.1 together
imply that I converges in the norm topology, and in particular that

(83) ‖A−1ε (Kε(τ)−K0(τ))‖L(X) ≤ C|τ |εd/2.

Since A−1ε converges and is preceded by a compact operator, II converges in norm
as well, but we would like to also estimate the τ dependence. For convenience we
prove the estimates for slightly more general operator

(84) K(t, f) :=

(
0 tf

t(∆∆)−1 0

)
for given f ∈ C∞(D) and t ∈ R. Take M = (m,n) ∈ X. Then, define M0 :=
A−10 K(t, f)M . Notice that the first component of K(t, f)M is tfn ∈ H2

0 (D). We
now compute estimates as in the proof of Lemma 5.2:

((Aε − A0)K(t, f)M,Φ)X = t

∫
D

(q0 − qε)fnφdx

= t

∫
εB

(q0 − q1)fnφdx

≤ |t|‖f‖L∞(D)‖q0 − q1‖L∞(D)‖n‖L∞(D)‖χεB‖L2(D)‖φ‖L2(D)

≤ Cεd/2‖n‖H2
0 (D)‖Φ‖X

≤ Cεd/2‖M‖X‖Φ‖X(85)

by the Sobolev Embedding of H2
0 (D) into C0(D). We hence have shown that

(86) ‖(Aε − A0)K(t, f)‖L(X) ≤ Cεd/2.

From (81), we obtain

‖(A−1ε − A−10 )K(t, f)M‖X ≤
1

c
‖(A0 − Aε)K(f, t)M‖X

≤ C‖(Aε − A0)K(t, f)‖L(X)‖M‖X
≤ Cεd/2‖M‖X ,(87)

implying

(88) ‖(A−1ε − A−10 )K(t, f)‖X ≤ Cεd/2.
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Note that K0 = K(λ, 1) + τK(−1, q0), and so

(89) (A−1ε − A−10 )K0(τ) = (A−1ε − A−10 )K(λ, 1) + τ(A−1ε − A−10 )K(−1, q0).

Therefore, by applying (88), we have that II also converges in norm and

(90) ‖(A−1ε − A−10 )K0(τ)‖L(X) ≤ C(1 + |τ |)εd/2.

5.1. Convergence on the eigenspace. Let us define U = (w, v) ∈ X be a trans-
mission eigenfunction for the background problem (74) when ε = 0, corresponding
to a transmission eigenvalue τ :

(91) τT0(τ)U = U.

We will now define a correction for the difference between A−1ε and A−10 . By stan-
dard elliptic regularity, the first component of A−10 U , w0, is H2

loc(D). Therefore, it
is well defined at the center of the inhomogeneity and we can define Ψε, Cε ∈ X by

(92) Ψε =

(
χεB

0

)
and

(93) Cε = (q1(0)− q0(0))w0(0)Ψε.

Lemma 5.4. Let Aε be defined by (71) and Cε by (93). Define α > 0 such that
H2(D) ⊂ C0,α(D). Then

‖A−1ε U − A−10 U − A−1ε Cε‖X ≤ Cεd/2+α,
where U is the solution to the background equation (91).

Proof. Define

(94) AεUε = U and A0U0 = U.

Let U0 := (w0, v0) and note that w0 ∈ H2
loc(D). Consider D′ to be a C2 domain

satisfying εB ⊂ D′ ⊂ D for ε ∈ I. Sobolev Embedding yields H2(D′) ⊂ C0,α(D′)
for some α > 0, and therefore, w0 ∈ C0,α(D′). This allows us to obtain the bound

(Aε(Uε − U0 − A−1ε Cε),Φ)X =((A0 − Aε)U0 − Cε,Φ)X

=

∫
εB

(
(q1 − q0)w0 − (q1(0)− q0(0))w0(0)

)
φ dx

≤ Cεα
∫
εB

|φ|dx

≤ Cεα‖χεB‖L2(D)‖φ‖L2(D)

≤ Cεd/2+α‖φ‖X .(95)

By Proposition 3.5 and the argument at the end of Lemma 5.2, we have

(96) ‖(A−1ε − A−10 )U − A−1ε Cε‖X ≤
1

c
‖(A0 − Aε)U0 − Cε‖X ,

which yields the result.

We will now derive estimates for the strong operator convergence of the adjoint.
Recall that our operator

Tε(τ) := −1

τ
A−1ε Kε(τ),

where Aε is self adjoint, but Kε(τ) is not.

Inverse Problems and Imaging Volume 12, No. 4 (2018), 971–992



Transmission eigenvalues for generally signed small inhomogeneities 985

Lemma 5.5. Let U be the solution of the background equation (91) and α > 0 such
that H2(D) ⊂ C0,α(D). Then,

‖(Kε(τ)∗A−1ε −K0(τ)∗A−10 )U‖X ≤ C(1 + |τ |)O(εd/2+α).

Proof. We begin by adding and subtracting to obtain

(97) (Kε(τ)∗A−1ε −K0(τ)∗A−10 )U = (Kε(τ)∗ −K0(τ)∗)(A−1ε − A−10 )U

+ (Kε(τ)∗ −K0(τ)∗)A−10 U + K0(τ)∗(A−1ε − A−10 )U.

The first term on the right hand side above converges with a speed of O(|τ |εd)
thanks to Lemmas 5.1 and 5.2 and the regularity of the eigenfunction U . Recall
that in the proof of the previous lemma we defined U0 := (w0, v0) by A0U0 = U ,
and that the first component w0 is in H2

loc(D). For the second term on the right

hand side of (97), we observe that for D′ with D′ ⊂ D containing εB,

((K∗ε (τ)−K∗0(τ))U0,Φ)X =τ

∫
εB

(q1 − q0)w0ψ dx

≤|τ |‖(q1 − q0)w0‖L∞(D′)‖ψ‖L∞(D)ε
d

≤C|τ |εd‖ψ‖H2
0 (D)

≤C|τ |εd‖Φ‖X(98)

using Sobolev Embedding. Finally, for the third term on the right hand side of (97),
we have that

(99) K0(τ)∗(A−1ε − A−10 )U = K0(τ)∗(A−1ε U − A−10 U − A−1ε Cε) + K0(τ)∗A−1ε Cε

where Cε is defined by (93). The first term in (99) is O((1 + τ)εd/2+α) by Lemma
5.4. We now estimate the second term where we keep in mind the fact that the
operator K0 is smoothing:

(K∗0(τ)A−1ε Cε,Φ)X =(Cε,A−1ε K0(τ)Φ)X

=(Cε, (A−1ε − A−10 )K0(τ)Φ)X + (Cε,A−10 K0(τ)Φ)X .(100)

Consider the first term on the right hand side of (100). It is obvious that ‖Cε‖X ≤
Cεd/2 by the definition, and we recall from (90) that

(101) ‖(A−1ε − A−10 )K0(τ)‖L(X) ≤ C(1 + |τ |)εd/2.
These results combine to yield

(Cε, (A−1ε − A−10 )K0(τ)Φ)X ≤ ‖Cε‖X‖(A−1ε − A−10 )K0(τ)‖L(X)‖Φ‖X
≤ Cεd/2(1 + |τ |)εd/2‖Φ‖X .(102)

For the last term on the right hand side of (100), consider the first component of
A−10 K0Φ, and let us denote it by ψ0. For for some D′ compactly contained in D
containing εB, we use Sobolev embedding on ψ0:

|(Cε,A−10 K0(τ)Φ)X | =
∣∣∣∣(q1(0)− q0(0))w0(0)

∫
εB

ψ0 dx

∣∣∣∣
≤C‖ψ0‖L∞(D′)ε

d

≤C‖ψ0‖H2(D′)ε
d.

≤C(1 + |τ |)‖Φ‖Xεd.(103)

This completes the proof.
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5.2. Inner product estimates. We will need the following lemmas to derive the
asymptotic formula for the eigenvalues.

Lemma 5.6. Let d = 2, 3. For Aε be defined by (71) and Ψε by

(104) Ψε =

(
χεB

0

)
we have that

(Ψε,A−1ε Ψε)X = O(ε
3
2d)

holds as ε→ 0.

Proof. Let ξε denote the first component of A−1ε Ψε and R as defined in (69). Then,
by definition of A−1ε , ξε is a weak (or distributional) solution to

(105) ∆ξε − λξε = 0 in D

which implies, in particular, that ξε ∈ C∞(D) [7]. One may use Green’s represen-
tation formula to show that

(106) |ξε(x)| ≤ C
∫
R

|ξε(t)|dt for x ∈ εB ⊂ D \R,

as in the proof of Lemma 3.4. This implies

(107) |ξε(x)| ≤ C ′‖ξε‖L2(D) ≤ C ′‖A−1τ,ε‖L(X)‖Ψε‖X := C ′′εd/2

because the norm of A−1ε is bounded due to Lemma 5.2 and the Uniform Bounded-
ness Principle. Therefore, we have the result

(108)
∣∣(Ψε,A−1ε Ψε)X

∣∣ =

∣∣∣∣∫
εB

ξε dx

∣∣∣∣ ≤ C ′′εd/2 ∫
εB

dx = O(ε
3
2d).

Lemma 5.7. Let U = (w, v) be the transmission eigenfunction solving (91) and
the operators Aε and Kε be defined by (71). For α such that H2(D) ⊂ C0,α(D),

((A−1ε Kε(τ)−A−10 K0(τ))U,U)X = εd(q1(0)−q0(0))w0(0)|B| (τv(0)− w(0))+O(εd+α)

where w0 is the first component of A−10 U .

Proof. First, we observe

((A−1ε Kε(τ)− A−10 K0(τ))U,U)X = ((A−1ε − A−10 )(Kε(τ)−K0(τ))U,U)X

+ ((A−1ε − A−10 )K0(τ)U,U)X + (A−10 (Kε(τ)−K0(τ))U,U)X

:= I + II + III.

For I, we can use the fact that A0 is self adjoint and add and subtract a correction
term to obtain

I = ((Kε(τ)−K0(τ))U, (A−1ε −A−10 )U −A−1ε Cε)X + ((Kε(τ)−K0(τ))U,A−1ε Cε)X

≤ ‖(Kε(τ)−K0(τ))U‖X‖(A−1ε − A−10 )U − A−1ε Cε‖X
+ ((Kε(τ)−K0(τ))U,A−1ε Cε)X

= ((Kε(τ)−K0(τ))U,A−1ε Cε)X +O((1 + τ)εd+α)
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by combining Lemmas 5.1 and 5.4. Recall that U := (w, v) with v ∈ H2
0 (D), and

let ξε denote the first component of A−1ε Ψε. Using the definition of Ψε and Cε in
(92) and (93) we find,

(109) ((Kε(τ)−K0(τ))U,A−1ε Cε)X = −(q1(0)− q0(0))w(0)τ

∫
εB

(q1 − q0)vξε dx.

The Hölder continuity of v with exponent α from Sobolev embedding, with α as in
Lemma 5.6, gives

((Kε(τ)−K0(τ))U,A−1ε Cε)X = −τ(q0(0)−q1(0))2v(0)w(0)(Ψε,A−1ε Ψε)X+O(ε
3
2d+α).

Thus, we conclude that

(110) I = O(εd+α)

by Lemma 5.6.
For the second term, we first manipulate it algebraically. Since U satisfies the

background equation, the following equality holds:

(111) − U = A−10 K0(τ)U.

Therefore, we compute

II =((A−1ε − A−10 )K0(τ)U,U)X

=(A−1ε (A0 − Aε)A−10 K0(τ)U,U)X

=− ((A0 − Aε)U,A−1ε U)X .(112)

From Lemmas 5.2 and 5.4, we may again use the correction to conclude that

(113) II = −((A0 − Aε)U,A−10 U + A−1ε Cε)X +O

(
1

τ
εd+α

)
.

Recall that we denote the first components of A−10 U and U by w0 and w respectively,
and that w0 ∈ H2

loc(D) and w ∈ C∞loc(D). In fact, w is C∞(D) (see Theorem 11.1.1
[7]). In particular, both are in H2(D′) for some D′ ⊂ D containing εB. We may
also use Hölder continuity as in (5.2) to obtain

(114) ((A0 − Aε)U,A−10 U)X

=

∫
εB

(q1 − q0)ww0dx = εd|B|(q1(0)− q0(0))w(0)w0(0) +O(εd+α).

Let ξε denote the first component of A−1Ψε. We may also use the Hölder continuity
argument from (5.2) to show

((A0 − Aε)U,A−1ε Cε)X =(q1(0)− q0(0))w(0)

∫
εB

(q1 − q0)wξε dx

=(q1(0)− q0(0))2|w(0)|2(Ψε,A−1ε Ψε)X +O(εd+α).(115)

Lemma 5.6 combined with the above yields

(116) II = −εd(q1(0)− q0(0))w(0)w0(0)|B|+O(εd+α).

The estimation of the third term is similar. Again, as v and w0 are in H2
loc(D), we

may use Hölder continuity to conclude that
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III =((Kε(τ)−K0(τ))U,A−10 U)X

=− τ
∫
εB

(q0 − q1)vw0 dx

=− τεd(q0(0)− q1(0))v(0)w0(0)|B|+O(εd+α).(117)

We combine all terms to obtain

((A−1ε Kε(τ)− A−10 K0(τ))U,U)X

= −τ
(
εd(q0(0)− q1(0))v(0)w0(0)|B|

)
−
(
εd(q1(0)− q0(0))w(0)w0(0)|B|

)
+O(εd+α)

= εd(q1(0)− q0(0))w0(0)|B| (τv(0)− w(0)) +O(εd+α),

which completes the proof.

6. Eigenvalue correction formula. In this section, we will use the following
nonlinear eigenvalue correction result from [11] to obtain an asymptotic formula for
a simple transmission eigenvalue.

Theorem 6.1 (Nonlinear Eigenvalue Correction [11]). Let X be a Banach space
and {Tε(λ) : X → X} a set of compact operator valued functions of λ which are
analytic in a region U of the complex plane, such that Tε(λ) → T0(λ) in norm as
ε→ 0 uniformly for λ ∈ U . Let λ0 6= 0, λ0 ∈ U be a simple nonlinear eigenvalue of
T0,

λ0T0(λ0)φ = φ,

define DT0(λ0) to be the derivative of T0 with respect to λ evaluated at λ0, and let
φ be the normalized eigenfunction and φ∗ its dual. Then for any ε small enough
there exists λε, a simple nonlinear eigenvalue of Tε, such that if

λ20〈DT0(λ0)φ, φ∗〉 6= −1

we have the following formula

λε − λ0 = λ20
〈(T0(λ0)− Tε(λ0))φ, φ∗〉

1 + λ20〈DT0(λ0)φ, φ∗〉

+O

(
sup
λ∈U
‖(Tε(λ)− T0(λ))

∣∣
R(E)
‖‖(T ∗ε (λ)− T ∗0 (λ))

∣∣
R(E)∗

‖
)

where R(E) is the space spanned by φ and R(E)∗ is its dual or the space spanned
by φ∗.

We now apply this theorem to our operators to obtain the correction formula.

Theorem 6.2. Let U = (w, v) ∈ X be the normalized transmission eigenfunction
for the background problem (91), with simple eigenvalue τ . Then for any ε small
enough there exists a simple eigenvalue τε of the perturbed problem (74) such that
τε → τ . Furthermore, for ‖U‖X = 1 and α > 0 such that H2(D) ⊂ C0,α(D),

τε − τ = −ε
d

ω
(q1(0)− q0(0))w0(0)|B| (τv(0)− w(0)) +O(εd+α),

when

ω :=

∫
D

(1 + q0)vw0 + wv0 dx

is nonzero and (w0, v0) ∈ X solves

∆v0 − λv0 = w + q0w0 in D

Inverse Problems and Imaging Volume 12, No. 4 (2018), 971–992
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∆w0 − λw0 = ∆∆v in D

for some fixed λ ≥ λ0 with λ0 as defined in Proposition 3.5.

Proof. Let Tε and T0 be defined by (74) and recall A−10 U = (w0, v0) with A0 defined
by (71). Then, by Lemma 5.3, we have the norm convergence which allows us
to apply Theorem 6.1. From Lemmas 5.3 and 5.5, we obtain that the rate of
convergence of the tail is O(εd+α). (Note that the norms are restricted to one
dimensional subspaces there.) The estimate in the inner product in Lemma 5.7
therefore yields the formula

(118) τε − τ = εdτ
(q1(0)− q0(0))w0(0)|B| (τv(0)− w(0))

1 + τ2(DT0(τ)U,U)X
+O(εd+α),

assuming the denominator is nonzero. We now calculate DT0(τ). Recall that

T0(τ) = −1

τ
A−10 K0

with A0 independent of τ . From the product rule we have that

DT0(τ) =
1

τ2
A−10 K0(τ)− 1

τ
A−10 DK0,

and since K0 is linear in τ , DK0 = C where C : X → X is given by

(119) C = −
(

0 −(1 + q0)
−(∆∆)−1 0

)
.

Hence

DT0(τ) =
1

τ2
A−10 K0(τ)− 1

τ
A−10 C.

We next calculate that

(120) τ2 (DT0(τ)U,U)X =
(
(A−10 K0(τ)− τA−10 C)U,U

)
X

= −1−τ
(
CU,A−10 U

)
X

since A−10 K0(τ)U = −U. So, the denominator in (118) becomes

1 + τ2 (DT0(τ)U,U) = −τ
(
CU,A−10 U

)
,

which is precisely τω, from which the result follows. We remark also that the
nonzero denominator condition can be written as

(121)

((
0 −(1 + q0)

−(∆∆)−1 0

)
U,A−10 U

)
X

6= 0.

We end this section by remarking that the above analysis holds true if the back-
ground with contrast q0(x) is perturbed by many small volume inhomogeneities of
arbitrary smooth shape. In particular, for i = 1, . . . ,m, we define the bounded open
set Bi to be smooth deformations of a ball centered at the origin, so that zi + εBi
is a small inhomogeneity centered at zi. We also assume that ε is small enough so
that each scaled ball is separated from the others and is inside D \R, in particular
(zi + εBi) ∩ (zj + εBj) = ∅ for i 6= j and (zi + εBi) ⊂ D \R, where R is defined by
(69). We let Wε be the union of these inhomogeneities, that is

Wε :=

m⋃
i=1

(zi + εBi) ,

Inverse Problems and Imaging Volume 12, No. 4 (2018), 971–992
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Table 1. Parameters for Numerical Example

Domain D [−1, 1]
Background Transmission Eigenvalue k =

√
−τ 7.12761

Background Coefficient q0 6.29
Perturbed Coefficient q1 24

Parameter λ 50.72217

and we define the perturbed contrast qε:

(122) qε(x) =

{
qi x ∈ zi + εBi, i = 1, . . . ,m
q0 x ∈ D \Wε

where the qi ∈ R are constants. In this case the main result of Theorem (6.2
becomes (see also [4] and [6])

Theorem 6.3. Let U = (w, v) ∈ X be the normalized transmission eigenfunction
for the background problem (91), with simple eigenvalue τ . Then for any ε small
enough there exists a simple eigenvalue τε of the perturbed problem (74) such that
τε → τ . Furthermore, for ‖U‖X = 1 and α > 0 such that H2(D) ⊂ C0,α(D),

τε − τ = −ε
d

ω

m∑
i=1

(qi(zi)− q0(zi))w0(zi)|Bi| (τv(zi)− w(zi)) +O(εd+α),

when

ω :=

∫
D

(1 + q0)vw0 + wv0 dx

is nonzero and (w0, v0) ∈ X solves

∆v0 − λv0 = w + q0w0 in D

∆w0 − λw0 = ∆∆v in D

for some fixed λ ≥ λ0 with λ0 as defined in Proposition 3.5.

7. Numerical example. We will now attempt to validate our asymptotic formula
with a one dimensional numerical experiment. Although the theory here was for
dimensions d = 2, 3, we expect the same results to hold in dimension one. We choose
our scatterer D to be the interval [−1, 1] assume there is a single inhomogeneity
centered at the origin. We define qε on D to be

(123) qε :=

{
q1 x ∈ (−ε, ε) := εB
q0 otherwise

The definition of D and choices for parameters k, q0 and q1 are detailed in Table 1.
We note that we also chose q0 so that the background eigenvalue is simple.

Recall that one also needs to choose the parameter λ in the definition of T
(which we used to divide the operator into invertible plus compact). The best
choice numerically for λ is not obvious, and several different choices were found to
yield the same correction accurately.

Figures 1 and 2 show a comparison of the perturbed eigenvalues with the cor-
rected eigenvalues for various values of ε, using the formula from Theorem 6.2. An
empirical study of the convergence rate 1 + α found in Theorem 6.2 yielded

(124) α ≈ 0.9625,

or approximately ε2 convergence, as expected.
Inverse Problems and Imaging Volume 12, No. 4 (2018), 971–992
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Figure 1. Comparison of perturbed eigenvalues and corrected ei-
genvalues. The red circles are the perturbed transmission eigenva-
lues (squared) and the blue stars the corrected approximations for
various values of ε. The x-axis is log10 ε.
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Figure 2. Log/log plot of the error (τε − (τ0 + ετ (1)))/ε.

8. Conclusion. In this paper we have derived rigorously a correction formula for
the transmission eigenvalues of perturbations of inhomogeneous media without sign
restrictions on the contrast (except for a region around the boundary). This was
accomplished by using the formulation the nonlinear eigenvalue correction formula
[11] which is an extension of Osborn’s theorem [12]. We then corroborated the
results by conducting a numerical simulation which demonstrated the accuracy
of the asymptotic formulas. Note that the formula derived in [6] was based on
a different formulation of the transmission eigenvalue problem that requires that
q be of one sign. Hence the formula derived here is more general, but has the
disadvantage of requiring one to solve an auxiliary partial differential equation.
Since the two should of course coincide when q is of one sign, and indeed did in
our numerical simulations above, it would be interesting to see if a general formula
exists without the need for solving an auxiliary problem. Furthermore, the formula
for the correction here requires one to choose the parameter λ which was used to
divide the operator into and invertible one plus a compact perturbation. However
as mentioned above, in our numerical simulations different λ led to the same value
for the correction.
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It may also be possible to use the asymptotic formula to reconstruct the location
and/or strength of small the inhomogeneities inside the scatterer. A first attempt
along these lines is made in [4]. The formulas derived depend on the background
medium, the background transmission eigenvalue, the size and contrast of the in-
homogeneity, and the location of the center of the inhomogeneity. If knows the size
and contrast of the inhomogeneity, perhaps one can use this formula to determine
its location. This is the subject of future work.
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