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Abstract.
We consider the transmission eigenvalue problem for an inhomogeneous medium

containing a finite number of diametrically small inhomogeneities of different refractive
index. We prove a convergence result for the transmission eigenvalues and
eigenvectors corresponding to media with small homogeneities as the diameter of
small inhomogeneities goes to zero. In addition we derive rigorously a formula for
the perturbations in the real transmission eigenvalues caused by the presence of these
small inhomogeneities.
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1. Introduction

Transmission eigenvalues appear in the study of scattering by inhomogeneous media

and are closely related to non-scattering incident waves [9], [5]. Such eigenvalues provide

information about material properties of the scattering media [8] and can be determined

from scattering data [6]. Hence they can play an important role in a variety of inverse

problems in target identification and non-destructive testing [7], [14]. The transmission

eigenvalue problem is a non-selfadjoint and nonlinear problem that is not covered by

the standard theory of eigenvalue problems for elliptic operators. In the past few years

transmission eigenvalues have become an important area of research in inverse scattering

theory. Since the first proof of existence of transmission eigenvalues in [8] and [20], the

interest in the transmission eigenvalue problem has increased, resulting in a number of

important advancements in this area [12], [13]. For an update survey on the topic we

refer the reader to [9].

In this paper we consider the transmission eigenvalues corresponding to

inhomogeneous media containing a finite number of small volume inhomogeneities with

different refractive index. Our goal is to understand how the presence of these small

inhomogeneities affect the transmission eigenvalues in the asymptotic regime, i.e. as the

volume of the small inhomogeneities goes to zero. These types of questions are addressed
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in detail for the conductivity problem by many authors (see [2], [3], [10] to name a few).

Our analysis essentially follows the approach in [2] and [10]. However, as opposed to

the conductivity problem, here we have to deal with a quadratic eigenvalue problem [11]

for a fourth order partial differential equation of inhomogeneous biharmonic type [8].

This causes additional technical difficulties. The fundamental result which yields our

asymptotic formulas for the transmission eigenvalues is a theorem in [18]. This theorem

allows for non-selfadjoint operators and enables us to derive an explicit first order

correction expression. However, since the non-selfadjoint compact operator that arises

in connection with the transmission eigenvalue problem is a matrix valued operator with

complicated terms, a major part of our analysis deals with deriving asymptotic formulae

for each of the operators involved. One of the key results of the paper is the proof that

the operators whose eigenvalues coincide with transmission eigenvalues for the media

with small inhomogeneities converge in the norm to the those from the corresponding

media without small inhomogeneities. Furthermore, we obtain an asymptotic formula

for the perturbation of real transmission eigenvalues with an explicit correction term

involving the location, refractive index and the size of the small inhomogeneities; and

the transmission eigenfunctions for the unperturbed media. Interestingly this expression

involves a scalar term which acts in the place of what was a polarization tensor in

the case of small volume conductivity inhomogeneities. Our asymptotic formula could

potentially be used to obtain information about the location, refractive index or the

size of the small inhomogeneities from the measured real transmission eigenvalues for

the perturbed medium and the computed transmission eigenvalues for the unperturbed

media.

2. Formulation of the Problem

Let D ⊂ Rd, d ≥ 2 be a bounded connected region with smooth boundary ∂D and

let ν denote the unit normal vector oriented outward to D. We consider a real valued

function n(x) defined in D, such that n ∈ C2(D) and n0(x) ≥ n0 > 0. Furthermore we

assume that inside D there are m small subregions εBi ⊂ D, i = 1 . . .m where each

Bi ⊂ Rd is a bounded connected reference domain which is a smooth deformation of a

ball centered at zi ∈ D, and ε > 0 is sufficiently small so that these domains are well

separated from each other and the boundary. We denote Wε :=
⋃m
i=1 εBi. In each small

subregion we consider a real valued function ni, i = 1 . . .m where again ni ∈ C2(εBi) is

such that ni(x) ≥ ni > 0 and ni(x) 6= n0(x) for x ∈ εBi. Let us denote by

nε(x) :=

{
n0(x) x ∈ D \Wε

ni(x) x ∈ εBi, i = 1 . . .m
(1)

We now consider the scattering of time harmonic (acoustic in R3 or electromagnetic in

R2) waves by the inhomogeneity D with refractive index nε embedded in a homogeneous

background normalized to 1. After factoring out time dependent factor e−iωt and

denoting by k the corresponding wave number, we obtain that the scattered field us
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due to the incident field ui satisfies

∆us + k2us = 0 in Rd \D (2)

∆u+ k2nε(x)u = 0 in D (3)

us + ui = u on ∂D (4)

∂(us + ui)

∂ν
=
∂u

∂ν
on ∂D (5)

lim
r→∞

r
d−1
2

(
∂us

∂r
− ikus

)
= 0. (6)

The transmission eigenvalues associated with the inhomogeneity D,nε are the values of

k for which the homogeneous interior transmission problem

∆v + k2v = 0 in D (7)

∆w + k2nε(x)w = 0 in D (8)

w = v on ∂D (9)

∂w

∂ν
=
∂v

∂ν
on ∂D (10)

has nontrivial solution v ∈ L2(D), w ∈ L2(D) such that w − v ∈ H2(D). It is well-

known that an infinite set of real transmission eigenvalues exist provided that either

nε(x) − 1 ≥ α > 0 or 0 < β ≤ 1 − nε(x) < 1 [8], [9]. Since the transmission eigenvalue

problem is non-selfadjoint, complex eigenvalues may exists, but their existence up to

date has been proven only for the spherically stratified media [16]. To fix our ideas,

in this paper we consider in detail only the case when nε(x) − 1 ≥ α > 0. A similar

analysis holds true for the case when 0 < β ≤ 1 − nε(x) < 1. The main goal of the

paper is to understand the asymptotic behavior of real transmission eigenvalues with

respect to the small parameter ε > 0. To this end we write the transmission eigenvalue

problem in the operator form. Under the assumption on nε, it is now possible to write

(7)-(10) as an equivalent eigenvalue problem for u = w − v ∈ H2
0 (D) as solution of the

fourth order homogeneous equation [8](
∆ + k2nε

) 1

nε − 1

(
∆ + k2

)
u = 0 (11)

which in variational form, after integration by parts, is formulated as finding a nonzero

function u ∈ H2
0 (D) such that∫

D

1

nε − 1
(∆u+ k2u)(∆v + k2nεv) dx = 0 for all v ∈ H2

0 (D) (12)

where

H2
0 (D) :=

{
u ∈ H2(D) such that u =

∂u

∂ν
= 0 on ∂D

}
.

The functions v and w are related to u through

v = − 1

k2(nε − 1)
(∆u+ k2u) and w = − 1

k2(nε − 1)
(∆u+ k2nεu).

3
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To understand the structure of the interior transmission eigenvalue problem we first

observe that, setting k2 := τ , (12) can be written as

Aεu+ τBεu+ τ 2Cεu = 0, (13)

where Aε :H2
0 (D) → H2

0 (D) is the bounded, self-adjoint and positive definite operator

defined by means of the Riesz representation theorem

(Aεu, v)H2(D) =

∫
D

1

nε − 1
∆u∆v dx for all u, v ∈ H2

0 (D), (14)

(note that the H2(D) norm of a function in H2
0 (D) is equivalent to the L2(D) norm

of its Laplacian), Bε :H2
0 (D) → H2

0 (D) is the bounded compact self-adjoint operator

defined by means of the Riesz representation theorem

(Bεu, v)H2(D) =

∫
D

1

nε − 1
(∆u v + nεu∆v) dx (15)

=

∫
D

1

nε − 1
(∆u v + u ∆v) dx+

∫
D

u∆v dx

= −
∫
D

[
∇u · ∇

(
1

nε − 1
v

)
+∇

(
1

nε − 1
u

)
· ∇v

]
dx+

∫
D

∇u · ∇v dx

for u, v ∈ H2
0 (D), and Cε : H2

0 (D) → H2
0 (D) is the bounded compact non-negative

self-adjoint operator defined by means of the Riesz representation theorem

(Cεu, v)H2(D) =

∫
D

n

n− 1
u v dx for all u, v ∈ H2

0 (D). (16)

Compactness of Bε and Cε is a consequence of the compact embedding of H2
0 (D) and

H1
0 (D) into L2(D). Setting U :=

(
u, τ C1/2

ε u
)

, the interior transmission eigenvalue

problem becomes the eigenvalue problem

(Kε − λI)U = 0, U ∈ H2
0 (D)×H2

0 (D), λ :=
1

τ

for the compact non-selfadjoint operator Kε : H2
0 (D)×H2

0 (D)→ H2
0 (D)×H2

0 (D) given

by

Kε :=

(
−A−1

ε Bε −A−1
ε C1/2

ε

C1/2
ε 0

)
. (17)

(Note that if a generic operator T is a bounded, positive, compact and self-adjoint on

a Hilbert space U , the operator T 1/2 is defined by T 1/2 =
∫∞

0
λ1/2dEλ where dEλ is the

spectral measure associated with T . It is easy to show that T 1/2 is also compact and

self-adjoint). We remark that in our analysis we also consider the medium D without

the inhomogeneities, i.e. with refractive index n0(x). The corresponding operators will

be denoted by A0, B0, C0 and K0.
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3. Convergence of the spectrum

The goal of this section is to show that the spectrum of the operator Kε (transmission

eigenvalues and eigenvectors corresponding to the medium with small inhomogeneities)

converges to the spectrum of the K0 (the transmission eigenvalues and eigenvectors

corresponding to the reference medium without inhomogeneities) as ε goes to zero. To

this end, we need to study the convergence properties of each of the operators A−1
ε , Bε,

A−1
ε C1/2

ε that appear in the definition of Kε. In the following we work in the Hilbert

space H2
0 (D), equipped with the inner product

(u, v)H2
0

=

∫
D

∆u∆vdx.

We start by first studying the operators

B0,Bε : H2
0 (D)→ H2

0 (D)

which we recall are given by

(B0u, φ)H2
0

=

∫
D

(
1

n0 − 1
∆u · φ+

n0

n0 − 1
u∆φ

)
dx (18)

and

(Bεu, φ)H2
0

=

∫
D

(
1

nε − 1
∆u · φ+

nε
nε − 1

u∆φ

)
dx (19)

for all φ ∈ H2
0 (D). Note that B0 and Bε are compact, self-adjoint operators. In what

follows we may leave off the subscript H2
0 in the inner product.

Lemma 3.1 Let B0 and Bε be defined by (18) and (19) respectively. Then Bε → B0 in

the operator norm, and for d = 2, 3 we have that

‖Bε − B0‖ ≤ Cεd/2

for some C independent of ε. Furthermore, if u, φ ∈ H2
0 (D)

⋂
C2(D) then

((Bε − B0)u, φ)

=
N∑
j=1

εd|Bj|
[(

1

nj(zj)− 1
− 1

n0(zj)− 1

)
∆u(zj)φ(zj)

+

(
nj(zj)

nj(zj)− 1
− n0(zj)

n0(zj)− 1

)
u(zj)∆φ(zj)

]
+ o(εd)

Proof. By combining terms we see that

((Bε − B0)u, φ) =

∫
D

(
1

nε − 1
− 1

n0 − 1

)
∆uφ dx+

∫
D

(
nε

nε − 1
− n0

n0 − 1

)
u∆φ dx.

(20)
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For the norm estimate we observe that

((Bε − B0)u, φ) ≤ ‖∆u‖L2(D)

∥∥∥∥( 1

nε − 1
− 1

n0 − 1

)
φ

∥∥∥∥
L2(D)

+

∥∥∥∥( nε
nε − 1

− n0

n0 − 1

)
u

∥∥∥∥
L2(D)

‖∆φ‖L2(D)

= ‖∆u‖L2(D)

∥∥∥∥( 1

nε − 1
− 1

n0 − 1

)
φ

∥∥∥∥
L2(Wε)

(21)

+

∥∥∥∥( nε
nε − 1

− n0

n0 − 1

)
u

∥∥∥∥
L2(Wε)

‖∆φ‖L2(D)

since the support of the difference of coefficients is only in Wε. Now we use the Sobolev

embedding theorem; for d = 2, 3,∥∥∥∥( 1

nε − 1
− 1

n0 − 1

)
φ

∥∥∥∥
L2(Wε)

≤ max

∣∣∣∣ 1

nε − 1
− 1

n0 − 1

∣∣∣∣‖φ‖C0(D)

√
|Wε|

≤ C max

∣∣∣∣ 1

nε − 1
− 1

n0 − 1

∣∣∣∣‖φ‖H2
0 (D)ε

d/2.

Likewise

‖
(

nε
nε − 1

− n0

n0 − 1

)
u‖L2(Wε) ≤ C max

∣∣∣∣ nε
nε − 1

− n0

n0 − 1

∣∣∣∣‖u‖H2
0 (D)ε

d/2

for some C independent of ε, u, or φ. Inserting these bounds into (21) we have

((Bε − B0)u, φ)

≤ C max

∣∣∣∣ 1

nε − 1
− 1

n0 − 1

∣∣∣∣‖u‖H2
0 (D)‖φ‖H2

0 (D)ε
d/2

+ C max

∣∣∣∣ nε
nε − 1

− n0

n0 − 1

∣∣∣∣‖u‖H2
0 (D)‖φ‖H2

0 (D)ε
d/2 (22)

which yields the norm convergence result. (For larger dimension d, we have Sobolev

embedding of H2
0 (D) functions into Lp, which will also give strong norm convergence

but with a lower power in ε). To show the asymptotic formula, we first assume for

simplicity that we have one inhomogeneity centered at the origin, that is

Wε = εB

where B is a smooth region containing the origin. This gives that

((Bε − B0)u, φ) =

∫
εB

(
1

n1 − 1
− 1

n0 − 1

)
∆uφ dx+

∫
εB

(
n1

n1 − 1
− n0

n0 − 1

)
u∆φ dx.

We make the change of variables

y =
x

ε

6
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to get

((Bε − B0)u, φ) = εd
∫
B

(
1

n1(εy)− 1
− 1

n0(εy)− 1

)
∆xu(εy)φ(εy)dy

+ εd
∫
B

(
n1(εy)

n1(εy)− 1
− n0(εy)

n0(εy)− 1

)
u(εy)∆φ(εy)dy.

So, clearly, if the integrand is continuous we have

((Bε − B0)u, φ) = εd|B|
(

1

n1(0)− 1
− 1

n0(0)− 1

)
∆u(0)φ(0)

+ εd|B|
(

n1(0)

n1(0)− 1
− n0(0)

n0(0)− 1

)
u(0)∆φ(0) + o(εd)

By using translation and summing a finite number of such inhomogeneities, the

asymptotic result follows. �

Similarly, we look at

C0,Cε : H2
0 (D)→ H2

0 (D)

which we recall are given by

(C0u, φ)H2
0

=

∫
D

n0

n0 − 1
uφ dx (23)

and

(Cεu, φ)H2
0

=

∫
D

nε
nε − 1

uφ dx (24)

for all φ ∈ H2
0 (D). Note that we also have that C0 and Cε are compact, self-adjoint

operators.

Lemma 3.2 Let C0 and Cε be defined by (23) and (24) respectively. Then Cε → C0 in

the operator norm, and for d = 2, 3 we have that

‖Cε − C0‖ ≤ Cεd

for some C independent of ε. Furthermore, if u, φ ∈ H2
0 (D)

⋂
C2(D) then

((Cε − C0)u, φ) =
N∑
j=1

εd|Bj|
(

nj(zj)

nj(zj)− 1
− n0(zj)

n0(zj)− 1

)
u(zj)φ(zj) + o(εd)

Proof. We combine terms to obtain

((Cε − C0)u, φ) =

∫
D

(
nε

nε − 1
− n0

n0 − 1

)
uφ dx (25)

≤ ‖ nε
nε − 1

− n0

n0 − 1
‖L1(D)‖u‖C0(D)‖φ‖C0(D)

≤ Cεd‖u‖H2
0 (D)‖φ‖H2

0 (D) (26)

7
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in dimensions d = 2, 3 by Sobolev embedding and the small volume nature of the

inhomogeneities. For higher dimensions, we use the embedding into Lp and the power

of ε will be less. This shows the norm convergence result.

For the asymptotical formula, we proceed with a rescaling of (25) as in the previous

proof to obtain, for one inhomogeneity centered at the origin,

((Cε − C0)u, φ) = εd|B|
(

n1(0)

n1(0)− 1
− n0(0)

n0(0)− 1

)
u(0)φ(0) + o(εd)

from which we obtain the result by translation and summing over a finite number of

inhomogeneities. �

Now we consider the operators A0,Aε : H2
0 (D)→ H2

0 (D), also defined via the Riesz

Representation Theorem by

(A0u, φ)H2
0

=

∫
D

1

n0 − 1
∆u ·∆φ dx (27)

and

(Aεu, φ)H2
0

=

∫
D

1

nε − 1
∆u ·∆φ dx (28)

for all φ ∈ H2
0 (D). Note that A0 and Aε are invertible, bounded linear operators and

are indeed not compact. We can show that A−1
ε converges point-wise in the operator

sense, but not in norm, to A−1
0 . However, when preceded by compact operators as in

our case, the convergence is in norm.

Lemma 3.3 Let A0 and Aε be defined by (27) and (28) respectively, and let

B0,Bε,C0,Cε be defined by (18), (19), (23) and (24) respectively. Then both

A−1
ε Bε → A−1

0 B0

and

A−1
ε C1/2

ε → A−1
0 C1/2

0

in the operator norm.

Proof. We first show a point-wise operator convergence result for A−1
ε . Assume that

f is smooth, and define

wε = A−1
ε f and w0 = A−1

0 f. (29)

Consider ∫
D

1

nε − 1
∆(wε − w0)∆v dx =

∫
D

1

nε − 1
∆wε∆v dx−

∫
D

1

n0 − 1
∆w0∆v dx

+

∫
D

(
1

n0 − 1
− 1

nε − 1

)
∆w0∆v dx

=

∫
D

(
1

n0 − 1
− 1

nε − 1

)
∆w0∆v dx, (30)

8
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where the last equality follows from the definitions of the operators and (29). Hence we

have that for any v ∈ H2
0 (D)∫

D

1

nε − 1
∆(wε − w0)∆v dx ≤

∥∥∥∥( 1

n0 − 1
− 1

nε − 1

)
∆w0

∥∥∥∥
L2(Wε)

‖v‖H2
0 (D). (31)

So, by plugging in v = (wε − w0) we can obtain, for some C independent of ε

‖wε − w0‖2H2
0 (D) ≤ C

∫
D

1

nε − 1
∆(wε − w0)∆(wε − w0)dx

≤ C

∥∥∥∥( 1

n0 − 1
− 1

nε − 1

)
∆w0

∥∥∥∥
L2(Wε)

‖wε − w0‖H2
0 (D) (32)

which of course implies

‖wε − w0‖H2
0 (D) ≤ C

∥∥∥∥( 1

n0 − 1
− 1

nε − 1

)
∆w0

∥∥∥∥
L2(Wε)

, (33)

or

‖A−1
ε f − A−1

0 f‖H2
0 (D) ≤

∥∥∥∥( 1

n0 − 1
− 1

nε − 1

)
∆A−1

0 f

∥∥∥∥
L2(Wε)

. (34)

Note that the right hand side goes to zero for any fixed f ∈ H2
0 (D), but this does not

imply operator norm convergence. Next consider, for g ∈ H2
0 (D),

‖A−1
ε Bεg − A−1

0 B0g‖H2
0 (D) ≤ ‖(A−1

ε − A−1
0 )(B0g)‖H2

0 (D) + ‖A−1
ε (Bε − B0)g‖H2

0 (D)

≤ C

∥∥∥∥( 1

n0 − 1
− 1

nε − 1

)
∆A−1

0 B0g

∥∥∥∥
L2(Wε)

+ ‖A−1
ε ‖‖Bε − B0‖‖g‖H2

0 (D)

≤ C̃‖∆A−1
0 B0g‖L2(Wε) + ‖A−1

ε ‖‖Bε − B0‖‖g‖H2
0 (D) (35)

where we have used (34) and the C̃ now incorporates the maximum contrast. Now, note

that B0 is smoothing by two orders order. Indeed, (18) is the weak form of

∆∆B0u = ∆

(
n0

n0 − 1
u

)
+

1

n0 − 1
∆u, u ∈ H2

0 (D).

Since n0 ∈ C2(D), classic regularity results [17], [24], imply that B0u ∈ H4(D)∩H2
0 (D).

Thus, we have that

‖A−1
0 B0g‖H3(D) ≤ C‖g‖H2(D),

(note that by the same argument as above we can see that A0 is a zero order operator)

and therefore

‖∆A−1
0 B0g‖H1(D) ≤ C‖g‖H2(D).

By Sobolev embedding, this implies that

‖∆A−1
0 B0g‖Lp̂(D) ≤ C‖g‖H2(D)

for some p̂ > 2. So, if we let p = p̂/2 > 1, and q be its Hölder dual,∫
Wε

(∆A−1
0 B0g)2dx ≤ ‖(∆A−1

0 B0g)2‖Lp(D)‖χWε‖Lq(Wε) (36)

= ‖∆A−1
0 B0g‖2Lp̂(D)|Wε|1/q (37)

9
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where χWε is the characteristic function of the support of the inhomogeneities. Note

that since p > 1, 1
q
> 0 so that the bound has a positive power of ε. Hence

‖∆A−1
0 B0g‖L2(Wε) ≤ ‖∆A−1

0 B0g‖Lp̂(D)|Wε|1/2q (38)

≤ C‖g‖H2(D)|Wε|1/2q. (39)

This, combined with (35) and Lemma 3.1 yield the first result. The second result follows

from exactly the same proof where we replace B0,Bε with C1/2
0 ,C1/2

ε . Note that we use

that Lemma 3.2 implies convergence of the square roots [21], and C1/2
0 is also smoothing

of two orders since from C0 is smoothing to four orders. The latter follows from the fact

that (23) is the weak form of

∆∆C0u =
n0

n0 − 1
u u ∈ H2

0 (D)

which again from classic regularity results implies that C0u ∈ H6(D)∩H2
0 (D) for smooth

enough boundary (at least in H4(D) ∩ H2
0 (D) for C1-boundary which suffices for our

proof). �
Again, from Lemma 3.2, we also have norm convergence of C1/2

ε (see for example

[21]). Combining all of the above Lemmas, we have proven the following theorem.

Theorem 3.1 Let Kε and K0 be defined by (17) for ε > 0 and ε = 0, respectively.

Then Kε converges to K0 in the operator norm for any dimension d, and hence their

eigenvalues and eigenvectors also converge.

4. Asymptotic formulae for operators

Having proven the convergence of the spectrum, we now want to obtain asymptotic

formulae for the real transmission eigenvalues. To this end, we need to obtain explicit

formula for the first term in the asymptotic expansion for the operator Kε and

consequently for each of the operators involved in the definition of Kε. Lemma 3.1 and

Lemma 3.2 provide the asymptotic formulae for the operators Bε and Cε respectively.

Next we need to obtain such formula for the operator A−1
ε . Since the structure of the

operator A−1
ε is more complicated, for sake of simplicity of presentation we now assume

that the refractive index in the hosting media (i.e. refractive index n0) as well as in

each of the small inhomogeneities are constants. However we remark that it is possible

to generalize the same type of analysis to the case of non-constant inhomogeneities and

hosting media (see [10] for the case of the conductivity problem).

To this end, we start by assuming that there is only one inhomogeneity of the form

εB with constant refractive index n1, centered at the origin inside the homogeneous

media D with constant refractive index n0. Let us make the scaling

y = x/ε,

and denote by

D̃ =
1

ε
D, ñ(y) = nε(x).

10
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We define the auxiliary function vB of y to satisfy the variational equation∫
Rd

1

ñ− 1
∆yvB(y)∆yφ(y)dy =

∫
B

∆yφdy (40)

for any φ in some space that includes appropriate decaying conditions at infinity and

contains zero extensions of H2
0 (D̃) functions, where ñ is defined to be equal to n0 outside

D̃. Following [4] we define the Sobolev space

W 2
0 (Rd) =

{
u ∈ D′(Rd) : 0 ≤ |m| ≤ k, ρ|m|−2(lnω)−1D|m|u ∈ L2(Rd)

k + 1 ≤ |m| ≤ 2, ρ|m|−2D|m|u ∈ L2(Rd).

}
where ρ := (1 + |x|2)1/2, ω := (2 + |x|2) and k = 1 if d = 2, k = 0 if d = 4 and

k = −1 if d 6= 2, 4 equipped with the usual H2-norm with the indicated weights. Hence

we look for vB ∈ W 2
0 (Rd) satisfying (40) for all φ ∈ W 2

0 (Rd). As it is shown in [4], for

d = 2, 3, 4, the behavior at infinity of functions in W 2
0 (Rd) includes constants and first

order polynomials which satisfy the homogeneous version of (40). Since the compactly

supported distribution defined by the right-hand side of (40) which is in W−2
0 (Rd), is

orthogonal to first order polynomials, we have that there exists a unique solution vB of

(40) in the quotient space W 2
0 (Rd)\P(2−d/2) where P(2−d/2) is the space of polynomials of

order (2− d/2). With the notations q =
[
∂
∂ν

(∆vB)
]

and p = [∆vB], where for a generic

function f , [f ] denotes the jump 1
n1−1

f+− 1
n0−1

f− across ∂B, the exclusion of constants

and the first order polynomial in the case of d = 2 relies on the facts that [19]∫
∂B

q ds = 0,

∫
∂B

(qx+ pν1) ds = 0,

∫
∂B

(qy + pν2) ds = 0,

whereas the exclusion of constants for the case of d = 3, 4 relies on the fact that∫
∂B

q ds = 0.

These conditions guarantee the existence of a solution to (40) in W 2
0 (Rd) for every d ≥ 2

that satisfies the following behavior at infinity

vB(y) = o(|y|2−d/2), ∇ · vB(y) = o(|y|1−d/2), D2vB(y) = o(|y|−d/2). (41)

Having defined the solution to (40), we introduce the correction as follows

wε ≈ w0 + ε2
(

1

n0 − 1
− 1

n1 − 1

)
∆w0(0)vB(x/ε)

where wε and w0 are defined by (29). The goal is to be able to discard the term∫
εB

∆(wε − (w0 + ε2
(

1

n0 − 1
− 1

n1 − 1

)
∆w0(0)vB(x/ε)))∆φ dx.

To this end, let us first define ṽB(y) ∈ H2
0 (D̃) to satisfy the variational equality∫

D̃

1

ñ− 1
∆yṽB(y)∆yφ(y)dy =

∫
B

∆yφdy (42)

11



Cakoni and Moskow

for any φ ∈ H2
0 (D̃). Clearly ṽB exists and is unique for any fixed ε. We then have that∫

D

1

nε − 1
∆(wε − (w0 + ε2

(
1

n0 − 1
− 1

n1 − 1

)
∆w0(0)ṽB(x/ε)))∆φ dx

=

∫
D

(
1

n0 − 1
− 1

nε − 1

)
(∆w0 −∆w0(0)) ∆φ dx (43)

for any φ ∈ H2
0 (D). Now we have the following Lemma.

Lemma 4.1 Let z̃ε be defined by

z̃ε = wε −
(
w0 + ε2

(
1

n0 − 1
− 1

n1 − 1

)
∆w0(0)ṽB(x/ε)

)
.

Then

‖∆z̃ε‖L2(D) ≤ Cε
d
2
+1‖∇∆w0‖L∞(D)

for some C independent of ε.

Proof. From the variational definitions (30) and (42) we have directly that∫
D

1

nε − 1
∆(wε −

(
w0 + ε2

(
1

n0 − 1
− 1

n1 − 1

)
∆w0(0)ṽB(x/ε)

)
)∆φ dx

=

∫
D

(
1

n0 − 1
− 1

nε − 1

)
(∆w0 −∆w0(0)) ∆φ dx

≤ Cε‖∇∆w0‖∞
∫
εB

|∆φ| dx

≤ Cε‖∇∆w0‖∞‖∆φ‖L2(D)‖χεB‖L2(D)

≤ Cε
d
2
+1‖∇∆w0‖∞‖∆φ‖L2(D) (44)

for any φ ∈ H2
0 (D). Plugging in

φ = wε −
(
w0 + ε2

(
1

n0 − 1
− 1

n1 − 1

)
∆w0(0)ṽB(x/ε)

)
this yields the result. �

We will need the following lemma.

Lemma 4.2 Let vB(y) be the solution to (40) and ṽB(y) be the solution to (42). Then

we have that

‖∆y(ṽB − vB)‖L2(D) ≤ o(ε
d
2 ),

that is,

‖∆y(ṽB − vB)‖L2(D̃) ≤ o(1)

for some C independent of ε . (Note that the first integral is dx and the second is dy.)

12
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Proof. Let wB(x) = ε2(ṽB(x/ε) − vB(x/ε)) in D. The variational equalities (40) and

(42) imply that ṽB(y) and vB(y) are weak solutions to the same fourth order differential

equation in D̃ with the same transmission condition across ∂B. So, scaling to the fixed

domain we that

∆x
1

nε − 1
∆xwB = 0 in D.

The estimates (41) for the decay of vB together with the zero boundary condition for

ṽB yield that on ∂D, we have

wB = o(εd/2),
∂wB
∂νx

= o(εd/2).

Here, we have used interior elliptic regularity for the solution of biharmonic equation

vB in a neighborhood of ∂D [24] (note that the coefficient in the equation for vB is

constant near the boundary and we have assumed smooth enough boundary). Hence a

priori estimates for wB imply

‖∆xwB‖L2(D) ≤ C

(
‖wB(x/ε)‖H3/2(∂D) +

∥∥∥∥ ∂

∂νx
wB(x/ε)

∥∥∥∥
H1/2(∂D)

)

with some C > 0 independent of ε. Since we also have

ε2D2
xvB = o(εd/2),

interpolation yields

‖∆xwB‖L2(D) = o(εd/2).

This of course implies that

‖∆y(ṽB − vB)‖L2(D) = o(εd/2)

which proves the lemma. �
The above estimates now allow us to prove the following estimate on the correction

term.

Lemma 4.3 Let zε be defined by

zε = wε −
(
w0 + ε2

(
1

n0 − 1
− 1

n1 − 1

)
∆w0(0)vB(x/ε)

)
.

Then, if φ ∈ C2(D)
⋂
H2

0 (D),∣∣∣∣∫
εB

∆zε∆φdx

∣∣∣∣ ≤ o(εd)‖∇∆w0‖L∞(D)‖∆φ‖L∞(D)

for some C independent of ε.

13
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Proof. Note that

zε − z̃ε = ε2
(

1

n0 − 1
− 1

n1 − 1

)
∆w0(0) (vB − ṽB) .

By using Cauchy-Schwartz and the previous lemmas∣∣∣∣∫
εB

∆zε∆φdx

∣∣∣∣ ≤ ‖∆zε‖L2(D)‖∆φ‖L2(εB)

≤
(
‖∆(zε − z̃ε)‖L2(D) + ‖∆z̃ε‖L2(D)

)
‖∆φ‖L2(εB)

≤ o(ε
d
2 )‖∇∆w0‖L∞(D)‖∆φ‖L2(εB).

Finally, using the small volume of εB and the smoothness of φ we have∣∣∣∣∫
εB

∆zε∆φdx

∣∣∣∣ ≤ o(ε
d
2 )‖∇∆w0‖L∞(D)ε

d
2‖∆φ‖L∞(D)

which proves the result. �
Now we have all the ingredients to prove the asymptotic formula for the operator

A−1
ε − A−1

0 .

Lemma 4.4 Let A0 and Aε be defined by (27) and (28) respectively, and assume that

n0, ni, i = 1 . . .m are all constant. For a given u ∈ H2
0 (D), let

wε = A−1
ε u and w0 = A−1

0 u.

Then, if w0 ∈ C3(D), for any φ ∈ H2
0 (D)

⋂
C2(D),

(wε − w0, φ) =
N∑
j=1

εd|Bj|
(

1− n0 − 1

nj − 1

)
∆w0(zj)∆φ(zj)

+
N∑
j=1

εd
(

1− n0 − 1

nj − 1

)2
1

n0 − 1
∆w0(zj)∆φ(zj)

∫
∂Bj

∂vBj
∂νy

dσy + o(εd). (45)

Proof. Note that by the definition (29) of the operators we have∫
D

1

n0 − 1
∆(wε − w0)∆φ dx =

∫
D

1

nε − 1
∆wε∆φ dx−

∫
D

1

n0 − 1
∆w0∆φ dx

+

∫
D

(
1

n0 − 1
− 1

nε − 1

)
∆wε∆φ dx =

∫
D

(
1

n0 − 1
− 1

nε − 1

)
∆wε∆φ dx. (46)

Let us again assume we have one inhomogeneity of the form εB, centered at the origin,

so that ∫
D

∆(wε − w0)∆φ dx = (n0 − 1)

∫
D

(
1

n0 − 1
− 1

nε − 1

)
∆wε∆φ dx

=

(
1− n0 − 1

n1 − 1

)∫
εB

∆wε∆φ dx (47)

14
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Now we apply Lemma 4.3 to obtain∫
D

∆(wε − w0)∆φ dx

=

(
1− n0 − 1

n1 − 1

)∫
εB

∆

(
w0 + ε2

(
1

n0 − 1
− 1

n1 − 1

)
∆w0(0)vB(x/ε)

)
∆φ dx

+

(
1− n0 − 1

n1 − 1

)∫
εB

∆zε∆φ dx

=

(
1− n0 − 1

n1 − 1

)∫
εB

∆

(
w0 + ε2

(
1

n0 − 1
− 1

n1 − 1

)
∆w0(0)vB(x/ε)

)
∆φ dx+ o(εd)

= εd
(

1− n0 − 1

n1 − 1

)
|B|∆w0(0)∆φ(0)

+ εd
(

1− n0 − 1

n1 − 1

)2
1

n0 − 1
∆w0(0)

∫
B

∆yvB(y)∆φ(εy) dy + o(εd)

= εd
(

1− n0 − 1

n1 − 1

)
|B|∆w0(0)∆φ(0)

+ εd
(

1− n0 − 1

n1 − 1

)2
1

n0 − 1
∆w0(0)∆φ(0)

∫
B

∆yvB(y) dy + o(εd).

Simple integration by parts yields∫
B

∆yvB(y) dy =

∫
∂B

∂vB
∂νy

dσy,

from which the result follows. �

Remark 4.1 The asymptotic formula can also be written as

(wε − w0, φ) =
N∑
j=1

εd
(

1− n0 − 1

nj − 1

)
mj∆w0(zj)∆φ(zj) + o(εd)

where

mj = |Bj|+
(

1

n0 − 1
− 1

nj − 1

)∫
∂Bj

∂vBj
∂νy

dσy

acts in place of what was a polarization tensor in the case of small volume conductivity

inhomogeneities. Note that here we no longer have a tensor, but we have a scalar mj

with a form similar to the polarization tensor in [2].

5. Eigenvalue expansion

In this section we provide an explicit formula for the asymptotic expansion of real

eigenvalues in dimensions d = 2, 3. Similar formulae can be obtained for complex

eigenvalues as well as all higher dimensions. However for practical purposes since only

real eigenvalues can be measured from scattering data [6], we limit ourselves to the case

of real eigenvalues for a simpler exposition. Also, the same type of analysis can carried

over to higher dimensions d > 3, but the approach (in particular for the estimates of
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Lemma 5.1) in this case must be carefully tuned since one needs to use Lp-Sobolev

embeddings results. Before we proceed with the formula for the eigenvalue expansion,

we will need some estimates we prove in the next Lemma. Note that if u ∈ H2
0 (D) is the

eigenfunction corresponding to eigenvalue k and n0 constant, we have that it satisfies

∆∆u+ k2(n0 + 1)∆u+ k4n0u = 0.

Standard elliptic regularity [1] results imply that u ∈ H4(D) ∩H2
0 (D).

Lemma 5.1 For n0 and n1 constants and d = 2, 3 we have that

‖(Bε − B0)u‖H2
0 (D) ≤ Cεd, (48)

‖(C1/2
ε − C1/2

0 )u‖H2
0 (D) ≤ Cεd, (49)

‖(A−1
ε − A−1

0 )B0u‖, ‖(A−1
ε − A−1

0 )C0u‖ ≤ Cεd/2, (50)

and

‖B0(A−1
ε − A−1

0 )u‖H2
0 (D), ‖C

1/2
0 (A−1

ε − A−1
0 )u‖H2

0 (D) ≤ Cεd/2+α, (51)

for some α > 0 where u is any function in H4(D) ∩H2
0 (D) .

Proof. For n constant B0 takes the form

(B0u, φ) =

∫
D

n0 + 1

n0 − 1
∆uφ dx.

Hence for any φ ∈ H2
0 (D) we have

((Bε − B0)u, φ)H2 =

∫
D

(
nε + 1

nε − 1
− n0 + 1

n0 − 1

)
∆uφ dx =

(
n1 + 1

n1 − 1
− n0 + 1

n0 − 1

)∫
εB

∆uφ dx.

Sobolev embedding theorems imply that both ∆u and φ are Hölder continuous and thus

we obtain

|((Bε − B0)u, φ)H2| ≤
∣∣∣∣n1 + 1

n1 − 1
− n0 + 1

n0 − 1

∣∣∣∣max
D
|∆u|max

D
|φ|εd. (52)

This proves (48).

To prove the second identity, we recall that in Lemma 3.2 we have shown that Cε

converges to C0 as O(εd). Using the square root lemma in [21] (Theorem VI .9) and

the fact that Cn
ε converges to Cn

0 at the same order O(εd) (this can be shown based on

Cn
ε −Cn

0 = Cn−1
ε (Cε−C0) + (Cn−1

ε −Cn−1
0 )C0 and induction), we can conclude that C1/2

ε

converges to C1/2
0 at the same order O(εd). Hence (49) holds.

Now to show (50), we go back to formula (34) with f = B0u or f = C0u. In

either case the regularity of f implies that the norm error is bounded by that of the

characteristic function of Wε, that is, εd/2. It therefore remains only to show (51). Let

us apply a slight modification of the proof of Lemma 4.1 to wε = A−1
ε u and w0 = A−1

0 u

which gives that

‖z̃ε‖H2
0 (D) ≤ Cεd/2 sup

x∈εB
|∆w0(x)−∆w0(0)|.
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Since u is in H4(D), ∆w0 is in H2(D), which in dimensions d = 2, 3 embeds into Cα(D)

for some α > 0. This yields

‖z̃ε‖H2
0 (D) ≤ Cεd/2+α,

and the same estimate holds for the L2 norm of z̃ε. In the L2(D) norm, the correction

term is order ε2, and hence

‖wε − w0‖L2(D) ≤ Cεd/2+α.

Since B0 is two orders smoothing, we have that

‖B0(A−1
ε − A−1

0 )u‖H2
0 (D) ≤ C‖(A−1

ε − A−1
0 )u‖L2(D),

and the result follows. The same proof works for C1/2
0 . �

Finally we are in a position to derive the eigenvalue expansion using the theorem of

Osborn [18], which we state here for convenience to the reader. The theorem is valid for

non-selfadjoint operators and also yields a correction term. The actual result is more

general, but we state it here for the case of norm convergence on a Hilbert space.

Suppose X is a Hilbert space and Kn : X → X is a sequence of compact linear

operators such that Kn → K in norm. It then follows that the adjoint operators also

converge in norm. Let µ be a nonzero eigenvalue of K of algebraic multiplicity m. It is

well known that for n large enough, there exist m eigenvalues of Kn, µn1 , . . . µ
n
m (counted

according to algebraic multiplicity) such that µnj → µ as n → ∞, for each 1 ≤ j ≤ m.

Let E be the spectral projection onto the generalized eigenspace of K corresponding to

eigenvalue µ. The space X can be decomposed in terms of the range and null space of

E as X = R(E)⊕N(E).

Theorem 5.1 (Osborn) Let φ1, φ2, . . . φm be a normalized basis for R(E). Then there

exists a constant C such that∣∣∣∣∣µ− 1

m

m∑
j=1

µnj −
1

m

m∑
j=1

〈(K −Kn)φj, φj〉

∣∣∣∣∣ ≤ C‖(K−Kn)|R(E)‖·‖(K∗−K∗n)|R(E∗)‖. (53)

Our operators Kε,K0 are compact on H2
0 (D)×H2

0 (D) and we have seen that Kε → K0

in norm. We know that A0 is positive. Let us therefore equip H2
0 (D)×H2

0 (D) with the

inner product 〈(
u

v

)
,

(
w

z

)〉
:= (A0u,w)H2

0 (D) + (v, z)H2
0 (D)

instead of the usual one. Since A0 is positive, invertible, bounded above and below, and

self adjoint, this yields an equivalent inner product. Note that if A0 is negative instead

(which would correspond to n0 < 1), we could do the same with −A0, but we will not

consider that here.

For the sake of simplicity, let us first assume that µ is a simple eigenvalue of K0.

Then we have for each ε small enough, some eigenvalue µε of Kε is such that µε → µ. Let
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U be a normalized eigenvector of K0 corresponding to µ. The fact that U is normalized

with this new inner product means that

〈U,U〉 =

〈(
u

τC1/2
0 u

)
,

(
u

τC1/2
0 u

)〉
= 1

which can be restated as

(A0u, u)H2
0 (D) + τ 2(C0u, u)H2

0 (D) = 1

or ∫
D

(
1

n0 − 1
|∆u|2 + τ 2 n0

n0 − 1
|u|2
)
dx = 1 (54)

using the definitions of the operators. First we show the remainder term in Osborn’s

theorem is small. Let’s compute KεU :

KεU =

(
−A−1

ε Bεu− τA−1
ε C1/2

ε C
1/2
0 u

C1/2
ε u

)
(55)

=

(
−A−1

0 Bεu− τA−1
0 C1/2

ε C1/2
0 u

C1/2
ε u

)
+

(
−(A−1

ε − A−1
0 )(B0u+ τC0u)

0

)
+ o(εd)

where we have used (48),(49) and the estimate (34) to discard the remainder. Thus we

have

(Kε −K0)U (56)

=

(
−A−1

0 (Bε − B0)u− τA−1
0 (C1/2

ε − C1/2
0 )C

1/2
0 u− (A−1

ε − A−1
0 )(B0u+ τC0u)

(C1/2
ε − C1/2

0 )u

)
+ o(εd).

Clearly from this expression and Lemma 5.1, we have that

‖(Kε −K0)U‖ = O(εd/2).

This is not small enough to discard the remainder in Osborn’s theorem, so noting that

all of the individual operators are self adjoint, we compute

(K∗ε −K∗0)U
∗

=

(
−(Bε − B0)A−1

0 u+ B0(A−1
ε − A−1

0 )u− τ(C1/2
ε − C1/2

0 )C1/2
0 u

−(C1/2
ε − C1/2

0 )A−1
0 u− C0(A−1

ε − A−1
0 )u

)
+ o(εd). (57)

Using Lemma 5.1, noting in particular (51), we now have that

‖(K∗ε −K∗0)U
∗‖ = O(εd/2+α).

Hence Osborn’s theorem gives us (for a simple eigenvalue)

µ− µε = 〈(K0 −Kε)U,U〉+ o(εd).
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To obtain the correction term we compute

〈KεU,U〉 = −(Bεu, u)− τ(C1/2
ε C1/2

0 u, u)− τ(A0(A−1
ε − A−1

0 )(B0u+ τC0u), u)

+ (C1/2
ε u, τC1/2

0 u) + o(εd)

= −(Bεu, u)− (A0(A−1
ε − A−1

0 )(B0u+ τC0u), u) + o(εd)

by the fact that C1/2
ε is self-adjoint. Recall

A0u+ τB0u+ τ 2C0u = 0

so that

〈KεU,U〉 = −(Bεu, u) +
1

τ
((A−1

ε − A−1
0 )A0u,A0u) + o(εd)

using the fact that A0 is self-adjoint. (Note that this simplification may not hold

for generalized eigenvectors, but similar expressions can be obtained.) Similarly, we

calculate that we have very simply

〈K0U,U〉 = −(B0u, u),

which yields

〈(K0 −Kε)U,U〉 = ((Bε − B0)u, u)− 1

τ
((A−1

ε − A−1
0 )A0u,A0u) + o(εd)

and hence

µ− µε = ((Bε − B0)u, u)− 1

τ
((A−1

ε − A−1
0 )A0u,A0u) + o(εd).

Now, let us assume that n0 is constant and plug in our asymptotic expansions from the

previous lemmas. We have that

((Bε − B0)u, u)

=
N∑
j=1

εd|Bj|
[(

1

nj − 1
− 1

n0 − 1

)
∆u(zj)u(zj) +

(
nj

nj − 1
− n0

n0 − 1

)
u(zj)∆u(zj)

]
+ o(εd)

Recall that for simplicity we assume u is real, so that this is

((Bε − B0)u, u) =
N∑
j=1

εd|Bj|
(

1 + nj
nj − 1

− 1 + n0

n0 − 1

)
∆u(zj)u(zj) + o(εd)

We also have that

((A−1
ε − A−1

0 )A0u,A0u) =
1

n0 − 1

N∑
j=1

εd
(

1− n0 − 1

nj − 1

)
mj|∆u(zj)|2 + o(εd)

where

mj = |Bj|+
(

1

n0 − 1
− 1

nj − 1

)∫
∂Bj

∂vBj
∂νy

dσy.
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This finally yields the formula (when n0 and each nj is constant and everything is real)

µ− µε =
N∑
j=1

εd|Bj|
(

1 + nj
nj − 1

− 1 + n0

n0 − 1

)
∆u(zj)u(zj)

+
1

τ

N∑
j=1

εd
(

1

n0 − 1
− 1

nj − 1

)
mj|∆u(zj)|2 + o(εd). (58)

The case of multiple eigenvalues yields a similar expression for the correction term where

one now takes the averaged sum of the correction term for each eigenfunction in the

generalized eigenspace.

We have proven the following theorem:

Theorem 5.2 Assume that d = 2, 3, the background n0 and all nj are constant, and τ is

a real transmission eigenvalue corresponding to the background n0 (i.e. in the absence of

small inhomogeneities). Let {up} be a basis for the corresponding generalized eigenspace,

normalized according to (54). Then

(i) If τ is simple, for each ε > 0 small enough, there exists a transmission eigenvalue τε
corresponding to medium (1) (in the presence of small inhomogeneities) such that

1

τ
− 1

τε
=

N∑
j=1

εd|Bj|
(

1 + nj
nj − 1

− 1 + n0

n0 − 1

)
∆u(zj)u(zj)

+
1

τ

N∑
j=1

εd
(

1

n0 − 1
− 1

nj − 1

)
mj|∆u(zj)|2 + o(εd). (59)

(ii) If τ has algebraic multiplicity m, there exists m transmission eigenvalues τ 1
ε , . . . , τ

m
ε

of (1) counted according to multiplicity, with

1

τ
− 1

m

m∑
p=1

1

τ pε
=

1

m

m∑
p=1

(
N∑
j=1

εd|Bj|
(

1 + nj
nj − 1

− 1 + n0

n0 − 1

)
∆up(zj)up(zj)

+
1

τ

N∑
j=1

εd
(

1

n0 − 1
− 1

nj − 1

)
mj|∆up(zj)|2

)
+ o(εd). (60)

The first term in the asymptotic expansion of Theorem 5.2 contains information about

the size, location and refractive indices of unknown inhomogeneities in terms of the

known refractive index and the computable eigenvalue and corresponding eigenfunction

of the unperturbed medium [23]. Since the real (or near the real axis) transmission

eigenvalues corresponding to the perturbed media can be measured from the scattering

data [6], the equation (59) or (60) can potentially be used to obtain information about

small inhomogeneities (see for example [3]).
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