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Abstract.

We consider the transmission eigenvalue problem for an inhomogeneous medium
containing a finite number of diametrically small inhomogeneities of different refractive
index. = We prove a convergence result for the transmission eigenvalues and
eigenvectors corresponding to media with small homogeneities as the diameter of
small inhomogeneities goes to zero. In addition we derive rigorously a formula for
the perturbations in the real transmission eigenvalues caused by the presence of these
small inhomogeneities.
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1. Introduction

Transmission eigenvalues appear in the study of scattering by inhomogeneous media
and are closely related to non-scattering incident waves [9], [5]. Such eigenvalues provide
information about material properties of the scattering media [8] and can be determined
from scattering data [6]. Hence they can play an important role in a variety of inverse
problems in target identification and non-destructive testing [7], [14]. The transmission
eigenvalue problem is a non-selfadjoint and nonlinear problem that is not covered by
the standard theory of eigenvalue problems for elliptic operators. In the past few years
transmission eigenvalues have become an important area of research in inverse scattering
theory. Since the first proof of existence of transmission eigenvalues in [8] and [20], the
interest in the transmission eigenvalue problem has increased, resulting in a number of
important advancements in this area [12], [13]. For an update survey on the topic we
refer the reader to [9].

In this paper we consider the transmission eigenvalues corresponding to
inhomogeneous media containing a finite number of small volume inhomogeneities with
different refractive index. Our goal is to understand how the presence of these small
inhomogeneities affect the transmission eigenvalues in the asymptotic regime, i.e. as the
volume of the small inhomogeneities goes to zero. These types of questions are addressed
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in detail for the conductivity problem by many authors (see [2], [3], [10] to name a few).
Our analysis essentially follows the approach in [2] and [10]. However, as opposed to
the conductivity problem, here we have to deal with a quadratic eigenvalue problem [11]
for a fourth order partial differential equation of inhomogeneous biharmonic type [8].
This causes additional technical difficulties. The fundamental result which yields our
asymptotic formulas for the transmission eigenvalues is a theorem in [18]. This theorem
allows for non-selfadjoint operators and enables us to derive an explicit first order
correction expression. However, since the non-selfadjoint compact operator that arises
in connection with the transmission eigenvalue problem is a matrix valued operator with
complicated terms, a major part of our analysis deals with deriving asymptotic formulae
for each of the operators involved. One of the key results of the paper is the proof that
the operators whose eigenvalues coincide with transmission eigenvalues for the media
with small inhomogeneities converge in the norm to the those from the corresponding
media without small inhomogeneities. Furthermore, we obtain an asymptotic formula
for the perturbation of real transmission eigenvalues with an explicit correction term
involving the location, refractive index and the size of the small inhomogeneities; and
the transmission eigenfunctions for the unperturbed media. Interestingly this expression
involves a scalar term which acts in the place of what was a polarization tensor in
the case of small volume conductivity inhomogeneities. Our asymptotic formula could
potentially be used to obtain information about the location, refractive index or the
size of the small inhomogeneities from the measured real transmission eigenvalues for
the perturbed medium and the computed transmission eigenvalues for the unperturbed
media.

2. Formulation of the Problem

Let D C R% d > 2 be a bounded connected region with smooth boundary 0D and
let v denote the unit normal vector oriented outward to D. We consider a real valued
function n(x) defined in D, such that n € C*(D) and ng(x) > ng > 0. Furthermore we
assume that inside D there are m small subregions eB; C D, v+ = 1...m where each
B; Cc R? is a bounded connected reference domain which is a smooth deformation of a
ball centered at z; € D, and € > 0 is sufficiently small so that these domains are well
separated from each other and the boundary. We denote W, := [J;", €B;. In each small
subregion we consider a real valued function n;, i = 1...m where again n; € C*(eB;) is
such that n;(x) > n; > 0 and n;(x) # ng(x) for = € eB;. Let us denote by

) no(x) x e D\ W,
ne(w) = { n; () r€eB;,i=1...m (1)

We now consider the scattering of time harmonic (acoustic in R? or electromagnetic in
R?) waves by the inhomogeneity D with refractive index n, embedded in a homogeneous
iwt

background normalized to 1. After factoring out time dependent factor e ** and

denoting by k the corresponding wave number, we obtain that the scattered field u*

2
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due to the incident field v’ satisfies

Au® + k*u® =0 in R\ D (2)
Au+ k*n (z)u =0 in D (3)
u' +ut =u on 0D (4)
O(u®+u')  Ou

T = % on 0D (5)
Tli_glo rT <aali - @'k:us) = 0. (6)

The transmission eigenvalues associated with the inhomogeneity D, n, are the values of
k for which the homogeneous interior transmission problem

Av+ kv =0 in D (7)
Aw + E*n(r)w =0 in D (8)
w=uv on 0D 9)
ow v

has nontrivial solution v € L*(D), w € L*(D) such that w — v € H*(D). Tt is well-
known that an infinite set of real transmission eigenvalues exist provided that either
n(x) —1>a>00r0< B <1—n(x)<1]8,]9]. Since the transmission eigenvalue
problem is non-selfadjoint, complex eigenvalues may exists, but their existence up to
date has been proven only for the spherically stratified media [16]. To fix our ideas,
in this paper we consider in detail only the case when n.(z) —1 > o > 0. A similar
analysis holds true for the case when 0 < 3 < 1 —n.(z) < 1. The main goal of the
paper is to understand the asymptotic behavior of real transmission eigenvalues with
respect to the small parameter € > 0. To this end we write the transmission eigenvalue
problem in the operator form. Under the assumption on n., it is now possible to write
(7)-(10) as an equivalent eigenvalue problem for u = w — v € HZ(D) as solution of the
fourth order homogeneous equation [§]

(A + kne) (A+k)u=0 (11)

ne — 1

which in variational form, after integration by parts, is formulated as finding a nonzero
function u € HZ(D) such that

1
/ 1 (Au + k*u) (AT + E*no) dz = 0 for all v € HZ(D) (12)
ne —
D

where

H3(D) := {u € H*(D) such that u = ? =0 on 8D} .
v

The functions v and w are related to u through

1

- 2 —
EIp—y (Au+ k™u) and w

v=— Au+ k*n.u).

k2(ne — 1)(
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To understand the structure of the interior transmission eigenvalue problem we first
observe that, setting k% := 7, (12) can be written as

A+ 7B+ 7*Cou =0, (13)

where A, : H3(D) — HZ(D) is the bounded, self-adjoint and positive definite operator
defined by means of the Riesz representation theorem

1
(Acw, v) oy = /D — 1Au Avdx for all u,v € H3(D), (14)

(note that the H?(D) norm of a function in HZ(D) is equivalent to the L*(D) norm
of its Laplacian), B, : H2(D) — HZ(D) is the bounded compact self-adjoint operator
defined by means of the Riesz representation theorem

1
(Bew, v) g2 py = / — (AuT + nou Av) dx (15)
D Te

:/ ! 1(Au6+uAﬁ) dx—l—/uAEd:c
D Te —

D

:—/[Vu-V( ! E>+V( L u)-V@] dx—l—/Vu-V@da:
D nﬁ—l ne—l D

for u,v € HZ(D), and C. : H}(D) — HZ(D) is the bounded compact non-negative
self-adjoint operator defined by means of the Riesz representation theorem

(Ceu, U)Hz(D) = /

pn—

n

1u@dx for all u,v € H3(D). (16)

Compactness of B, and C, is a consequence of the compact embedding of HZ(D) and
Hi(D) into L*(D). Setting U := (u,T(Ci/ 2u>, the interior transmission eigenvalue
problem becomes the eigenvalue problem

1
(K. = A\)U =0, U e H (D) x HY(D), \:=

T

for the compact non-selfadjoint operator K, : H2(D) x H3(D) — HZ(D) x HZ(D) given

by
~A7'B.  —A7'CY?
K, = < ¢ . 17
( /2 0 (17)

(Note that if a generic operator T is a bounded, positive, compact and self-adjoint on
a Hilbert space U, the operator T/? is defined by T"/% = [* A\Y/2dE, where dE) is the
spectral measure associated with 7. It is easy to show that 7'/2 is also compact and
self-adjoint). We remark that in our analysis we also consider the medium D without
the inhomogeneities, i.e. with refractive index ng(x). The corresponding operators will
be denoted by Ay, By, Cy and K.
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3. Convergence of the spectrum

The goal of this section is to show that the spectrum of the operator K. (transmission
eigenvalues and eigenvectors corresponding to the medium with small inhomogeneities)
converges to the spectrum of the Ky (the transmission eigenvalues and eigenvectors
corresponding to the reference medium without inhomogeneities) as € goes to zero. To
this end, we need to study the convergence properties of each of the operators A~!, B,
A;l(Ci/ ? that appear in the definition of K,. In the following we work in the Hilbert
space HZ(D), equipped with the inner product

(u, U)Hg = /DAuAﬁdx.
We start by first studying the operators
Bo, B, : H3(D) — Hg (D)

which we recall are given by

. 1 — No —
(Bou, (;S)Hg = /D (Tlo — 1Au NoEs o — 1uAgz5) dx (18)
and .
(Bew, ¢) 2 = /D (n — 1Au o+ nﬁni 1uA$) dz (19)

for all ¢ € H3(D). Note that By and B, are compact, self-adjoint operators. In what
follows we may leave off the subscript HZ in the inner product.

Lemma 3.1 Let By and B, be defined by (18) and (19) respectively. Then B, — By in
the operator norm, and for d = 2,3 we have that

|B. — By < Ce¥/?

for some C independent of €. Furthermore, if u,¢ € HZ(D) [ C*(D) then
((Be - Bo)u, gb)
S d 1 1 L
=S| (1~ ) Al
+ ( nj(zj) no(zj)

ni(z) —1  no(z) —1

) 2185051 + ofe

Proof. By combining terms we see that

B 1 1 — N no —
((IB%G—IB%O)u,gb)/D(nE_l—nO_l) Auqﬁdxjt/D(nE_l —n0_1>uA¢dx.
(20)
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For the norm estimate we observe that

((Be = Bo)u, ) < [|Aullr2(n)

1 1 —
‘(ng—l_no—l)gb

L2(D)
H (ne -1 noni 1) u L20) [
= ||Aul|2(py ‘( 51_ 1 nol_ 1) é . (21)
H (”e -1 noni 1) ¢ L2(We) 180 ]12(0)

since the support of the difference of coefficients is only in W,.. Now we use the Sobolev
embedding theorem; for d = 2, 3,

1 1 _ 1
(ne -1 ng-— 1> ¢ L2(W.) = max n. —1 1‘H¢HC’O(D) |We|
< Cma | —— = — |y
N ne — 1 1 0
Likewise
ne 7’Lo ne no
| (n6 —1 ng — 1> ull 2w,y < C'max n.—1 - ||u||H02(D)€d/2

for some C' independent of €, u, or ¢. Inserting these bounds into (21) we have

((Be - BO)“? (b)
1 1

< C'max
- n5—1 7’L0—1

lull gz oy 0l 3y

+ C'max

TNe )
L Nl ol (22
which yields the norm convergence result. (For larger dimension d, we have Sobolev
embedding of HZ(D) functions into LP, which will also give strong norm convergence

but with a lower power in €). To show the asymptotic formula, we first assume for
simplicity that we have one inhomogeneity centered at the origin, that is

W.=¢€¢B

where B is a smooth region containing the origin. This gives that

B 1 1 — nq ng —
(Be — Bo)u, ) = /EB <n1 i 1) Augbdx—k/EB (m 1T 1) ulA¢dz.

We make the change of variables
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to get

(B~ Bouo) = [ (o - ) Astandends

DYIET AR PR

So, clearly, if the integrand is continuous we have

(B~ Bo)u ) = 1B (i =1~ gy =7 ) Au0IEO)
d n1(0) o no(0) " - oled
el (i - o ) u0)AB(0) + ofe)

By using translation and summing a finite number of such inhomogeneities, the
asymptotic result follows. [J

Similarly, we look at
Co, C. : H3(D) — H3(D)

which we recall are given by

(Co D)y = [ TuGdo (23)
and
((Ceu,d))Hg:/Dnniluadx (24)

for all ¢ € HZ(D). Note that we also have that Cy and C. are compact, self-adjoint
operators.

Lemma 3.2 Let Cy and C. be defined by (23) and (24) respectively. Then C. — Cy in
the operator norm, and for d = 2,3 we have that

|Ce — Col| < Ce?

for some C' independent of €. Furthermore, if u,¢ € HZ(D)(C*(D) then

((CE—CO)Ua¢):Z€d|Bj|( nte) __noly) )u<zj>¢<zj>+o<ed>

i=1

Proof. ~ We combine terms to obtain

(€.~ Couo) = [ ( — )uadx (25)

ne—1 ng—1

D
Ne o _

< _

- Hne —1 mng—1 o) lullco oy 9]l oo o)

< Cellull 2oy 191l 112() (26)

7
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in dimensions d = 2,3 by Sobolev embedding and the small volume nature of the
inhomogeneities. For higher dimensions, we use the embedding into L” and the power
of € will be less. This shows the norm convergence result.

For the asymptotical formula, we proceed with a rescaling of (25) as in the previous
proof to obtain, for one inhomogeneity centered at the origin,

(€= Copuo) = ] (a0 = o0 o)) + ofe

from which we obtain the result by translation and summing over a finite number of
inhomogeneities. []

Now we consider the operators Ay, A, : H2(D) — HZ(D), also defined via the Riesz
Representation Theorem by

(Aout, §) 2 = /D - 1Au.Aada: (27)
and )
(AEU,¢)H§ = /D — 1Au - Apdx (28)

for all ¢ € HZ(D). Note that Ay and A, are invertible, bounded linear operators and
are indeed not compact. We can show that A-! converges point-wise in the operator
sense, but not in norm, to A;*. However, when preceded by compact operators as in
our case, the convergence is in norm.

Lemma 3.3 Let Ay and A, be defined by (27) and (28) respectively, and let
By, B, Co, C. be defined by (18), (19), (23) and (24) respectively. Then both

AT'B, — Aj'By

and
_ —1~1/2
A 162/2 — A 1C0/
i the operator norm.

Proof.  We first show a point-wise operator convergence result for A-!. Assume that
f is smooth, and define

we=A'f and  wy=A;'f (29)

Consider

/ ! A(we—wO)Ade:/ ! 1AwEAde—/ ! AwoAT dx
D

ne — 1 D Me — pno—1

1 1
p\no—1 mn.—1

1 1 _
= /D (no i 1) AwyAv dz, (30)
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where the last equality follows from the definitions of the operators and (29). Hence we
have that for any v € HZ(D)

1 1
A A < A
/Dne_ N (we — wo) AT dx H(no_ - 1) wo

So, by plugging in v = (w. — wy) we can obtain, for some C' independent of €

Jue = wolligoy < € [
D

lollzzpy- (1)
L2(We)

A(we — wo) A(we — wp)dz

ne — 1
<c H( ! ) Awo| e —wolmzmy  (32)
ng — 1 ne — 1 L2(Wo) 0
which of course implies
i = wollmzy < C H( - ) Awgl| (33)
n—1 n.—1 L2(Wo)

or

(34)

_ _ 1 1 _
1877 = A g < | (5 - oy ) 'S

L2(W,)
Note that the right hand side goes to zero for any fixed f € HZ(D), but this does not
imply operator norm convergence. Next consider, for g € H3(D),

147 B — A5 Boglagioy < 167" = A7) (Bo) o) + A7 B. ~ Bl
1
<C — AA;'B AZY|B, — B
(o~ ) aitm| 1B~ Bollaln
< C185 Bogllxqwy + 14 1B ~ Bolllall oo (39

where we have used (34) and the C' now incorporates the maximum contrast. Now, note

that By is smoothing by two orders order. Indeed, (18) is the weak form of

Au, u € Hi(D).

AAByu = A ( 1o u> 4

no—l 710—1

Since ng € C?(D), classic regularity results [17], [24], imply that Bou € H*(D) N HZ(D).
Thus, we have that

1Ag ' Bog |l #r3py < Cllgllm2(p),
(note that by the same argument as above we can see that Ag is a zero order operator)

and therefore
IAAG Bogll 0y < Cllgllae o)

By Sobolev embedding, this implies that
IAAG Bogll ooy < Cligllaz )
for some p > 2. So, if we let p = p/2 > 1, and ¢ be its Holder dual,
| (845"Bug)ds < (285 Bog)? mco s s, (36)

= [|AAG " Bogl| 7y Wel 1 (37)

9
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where ., is the characteristic function of the support of the inhomogeneities. Note
that since p > 1, % > 0 so that the bound has a positive power of €. Hence

IAAG Bogll 2w < [|AAG Bogll oy Wel /> (38)
< Cllgll a2y Wl /21, (39)
This, combined with (35) and Lemma 3.1 yield the first result. The second result follows

from exactly the same proof where we replace By, B. with (C(l)/ 2, CY?. Note that we use

that Lemma 3.2 implies convergence of the square roots [21], and Cé/ ? is also smoothing
of two orders since from Cj is smoothing to four orders. The latter follows from the fact
that (23) is the weak form of

AACyu = —2

2
- u u € Hi(D)
which again from classic regularity results implies that Cou € H®(D)NHZ(D) for smooth
enough boundary (at least in H*(D) N HZ(D) for C'-boundary which suffices for our
proof). O

Again, from Lemma 3.2, we also have norm convergence of cl? (see for example
[21]). Combining all of the above Lemmas, we have proven the following theorem.

Theorem 3.1 Let K. and Ky be defined by (17) for ¢ > 0 and € = 0, respectively.
Then K. converges to Kq in the operator norm for any dimension d, and hence their
eigenvalues and eigenvectors also converge.

4. Asymptotic formulae for operators

Having proven the convergence of the spectrum, we now want to obtain asymptotic
formulae for the real transmission eigenvalues. To this end, we need to obtain explicit
formula for the first term in the asymptotic expansion for the operator K. and
consequently for each of the operators involved in the definition of K.. Lemma 3.1 and
Lemma 3.2 provide the asymptotic formulae for the operators B, and C, respectively.
Next we need to obtain such formula for the operator AZ!. Since the structure of the
operator A~! is more complicated, for sake of simplicity of presentation we now assume
that the refractive index in the hosting media (i.e. refractive index ng) as well as in
each of the small inhomogeneities are constants. However we remark that it is possible
to generalize the same type of analysis to the case of non-constant inhomogeneities and
hosting media (see [10] for the case of the conductivity problem).

To this end, we start by assuming that there is only one inhomogeneity of the form
eB with constant refractive index n;, centered at the origin inside the homogeneous
media D with constant refractive index ng. Let us make the scaling

y = x/e,

and denote by
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We define the auxiliary function vg of y to satisfy the variational equation

| e dtdy = [ a0 (40

an — B

for any ¢ in some space that includes appropriate decaying conditions at infinity and

contains zero extensions of H3 (D) functions, where 71 is defined to be equal to ng outside
D. Following [4] we define the Sobolev space

WARY < ) " €D'(RY) : 0 < |m| <k, pm=2(Inw)~tDImly € L*H(RY)
0 k+1<|m| <2, pm=2DImly € L2(R9).

where p = (14 [7>)Y?, w := 2+ [z>) and k = 1if d = 2, k = 0 if d = 4 and
k= —1if d # 2,4 equipped with the usual H?-norm with the indicated weights. Hence
we look for vp € WE(R?) satisfying (40) for all ¢ € W2(R?). As it is shown in [4], for
d = 2,3,4, the behavior at infinity of functions in WZ(R?) includes constants and first
order polynomials which satisfy the homogeneous version of (40). Since the compactly
supported distribution defined by the right-hand side of (40) which is in W *(R9), is
orthogonal to first order polynomials, we have that there exists a unique solution vg of
(40) in the quotient space WOQ(Rd) \ P(2—d/2) Where P5_q/9) is the space of polynomials of
order (2 — d/2). With the notations ¢ = [2Z(Avg)] and p = [Avp], where for a generic
1

function f, [f] denotes the jump el fr— ﬁ f~ across 0B, the exclusion of constants

and the first order polynomial in the case of d = 2 relies on the facts that [19]

/ qds =0, / (qr +pry)ds =0, / (qy + pro)ds = 0,
OB OB OB

whereas the exclusion of constants for the case of d = 3,4 relies on the fact that

/ qds = 0.
OB

These conditions guarantee the existence of a solution to (40) in WZ(R?) for every d > 2
that satisfies the following behavior at infinity

V-up(y) =o(ly/'*™?),  Dwg(y) =o(ly|"*?).  (41)

Having defined the solution to (40), we introduce the correction as follows

vg(y) = ol|yl*~*?),

we%wo—l—62< S )Awo(O)vB(x/e)

no—l TLl—l

where w, and wy are defined by (29). The goal is to be able to discard the term

[ A=+ (g = ) BunOs(a/))aG e

no—l_n1—1

To this end, let us first define 95(y) € HZ(D) to satisfy the variational equality

/D — A8 (Y) Ay b(y)dy = / Ayody (42)

n— B
11
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for any ¢ € HZ(D). Clearly o exists and is unique for any fixed e. We then have that

no—l 7’L1—1

fya A<wﬁ—<%+€2( - )Awomwgu/e))madx

:/D< b1 )(Awo_Awo(O))Aadm (43)

no—1 ne—1

for any ¢ € H2(D). Now we have the following Lemma.
Lemma 4.1 Let zZ, be defined by

Zo = w, — (wo + € ( L ) Awo(O)ﬁB(x/e)) .

7’LO—]_ 711—]_

Then
~ a
”AZ6||L2(D) S C€2+1 ||VAUJQ||L0<>(D)

for some C' independent of €.

Proof. From the variational definitions (30) and (42) we have directly that

/D 1 A(wg—(woJre?( 11 )Awo(o)@B(x/e))mng

n5—1 TL()—l n1—1

:/D( L1 )(AwO_AwO(O))Aadx

no—l n6—1

SC’eHVAwOHOO/ A da

eB
< Ce||VAwg || oo | AD|| L2y || XeB || 20D

§C’egH||VAwo||oo||A¢||L2(D) (44)

for any ¢ € HZ(D). Plugging in

¢:we—(wo+62( L ! )Awg(())@B(x/e))

TLO—]_ Tll—]_

this yields the result. [J
We will need the following lemma.

Lemma 4.2 Let vg(y) be the solution to (40) and vp(y) be the solution to (42). Then
we have that

- d
1Ay (05 — vB)|l12(p) < ol€?),
that is,
1Ay (08 = vB) |2y < o(1)

for some C independent of € . (Note that the first integral is dx and the second is dy.)

12
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Proof. Let wp(z) = ¢2(vp(x/€) — vp(z/e)) in D. The variational equalities (40) and
(42) imply that 05(y) and vp(y) are weak solutions to the same fourth order differential
equation in D with the same transmission condition across dB. So, scaling to the fixed

domain we that .

ne — 1

A, A,wp =0in D.

The estimates (41) for the decay of vp together with the zero boundary condition for
vp yield that on 0D, we have

ow
_ d/2 B _ d/2
wp = o(e —— = o(e"?).
p = olel), T8 — ofeh)
Here, we have used interior elliptic regularity for the solution of biharmonic equation
vp in a neighborhood of D [24] (note that the coefficient in the equation for vp is

constant near the boundary and we have assumed smooth enough boundary). Hence a

H1/2(6D)>

priori estimates for wg imply

0
sy < © (an(x/e)anm(aD) | pwntare

with some C' > 0 independent of €. Since we also have
2D2vp = o(e"?),

interpolation yields
| Azwg||L2(p) = o(e¥?).

This of course implies that
14,5 = v8) | 12(p) = o(c"?)

which proves the lemma. []
The above estimates now allow us to prove the following estimate on the correction
term.

Lemma 4.3 Let z. be defined by

b= w, — (wo 4o ( ! ! )Awo(O)UB(x/e)) |

no—l_n1—1

Then, if ¢ € C*(D) (Y H3(D),

< o(e)) ||V Awp|| 1o () | A £ (D)

/ Az Addx
eB

for some C' independent of €.

13
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Proof. Note that

26—56:62( ! ! >Aw0(0)(v3—1§3).

Nog — 1 B ny — 1
By using Cauchy-Schwartz and the previous lemmas

/AZGAECZ.T SHAZGHLQ(D)HA¢HL2(EB)
eB

< 1Az = 2 2oy + 1AZ ] L2 (0y) 1Al L2 ey
d
< o(e2)||VAwg | r~ )| Adl L2 (e)-

Finally, using the small volume of ¢B and the smoothness of ¢ we have

/ Az Aodx
eB

which proves the result. [J

d
2

d
MV Awg|| Lo (py€2 [|Ad|| o< (D)

< o(e

Now we have all the ingredients to prove the asymptotic formula for the operator
ATt — AGL

Lemma 4.4 Let Ay and A. be defined by (27) and (28) respectively, and assume that
no,ni,i = 1...m are all constant. For a given u € HZ(D), let

we = Al and wy = Ay u.

Then, if wy € C3(D), for any ¢ € HX(D)(C?*(D),

J

al ng — 1 —
(o= un,6) = - B (1= 2021 ) Aun(e)A5(5)

i=1

al ng — 1 2 — Ovg.
+ Z e’ (1 - ) Awy(z;) Ad(z5) —Ldo, + o(e?). (45)
j=1 !

1) no—1 o, Ovy
Proof. Note that by the definition (29) of the operators we have

1 — 1 — 1 —
/ A(we — wp)Apdx = / 1AwEA¢ dr — / 1Aw0A¢ dx
D

ng —1 D Ne — D Mo —

! 1 = 1 | _
+/D<”0_1 "6_1) WP 4z /D(no—l ne—l) weA dr (46)

Let us again assume we have one inhomogeneity of the form eB, centered at the origin,

so that
( L L 1) Aw,A¢ dx

ng—1 n.—

/DA(we — wo)Agdz = (ng — 1)/

D

no—l —
= (1 e 1) /eB AwA¢ dx (47)
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Now we apply Lemma 4.3 to obtain
/ Aw, — wo)A¢ dx
D

= (1 — Z(l) : 1) /€BA <w0 + ¢ (nol— - nll— 1) Aw0(0)03($/6)> A dz

+ (1 _ ZO : i) / Az A dx
_ (1 e 1) [BA <w0 4o (nol_ - nll_ 1) AwO(O)UB(x/€)> A dz + o)
— ¢ (1 T 1) | B|Awy(0)A(0)

n1—1

~1\? 1 —
+ ¢ (1 — Z(l) — 1) - 1Aw0(0) /B Avp(y)Ad(ey) dy + o(e?)

=t (1= 220 ) IB1Aw0)a50)

n1—1

’)’Ll—]_ 7’LO—]_

el (1—”0_1)2 L Auwy(0)A%(0) /B Ayus(y) dy + o(e?).

Simple integration by parts yields

8113
A,v ydy:/ —doy,,
/ByB() aBaVy Yy

from which the result follows. [
Remark 4.1 The asymptotic formula can also be written as

N

ng — 1 —
(o=, 8) = 3o (1= 220 Yy () Az + ofe)
j=1 J
where ) ) 9
UB.
L — B _ Jd
m; = ]|+<”0—1 ”j_l) o, Ovy v

acts in place of what was a polarization tensor in the case of small volume conductivity
inhomogeneities. Note that here we no longer have a tensor, but we have a scalar m;
with a form similar to the polarization tensor in [2].

5. Eigenvalue expansion

In this section we provide an explicit formula for the asymptotic expansion of real
eigenvalues in dimensions d = 2,3. Similar formulae can be obtained for complex
eigenvalues as well as all higher dimensions. However for practical purposes since only
real eigenvalues can be measured from scattering data [6], we limit ourselves to the case
of real eigenvalues for a simpler exposition. Also, the same type of analysis can carried
over to higher dimensions d > 3, but the approach (in particular for the estimates of
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Lemma 5.1) in this case must be carefully tuned since one needs to use LP-Sobolev
embeddings results. Before we proceed with the formula for the eigenvalue expansion,
we will need some estimates we prove in the next Lemma. Note that if u € HZ(D) is the
eigenfunction corresponding to eigenvalue k and ng constant, we have that it satisfies

AAu+ k*(ng + 1) Au + k*ngu = 0.

Standard elliptic regularity [1] results imply that v € H*(D) N HZ(D).

Lemma 5.1 For ng and ny constants and d = 2,3 we have that

|(Be — Bo)ull g2(py < Ce?, (48)
I(CY? = C)ullyzpy < Ce?, (49)
(AT — Agh)Boul|, [|(A7Y — AgHCoul| < Ce?, (50)
and
IBo(AZ! — Ag ull 2oy, IC (AT — AT Yull g2(py < Ce?/?te, (51)

for some o > 0 where u is any function in H*(D) N HZ(D) .
Proof. For n constant B, takes the form

1 _
(Bou, ¢) :/ Mo Aug dz.
pno—1

Hence for any ¢ € HZ(D) we have

(n5+1 n0+1)Au$dx:<n1+1 n°+1)/Au$da:.
eB

ne—l_no—l nl—l_no—l

(B~ Bo)us ) = [

D

Sobolev embedding theorems imply that both Au and ¢ are Holder continuous and thus
we obtain

TL1—|—1 n0+1
n1—1 no—]_

(B — Bo)us, 6) | < el g ol (52)
This proves (48).

To prove the second identity, we recall that in Lemma 3.2 we have shown that C.
converges to Cy as O(e?). Using the square root lemma in [21] (Theorem VI .9) and
the fact that C" converges to C? at the same order O(e?) (this can be shown based on
Cr—Cn = C"1(C, — Cy) 4 (Cr' — €21 Cy and induction), we can conclude that C¢/>
converges to (C(l)/ ? at the same order O(e?). Hence (49) holds.

Now to show (50), we go back to formula (34) with f = Bou or f = Cyu. In
either case the regularity of f implies that the norm error is bounded by that of the
characteristic function of W, that is, ¢¥/2. Tt therefore remains only to show (51). Let
us apply a slight modification of the proof of Lemma 4.1 to w, = A"*u and wy = Ay 'u
which gives that

1Zelliz ) < Ce'” sup |Awo(x) = Aun(0)].

16
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Since u is in H*(D), Awy is in H?(D), which in dimensions d = 2,3 embeds into C%(D)
for some a > 0. This yields
1Zell 20y < Cell?te,

and the same estimate holds for the L? norm of Z.. In the L?(D) norm, the correction
term is order €2, and hence

Hw€ — w0||L2(D) S CEd/ZJra.
Since By is two orders smoothing, we have that

Bo(AZ" = Ag ullmz(py < CIIATT — Ag ullz2(p),

and the result follows. The same proof works for C(l)/ 2.0

Finally we are in a position to derive the eigenvalue expansion using the theorem of
Osborn [18], which we state here for convenience to the reader. The theorem is valid for
non-selfadjoint operators and also yields a correction term. The actual result is more
general, but we state it here for the case of norm convergence on a Hilbert space.

Suppose X is a Hilbert space and K,, : X — X is a sequence of compact linear
operators such that K, — K in norm. It then follows that the adjoint operators also
converge in norm. Let p be a nonzero eigenvalue of K of algebraic multiplicity m. It is
well known that for n large enough, there exist m eigenvalues of K, u, ... u" (counted
according to algebraic multiplicity) such that u} — p as n — oo, for each 1 < j < m.
Let E be the spectral projection onto the generalized eigenspace of K corresponding to

eigenvalue p. The space X can be decomposed in terms of the range and null space of
E as X = R(E)® N(E).

Theorem 5.1 (Osborn) Let ¢1, o, ... ¢m be a normalized basis for R(E). Then there
exists a constant C' such that

< O(K—=K)|r) ||| (K" =K | ree)

. (53)

s, 1 &
— E;'uj — EZ«K— Kn)¢j’¢j>

J=1

Our operators K, Kq are compact on HZ(D) x H2(D) and we have seen that K. — K
in norm. We know that A, is positive. Let us therefore equip HZ(D) x HZ(D) with the

inner product
u w
<< Y ) ; < ; >> = (Aoww)Hg(D) + (U,Z)Hg(p)

instead of the usual one. Since A is positive, invertible, bounded above and below, and
self adjoint, this yields an equivalent inner product. Note that if A, is negative instead
(which would correspond to ng < 1), we could do the same with —A,, but we will not
consider that here.

For the sake of simplicity, let us first assume that p is a simple eigenvalue of K.
Then we have for each e small enough, some eigenvalue u. of K. is such that . — p. Let

17
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U be a normalized eigenvector of K corresponding to p. The fact that U is normalized
with this new inner product means that

<U7U>:<( TCELmu > ’ ( TCELMU >> =1

which can be restated as
(Agu, u)Hg(D) + 73(Cou, U)Hg(p) =1

or

1
/D (no — |Aul® + TQ%MQ) de =1 (54)

using the definitions of the operators. First we show the remainder term in Osborn’s
theorem is small. Let’s compute K. U:

—A'Ba — TAZICY?CY P
K.U = ( iy 0 (55)
A" Bou — rA;'CYACY —(A7Y — A7Y(Bou + TCou) .
= cl2y, + 0 + o(€)

where we have used (48),(49) and the estimate (34) to discard the remainder. Thus we
have

(K. — Ko)U (56)

—AF (B, — Bo)u — TA;H(CY? — CYHCPu — (A7 — A (Bou + 7Cou) p
- 1/2 1/2 + o(€%).
(C™ = Cyu

Clearly from this expression and Lemma 5.1, we have that

I(K. — Ko)U|| = O(e"?).

This is not small enough to discard the remainder in Osborn’s theorem, so noting that
all of the individual operators are self adjoint, we compute

(KT = Ko)U”

[ =B —Bo)Ay u+ By(AT — Ay u — 7(CF — €Ty u

: ( —(CY? — CY*) Ay u — Co(AT — AgY)u ) +o(e). (57)

Using Lemma 5.1, noting in particular (51), we now have that
I(K: = K)U™|| = O(e?+).
Hence Osborn’s theorem gives us (for a simple eigenvalue)
p— pe = (Ko = KU, U) + o(e?),
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To obtain the correction term we compute
(KU, U) = —(Beu, u) — 7(CYCYu,u) — 7(Ao(AT" — Ay (Bou + 7Cou), u)
+ (CY2, T(C(l)/2u> + o(e?)
—(Beu,u) — (Ag(AZ — Agh) (Bou + 7Cou), u) 4 o(e?)
by the fact that CcY? s self-adjoint. Recall

Agu + Bou 4+ 7*Cou = 0

so that ]
(KU, U) = —(Beu, u) + ;((A;l — Agl)Aou,Aou) + o(ed)

using the fact that Ag is self-adjoint. (Note that this simplification may not hold
for generalized eigenvectors, but similar expressions can be obtained.) Similarly, we
calculate that we have very simply

<KOU, U> = —(]Bou, U),

which yields

Loa—

(Ko = KJU,U) = ((B. = Bo)u, u) = ~((A7" = A7")Aou, Agu) + o(e”)

€

and hence
1
W= e = ((BE - BO)“? u) - ;((Ag_l - Aal)AOU’ AOU) + O(Ed)'

Now, let us assume that ng is constant and plug in our asymptotic expansions from the
previous lemmas. We have that

(B, — Bo)u, u)

_ éedw [(n -t 1) Au(z )] + (nj”j Lo 1) u<zjmu<zj>}

Recall that for simplicity we assume u is real, so that this is

(B, — Boju,u) = 3|3 (1 Ty Lt ”) Au(z;)ulz) + ol

=1 -1 no—l

We also have that

N

-1
(A7 = Ao, Agu) = —= 3 ¢! ( 1) | Az + ofe?)

7j=1
where . ) 5
UB;
= |B. _ ]d
M ’j’+(n0—1 nj—l) - Oy, %
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This finally yields the formula (when ny and each n; is constant and everything is real)

N

1+n,; 1+ ng

= 3o (7 - M) e
j=1 J

P23 (g - g ) mlBulP o). (59

The case of multiple eigenvalues yields a similar expression for the correction term where
one now takes the averaged sum of the correction term for each eigenfunction in the
generalized eigenspace.

We have proven the following theorem:

Theorem 5.2 Assume that d = 2,3, the background ny and all n; are constant, and T is
a real transmission eigenvalue corresponding to the background ngy (i.e. in the absence of
small inhomogeneities). Let {u,} be a basis for the corresponding generalized eigenspace,
normalized according to (54). Then

(1) If T is simple, for each € > 0 small enough, there exists a transmission eigenvalue T,
corresponding to medium (1) (in the presence of small inhomogeneities) such that

N
1 1 1+n;, 14+ng
RN (- ) Aututsy

ng — 1
d , ]
e (st~ ) melutef o) )
(ii) If T has algebraic multiplicity m, there exists m transmission eigenvalues T, ... 7™

of (1) counted according to multiplicity, with

m m N
1 1 1 1 1+n; 1+mng
D (Z 17 (n = ) A ))
€ _ J

no—l

WLy (- njl_l)mjmupwf)+o<ed>. (60)

ng— 1
=1 0

The first term in the asymptotic expansion of Theorem 5.2 contains information about
the size, location and refractive indices of unknown inhomogeneities in terms of the
known refractive index and the computable eigenvalue and corresponding eigenfunction
of the unperturbed medium [23]. Since the real (or near the real axis) transmission
eigenvalues corresponding to the perturbed media can be measured from the scattering
data [6], the equation (59) or (60) can potentially be used to obtain information about
small inhomogeneities (see for example [3]).
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