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We consider the interior inverse scattering problem of recovering the shape and the
surface impedance of an impenetrable partially coated cavity from a knowledge
of measured scatter waves due to point sources located on a closed curve inside
the cavity. First, we prove uniqueness of the inverse problem, namely, we show
that both the shape of the cavity and the impedance function on the coated part are
uniquely determined from exact data. Then, based on the linear sampling method,
we propose an inversion scheme for determining both the shape and the boundary
impedance. Finally, we present some numerical examples showing the validity
of our method.

Keywords: inverse scattering; mixed boundary value problem; boundary impedance;
interior measurements; linear sampling method

AMS Subject Classifications: 35R30; 65F22; 65R20; 65R32

1. Introduction

The inverse scattering problem for acoustic or electromagnetic waves has drawn increased
attention in recent years due to its importance in various applications. In the past 10 years,
considerable progress is made in the development of the so-called qualitative methods
(otherwise known as non-iterative methods) for solving the inverse scattering problem,
[1–4] as an alternative approach to optimization techniques.[5] Typically in applications
such as radar, sonar, medical imaging, underground imaging, transmitters and receivers are
situated outside the target, and then different inversion techniques can be used to extract
information on the target from these external measurements [6–11,32,33] (and references
therein). However, in non-destructive testing of the integrity of the interior of devices, one
needs to solve the inverse problem with interior measurements obtained from receivers
and transmitters located inside the device. Thus, in the case of a impenetrable cavity, the
forward scattering problem is formulated as an interior boundary value for the scattered field.
Recently, the inverse problem for cavities with interior measurements has been considered
in many papers. More specifically, in [12,13] the authors use the linear sampling method to
determine the shape of a cavity with Dirichlet and impedance boundary condition for the
scalar Helmholtz equation, whereas in [14] the authors generalize these ideas to Maxwell’s
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2 Y. Hu et al.

equation. In [15], the inverse interior scattering problem for a cavity with Dirichlet boundary
conditions is considered, and a Newton-type optimization technique for an equivalent
non-linear integral equation is employed to solve the problem. Other methods have been
applied in [16–18] to solve the interior inverse problem of shape reconstruction. All the
aforementioned work is limited to reconstructing only the shape of the cavity. In this work,
we revisit the inverse acoustic or electromagnetic scattering problem for an impenetrable
cavity with internal measurements. We assume that (e.g. in the context of electromagnetic
scattering) part of cavity’s wall is made of perfectly conducting material and the other part
is coated by a thin layer of absorbing material. The forward problem corresponding to the
scattering of an interior point source by this cavity becomes an interior mixed boundary value
problem with Dirichlet–Robin boundary condition. Our goal is to determine the shape and
the impedance function from a knowledge of scattered fields measured on a curve inside the
cavity due to point sources located on the same curve. We use the near field linear sampling
method to determine the shape of the cavity (see [6] for the case of exterior inverse scattering
problem) and then following [7,8] based on the solution of the near field equation used for
the linear sampling method, we derive an integral equation to determine the impedance
function. We mention that other type of qualitative methods have also been used for the
case of exterior scattering problems to determine boundary physical properties in addition
to the shape.[10,19]

Our paper is organized as follows. In the next section, we formulate the direct and inverse
scattering problem and prove a uniqueness result for the inverse problem. In addition, we
discuss an exterior mixed boundary value problem which is an auxiliary essential tool
for our reconstruction technique. Due to the “wrong” sign of the impedance, this exterior
problem could gives rise to eigenfrequencies for which our inversion method fails. However,
we prove that this bad frequencies form at most a discrete set. In Section 3, we proceed
with mathematical development of the inversion algorithm for reconstructing the shape
as well the boundary impedance of the cavity. The reconstruction of the shape is based
on a linear sampling method for which we solve a linear ill-posed integral equation on a
closed (measurements) curve. Then the solution of this equation is used in an other integral
equation to determine the surface impedance function. We end the paper with various
numerical examples of reconstruction for the shape and impedance function.

2. The inverse cavity problem with mixed boundary conditions

Let D ⊂ R
2 be a bounded connected region with Lipshitz boundary ∂D which is split as

∂D = ∂DD ∪∂DI , where ∂DD and ∂DI are disjoint, relatively open subsets of ∂D. Denote
by ν the unit outward normal to ∂D defined almost everywhere. We assume that ∂D is the
boundary of the cross-section of a cylindrical partially coated perfectly conducting cavity
where ∂DI represents the portion coated by a conducting material. Let λ ∈ L∞(∂DI )

such that λ(x) > 0 for x ∈ ∂DI , denote the surface impedance function. For a particular
polarization of incident waves, the scattering of electromagnetic waves by this cylindrical
cavity at a fixed frequency is modelled by a two-dimensional Helmholtz equation (for
simplicity of our presentation, here we consider the two-dimensional case: our analysis is
also valid in the three-dimensional case). More specifically, the scattered wave us := us(·, z)
inside D due to an incident point source located at z ∈ D given by

�(·, z) = i

4
H (1)

0 (k| · −z|)
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Applicable Analysis 3

where H (1)
0 is the Hankel function of the first kind of order zero, is a solution to

�us + k2us = 0, x ∈ D,

such that the total wave u = us(·, z)+�(·, z) satisfies the boundary condition{
u = 0 x ∈ ∂DD,
∂u
∂ν

− ikλ(x)u = 0 x ∈ ∂DI .
(1)

Thus, the forward problem in terms of the scattered wave becomes the following interior
mixed boundary value problem⎧⎨

⎩
�us + k2us = 0 x ∈ D,
us = −�(·, z) x ∈ ∂DD,
∂us

∂ν
− ikλ(x)us = − ∂�(·,z)

∂ν
+ ikλ(x)�(·, z) x ∈ ∂DI .

(2)

In order to formulate the scattering problem more precisely we need to recall the definition
of the following Sobolev spaces.[20] To this end let �0 ⊆ � be a an open subset of ∂D. If
H1(D), H1

loc(R
2 \ D) denote the usual Sobolev spaces and H 1/2(�) their usual trace space,

we define:

H±1/2(�0) := {u|�0 : u ∈ H±1/2(�)}
H̃±1/2(�0) := {u ∈ H±1/2(�) : supp u ⊆ �0}
H−1/2(�0) :=

(
H̃1/2(�0)

)′
the dual space of H̃1/2(�0)

H̃−1/2(�0) :=
(

H1/2(�0)
)′

the dual space of H1/2(�0)

The scattering problem (2) is a particular case of the following interior mixed boundary
value problem for the Helmholtz equation:⎧⎨

⎩
�v + k2v = 0 x ∈ D,
v = f x ∈ ∂DD,
∂v
∂ν

− ikλ(x)v = h x ∈ ∂DI ,

(3)

where f ∈ H
1
2 (∂DD), h ∈ H− 1

2 (∂DI ). Based on an integral equation method [6,20] or
a variational approach,[1] it can be shown that the above scattering problem has a unique
solution us ∈ H1(D) which depends continuously on the boundary data, i.e.

‖u‖H1(D) ≤ C

(
‖ f ‖

H
1
2 (∂DD)

+ ‖h‖
H− 1

2 (∂DI )

)
. (4)

The inverse scattering problem is: given scattered waves us(·, z) on some smooth closed
curve C inside D for all source locations z ∈ C , determine the shape ∂D and the impedance
function λ(x) on ∂DI (∂DD could possibly be empty set).

2.1. Uniqueness of the inverse problem

In this section, we show that our multi-static data defined above, uniquely determine ∂D,
λ(x) and of course its support ∂DI . Let C be a smooth closed curve and let us define the
admissible set of cavities

S := {D ⊂ R
2 : ∂D is Lipshitz and D contains C in its interior.}
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4 Y. Hu et al.

Throughout the paper, we assume that k2 is not a Dirichlet eigenvalue for −� in the interior
of C . Note that this is not a restriction since we can easily choose a measurement curve C
that satisfies this assumption.

Theorem 2.1 Assume that D1, D2 ∈ S are two cavities having mixed Dirichlet–Robin
boundary conditions with surface impedance functions λ1 and λ2, respectively, such that
the corresponding scattered fields coincide on C for all point sources located in C and a
fixed wave number. Then D1 = D2, ∂D1,I = ∂D2,I and λ1(x) = λ2(x).

Proof We denote by G the connected component of D1 ∩ D2 which contains the region
bounded by C . Let us

j (·, z) be the solution of (2) corresponding to D j , λ j , j = 1, 2. We have
that us

1(x, z) = us
2(x, z) for x, z ∈ C . Following the argument in [12], the latter implies

that us
1(x, z) = us

2(x, z) for x, z ∈ G.

Step 1 Un iqueness of D. First we prove ∂D1 = ∂D2, using the standard argument by
Kirsch and Kress in [5] Theorem 5.6 which we sketch here for sake of reader’s convenience.
To this end, assume that D1 �= D2. Then, without loss of generality, we can choose x∗ ∈ ∂G
and x∗ ∈ ∂D1, but x∗ �∈ ∂D2 such that either �ε(x∗) ∩ ∂D1 ⊂ ∂D1D or �ε(x∗) ∩ ∂D1 ⊂
∂D1I , where �ε(x∗) is a small disk centred at x∗ with radius ε. We denote by B1 the
boundary condition on ∂D1 ∩ �ε which can be either Dirichet or Robin. Choose h > 0
small enough such that

zn := x∗ + h

n
ν(x∗) ∈ G, n = 1, 2, . . . ,

where ν is the unit normal vector to the boundary ∂D1 directed into the interior of D1.
Next, we consider the solutions us

n, j (x) to the scattering problem (2) corresponding to
D = D j and λ = λ j for j = 1, 2 on the coated part, with z replaced by zn , that is,
us

n, j (x) := us
j (x, zn). Hence us

n,1(x) = us
n,2(x) for x ∈ G and all xn ∈ G. Then by (4) on

one hand we have that

lim
n→∞ ‖B1us

1(x, zn)‖Hs (∂G∩�ε) = lim
n→∞ ‖B1us

2(x, zn)‖Hs (∂G∩�ε)
= ‖B1us

2(x, x∗)‖Hs (∂G∩�ε),

and on the other hand

lim
n→∞ ‖B1us

1(x, zn)‖Hs (∂G∩�ε) = lim
n→∞ ‖B1�(x, zn)‖Hs (∂G∩�ε) = ∞,

where s = 1/2 if B1 is Dirichlet boundary operator or s = −1/2 if B1 is Robin boundary
operator. This contradiction proves that D1 = D2.

Step 2 Uniqueness of λ and ∂DI . Next we show that the support of the impedance function
and the impedance function are uniquely determined. We can prove the uniqueness of ∂DI

from a knowledge of the scattered field in C corresponding to one point source located at
z0 ∈ C . To this end let us show that ∂D1D = ∂D2D and consequently ∂D1I = ∂D2I . If
∂D2D ⊂ ∂D1D is not true then let � ⊂ ∂D2D \ (∂D2D ∩ ∂D1D) �= ∅ be a connected
boundary arc. Note that from [12] we have already that the total fields u := u1(x, z0) =
u2(x, z0) coincide in D := D1 = D2 (note that total field u j (x, z0) = us

j (x, z0)+�(x, z0)

where j correspond to D with ∂D j and λ j , j = 1, 2), whence from the Dirichlet boundary
condition for D2, u = 0 on � in the sense of the trace. Since � ⊂ ∂D1I , then from the
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Applicable Analysis 5

impedance boundary condition for D1 we have that ∂u
∂ν

− ikλ1u = 0 on �, hence ∂u
∂ν

= 0
on �. Using Holmgren’s theorem we know u(x) = 0 for all x ∈ D \ {z0}, noticing that
the total wave u(x) is analytic everywhere in D except the interior point z0. Therefore, we
have us(x, z0) = −�(x, z0), x �= z0 which means that the scattered field blows up as
x → z0 is a contradiction. Thus, ∂D2D ⊂ ∂D1D . Similarly we can prove ∂D1D ⊂ ∂D2D ,
which proves the uniqueness of ∂DI .

Finally, we establish that λ1 = λ2 on ∂DI . If ∂DI is smooth and λ is continuous
we show that one point source is sufficient to uniquely determine λ. Indeed, let as in the
above u1 := u1(x, z0) and u2 := u2(x, z0) be the total fields corresponding to λ1 and λ2,
respectively, and recall that u := u1 = u2 in D. In particular

u1 = u2,
∂u1

∂ν
= ∂u2

∂ν
on ∂DI .

Subtracting the boundary condition for u2 from the boundary condition for u1 on ∂DI we
have

(λ1 − λ2)u = 0 on ∂DI (5)

Suppose that λ1 �= λ2 at some point x∗ ∈ ∂DI , then it follows from continuity of λ j (x) that
there exists a neighbourhood of x∗ such that λ1(x)− λ2(x) �= 0 in O(x∗, ε)∩ ∂DI , which
implies u = 0 and from the impedance boundary condition ∂u

∂ν
= 0 on O(x∗, ε) ∩ ∂DI .

Then the contradiction is obtained in the same way as in the proof of uniqueness of ∂DI .
For λ ∈ L∞(∂DI ) and ∂D Lipshitz, in Section 3.2 we provide an alternative proof for

the uniqueness of λ using the full set of data, i.e. from a knowledge of the scattered fields
us(x, z) for all x, z ∈ C . �

Having proven the uniqueness, the rest of the paper is devoted to deriving reconstruction
algorithms for both ∂D and λ. We end this section by analysing the following exterior mixed
boundary value problem corresponding to (3) which will be needed in our later analysis:
given f ∈ H

1
2 (∂DD) and h ∈ H− 1

2 (∂DI ), find w ∈ H1
loc(R

2 \ D̄) such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
�w + k2w = 0 in R

2 \ D̄,
w = f on ∂DD,
∂w
∂ν

− ikλ(x)w = g on ∂DI ,

lim
r→∞

√
r
(
∂w
∂r − ikw

) = 0,

(6)

where λ ∈ L∞(∂DI ), λ(x) > 0. Due to the opposite sign of the impedance which is not
compatible to the decaying condition of outgoing waves,[5] this exterior problem may have
real eigenvalues, i.e the uniqueness may fail for a discrete (possibly empty) set of values
of k > 0, which we refer to as exterior eigenvalues. To study (6), we use a variational
approach by first re-writing it as an equivalent problem in a bounded domain. Let � be a
large disk containing D, f̃ ∈ H

1
2 (∂D) be a bounded extension of f , and w0 ∈ H1(� \ D)

be such that w0 = f̃ on ∂D and w0 supported in a small neighbourhood of ∂D. Then (6)
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6 Y. Hu et al.

is equivalent to finding v ∈ H1(� \ D̄) such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�v + k2v = −�w0 − k2w0 in � \ D̄,
v = 0 on ∂DD,
∂v
∂ν

− ikλ(x)v = h̃ on ∂DI ,
∂v

∂ν
= Tkv on ∂�,

(7)

where, v = w − w0, Tk : H
1
2 (∂�) → H− 1

2 (∂�) is the exterior Dirichlet to Neumann
operator (see [1] Definition 5.8), and h̃ := h − ∂w0

∂ν
+ ikλ(x)w0 (see [1], Theorem 8.5).

Defining
X := {u ∈ H1(� \ D̄) : u|∂DD = 0}

(7) can be written in the following variational form: find v ∈ X such that

bk(v, ϕ)+ ck(w, ϕ) = F(ϕ) for all ϕ ∈ X, (8)

where the sesquilinear forms bk(·, ·) and ck(·, ·) on X × X are given by

bk(v, ϕ) = ∫
�\D̄ ∇v∇ϕ̄dx − ∫

∂�
T0vϕ̄ds + ik

∫
∂DI

λvϕ̄ds, v, ϕ ∈ X,

ck(v, ϕ) = − ∫
�\D̄ k2vϕ̄dx − ∫

∂�
(Tk − T0)vϕ̄ds, v, ϕ ∈ X,

where the operator T0 is given as in [1] Theorem 5.20, and the bounded conjugate linear
functional F on X is defined by

F(ϕ) :=
∫
�\D̄

(�v + k2v)ϕ̄dx −
∫
∂DI

h̃ϕ̄ds.

From Theorem 5.20 in [1] and Poincarè’s inequality in X (assuming that ∂DD �= ∅; if the
latter is not true one can use the coercivity of −T0) we obtain

Re bk(v, v̄) =
∫
�\D̄

|∇v|2dx +
∫
∂�

−T0vv̄ds ≥ C‖v‖2
H1(�\D̄)

which by means of Riesz representation theorem gives rise to an invertible operator
Bk : X → X defined by bk(w, ϕ) = (Bkw, ϕ)X. Furthermore, due to compactly embedding
of H1(�\ D̄) into L2(�\ D̄) and the fact that Tk − T0 : H

1
2 (∂�) → H− 1

2 (∂�) is compact
(Theorem 5.20 in [1]), we have that Ck : X → X defined by ck(w, ϕ) = (Ckw, ϕ)X is
compact. Hence, the solvability of the exterior impedance problem (6) is equivalent to the
invertibility of the operator

Bk + Ck or I + B−1
k Ck .

Let us denote by Wk the compact operator Wk := B−1
k Ck .

Theorem 2.2 The exterior mixed boundary problem (6) has a unique solution for all
values of k > 0 except for a discrete (possibly empty) set with +∞ as the only accumulation
point. This solution (if it exists) depends continuously on the boundary data.

Proof From the above, we need to investigate the invertibility of I + Wk . Since Wk is
compact, we have that the uniqueness implies that the inverse of I + Wk exists and is
bounded. To prove that the uniqueness fails for at most a discrete set of values of k we use
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Applicable Analysis 7

the analytic Fredholm theory.[5] Consider a strip D in the complex plane C around positive
real axis and I + Wk : D → L(X). The operator Bk and Ck are analytic on k in D, which
implies that Wk is also analytic. Note that the Dirichlet to Neumann operator Tk depends
analytically on k ∈ C such that Re(k) > 0 (since we are in R

2 we are excluding k = 0 due
to the particular behavior of the solution at infinity, however Tk is still continuous at k = 0
in the operator norm see Theorem 5.20 in [1]). Obviously, B0 + C0 is invertible and by
continuity it is invertible for some k0 > 0 sufficiently small, whence I + Wk0 is invertible.
Hence, an application of Theorem 8.26 in [5] proves our claim. �

Definition 2.3 The values of k > 0 for which the homogeneous exterior mixed boundary
value problem (6) has a non-trivial solution are called exterior eigenvalues.

3. The solution of the inverse problem

First, we remind the reader that the assumption that k2 is not a Dirichlet eigenvalue for
−� in the region bounded by the measurements curve C holds throughout the paper. Our
data-set, i.e. the scattered fields us(x, y) for x ∈ C corresponding to all point sources for
y ∈ C defines the data operator M : L2(C) → L2(C) by

(Mg)(x) =
∫

C
us(x, y)g(y)ds(y) g ∈ L2(C), x ∈ C (9)

which is obviously compact as an integral operator with analytic kernel. The following
linear integral equation

(Mg)(x) = �(x, z) x ∈ C, (10)

will play an important role in our inversion algorithm and will be refer to as the data
equation. To understand the data operator, we define the linear operator B : H

1
2 (∂DD) ×

H− 1
2 (∂DI ) → L2(C) mapping the boundary value ( f, h) to the solution v of the corre-

sponding interior mixed boundary value problem (3) evaluated on C . In addition, we define
the linear operator H : L2(C) → H

1
2 (∂DD)× H− 1

2 (∂DI )

(Hg)(x) =
⎧⎨
⎩
ωg(x) x ∈ ∂DD,

∂ωg
∂ν
(x)− ikλ(x)ωg(x) x ∈ ∂DI ,

(11)

where ωg is the single layer potential

ωg(x) :=
∫

C
�(x, y)g(y)ds(y), x ∈ R

2 \ C. (12)

By linearity and superposition M = −B H and hence the data equation (10) can be
written as

−(B Hg) = �(x, z).

Lemma 3.1 If k is not an exterior eigenvalue then the data operator M defined by (9) is
injective and has dense range.
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8 Y. Hu et al.

Proof If Mg = 0 then the scattered field corresponding to ωg as incident wave is zero
on C . By the uniqueness of the Dirichlet problem inside C it is zero inside C and hence
from analytic continuation it is zero everywhere in D (note that the scattered field is a
solution of the Helmholtz equation in D and thus is analytic in D). But since ωg satisfies
the same mixed boundary conditions on ∂D as the negative scattered field, by the trace
theorem we have that ωg = 0 on ∂DD and ∂ωg

∂ν
− ikλ(x)ωg = 0 on ∂DI . The latter implies

that ωg satisfies the homogeneous exterior mixed boundary value problem (6) and hence
from the assumptions on k, ωg = 0 in R

2 \ C (outside C because the uniqueness of (6)
and analytic continuation, and inside C from the uniqueness of the Dirichlet problem). The
jump condition for the normal derivative of the single layer potential ωg across C implies
that g = 0 which proves the injectivity of M . Next, it is easily seen that the L2-adjoint
M∗ of M is given by M∗h = Mh̄, whence the adjoint operator M∗ is also injective, which
implies that M has dense range. �

Lemma 3.2 Assume that k is not an exterior eigenvalue. The bounded linear operator
B : H

1
2 (∂DD)× H− 1

2 (∂DI ) → L2(C) is compact, injective and has dense range.

Proof We choose a disk �r of radius r > 0 such that C ⊂ �r ⊂ D. Then we
can decompose the operator B as B = B1 B2 where B2 : H

1
2 (∂DD) × H− 1

2 (∂DI ) →
H− 1

2 (∂�r )× H
1
2 (∂�r ) is defined by

B2( f, h)(x) =
(
∂us

∂ν
|∂�r , us |∂�r

)
,

and B1 : H− 1
2 (∂�r )× H

1
2 (∂�r ) → L2(C) is defined by

B1( f, h)(x) =
∫
∂�r

{
f (y)�(x, y)− h(y)

∂�(x, y)

∂ν(y)

}
ds(y), x ∈ C,

where we use the Green’s representation formula of the solution v in �r .[5] Clearly, the
operator B2 is bounded, and B1 is compact as an integral operator with analytic kernel,[21]
which implies that B is compact.

To show that B is injective, let B( f, h) = 0. Hence by the definition of B we have
that the corresponding solution v of boundary value problem (3) is zero on C (note that v
satisfies the Helmholtz equation �v + k2v = 0 in D and hence is analytic inside D.[1])
Since k2 is not a Dirichlet eigenvalue in the interior of the curve C , then by the uniqueness
of the Dirichlet boundary value problem for Helmholtz equation inside C , we obtain v = 0
in the interior of C . Thus by analyticity of v in D we obtain that v = 0 in D whence from
the trace theorem f = 0 and h = 0. Finally, since the range of B contains the range of M ,
we conclude from Lemma 3.1 that the range of B is dense. �

The following lemma plays an important role for the linear sampling method.

Lemma 3.3 The fundamental solution �(x, z) = i
4 H (1)

0 (k|x − z|) for x ∈ C, is in the
range of B if and only if z ∈ R

2 \ D.

Proof The proof proceeds exactly in the same way as the proof of Theorem 4.2 in
[12]. �
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Applicable Analysis 9

Finally, we need the following approximation result.

Lemma 3.4 Assume that k is not an exterior eigenvalue. The range of the operator H :
L2(C) → H

1
2 (∂DD) × H− 1

2 (∂DI ) defined by (11) is dense. In other words, any pair
( f, h) ∈ H

1
2 (∂DD) × H− 1

2 (∂DI ) can be approximated arbitrarily close by an Hg in
H

1
2 (∂DD)× H− 1

2 (∂DI ).

Proof Let us define the dual operator H� : H̃− 1
2 (∂DD) × H̃

1
2 (∂DI ) → L2(C) such

that 〈Hg, (φ, ψ)〉 = 〈
g, H�(φ, ψ)

〉
in the duality paring sense. By changing the order of

integration, it is easy to see that

H�(φ, ψ) :=
∫
∂DD

�(x, y)φ(y)ds(y)+
∫
∂DI

(
∂�(x, y)

∂ν
− ikλ�(x, y)

)
ψ(y)ds(y),

for x ∈ C . It is suffices to show that H� is injective since

(Range H) = aKernel H�

where a denotes the annihilator (see [20] page 23). To this end let us assume that
H�(φ, ψ) = 0. We define the potential

P(x) :=
∫
∂DD

�(x, y)φ(y)ds(y)+
∫
∂DI

(
∂�(x, y)

∂ν
− ikλ�(x, y)

)
ψ(y)ds(y),

x ∈ R
2\∂D. Sinceφ andψ have zero extensions in H− 1

2 (∂D) and H
1
2 (∂D), respectively,[1]

P is well defined in H1
loc(R

2 \ ∂D) and satisfies the Helmholtz equation in D and in R
2 \ D

(see [20] for the mapping properties of the boundary integral operators in Sobolev spaces).
From the assumption we have that P(x) = 0 on C and from the uniqueness of the Dirichlet
problem P(x) = 0 inside C also. Since P satisfies the Helmholtz equation in D, we obtain
by unique continuation that P(x) = 0 in D. Thus approaching the boundary ∂D from the
inside, we obtain by the trace theorem that P− = 0 and ∂P−

∂ν
= 0 on ∂D. The jump relations

across ∂D of single and double layer potential imply

P+ − P− = 0 on ∂DD, P+ − P− = ψ on ∂DI

∂P+

∂ν
− ∂P−

∂ν
= −φ on ∂DD,

∂P+

∂ν
− ∂P−

∂ν
= ikλψ on ∂DI

where + and − indicate that we approach the boundary ∂D from outside and inside,
respectively (recall that ν is oriented outside to D). Hence, we have that P is a radiating
solution of the Helmholtz equation and satisfies the boundary conditions

P+ = 0 on ∂DD,
∂P+

∂ν
− ikλP+ = 0 on ∂DI .

Since k is not an exterior eigenvalues we can conclude that P = 0 outside D also. One
more application of the above jump relations implies that φ = 0 and ψ = 0, which proves
the lemma. �
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10 Y. Hu et al.

3.1. Reconstruction of ∂ D

Now we have all the ingredients to prove the main theorem related to the solvability of the
data equation, which provides the theoretical basis of the linear sampling method. To this
end, let us consider a particular case of the exterior mixed boundary condition (6), namely:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�uz + k2uz = 0 in R
2 \ D̄,

uz = −�(·, z) on ∂DD,

∂uz
∂ν

− ikλ(x)uz = −∂�(·, z)

∂ν
+ ikλ(x)�(·, z) on ∂DI ,

lim
r→∞

√
r
(
∂uz
∂r − ikuz

)
= 0.

(13)

Theorem 3.5 Assume that k is not an exterior eigenvalue. Let us be the scattered field
corresponding to the scattering problem (2) and M is the associated data operator given
by (9). Then the following holds:

(1) For z ∈ R
2 \ D̄ and a given ε > 0 there exists a function gεz ∈ L2(C) such that

‖Mgεz −�(·, z)‖L2(C) < ε, (14)

and as ε → 0, the potential ωgεz given by (12) with kernel gεz converges to the
solution uz of (13) in the H1(BR \ D)-norm, for any large disk BR containing D.

(2) For z ∈ D \ C, every gεz ∈ L2(C) that satisfies (14) for a given ε > 0 is such that

lim
ε→0

‖ωgεz ‖H1(BR\D) = ∞.

Proof For a given ε > 0, from Lemma 3.2 there exists a function fz ∈ H
1
2 (∂DD) and

hz ∈ H− 1
2 (∂DI ) such that B( fz, hz) = −�(x, z) for x ∈ C . By means of Lemma 3.4, we

can choose gεz ∈ L2(C) such that it satisfies

‖Hgεz − ( fz, hz)‖
H

1
2 (∂DD)×H− 1

2 (∂DI )
<

ε

‖B‖ .

Then (14) follows from the fact that M = −B H . Obviously fz = −�(x, z)|∂DD and hz =
− ∂�(·,z)

∂ν
+ikλ�(·, z). Now for z ∈ R

2\D from the well-posedness of (13), the convergence

of the boundary data Hgεz − ( fz, gz) → 0 as ε → 0 in the H
1
2 (∂DD)× H− 1

2 (∂DI )-norm
implies convergence of the corresponding solutions ωgεz → uz as ε → 0 in H1

loc(R
2 \ D)

of the exterior mixed boundary value problem. This proves the first statement. Note that for
a fixed ε > 0, we have that

lim
z→∂D

‖ωgεz ‖H1(BR\D) = ∞, and lim
z→∂D

‖gεz ‖L2(C) = ∞

where z approached ∂D from outside of D.
In order to prove the second statement, let z ∈ D \ C and assume to the contrary that

there exists a sequence {εn} → 0 and the corresponding function ωn with kernels gn :=
gεn

z satisfying (14) is such that ‖ωn‖H1
loc(R

2\D) remains bounded. From the trace theorem,
‖Hgn‖

H
1
2 (∂DD)×H− 1

2 (∂DI )
is also bounded. Then without loss of generality we may assume
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Applicable Analysis 11

weak convergence Hgn ⇀ ( f, h) as n → ∞ for some ( f, h) ∈ H
1
2 (∂DD)× H− 1

2 (∂DI ).
Then, B Hgn ⇀ B( f, h) in L2(C). But B Hgn → −�(·, z)|C which means −�(·, z) =
B( f, g). This contradicts Lemma 3.3. �

This theorem can be used to reconstruct the boundary ∂D, since roughly it says that, for
fixed ε, if gεz is the approximate solution of Mgεz = �(·, z) than ‖ωgεz ‖H1(BR\D) is large for
z in D and small for z outside D. Unfortunately, ‖ωgεz ‖H1(BR\D) can not be used as indicator
function for D since it depends on D. Instead in practice we construct the indicator function
I (z) := ‖gεz ‖L2(C). It is not possible to prove a similar type of statement of I (z) and in
the above theorem, although all numerical examples confirm that I (z) inherit the same
behaviour as ‖ωgεz ‖H1(BR\D). This short come of the linear sampling method for simple
exterior inverse scattering problems is removed using the factorization method.[22,23]
Unfortunately, for our scattering problem the factorization method is not valid and thus a
mathematical proof for the behavior of I (z) remains an open problem.

The linear sampling method for reconstruction of ∂D can now be described as follows.

(1) Choose a set of sampling points in a region covering the expected obstacle.
(2) For each sampling point z, solve the data equation (10) using Tikhonov regular-

ization technique, i.e. solve

αg + M∗Mg = M∗�(·, z) (15)

with regularization parameter α > 0 (note that M is compact operator, therefore
the data equation is ill-posed).

(3) Calculate the indicator function I (z).
(4) Plot I (z) and the obstacle D is the region containing points z for which I (z) > C

for a cut-off value C chosen by ad-hoc procedure (some procedures for choosing
C are available in the literature, see e.g. [2,24,25]).

3.2. Determination of the surface impedance

Having determined the shape of the cavity D, we now turn our attention to determining the
boundary impedance λ ∈ L∞(∂DI ). First we give a uniqueness proof for λ ∈ L∞(∂DI )

(note that λ bounded function is not covered by Theorem 2.1) using multistatic data i.e.
many point sources and measurements. This proof is more in the spirit of our reconstruction
technique. To this end, let ωs

g be the scattered field due to the incident field ωg given by
(12), i.e. the solution of (13) with�(·, z) replaced by ωg . Note that the data Mg defined by
(10) equals to ωs

g evaluated on C .

Lemma 3.6 Let ωt
g := ωs

g + ωg. Then∫
∂DD

λ(x)|ωt
g|2ds =

∫
S
|ωg,∞|2ds + 1

k
Im(Mg, g), (16)

where S is the unit circle, ωg,∞ is the far-field pattern of the radiating field ωg [5] and (·, ·)
denotes the L2(C)-inner product.
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12 Y. Hu et al.

Proof The proof follows the ideas in [26] . Applying the boundary conditions ωt
g = 0 on

∂DD and
∂ωt

g
∂ν

− ikλωt
g = 0 on ∂DI together with Green’s identity, we obtain that

− 2ik
∫
∂DD

λ(x)|ωt
g|2ds =

∫
∂D

[
ωt

g

∂ωt
g

∂ν
− ωt

g

∂ωt
g

∂ν

]
ds

=
∫
∂D

[
ωs

g

∂ωs
g

∂ν
− ωs

g

∂ωs
g

∂ν

]
ds +

∫
∂D

[
ωg
∂ωg

∂ν
− ωg

∂ωg

∂ν

]
ds

+
∫
∂D

[
ωs

g
∂ωg

∂ν
−ωg

∂ωs
g

∂ν

]
ds+

∫
∂D

[
ωg
∂ωs

g

∂ν
−ωs

g
∂ωg

∂ν

]
ds.

(17)

First note that the first term in (17) is zero. From Green’s theorem applied to the radiating
solution ωg of the Helmholtz equation in R

2 \ D, we have that∫
∂D

[
ωg
∂ωg

∂ν
− ωg

∂ωg

∂ν

]
ds = −2ik

∫
S
|ωg,∞|2ds. (18)

Furthermore, sinceωg(x) = ∫
C �(x, y)g(y)ds(y), by changing the order of integration we

obtain that ∫
∂D

[
ωs

g
∂ωg

∂ν
− ωg

∂ωs
g

∂ν

]
ds(x)

=
∫

C
g(y)

∫
∂D

(
ωs

g(x)
∂�(x, y)

∂ν
−�(x, y)

∂ωs
g

∂ν
(x)

)
ds(x)ds(y)

= −
∫

C
g(y)ωs

g(y)ds(y). (19)

Plugging (18) and (19) into (17), we finally obtain

− 2ik
∫
∂D
λ(x)|ωt

g|2ds(x) = −2ik
∫

S
|ωg,∞|2ds −

∫
C

g(y)ωs
g(y)ds(y)

+
∫

C
g(y)ωs

g(y)ds(y)

= −2ik
∫

S
|ωg,∞|2ds + (g,Mg)− (Mg, g)

= −2ik
∫

S
|ωg,∞|2ds − 2iIm(Mg, g).

Dividing both sides by −2ik yields the result. �

Theorem 3.7 The impedance function λ ∈ L∞(∂DI ), is uniquely determined from a
knowledge of the data operator M defined by (10).

Proof The proof is base on the identity (16). Since the left-hand side of (16) is known
from the data for all g, we need to show that the set W

W :=
{

f ∈ L2(∂DI ) : f = ωt
g|∂DI for some g ∈ L2(C)

where ωt
g is as in Lemma 3.6.

}
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Applicable Analysis 13

is dense in L2(∂DI ). To this end assume that φ is a function in L2(∂DI ) such that for all
f = ωt

g|∂DI ∈ W ∫
∂DI

ωt
gφds = 0.

Construct u ∈ H1(D) as the unique solution of the interior mixed boundary value problem⎧⎨
⎩
�u + k2u = 0 x ∈ D,
u = 0 x ∈ ∂DD,
∂u
∂ν

− ikλu = φ x ∈ ∂DI .

Then using that (ωs
g + ωg) = 0 on ∂DD and ikλ(ωs

g + ωg) = ∂
∂ν
(ωs

g + ωg) on ∂DI we
have that

0 =
∫
∂D
(ωs

g + ωg)

(
∂u

∂ν
− ikλu

)
ds

=
∫
∂D

(
ωs

g
∂u

∂ν
− u

∂ωs
g

∂ν

)
ds +

∫
∂D

(
ωg
∂u

∂ν
− u

∂ωg

∂ν

)
ds

=
∫
∂D

(
ωg
∂u

∂ν
− u

∂ωg

∂ν

)
ds

for all g ∈ L2(C). From the definition ofωg and Green’s representation theorem by changing
the order of integration, we can conclude that

0 =
∫
∂D

(
�(x, y)

∂u

∂ν
(x)− u(x)

∂�(x, y)

∂ν

)
ds = u(y)

which yields φ = 0 from the trace theorem.
Now assume that λ1 and λ2 yield to the same data operator M . Then from Lemma 3.6

we have that ∫
∂DI

[λ1(x)− λ2(x)]|ωt
g|2dx = 0.

Viewing the L∞(∂DI ) function λ1 − λ2 as a self-adjoint operator on L2(∂DI ), since W
is dense in L2(∂DI ) we conclude that λ1(x) = λ2(x) almost everywhere on ∂DI (see e.g.
Theorem 9.2-2 of [27]). Note that we have already proven in Theorem 2.1 uniqueness for
∂DI . �

The rest of the paper is devoting to deriving reconstruction formulas for λ. Let us recall
uz ∈ H1

loc(R
2 \ D) which is the solution of the exterior mixed boundary value problem

(13), provided that k is not an exterior eigenvalue and define

vz := uz +�(·, z). (20)

The following lemma will provide the key ingredient for determining λ from a knowledge
of the data operator M .

Lemma 3.8 Assume that k is not an exterior eigenvalue. For every z1, z2 ∈ R
2 \ D̄ we

have that ∫
∂DI

vz1λvz2ds =
∫

S
uz1,∞uz2,∞ds − i

2k
(uz2(z1)− uz1(z2)), (21)

where S is the unit circle.
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14 Y. Hu et al.

Proof By applying Green’s second identity, the zero mixed boundary conditions for vz

and Lemma 2.1 in [26] we have that

−2ik
∫
∂DI

vz1λ(x)vz2ds =
∫
∂D

[
vz1

∂vz2

∂ν(x)
− vz2

∂vz1

∂ν(x)

]
ds

=
∫
∂D

[
�(·, z1)

∂�(·, z2)

∂ν
−�(·, z2)

∂�(·, z1)

∂ν

]
ds

+
∫
∂D

[
uz1

∂�(·, z2)

∂ν
−�(·, z2)

∂uz1

∂ν

]
ds

+
∫
∂D

[
�(·, z1)

∂uz2

∂ν
− uz2

∂�(·, z1)

∂ν

]
ds

+
∫
∂D

[
uz1

∂uz2

∂ν
− uz2

∂uz1

∂ν

]
ds)

= −(uz2(z1)+ uz1(z2))− 2ik
∫

S
uz1,∞uz2,∞ds.

Finally, dividing both sides by 2ik yields the identity. �
In particular, setting z := z1 = z2 the identity in Lemma 3.8 can be re-written as in the

following lemma.

Lemma 3.9 Assume that k is not an exterior eigenvalue. For every z ∈ R
2 \ D̄ the

following holds∫
∂DI

λ(x) |uz +�(·, z)| ds =
∫

S
|uz,∞|2ds − 1

k
Im uz(z). (22)

Lemma 3.10 Let B ⊂ R
2 \ D be a open region and define

V :=
{

f ∈ L2(∂DI ) : f = uz +�(·, z)|∂DI

z ∈ B, and uz the solution of (13)

}
.

Then V is complete in L2(∂DI ).

Proof Assume that φ is a function in L2(∂DI ) such that for every z ∈ B∫
∂DI

(uz +�(·, z))φ ds = 0.

Construct u ∈ H1
loc(R

2 \ D) as the unique solution of the exterior mixed boundary value
problem ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�u + k2u = 0 x ∈ D,
u = 0 x ∈ ∂DD,
∂u
∂ν

− ikλu = φ x ∈ ∂DI ,

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0
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Applicable Analysis 15

which exists since k is not an exterior eigenvalue. Then for every z ∈ B, using the zero
mixed boundary conditions for uz +�(·, z), the integral representation formula and Green’s
second identity we have

0 =
∫
∂D
(uz +�(·, z))

(
∂u

∂ν
− ikλu

)
ds

=
∫
∂D

(
uz
∂u

∂ν
− u

∂uz

∂ν

)
ds +

∫
∂D

(
�(·, z)

∂u

∂ν
− u

∂�(·, z)

∂ν

)
ds

= −u(z), for z ∈ B.
The unique continuation principle for solutions of the Helmholtz equation implies that u = 0
in all of R

2 \ D which yields φ = 0 from the trace theorem. �

Remark 3.1 The result of Lemma 3.10 holds true if B is a closed curve surrounding D. In
this case, one uses the uniqueness of the exterior Dirichlet problem to conclude that u = 0
in the proof. We use this configuration of B in our numerical example.

The equation (22) can be seen as an integral equation of the first kind for λ. Since
uz +�(·, z) vanishes on ∂DD we can replace the region of integration ∂DI by ∂D. Using
Lemma 3.10, it is easy to prove in the same way as in the proof of Theorem 3.7 that
the left-hand side of this equation is an injective compact integral operator with L∞(∂D)
positive kernel. What is more important, both the right-hand side of (22) and its kernel can
be approximately computed using the measured data. In particular from the first part of
Theorem 3.5, if gz is the approximate solution of the data equation

(Mgz)(x) = �(x, z), z ∈ R
2 \ D,

then
ωgz (x) =

∫
C
�(x, y)gz(y)ds(y)

approximates uz . Note that this gz is the same function used in the linear sampling method
to construct the indicator function I (z) of D.

In practice, having determined D based on the Tikhonov regularized solution to

αg + M∗Mg = M∗�(·, z)

for z in a open region B ⊂ R
2 \ D we computeωgz and then solve the integral equation for λ∫

∂D
λ(x)

∣∣ωgz +�(·, z)
∣∣ ds =

∫
S
|ωgz,∞|2ds − 1

k
Im ωgz,∞(z)

where ωgz,∞(x̂) = γ
∫

C e−ik x̂ ·y gz,∞(y)ds(y), γ = eiπ/4√
8πk

.
In the particular case when the surface impedance is a positive constant λ > 0, we

obtain a simpler formula for λ, namely

λ ≈
∫

S |ωgz,∞(x̂)|2ds(x̂)− 1
k Im (ωgz (z))

‖ωgz (·)+�(·, z)‖2
L2(∂D)

, z ∈ R
2 \ D (23)

Note that we do not need to know a priori which part of the boundary is coated in order to
reconstruct λ.
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16 Y. Hu et al.

4. Numerical examples

We now illustrate the theoretical results of the previous sections with some numerical
examples. We simulate the data for our numerical examples by solving the corresponding
mixed boundary value problem for chosen D, ∂DD and λ to obtain us(x, y), x, y ∈ C
(to simulate the mixed boundary value problem, in fact we solve an impedance boundary
value problem with chosen λ on ∂DI and with λ = 1010 on ∂DD which is a good ap-
proximation to Dirichlet boundary condition; λ → +∞ corresponds to Dirichlet boundary
condition). This impedance problem is solved using an integral equation approach [12]
which is discretized based on the Nyström’s method [21]. For numerical solution of the
data integral equation (10), we use the trapezoidal rule to obtain an ill-conditioned matrix
system Mδgz = bz , in which z is chosen between two rectangular grids B1 and B2,
such that C ⊂ B2 ⊂ D ⊂ B1. Here Mδ is the discrete version of Mg corrupted by
random noise in the following way: each element (mδ

i, j ) of the matrix Mδ is given by
Mδ

i, j = Mi, j (1 + δ�i, j ), where δ denotes the error level and�i, j ∈ (−1, 1) is obtained by
a random number generator. Since (10) is severely ill-posed,[21,28,29] we use the Tikhonov
regularization method [29] to solve (15) where the regularization parameter α is chosen by
using the generalized cross-validation criterion.[30,31] Note thatα depends on the sampling
point z.

In our examples, we consider two different geometries for the cavity, namely the kite
and the peanut.

Example 1 The kite. We consider the cavity D with boundary

∂D = {x : x = (x1, x2) = (2.2 cos(t)+ 1.25 cos(2t)− 1.25, 3 sin t), t ∈ [0, 2π ]}.
Example 2 The peanut. We consider the cavity D with boundary

∂D = {x : x = (x1, x2) = (2 cos(t)+ 0.4 cos(3t), 2 sin(t)+ 0.4 sin(3t)), t ∈ [0, 2π ]}.
It has been shown in Theorem 3.5 that, for z ∈ R

2 \ D̄, ωg ≈ uz , where ωg and uz

are defined by (12) and (13), respectively, and our numerical examples confirm this fact. In
particular, we choose a point z = (5, 0) outside the scatterer D and plot the values of ωg on
a circle with radius 5 which are shown in Figure 1 together with the corresponding values
of uz . Consider the ill-posed nature of the problem, ωg gives a very good approximation of
uz as expected.

4.1. Reconstruction of the obstacle shape ∂ D

In the following numerical computations, we always choose the curve C to be a circle whose
radius is rc = 0.15 centred at the origin and set 1.6 the side length of the small square
B2 between ∂D and the curve C . We also choose 64 source points and measurements
points distributed equidistantly on the curve C and compute the corresponding gz . To
visualize the obstacle we plot the level curves of the logarithmic of the discrete l2 norm
of g. For both shapes, we specify the Dirichet boundary condition for t ∈ [0, π ] and
the impedance boundary condition with λ = 8 for t ∈ [π, 2π ]. The numerical results of
the reconstructions of the kite and the peanut with k = 1 are shown in Figures 2 and 3,
respectively.
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Applicable Analysis 17
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Real part (left) and imaginary part (right) of uz and g
 for the partially coated kite scatterer
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Figure 1. The real part and imaginary part of uz and ωg for z = (5, 0) corresponding to k = 1, D is
the kite (a) and the peanut (b) respectively with impedance boundary condition for t ∈ [π, 2π ] with
λ = 8.

Mixed condition 1% noise
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Reconstruction of the kite with cut−off: [7.5,7.5]

exact
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(a) (b)

Figure 2. Reconstruction of a kite with mixed boundary condition with 1% noise. Dirichet boundary
condition is given for t ∈ [0, π ] and the impedance boundary condition with λ = 8 for t ∈ [π, 2π ].
The dotted curve that approximates the boundary in the Figure on the right is one of the level curves.
To view a colour version of this figure please see the online version of the article.

4.2. Reconstruction of the surface impedance λ

Having obtained the boundary of the cavity using the linear sampling method, we now want
to determine the surface impedance λ.

We first consider the case of a totally coated i.e. with impedance boundary condition
on the whole of ∂D and ∂DD = ∅, assuming that the boundary is known exactly scatterer.
Again, the measurement curve C is the circle of radius 0.15 centred at the origin. In our
first example, we consider constant impedance λ = 1. We choose a circle Br centred at the
origin of radius 5, and use 64 sampling points z on Br . For each z we calculate the surface
impedance λ according to (23). The computed values of λ = 1 for different wave numbers
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18 Y. Hu et al.

Mixed condition 10% noise
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Reconstruction of the peanut with cut−off: [7.52,7.52]

exact
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Figure 3. Reconstruction of a peanut with mixed boundary condition with 10% noise. Dirichet
boundary condition is given for t ∈ [0, π ] and the impedance boundary condition with λ = 8 for
t ∈ [π, 2π ]. The dotted curve that approximates the boundary in the Figure on the right is one of the
level curves. To view a colour version of this figure please see the online version of the article.

Table 1. The reconstruction of the surface impedance λ = 1 for the kite scatterer using different
wave numbers.

Wave number Maximum Average Median

k = 1 1.0676 0.9205 0.9026
k = 2 1.0217 0.9126 0.9040
k = 4 1.0005 0.8702 0.8901

Table 2. The reconstruction of the surface impedance λ = 1 for the peanut scatterer using different
wave numbers.

Wave number Maximum Average Median

k = 1 1.0455 0.9168 0.9081
k = 2 1.0535 1.0390 1.0421
k = 4 1.0394 0.9565 0.9403

give a very good approximation to the surface impedance as shown in Table 1 for the kite
and Table 2 for the peanut.

In the next examples, we reconstruct a piecewise constant and and a function impedance
by solving (22) using the Tikhonov regularization with regularization parameter α chosen
by trial and error. We fix k = 1, take D to be the kite defined in Example 2 and z ∈ Br as
described above. The reconstructions for λ(x) given by
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Figure 4. Reconstruction of piecewise constant λ with exact data on the left and with 5% noisy data
on the right.
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Recovery of the non−constant  wiith Br=3
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exact
reconstructed with no noise
reconstructed with 5% noise

Figure 5. Reconstruction of non-constant λ: on the left for B3 and on the right for B5. To view a
colour version of this figure please see the online version of the article.

λ(x(t)) =
⎧⎨
⎩

0.2 0 ≤ t < 2
3π,

0.6 2
3π ≤ t < 4

3π,

0.2 4
3π ≤ t ≤ 2π.

(24)

is presented in Figure 4. The exact near-field data are used in Figure 4(a). To test the stability
of our inversion method, we use the noisy near-field data with δ = 5% in Figure 4(b).

Finally, we consider a function impedance given by

λ(x(t)) = 1.1 + cos(2t), t ∈ [0, 2π ] (25)

on the boundary of the kite. Using the exact near-field data and the noisy data with δ = 5%,
the reconstruction of the impedance function λ given by (25) with point z situated on
different circles Br containing D are exhibited in Figure 5.
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20 Y. Hu et al.

The above numerical examples indicate that our proposed reconstruction method pro-
vides good stable reconstructions of both the shape of cavity and the surface impedance
function in an efficient way. The drawback is that it requires a lot of measurements. More
analysis is need to understand the integral equation (22) and also more numerical tests are
needed for the case of mixed boundary conditions with function impedance λ.
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