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NONDESTRUCTIVE TESTING OF THE DELAMINATED
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Abstract. We consider the problem of detecting whether two materials that should be in contact
have separated or delaminated. The goal is to find an acoustic technique to detect the delamination.
We model the delamination as a thin opening between two materials of different acoustic properties,
and using asymptotic techniques we derive an asymptotic model where the delaminated region is
replaced by jump conditions on the acoustic field and flux. The asymptotic model has potential
singularities due to the edges of the delaminated region, and we show that the forward problem is
well posed for a large class of possible delaminations. We then design a special linear sampling method
(LSM) for detecting the shape of the delamination assuming that the background or undamaged state
is known. Finally, we show by numerical experiments that our LSM can indeed determine the shape
of delaminated regions.
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method, asymptotic methods
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1. Introduction. Delamination of two materials occurs when one material be-
comes partially detached from the other. This occurs in composite structures [11],
concrete [30], and other engineering applications (e.g., [31, 22]). In this paper we
will develop an inverse scattering approach to the detection of delamination using
acoustic waves. We consider two materials that should have a coincident boundary
(in the undamaged or background state), and we wish to detect whether there is a
part of the common boundary where the two materials have separated. In particular,
we want to determine the size and position of the delamination.

More precisely, we denote by Ω ⊂ Rm, m = 2, 3, the support of the inhomogeneity
to be tested, which, in the absence of delamination, is composed of two different
materials adjacent to one another with constitutive material properties µ+, n+ and
µ−, n−. We denote their bounded support by Ω− and Ω+, respectively, and the
shared interface by Γ := ∂Ω− (i.e., Ω = Ω− ∪ Ω+). Both the outer boundary ∂Ω+

of the domain Ω+ and the boundary ∂Ω− of the simply connected domain Ω− are
assumed to be piecewise smooth, unless mentioned otherwise, and ν denotes the unit
normal always oriented outward from the region bounded by the curve. For the sake
of simplicity, we let Ωext := Rm \Ω. Furthermore, we assume that along a part of the
interface, denoted here by Γ0 ⊂ Γ, these two materials have detached (delaminated),
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NONDESTRUCTIVE TESTING OF DELAMINATION 2307

Fig. 1. Layered media with a thin delamination at the interface of two layers Ω− and Ω+. The
opening Ω0, with coefficients µ0, n0, is shown as the white region.

and we model this fact with the appearance of an opening with support Ω0 and
material properties µ0, n0 (see Figure 1). Note that Γ0 = Ω0 ∩ Γ. The material
properties (possibly complex valued) in each of the domains are assumed to be smooth,
i.e., µ+, n+ ∈ C1(Ω+), µ−, n− ∈ C1(Ω−), and µ0, n0 ∈ C1(Ω0) (however, note that
across the interfaces there are discontinuities in the material properties).

Assuming now that the incident field and the other fields in the problem are time
harmonic (i.e., the time dependent incident field is of the form <(ui(x)eiωt), where
ω is the angular frequency), the total field uext = us + ui in Ωext, where us is the
scattered field, and the fields u+, u−, and U inside Ω+, Ω−, and Ω0, respectively,
satisfy

∆uext + k2uext = 0 in Ωext,(1.1)

∇ ·
(

1

µ+
∇u+

)
+ k2n+u

+ = 0 in Ω+,(1.2)

∇ ·
(

1

µ−
∇u−

)
+ k2n−u

− = 0 in Ω−,(1.3)

∇ ·
(

1

µ0
∇U

)
+ k2n0U = 0 in Ω0.(1.4)

Here the wave number k = ω/cext, with cext denoting the sound speed of the homoge-
neous background. Across the interfaces the fields on either side and their conormal
derivatives are continuous, i.e.,

uext = u+ and
∂uext

∂ν
=

1

µ+

∂u+

∂ν
on Γ1,(1.5)

u+ = u− and
1

µ+

∂u+

∂ν
=

1

µ−

∂u−

∂ν
on Γ\Γ0,(1.6)

U = u+ and
1

µ0

∂U

∂ν
=

1

µ+

∂u+

∂ν
on Γ+,(1.7)

U = u− and
1

µ0

∂U

∂ν
=

1

µ−

∂u−

∂ν
on Γ−.(1.8)
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2308 F. CAKONI, I. DE TERESA, H. HADDAR, AND P. MONK

Of course, the scattered field us satisfies the Sommerfeld radiation condition

(1.9) lim
r→∞

r
m−1

2

(
∂us

∂r
− ikus

)
= 0

uniformly in x̂ = x/|x|, where x ∈ Rm and r = |x|. In this paper we consider plane
waves as incident fields which are given by ui := eikx·d, where the unit vector d is
the incident direction. Instead of plane waves, it is also possible to consider incident
waves due to point sources located outside Ω, in which case the obvious modifications
need to be made in the formulation of the problem.

The goal of this study is to propose and analyze a linear sampling method (LSM)
type scheme for detecting the delaminated region using remote measurements of acous-
tic waves scattered by the structure. In practice, the thickness of the opening is much
smaller than both the interrogating wave length in free space, λ = 2π

k , and the thick-
ness of the layers of background material. This introduces an essential computational
difficulty in the numerical solution of the forward problem, as well as in the solution of
the corresponding inverse problem. In the following section we take advantage of the
small scale of the thickness, and using an asymptotic method from [7, 29], we derive
an approximate model of the delaminated structure where the opening Ω0 is replaced
by new jump relations for u+ and u− across the delaminated part Γ0 that account for
the presence of the opening. This is undertaken in section 2 using formal asymptotic
methods. Before analyzing the model further, we then demonstrate numerically that
the asymptotic model correctly predicts the acoustic field and far field pattern of the
scattered field for a particular model scatterer incorporating a delamination of small
positive maximum width.

Although there has been considerable work on the asymptotics of scattering from
thin films (see, for example, [5, 2, 3, 4, 6, 24, 20, 7, 29]), the novelty of our reduced
problem is that the delamination covers only a portion of the interface. The thickness
of the delamination vanishes at its boundary, and this introduces potential singulari-
ties into the asymptotic model. Therefore in section 3 we analyze the forward reduced
problem using an appropriate variational formulation and show that under reasonable
conditions on the constitutive parameters and on the shape of the delamination, the
forward asymptotic model has a solution (indeed, it is this variational scheme that
was used to generate the finite element solution used in section 2). Of course, a thor-
ough understanding of the forward model is also needed in our analysis of the inverse
problem.

The inverse problem being studied here is precisely formulated in section 4. We
assume that the background or undamaged state is known, and then seek to deter-
mine the delaminated region Γ0 using remote (far field) acoustic measurements. In
preparation for the analysis of our scheme and to allow a simple calculation of the
right-hand side of the far field equation, we then prove a new mixed reciprocity result
for layered media. Next in section 4.2 we give details of the LSM: in particular, we
seek to determine whether small artificial test arcs on the interface are within the
delamination or in the undamaged region. This requires a suitable testing function
for the LSM adapted to the delamination problem. We then prove the usual theorem
for the LSM, suggesting that an approximate solution of the far field equation can be
used as an indicator function for the delamination.

Finally, in section 5 we test the inversion scheme on synthetic data for a special
choice of the testing function from section 4.2. In particular, we show that our LSM
can detect delamination even in the presence of noise on the data, and that multiple
delaminated regions can be detected.
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f
+

δ (s)

 
�

(s)
-

f- (s)
0

+

-

δ (s)ν

(s)ν

 
�

(s)
-

+
 
�

(s)

Fig. 2. Zoom of the thin delamination Ω0, and the parametrization of the boundaries Γ−
and Γ+. Here δ scales the width of the delamination and is assumed small compared to other
characteristic dimensions of the problem.

2. An approximate asymptotic model. In this section we assumem = 2 and,
focusing our attention on a neighborhood of the opening Ω0, use formal asymptotic
analysis to derive an approximate model that takes into account the thin opening Ω0.
To this end, we start by assuming that the portion Γ0 of the boundary can be written
in the form

Γ0 := {χΓ(s), s ∈ [0, L]},

where χΓ ∈ C1[0, L] is the counterclockwise arc-length parametrization of Γ0. If
the curve Γ0 is regular and c(s) denotes its curvature at χΓ(s), then 0 ≤ cm :=
max{|c(s)| : s ∈ [0, L]} is finite. Hence, in the neighborhood of Γ0, one can define
the curvilinear coordinates (s, η) ∈ [0, L]× (− 1

cm
, 1
cm

) by

x = χΓ(s) + ην(s),

where we recall that ν is the unit normal vector on Γ0 oriented outward from Ω−
(and taking 1

cm
= ∞ if cm = 0). Therefore, if the curvature of Γ0 is small enough,

the outer and inner boundaries of Ω0, denoted here by Γ+ and Γ−, can be written in
this coordinate system as

Γ+ =
{
χΓ+(s) := χΓ(s) + δf+(s)ν(s), s ∈ [0, L]

}
and

Γ− =
{
χΓ−(s) := χΓ(s)− δf−(s)ν(s), s ∈ [0, L]

}
.

Note that the function δ(f+ + f−)(s) defined on Γ0 describes the thickness of the
delamination. Here δ is a small parameter (compared to both the wave length and
the size of the domains involved), and maxs∈[0,L] f

±(s) = 1 (see Figure 2).
In an open neighborhood of Ω0, we can now express the fields U , u−, and u+

in terms of the curvilinear variables (s, η). Ignoring small neighborhoods of the tip
points s = 0 and s = L, since here Ω0 plays the role of a boundary layer, to transfer
the small parameter δ from the geometry to the expression of the fields, we make a
stretching change of variables inside Ω0 defined by ξ = η

δ . Hence, ξ = η
δ and s are

now the new coordinates inside Ω0. Next, following [7] and [29], we formally make
the following ansatz for the fields U and u± in an open neighborhood of Ω0:

(2.1) U(s, ξ) =

∞∑
j=0

δjUj(s, ξ)
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2310 F. CAKONI, I. DE TERESA, H. HADDAR, AND P. MONK

and

(2.2) u±(s, η) =

∞∑
j=0

δju±j (s, η),

where neither u±j nor Uj depends on δ any longer. Furthermore, we expand each of

the terms u±j (s, η) in a power series with respect to the normal direction coordinate
η around zero, i.e.,

u±j (s, η) = u±j (s, 0) + η
∂

∂η
u±j (s, 0) +

η2

2

∂2

∂η2
u±j (s, 0) + · · · ,

and after plugging in (2.2) we finally obtain the following expression for u±(s, η):

(2.3) u±(s, η) =

∞∑
j=0

∞∑
k=0

δj
ηk

k!

∂k

∂ηk
u±j (s, 0).

Now based on the ansatz (2.1) and (2.3), and using the equations along with the
transmission conditions, we can formally obtain an approximate model for the field
in the opening Ω0. For detailed calculations we refer the reader to [19] (see also [29]),
and in the following we simply sketch the steps that lead to our approximate model.

2.1. The approximate transmission conditions. First we consider the ex-
pressions (2.1) and (2.3), which we substitute in (1.6), (1.7), and (1.8). To this end,
starting with the Dirichlet part of the transmission conditions on Γ±, we can write

U(s,±f±) =

∞∑
j

δjUj(s,±f±)

and

u±(s,±δf±) =

∞∑
j=0

δj
j∑

k=0

(±1)j−k(f±)j−k

(j − k)!

∂j−k

∂ηj−k
u±k (s, 0).

Then the Dirichlet part of the transmission condition can be directly computed by
equating terms with the same powers of δ. Doing so leads to

(2.4) Uj(s,±f±) =

j∑
k=0

(±1)j−k(f±)j−k

j − k!

∂j−k

∂ηj−k
u±k (s, 0) for all j = 0, 1, 2, . . . .

Next we deal with the Neumann part of the transmission conditions on Γ±. Unlike
the Dirichlet part, the Neumann part of the transmission conditions is more delicate,
because in order to compute the conormal derivatives at Γ±, one has to take into
account the expression in curvilinear coordinates of the normal vectors to those curves.
To this end, as discussed in [7], the normal vectors ν± on Γ± have the following
expressions:

ν± =
1

|τ±|

(
(1± δf±)ν ∓ δ df

±

ds
τ

)
,

where ν and τ are the outer unit normal vector and the unit tangential vector defined
on Γ0, respectively, whereas the tangent vectors τ±(s) := d

dsχΓ±(s) to Γ± are not
unit vectors. Next, in curvilinear coordinates the gradient operator takes the form

∇u(x) =
1

1 + ηc

∂u

∂s
τ +

∂u

∂η
ν,
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NONDESTRUCTIVE TESTING OF DELAMINATION 2311

where c := c(s) denotes the curvature function of Γ0. Thus we now have all of the
ingredients needed to compute the Neumann part of the transmission conditions, and
after straightforward but long calculations [19], the Neumann transmission conditions

ν± · ∇u±|Γ± = ν± · ∇U |Γ±

imply the following expression:

± df±

ds

(
1

µ0

∂Uj−1

∂s
(s,±f±)− 1

µ±

j−1∑
k=0

(±1)j−k−1(f±)j−k−1

(j − k − 1)!

∂j−ku±k
∂ηj−k−1∂s

(s, 0)

)

=

(
1

µ0

∂Uj+1

∂ξ
(s,±f±)− 1

µ±

j∑
k=0

(±1)j−k(f±)j−k

(j − k)!

∂j−k+1u±k
∂ηj−k+1

(s, 0)

)
(2.5)

± 2f±c

(
1

µ0

∂Uj
∂ξ

(s,±f±)− 1

µ±

j−1∑
k=0

(±1)j−k−1(f±)j−k−1

(j − k − 1)!

∂j−ku±k
∂ηj−k

(s, 0)

)

+ c2(f±)2

(
1

µ0

∂Uj−1

∂ξ
(s,±f±)− 1

µ±

j−2∑
k=0

(±1)j−k−2(f±)j−k−2

(j − k − 2)!

∂j−k−1u±k
∂ηj−k−1

(s, 0)

)

for j = −1, 0, 1, 2, . . . , for all s ∈ [0, L], and with the convention that Ul = 0 and
ul = 0 for l < 0.

Next, we consider the partial differential equation satisfied by Uj . To this end, we
write the differential operators in curvilinear coordinates and obtain

∇ ·
(

1

µ
∇w
)

=
1

(1 + ηc)

∂

∂s

(
1

µ

1

(1 + ηc)

∂w

∂s

)
+

1

(1 + ηc)

∂

∂η

(
(1 + ηc)

µ

∂w

∂η

)
.

Therefore, the equation satisfied by the field U inside Ω0 in the new curvilinear coor-
dinates is given by

1

(1 + δξc)

∂

∂s

(
1

µ

1

(1 + δξc)

∂U

∂s

)
+

1

δ

1

(1 + δξc)

∂

∂ξ

(
(1 + δξc)

δµ

∂U

∂ξ

)
+ k2n0U = 0.

Now substituting the ansatz (2.1) and collecting the terms corresponding to the same
powers of δ, we obtain

∂

∂ξ

(
1

µ0

∂

∂ξ

)
Uj +

(
3ξc

∂

∂ξ

(
1

µ0

∂

∂ξ

)
+

c

µ0

∂

∂ξ

)
Uj−1

+

(
∂

∂s

(
1

µ0

∂

∂s

)
+ 3ξ2c2

∂

∂ξ

(
1

µ0

∂

∂ξ

)
+

2c2ξ

µo

∂

∂ξ
+ k2n0

)
Uj−2(2.6)

+

(
ξc
∂

∂s

(
1

µ0

∂

∂s

)
+ ξ3c3

∂

∂ξ

(
1

µ0

∂

∂ξ

)
+
c3ξ2

µo

∂

∂ξ
− ξc′

µ0

∂

∂s
+ 3ξck2n0

)
Uj−3

+ 3ξ2c2k2n0Uj−4 + ξ3c3k2n0Uj−5 = 0

for j = 0, 1, 2, . . . , where again c := c(s) is the curvature of Γ0 under the convention
that Ul = 0 for negative l.

The recursive relations for the transmission conditions (2.4) and (2.5) and the
partial differential equation (2.6) of the three lowest order terms U0, U1, U2 allow us
to derive relations between the jumps and mean values of the outer fields u0 and
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u1 and their conormal derivatives across Γ0. In the following we summarize these
relations (we refer the reader to [19] and [29] for details):

[u0] = 0,[
1

µ

∂u0

∂ν

]
= 0,(2.7)

[u1] = 2 〈f(µ0 − µ)〉
〈

1

µ

∂u0

∂ν

〉
,[

1

µ

∂u1

∂ν

]
= 2

(
∂

∂s

(〈
f

(
1

µ
− 1

µ0

)〉
∂

∂s

)
+ k2 〈f (n− n0)〉

)
〈u0〉 .

Here [ui] := u+
i (s, 0) − u−i (s, 0) and 〈ui〉 := (u+

i (s, 0) + u−i (s, 0))/2, i = 0, 1, are the
pointwise jump and average values of the outer fields on Γ0. Analogously we use the
symbols [ 1

µ
∂ui
∂ν ] and 〈 1

µ
∂ui
∂ν 〉 for the jump and average values of the conormal derivative

on Γ0, and similar definitions for the average values 〈f (n− n0)〉, 〈f( 1
µ −

1
µ0

)〉, and

〈f(µ0 − µ)〉. Therefore, noting that u± = u±0 + δu±1 + O(δ2), after dropping the
O(δ2)-terms, we finally obtain the approximate transmission conditions (ATCs) of
the second order,

[u] = α

〈
1

µ

∂u

∂ν

〉
on Γ0,(2.8) [

1

µ

∂u

∂ν

]
=

(
− ∂

∂s
〈βf〉 ∂

∂s
+ γ

)
〈u〉 on Γ0,(2.9)

where α = 2δ 〈f(µ0 − µ)〉, β± = 2δ( 1
µ0
− 1

µ± ), and γ = 2δk2 〈f (n− n0)〉.
It is worth noting that all three coefficients involved in the expression of the ATCs

depend on the thickness and the shape of the defect Ω0, as well as on the contrasts
between material properties of the two delaminated layers Ω± and the original thin
delamination Ω0.

Remark 2.1. We remark that our asymptotic expressions, along with the deriva-
tion of the ATCs, are merely formal. Although not needed to write the final asymp-
totic model, in our derivation process we have used that the functions f± are regular
at the end points of Γ0, meaning in particular that f±(0) = f±(L) = 0. In the case
of regular f±, a rigorous justification of the asymptotic model can be done following
the approach in [21, 20] for periodic interfaces with constant width.

2.2. Formulation of the approximate model. We can now replace the orig-
inal problem (1.1)–(1.4), (1.5)–(1.8), and (1.9) by an approximate problem, here re-
ferred to as the crack problem, where the opening Ω0 is replaced by the portion Γ0 of
Γ where the fields satisfy the jump conditions derived above. In an abuse of notation,
from now on u± will refer to the solution of the approximate problem. We define then
the forward approximate scattering problem (i.e., the crack problem), which reads
as follows: given the plane wave incident field ui(x) := eikx·d, find the total fields
uext = us + ui, u+, and u− satisfying

∆uext + k2uext = 0 in Ωext,(2.10)

∇ ·
(

1

µ+
∇u+

)
+ k2n+u

+ = 0 in Ω+,(2.11)

∇ ·
(

1

µ−
∇u−

)
+ k2n−u

− = 0 in Ω−(2.12)
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Fig. 3. The configuration of the crack problem.

and

uext = u+ and
∂uext

∂ν
=

1

µ+

∂u+

∂ν
on Γ1,(2.13)

[u] = 0 and

[
1

µ

∂u

∂ν

]
= 0 on Γ\Γ0,(2.14)

[u] = α

〈
1

µ

∂u

∂ν

〉
and

[
1

µ

∂u

∂ν

]
=

(
− ∂

∂s
〈βf〉 ∂

∂s
+ γ

)
〈u〉 on Γ0,(2.15)

along with the Sommerfeld radiation condition (1.9) for the scattered field us (see
Figure 3), where we recall [w] = w+ − w− and 〈w〉 = (w+ + w−)/2, and

(2.16) α = 2δ 〈f(µ0 − µ)〉 , β± = 2δ

(
1

µ0
− 1

µ±

)
, γ = 2δk2 〈f (n− n0)〉 .

We remark that although our formal asymptotic calculations are performed only in the
two-dimensional case, for the analysis in what follows, we will assume that the approx-
imate model (2.10)–(2.12), (2.13)–(2.15), and (1.9) is valid in the three-dimensional
case also. Of course, in the three-dimensional case, the boundary differential operator
∂/∂s 〈βf〉 ∂/∂s is replaced by the Laplace–Beltrami operator in the divergence form
∇Γ · 〈βf〉∇Γ; i.e., (2.15) is replaced by

(2.17) [u] = α

〈
1

µ

∂u

∂ν

〉
and

[
1

µ

∂u

∂ν

]
= (−∇Γ · 〈βf〉∇Γ + γ) 〈u〉 on Γ0,

where ∇Γ· and ∇Γ are the surface divergence and the surface gradient on Γ, respec-
tively.

2.3. Numerical validation of the approximate model. We end this section
with a numerical study of the convergence of the approximate crack problem to the
original problem as δ → 0 in the two-dimensional case. Again ignoring the effect of
the end points of Γ0 on the asymptotic expansions, heuristically it is expected that
the order of convergence is δ2. To validate the ATCs, we compare the solution of the
scattering problem by a finite element method based on directly meshing the opening
Ω0 (i.e., solving (1.1)–(1.4), (1.5)–(1.8), and (1.9) by a finite element method) to the
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Fig. 4. The configuration of the delaminated structure used in the numerical experiments.
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(a) (b)

Fig. 5. Panel (a) shows the H1 relative error of total fields resulting from different incident
directions, whereas panel (b) shows the H1 relative error for different values of δ. The approximated
rate of convergence is O(δ1.7).

solution of the crack problem (i.e., solving (2.10)–(2.12), (2.13)–(2.15), and (1.9) by
a finite element method based on the variational problem (3.10)). Both problems are
solved using a finite element method code where the unbounded domain is truncated
and the exact boundary condition in terms of the Dirichlet-to-Neumann operator
(which is explained in more detail in the following section) is imposed on a circular
artificial boundary.

For our numerical example we consider a circular inhomogeneity of radius one
with an opening Ω0 given by (see Figure 4)

f−(s) = 0, f+(s) := −l−2(s+ l)(s− l) for s ∈ (−l, l), with l = 0.2π,

on the interface r = 1. The material properties are chosen to be n− = 1, µ− = 1 in
Ω−, n+ = 1, µ+ = 1 in Ω+, n0 = 0.2, µ0 = 0.9 in Ω0, and the wave number k = 3.

Using the above parameters, our first experiment uses δ = 0.04λ (where λ = 2π/k
is the wave length) and different incident directions d = (cos(θ), sin(θ)), in Figure 5(a)
we plot the H1 relative error

e(d, δ) :=
‖uext

δ − uext‖H1(BR\Ω)

‖uext‖H1(BR\Ω)

,

where uext
δ and uext correspond to the exact scattering problem (1.1)–(1.4), (1.5)–

(1.8), (1.9) and to the approximate scattering problem (2.10)–(2.12), (2.13)–(2.15),

D
ow

nl
oa

de
d 

05
/2

9/
19

 to
 1

65
.2

30
.2

24
.1

62
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NONDESTRUCTIVE TESTING OF DELAMINATION 2315
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Fig. 6. Panel (a) shows the plot of the absolute value of the far field for both models for δ = 0.05.
Panel (b) shows the far field L2 relative error e∞(d, δ) for different values of δ. The approximated
rate of convergence is O(δ1).

(1.9), respectively, and BR is a large ball of radius R > 0 containing Ω = Ω+∪Ω−. We
observe that the maximum error is attained for the incident direction d = (1, 0), i.e.,
for the incident plane wave ui(x, y) = eikx, which hits the opening Ω0 in the middle in
a perpendicular direction. Figure 5(b) shows the H1 relative error e(d, δ) as a function
of the small parameter δ corresponding to the incident direction d = (1, 0). The plot
shows that the numerical convergence rate is close to O(δ1.7), which approximately
corresponds to the expected theoretical rate of convergence O(δ2) for the second order
ATC model.

Since for the solution of the inverse problem we use far field data, as defined in
section 4, in Figure 6 we show numerical results where we compare the far fields of
the exact model and the approximate model for the same shape as above. Figure
6(a) shows the absolute value of the far fields u∞δ (·, d) and u∞(·, d) corresponding to
the scattered waves for the ATC model and the exact model, respectively, again for
d = (1, 0). In Figure 6(b) we show the relative L2 error of these far fields,

e∞(d, δ) :=
‖u∞δ − u∞‖L2(S1)

‖u∞‖L2(S1)
,

for different values of δ and d = (1, 0). The plot shows that the numerical convergence
rate of the far fields is approximately O(δ1).

3. The well-posedness of the approximate model. Now we turn our atten-
tion to the study of the well-posedness of the approximate crack problem (2.10)–(2.12),
(2.13)–(2.15), and (1.9). Although our formal asymptotic calculations are performed
only in the two-dimensional case, for the analysis we shall assume that this approx-
imate model is also valid in the three-dimensional case. To study the problem, we
employ a variational method which also provides the analytical framework for a finite
element method to numerically compute the solution. The first step is to formulate
the problem in a bounded domain, and to this end we introduce a large ball BR of
radius R > 0 containing Ω and let SR denote the boundary of BR. The exterior
Dirichlet-to-Neumann operator Tk : H1/2(SR)→ H−1/2(SR) is defined by

Tk : α 7→ ∂v

∂ν
on SR,
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2316 F. CAKONI, I. DE TERESA, H. HADDAR, AND P. MONK

where v ∈ H1
loc(Rm \BR) solves

∆v + k2v = 0 in Rm \BR,
v = α on SR,

lim
r→∞

r
m−1

2

(
∂us

∂r
− ikus

)
= 0.

It is well known that the exterior Dirichlet-to-Neumann operator Tk : H1/2(SR) →
H−1/2(SR) satisfies (see, e.g., [14])

(3.1) =
(∫

SR

(Tku)uds

)
≥ 0 and −<

(∫
SR

(Tku)uds

)
≥ 0.

It is standard to show (see, e.g., [13] and [14]) that equations (2.10)–(2.12), (2.13)–
(2.15), and (1.9) are equivalent to the problem of finding uext, u+, u− satisfying

∆uext + k2uext = 0 in BR \ Ω,(3.2)

∇ ·
(

1

µ+
∇u+

)
+ k2n+u

+ = 0 in Ω+,(3.3)

∇ ·
(

1

µ−
∇u−

)
+ k2n−u

− = 0 in Ω−,(3.4)

∂(uext − ui)
∂ν

= Tk(uext − ui) on SR,(3.5)

uext = u+ and
∂uext

∂ν
=

1

µ+

∂u+

∂ν
on Γ1,(3.6)

[u] = 0 and

[
1

µ

∂u

∂ν

]
= 0 on Γ\Γ0,(3.7)

[u] = α

〈
1

µ

∂u

∂ν

〉
and

[
1

µ

∂u

∂ν

]
= (−∇Γ · 〈βf〉∇Γ + γ) 〈u〉 on Γ0.(3.8)

In R2 the boundary differential operator simplifies to

∇Γ · 〈βf〉∇Γw =
∂

∂s
〈βf〉 ∂

∂s
w.

We recall that Ω = Ω+ ∪ Ω− and that the coefficients α, 〈βf〉, and γ, which are
bounded functions defined on Γ0, are given by (2.16). To study the well-posedness
of the above problem, we notice that while the energy space H1 suffices to rigorously
define the solution of the differential equations in Ω± and BR\Ω, it is not enough to
define the boundary differential operator on Γ0 that appears in (3.8). To handle the
boundary differential operator on Γ0, we define the space

(3.9) H :=
{
u ∈ H1(BR\Γ0) such that

√
f±∇Γ 〈u〉 ∈ L2(Γ0)

}
,

endowed with the norm

‖u‖2H = ‖u‖2
H1(BR\Γ0)

+
∥∥∥√f+∇Γ 〈u〉

∥∥∥2

L2(Γ0)
+
∥∥∥√f−∇Γ 〈u〉

∥∥∥2

L2(Γ0)
.

Obviously H is a Hilbert space since the weights f± ∈ L∞(Γ0) are nonnegative (note
that f± = 0 at the boundary of Γ0 on Γ). Now, multiplying (3.2)–(3.4) with v ∈ H,
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integrating by parts, and using the continuity of transmission conditions across Γ\Γ0,
the boundary condition on SR, and the approximate transmission condition on Γ0, we
arrive at the following equivalent variational formulation of (3.2)–(3.8): find u ∈ H
such that

(3.10) A(u, v) = L(v) for all v ∈ H,

where

A(u, v) :=

∫
BR

1

µ
∇u · ∇v − k2nuv dx+

∫
Γ0

〈βf〉∇Γ 〈u〉∇Γ〈v〉ds

+

∫
Γ0

γ 〈u〉 〈v〉 ds+

∫
Γ0

1

α
[u] [v] ds−

∫
SR

Tkuv ds(3.11)

and

(3.12) L(v) = −
∫
SR

(
Tku

iv − ∂ui

∂ν
v

)
ds.

Here u|Ω+ = u+, u|Ω− = u−, and u|BR\Ω = uext, and

µ := 1, n := 1 in BR \ Ω, µ := µ+, n := n+ in Ω+,(3.13)

µ := µ−, n := n− in Ω−.

We decompose the bounded sesquilinear form A : H×H → C defined by (3.17) as

(3.14) A(u, v) = A0(u, v) +B(u, v),

where

A0(u, v) :=

∫
BR

1

µ
∇u · ∇v + uv dx+

∫
Γ0

〈βf〉∇Γ 〈u〉∇Γ〈v〉 ds−
∫
SR

Tkuvds

and

B(u, v) := −
∫
BR

(k2n+ 1)uv dx+

∫
Γ0

γ 〈u〉 〈v〉 ds+

∫
Γ0

1

α
[u] [v] ds.

Let A0 : H → H and B : H → H be the linear operators defined from the sesquilinear
forms A0(·, ·) and B(·, ·) by means of the Riesz representation theorem:

(A0u, v)H = A0(u, v) and (Bu, v)H = B(u, v) for all u, v ∈ H.

At this point let us assume that there exist constants ε1 > 0 and ε2 > 0 such that
<( 1

µ ) ≥ ε1 and <( 1
µ0
− 1

µ± ) ≥ ε2 (which implies that <(β±) ≥ 2δε2). Then we have
that

< (A0(u, u)) =

∫
BR

(
<
(

1

µ

)
|∇u|2 + |u|2

)
dx+

∫
Γ0

〈<(β)f〉 |∇Γ 〈u〉|2 ds

−<
(∫

SR

(Tku)u ds

)
(3.15)

≥ min(ε1, 1)‖u‖2H1(Ω) + δε2

∥∥∥√f+∇Γ 〈u〉
∥∥∥2

L2(Γ0)

+ δε2

∥∥∥√f−∇Γ 〈u〉
∥∥∥2

L2(Γ0)
≥ C‖u‖2H
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2318 F. CAKONI, I. DE TERESA, H. HADDAR, AND P. MONK

for some positive constant C > 0, which proves that A0(·, ·) is coercive. The bounded-
ness of A0(·, ·) is obvious, given the assumptions on the coefficients and the fact that
Tk is bounded. Thus, A0 : H → H is an invertible operator with bounded inverse.

Due to the fact that α := 2δ 〈f(µ0 − µ)〉 is zero at the boundary of Γ0 in Γ, the
operator B is not bounded in general. We need to impose some restriction on the
rate at which f± approaches zero at the boundary of Γ0. Indeed, we can prove the
following result.

Lemma 3.1. Assume 1/α ∈ Lt(Γ0) for t = 1 + ε in R2 and t = 7/4 + ε in R3 for
arbitrarily small ε > 0. Then B : H → H is a compact bounded linear operator.

Proof. We check all three terms of the operator B, i.e.,

(B1u, v)H = −
∫
BR

(k2n+ 1)uv dx, (B2u, v)H =

∫
Γ0

γ 〈u〉 〈v〉 ds,

and (B3u, v)H =

∫
Γ0

1

α
[u] [v] ds.

Noting that n ∈ L∞(BR), the compactness of B1 follows from the fact that H1(BR)
(and consequently H) is compactly embedded in L2(BR) and that

‖B1u‖H = sup
‖v‖H=1

∣∣∣∣−∫
BR

(k2n+ 1)uvdx

∣∣∣∣ ≤ C‖u‖L2(BR).

Next, since γ ∈ L∞(Γ0), we have that

‖B2u‖H = sup
‖v‖H=1

∣∣∣∣∫
Γ0

γ 〈u〉 〈v〉 ds

∣∣∣∣ ≤ C sup
‖v‖H=1

‖ 〈u〉 ‖L2(Γ0)‖ 〈v〉 ‖L2(Γ0)

≤ C sup
‖v‖H=1

‖ 〈u〉 ‖L2(Γ)‖ 〈v〉 ‖H1/2(Γ)

≤ C sup
‖v‖H=1

‖ 〈u〉 ‖L2(Γ)‖v‖H1(BR) ≤ C‖ 〈u〉 ‖L2(Γ)

for some positive constant C > 0, where we have used the continuity of the trace
operator from H1(BR) to H1/2(Γ). Now the compactness of B2 follows from the
boundedness of the trace operator and the compact embedding of H1/2(Γ) into L2(Γ).

Due to the fact that α := 2δ 〈f(µ0 − µ)〉 is zero at the boundary of Γ0 in Γ,
the analysis of B3 is more delicate, and we need to appeal to Rellich–Kondrachov
embedding theorems for Wm,p spaces (see, e.g., [1]). To this end, we first recall that
from Theorem 5.3 of [1], we have that for a bounded domain O with C1-boundary
∂O, the trace operator γ : H1(O)→ Lq(∂O) is a continuous embedding if 2 ≤ q <∞
for O ⊂ R2, and 2 ≤ q < 4 for O ⊂ R3. Hence, assuming that Γ0 is smooth and using
this embedding result, for t as in the assumptions of the lemma, we have that

‖B3u‖H = sup
‖v‖H=1

∣∣∣∣∫
Γ0

1

α
[u][v]ds

∣∣∣∣ ≤ sup
‖v‖H=1

∥∥∥∥ 1

α

∥∥∥∥
Lt(Γ0)

‖[v]‖Lp(Γ0)‖[u]‖Lq(Γ0)

≤ C sup
‖v‖H=1

∥∥∥∥ 1

α

∥∥∥∥
Lt(Γ0)

‖v‖H‖[u]‖Lq(Γ0) ≤ C
∥∥∥∥ 1

α

∥∥∥∥
Lt(Γ0)

‖[u]‖Lq(Γ0),(3.16)

where we have used that there is a constant C > 0 such that ‖[v]‖Lp(Γ0) ≤ C‖v‖H.
Note that for arbitrarily small ε, p and q are chosen arbitrarily large in R2 and
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arbitrarily close to 4 in R3, in both cases such that 1/t + 1/p + 1/q = 1. We also
remark that for u ∈ H we have that [u] = 0 in Γ \ Γ0. Now, we use the Rellich–
Kondrachov compact embedding theorem (see Theorem 6.3, Part I in [1]). Applying
this theorem for Ω = Ω0 := Γ0, which is a two-dimensional smooth manifold in
the case of R3 or a one-dimensional smooth manifold in the case of R2 (in our case
m = 1/2, p = 2, j = 0, k = n = 2 in R3 or k = n = 1 in R2), implies that the
embedding

H1/2(Γ0) ↪→ Lq(Γ0)

is compact if 1 ≤ q < 4 in R3 or if 1 ≤ q <∞ in R2. Combining this fact with the fact
that the embedding H ↪→ H1/2(Γ0) is bounded in (3.16) proves that B3 is compact,
and this concludes the proof of the lemma. We remark that here Theorem 6.3 in [1] is
adapted to the compact manifold Γ0 covered by a finite number of charts, each with
Riemannian metric bounded below and above by the Euclidean metric, by applying
standard arguments based on the partition of unity.

Lemma 3.2. Assume that 0 ≤ =(n±) ≤ =(n0) and 0 ≤ =(µ±) ≤ =(µ0). Then
the problem (3.2)–(3.8) has a unique solution.

Proof. Take ui = 0 in (3.2)–(3.8), and let u be a solution to the homogeneous
problem. Taking the imaginary part of (3.17) for v = u, we have

0 =

∫
BR

=
(

1

µ

)
|∇u| − k2=(n)|u|2 dx+

∫
Γ0

= 〈βf〉 |∇Γ 〈u〉|2 ds

+

∫
Γ0

=(γ) |〈u〉|2 ds+

∫
Γ0

=
(

1

α

)
|[u]|2 ds−=

(∫
SR

Tkuu ds

)
.(3.17)

Now, since from the assumptions on the material properties we have that =( 1
µ± ) ≤ 0,

=(n±) ≥ 0, =(〈βf〉) ≤ 0, =(α) ≥ 0, and =(γ) ≤ 0, the above equation implies

=
(∫

SR

Tkuu ds

)
≤ 0.

But (3.1) now implies that, indeed,

=
(∫

SR

Tkuu ds

)
= 0.

The definition of the Dirichlet-to-Neumann operator and Rellich’s lemma (see [13] and
[18]) now imply that u = 0 and ∂u/∂ν = 0 on SR. Finally, from Holmgren’s theorem
together with the unique continuation principle (which under our geometrical and
physical assumptions holds true; see, e.g., Theorem 17.2.6 in [26]), we can conclude
that u = 0, which proves the uniqueness of (3.2)–(3.8).

In summary, combining Lemmas 3.1 and 3.2 with the coercivity result (3.15), we
obtain the main result of this section.

Theorem 3.3 (well-posedness). In addition to the geometrical and physical as-
sumptions stated in the introduction, assume that

1. <( 1
µ ) ≥ ε1 and <( 1

µ0
− 1

µ± ) ≥ ε2 for some constants ε1 > 0 and ε2 > 0,

2. 0 ≤ =(n±) ≤ =(n0) and 0 ≤ =(µ±) ≤ =(µ0), and
3. the profiles f+ and f− go to zero at the boundary of Γ0 in Γ such that 1/α ∈
Lt(Γ0) for t = 1 + ε in R2 and t = 7/4 + ε in R3 for arbitrarily small ε > 0,
where α = 〈f(µ0 − µ)〉.
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2320 F. CAKONI, I. DE TERESA, H. HADDAR, AND P. MONK

Then the problem (3.2)–(3.8) has a unique solution u ∈ H which depends continuously
on the incident wave ui with respect to the H-norm.

Remark 3.1. Since any solution of (3.2)–(3.8) can be extended to a solution of the
scattering problem (2.10)–(2.12), (2.13)–(2.15), and (1.9), and vice versa, Theorem
(3.3) provides a well-posedness result for the approximate crack problem.

For later use we need to consider the above scattering problem in the following
form: find w ∈ H ∩H1

loc(Rm \ Γ0) such that

∇ ·
(

1

µ
∇w
)

+ k2nw = 0 in Rm \ Γ0,(3.18)

[w] = α

〈
1

µ

∂w

∂ν

〉
+ αh1 on Γ0,(3.19) [

1

µ

∂w

∂ν

]
= (−∇Γ · 〈βf〉∇Γ + γ) 〈w〉+ h2 on Γ0,(3.20)

lim
r→∞

r
m−1

2

(
∂w

∂r
− ikw

)
= 0,(3.21)

where h1 and h2 are

(3.22)


h1 :=

〈
1

µ

∂v

∂ν

〉
− 1

α
[v] ,

h2 := (−∇Γ · 〈βf〉∇Γ + γ) 〈v〉 −
[

1

µ

∂v

∂ν

]
for some v ∈ H with ∇ · ((1/µ)∇v) ∈ L2(BR \ Γ0). For later use we define the trace
space on Γ0 of function u ∈ H as

(3.23) H (Γ0) :=
{
u ∈ H1/2(Γ0) such that

√
f±∇Γu ∈ L2(Γ0)

}
,

and its dual H−1 (Γ0) with respect to the following duality pairing:

(3.24) (u, v)H(Γ0),H−1(Γ0) := (u, v)H1/2(Γ0),H̃−1/2(Γ0) +
(
f±∇Γu,∇Γv

)
L2(Γ0),L2(Γ0)

.

Here H̃1/2(Γ0) and H̃−1/2(Γ0) consist of functions in H1/2(Γ0) and H−1/2(Γ0) that
can be extended by zero in the entire Γ as H1/2 and H−1/2 functions, respectively.
They are duals of H−1/2 (Γ0) and H1/2 (Γ0), respectively. Hence h1 ∈ H−1/2(Γ0) and
h2 ∈ H−1(Γ0).

4. The inverse problem of reconstructing the delaminated part Γ0. In
this section we turn our attention to the main goal of this study, which is the recon-
struction of the delaminated portion Γ0 of the interface Γ between two materials from
measured scattering data. Our reconstruction method is a modified LSM, adapted
to our problem where we already know the interface Γ and only look for the delami-
nated part Γ0. The LSM and the factorization method have been used to reconstruct
cracks or screens with various types of boundary conditions [8, 10, 12, 27, 33] (see also
the monographs [13, 15]). Although numerically both the LSM and the factorization
method provide similar reconstruction results, the factorization method is mathe-
matically more satisfactory. Here we develop the LSM since our complicated jump
conditions modeling the delaminated part Γ0 fail to satisfy the standard assumptions
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NONDESTRUCTIVE TESTING OF DELAMINATION 2321

under which the factorization method works (see [17]). For other inversion methods
applied to similar types of inverse problems in acoustic and elasticity, we refer the
reader to [2, 3, 6].

We assume that the interrogating incident fields are plane waves given by ui(x, d) =
eikd·x, where the unit vector d is the incident direction. The corresponding scat-
tered field us(x, d), i.e., the solution of (2.10)–(2.12), (2.13)–(2.15), and (1.9) with
ui := eikd·x, satisfies (see [18] and [13])

us(x, d) = γm
eik|x|

|x|(m−1)/2
u∞(x̂, d) +O

(
1

|x|

)
, x̂ = x/|x|, |x| → ∞,

where

(4.1) γm =
eiπ/4√

8πk
if m = 2 and γm =

1

4π
if m = 3.

The function u∞(x̂, d), which is an analytic function of x̂ on the unit sphere Sm−1 :=
{x ∈ Rm, |x| = 1}, is referred to as the far field pattern of the scattered field us(x, d).

The inverse problem we consider here is to determine the delaminated portion Γ0

of the boundary Γ from a knowledge of u∞(x̂, d) for x̂ and d on the unit sphere Sm−1.
Although in applications to nondestructive testing it is possible to have measurements
all around the scatterer (i.e., for all d), we remark that the inversion algorithm that
we shall develop next can also be justified and implemented for limited aperture data
(see section 4.5 in [13]) as well as for near field data. However, the quality of the
reconstruction is likely to be poor for small apertures, which is usually the case for
qualitative methods [23]. We also remark that for many problems in nondestructive
testing, it is reasonable to assume that the background medium is known, as we know
it here, since the background corresponds to the healthy object to be tested. In the
cases when the background is not known and for simple defects, qualitative methods
could be used to determine interfaces between homogeneous regions of the background
media along with the defect (see [32] and some references therein).

4.1. A mixed reciprocity principle. We start by proving a mixed reciprocity
result in order to deal with the nonhomogeneous background. This generalizes similar
results in [23, 9, 16] (see also [4] for a similar type of calculation).

To this end we let ub(·, d) be the total field due to the background, i.e., in the
absence of the delamination Γ0, corresponding to the plain wave incident field ui(·, d).
More precisely, ub(·, d) is the unique solution in H1

loc(Rm) of

∇ ·
(

1

µ
∇ub

)
+ k2nub = 0 in Rm,

ub = usb + ui,(4.2)

lim
r→∞

r
m−1

2

(
∂usb
∂r
− ikusb

)
= 0,

where µ and n, both in L∞(Ω), are defined by (3.13). Note that the continuity of
the field and conormal derivatives across Γ1 and Γ is implicit in this formulation.
Next let Gb(·, ·) be the Green’s function associated with the background media, i.e.,
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2322 F. CAKONI, I. DE TERESA, H. HADDAR, AND P. MONK

Gb(·, z) ∈ H1
loc(Rm \ {z}) satisfying

∇ ·
(

1

µ
∇Gb(·, z)

)
+ k2nGb(·, z) = −δ(· − z) in Rm \ {z},

lim
r→∞

r
m−1

2

(
∂Gb(·, z)

∂r
− ikGb(·, z)

)
= 0,(4.3)

where again the continuity of the field and conormal derivatives across Γ1 and Γ is
understood. We denote by G∞b (·, z) ∈ L2(Sm−1) the far field pattern of the radiating
field Gb(·, z).

Theorem 4.1 (mixed reciprocity principle). The following relation holds:

G∞b (x̂, z) = γmub(z,−x̂) for all z ∈ Rm and x̂ ∈ Sm−1,

where γm is defined by (4.1).

Proof. Let us first consider z ∈ Ωext := Rm\Ω. Let Φ(·, z) denote the fundamental
solution of the Helmholtz equation ∆u+ k2u = 0 given by

(4.4) Φ(x, z) =


i

4
H

(1)
0 (k|x− z|) in R2,

1

4π

eik|x−z|

|x− z|
in R3

 .

Since Gb(·, z) − Φ(·, z) is a nonsingular radiating solution to ∆u + k2u = 0 in Ωext,
an application of Green’s second identity together with the Sommerfeld radiation
condition implies that for all x ∈ Ωext

(Gb − Φ)(x, z) =

∫
Γ1

(
(Gb − Φ)(y, z)

∂Φ

∂νy
(x, y)− Φ(x, y)

∂(Gb − Φ)

∂νy
(y, z)

)
dsy

=

∫
Γ1

(
Gb(y, z)

∂Φ

∂νy
(x, y)− Φ(x, y)

∂Gb
∂νy

(y, z)

)
dsy,(4.5)

where we have used the fact that, since z ∈ Ωext,∫
Γ1

(
Φ(y, z)

∂Φ

∂νy
(x, y)− Φ(y, z)

∂Φ

∂νy
(x, y)

)
dsy = 0.

Then, from (4.5), and using the fact that Φ∞(x̂, z) = γmu
i(z,−x̂) := γme

−ix̂·z, we
obtain for all x ∈ Ωext

G∞b (x̂, z)− γmui(z,−x̂)

= γm

∫
Γ1

(
Gb(y, z)

∂ui

∂νy
(y,−x̂)− ui(y,−x̂)

∂Gb
∂νy

(y, z)

)
dsy.(4.6)

On the other hand, the scattered field due to the background usb(·,−x̂) is also a
radiating solution of ∆u+ k2u = 0 in Ωext; hence we have that∫

Γ1

(
(Φ−Gb)(y, z)

∂usb
∂νy

(y,−x̂)− usb(y,−x̂)
∂(Φ−Gb)

∂νy
(y, z)

)
dsy = 0.
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Now the integral representation formula for usb(·,−x̂) in Ωext (see [13]) yields

usb(z,−x̂) =

∫
Γ1

(
usb(y,−x̂)

∂Φ

∂νy
(y, z)− Φ(y, z)

∂usb(y,−x̂)

∂νy

)
dsy(4.7)

=

∫
Γ1

(
usb(y,−x̂)

∂Gb
∂νy

(y, z)−Gb(y, z)
∂usb(y,−x̂)

∂νy

)
dsy.

In addition, using the transmission conditions across the interfaces Γ1 and the equa-
tions for ub and Gb(·, ·), we obtain∫

Γ1

(
ub(y,−x̂)

∂Gb
∂νy

(z, y)−Gb(z, y)
∂ub(y,−x̂)

∂νy

)
dsy

=

∫
Γ1

(
u+
b (y,−x̂)

1

µ+

∂G+
b

∂νy
(z, y)−G+

b (z, y)
1

µ+

∂u+
b (y,−x̂)

∂νy

)
dsy(4.8)

=

∫
Ω

(
ub(y,−x̂)∇ ·

(
1

µ
∇Gb

)
(z, y)−Gb(z, y)∇ ·

(
1

µ
∇ub

)
(y,−x̂)

)
dsy = 0.

Thus from (4.7) and (4.8), since ub = usb + ui, we have that

(4.9) usb(z,−x̂) =

∫
Γ1

(
Gb(z, y)

∂ui(y,−x̂)

∂νy
− ui(y,−x̂)

∂Gb
∂νy

(z, y)

)
dsy.

Finally, (4.6) provides

G∞b (x̂, z) = γmub(z,−x̂).

Next let z ∈ Ω+ ∪ Ω−. Then Gb(·, z) is a smooth radiating solution of ∆u+ k2u = 0
in Ωext, and hence Green’s representation formula implies

(4.10) Gb(x, z) =

∫
Γ1

(
Gb(y, z)

∂Φ

∂νy
(x, y)− Φk(x, y)

∂Gb
∂νy

(y, z)

)
dsy.

Evaluating the far field pattern yields

(4.11) G∞b (x̂, z) = γm

∫
Γ1

(
Gb(y, z)

∂e−ikx̂·y

∂νy
− e−ikx̂·y ∂Gb(y, z)

∂νy

)
dsy.

Moreover, since usb(·,−x̂) is also a radiating solution to the Helmholtz equation in
Ωext, we have that

(4.12) γm

∫
Γ1

(
Gb(y, z)

∂usb(y,−x̂)

∂νy
− usb(y,−x̂)

∂Gb(y, z)

∂νy

)
dsy = 0.

Hence, adding (4.11) and (4.12), recalling that ub(y,−x̂) = usb(y,−x̂) + e−ikx̂·y, and
applying Green’s second identity and the transmission conditions across Γ1 and Γ
proves that

G∞b (x̂, z) = γm

∫
Γ1

(
Gb(y, z)

∂e−ikx̂·y

∂νy
− e−ikx̂·y ∂Gb(y, z)

∂νy

)
dsy

= γm

∫
Ω+∪Ω−

(
Gb(y, z)∇ ·

(
1

µ
∇ub

)
(y,−x̂)− ub(y,−x̂)∇ ·

(
1

µ
∇Gb

)
(y, z)

)
dy

+ γm

∫
Γ

(
Gb(y, z)

[
1

µ

∂ub
∂ν(y)

]
(y,−x̂)− ub(y,−x̂)

[
1

µ

∂Gb
∂νy

]
(y, z)

)
dsy.
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Now we use the continuity of 1
µ
∂ub
∂νy

and 1
µ
∂Gb
∂νy

across Γ and the fact that ub and Gb

satisfy the same equation in (Ω+ ∪Ω−) \Bε(z), where Bε(z) is a small ball of radius
ε centered at z and included either in Ω+ or Ω−, to obtain

G∞b (x̂, z) = γm

∫
Bε(z)

(
Gb(y, z)∇ ·

(
1

µ
∇ub

)
(y,−x̂)− ub(y,−x̂)∇ ·

(
1

µ
∇Gb

)
(y, z)

)
dy.

Letting ε go to zero and using the equation for ub and the first equation in (4.3) for
x ∈ Bε(z) finally implies

G∞b (x̂, z) = γm ub(z,−x̂),

where we have used (4.7). Finally, by continuity of Gb across Γ1 and Γ, we can now
conclude that G∞b (x̂, ·) = γm ub(·,−x̂) holds everywhere in Rm.

4.2. The linear sampling method. We now propose and analyze a version of
the LSM to detect the delaminated part Γ0 on the known interface Γ. As mentioned
earlier, the data needed for our inversion scheme is the multistatic far field pattern
u∞(x̂, d), x̂, d ∈ Sm−1. This far field data allows us to define the standard far field
operator F : L2(Sm−1)→ L2(Sm−1) given by

(4.13) (Fg) (x̂) =

∫
Sm−1

u∞(x̂, d)g(d)dsd.

By linearity, Fg is the far field pattern of the scattered field us satisfying the scattering
problem (2.10)–(2.12), (2.13)–(2.15), and (1.9) with ui := vg, where vg is the so-called
Herglotz wave function defined by

(4.14) vg(x) =

∫
Sm−1

g(d)eikx·d dsd.

On the other hand, the far field pattern u∞b (x̂, d) of the scattered field due to the
background, i.e., the solution usb(·, d) of (4.2), defines the background far field operator
Fb : L2(Sm−1)→ L2(Sm−1):

(4.15) (Fbg) (x̂) =

∫
Sm−1

u∞b (x̂, d)g(d)dsd.

Note that Fbg can be computed since the undamaged configuration of the scatterer is
known a priori. Similarly, by linearity, Fbg is the far field pattern of the solution usb
with ui := vg. Also by linearity, the total field ub,g corresponding to the scattering
by the background media due to vg as incident field, i.e., the solution of (4.2) with
ui := vg, can be written as

(4.16) ub,g(x) :=

∫
Sm−1

ub(x, d)g(d) dsd.

Finally, we define the far field operator solely due to the delamination FD : L2(Sm−1)→
L2(Sm−1) which is given by

(4.17) FDg = Fg − Fbg.

Obviously FDg can be seen as the far field pattern of the scattered field due to the
defect Γ0 when the incident field is ub,g given by (4.16). From this point we assume
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that we know FDg, which we will use to develop the LSM to reconstruct Γ0. To this
end, we define the bounded linear operator H : L2(Sm−1) → H−1/2 (Γ0) ×H−1 (Γ0)
by

Hg =

(
α

1

µ

∂ub,g
∂ν

∣∣∣∣
Γ0

,Kub,g

)
,(4.18)

where K : H (Γ0) → H−1 (Γ0) corresponds to one part of the boundary data on Γ0

and is given by (see (3.22) and (3.24))

(Kφ,ψ)H(Γ0),H−1(Γ0) =

∫
Γ0

{
〈βf〉∇Γφ · ∇Γψ + γφψ

}
ds.

The conjugate-transpose operator K∗ : H (Γ0)→ H−1 (Γ0) is defined by

(K∗φ, ψ) =

∫
Γ0

{〈
βf
〉
∇Γφ · ∇Γψ + γφψ

}
ds :=

(
Kφ,ψ

)
.

Note that Hg maps ub,g to the corresponding transmission conditions given by (3.22),
since both the field ub,g and its conormal derivative are continuous on Γ0 (so the terms
in (3.22) with jumps disappear), and we simply write the average by the common value

on either side of the curve, i.e., 〈 1
µ
∂ub,g
∂ν 〉 = 1

µ±
∂u±b,g
∂ν and 〈ub,g〉 = u±b,g. We remark that

for smooth Γ0 and smooth coefficients µ± and n±, we can assume by the regularity
of the solution of the transmission problem that ub,g ∈ H, and hence its trace on Γ0

is in H (Γ0).

Lemma 4.2. The operator H : L2(Sm−1) → H−1/2 (Γ0) × H−1 (Γ0) has dense
range. Assume in addition to the assumptions of Theorem 3.3 that <(n − n0) > 0
(or, more generally, that there is no nontrivial ub,g such that Kub,g = 0); then H is
injective.

Proof. We first check the injectivity. Let g ∈ L2(Sm−1) such that Hg = 0.

Then both 1
µ
∂ub,g
∂ν |Γ0

and ub,g|Γ0
= 0. The latter follows by taking the real part

of Kub,g = 0 and the fact that <(〈βf〉) > 0 and <(γ) > 0. Then, by Holmgren’s
theorem we conclude that ub,g = 0 in a region extending on both sides of Γ0, and
by analytic continuation we obtain that ub,g ≡ 0 vanishes identically. Since ub,g is
the sum of a radiating scattering wave and the Herglotz wave function vg which is an
entire solution to the Helmholtz equation, the latter implies vg ≡ 0, yielding g = 0.
Next, to show that H has dense range, it suffices to prove that H∗ is injective, where
H∗ : H̃1/2 (Γ0)×H (Γ0) → L2(Sm−1) is the conjugate-transpose operator associated
with H. To this end, suppose that (ζ, η) in H̃1/2 (Γ0)×H (Γ0). Then

(Hg, (ζ, η)) =

(
α

µ

∂ub,g
∂ν

, ζ

)
+ (Kub,g, η) =

(
α

µ

∂ub,g
∂ν

, ζ

)
+
(
ub,g,Kη

)
=

∫
Γ0

(
α

µ

∂ub,g
∂νy

ζ + ub,gKη dsy

)
(4.19)

=

∫
Sm−1

g(x̂)

∫
Γ0

(
ζ
α

µ

∂ub(y, x̂)

∂νy
+Kηub(y, x̂)

)
dsy dsx̂

= (g,H∗ (ζ, η)) .

Thus

(4.20) H∗ (ζ, η) =

∫
Γ0

(
αµ

µ

1

µ

∂ub(y,−x̂)

∂νy
ζ + ub(y,−x̂)Kη

)
dsy.
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From the mixed reciprocity relation, Theorem 4.1, we have that H∗ (ζ, η) is the far
field pattern associated with the scattered wave

ws(x) = γ−1
m

∫
Γ0

(
ζ
αµ

µ

1

µ

∂Gb(x, y)

∂νy
+KηGb(x, y)

)
dsy,

where γm is defined as in (4.1). Moreover, since the singularity of the free space
Green’s function Gb(·, ·) is of the same order as the fundamental solution Φ(·, ·), ws
assumes the following representation formula (see, e.g., [28]):

ws(x) =

∫
Γ0

(
[ws]

1

µ

∂Gb(x, y)

∂νy
−
[

1

µ

∂ws

∂ν

]
Gb(x, y)

)
dsy,

and thus

(4.21) [ws] = γ−1
m

αµ

µ
ζ and

[
1

µ

∂ws

∂ν

]
= −γ−1

m Kη.

Therefore, if H∗(ζ, η) = 0, then by Rellich’s lemma together with the unique con-
tinuation principle and Holmgren’s theorem, ws = 0 in Rm\Γ0, so [ws] = 0 and
[ 1
µ
∂ws

∂ν ] = 0, implying that ζ = η = 0.

Next, define the bounded linear operator G : H−1/2(Γ0)×H−1(Γ0)→ L2(Sm−1)
by

G : (h1, h2) 7→ w∞,

where w∞ is the far field pattern of the corresponding radiating solution w to (3.18)–
(3.21). Notice here that the well-posedness of the problem guarantees that the oper-
ator G is well defined and bounded, since in the variational formulation the source
terms h1, h2 always define a bounded linear functional in the space H. It is clear from
the definition of H and G that we have the factorization FD = GH.

Since for our inverse problem we know the interface Γ and are looking for the
delaminated part Γ0, we define the test function as follows: for any L ⊂ Γ, given
(αL, βL) ∈ L2(L)× H̃1(L), we define

(4.22) φ∞L (x̂) := γm

∫
L

{
αL(y)ub(y,−x̂) + βL(y)

1

µ

∂ub(y,−x̂)

∂ν(y)

}
ds(y),

where x̂ = x/|x|. Then, we can prove the following.

Lemma 4.3. Let L ⊂ Γ and (αL, βL) ∈ L2(L)× H̃1(L), not simultaneously zero.
Then L ⊂ Γ0 if and only if φ∞L ∈ Range(G).

Proof. Let’s first assume that L ⊂ Γ0. Then the corresponding extensions by zero
in Γ0, (α̃L, β̃L), are in L2(Γ0)× H̃1(Γ0), and the potential

φ0(x) :=

∫
Γ0

{
α̃L(y)Gb(x, y) + β̃L(y)

1

µ

∂Gb(x, y)

∂ν(y)

}
ds(y)

belongs to H1
loc(Rm\Γ0) and satisfies

(4.23) [φ0] = β̃L,

[
1

µ

∂φ0

∂ν

]
= −α̃L on Γ0.
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Let’s now denote by SΓ0
and KΓ0

the restriction to Γ0 of the generalized single and
double layer potentials, defined by

(SΓ0
ψ)(x) :=

∫
Γ0

ψ(y)Gb(x, y)ds(y), x ∈ Γ0,

and

(KΓ0
ψ)(x) :=

∫
Γ0

ψ(y)
∂

∂ν(y)
Gb(x, y)ds(y), x ∈ Γ0.

In [13], it is shown that SΓ0
: H̃−

1
2 +s(Γ0) → H

1
2 +s(Γ0) and KΓ0

: H̃
1
2 +s(Γ0) →

H
1
2 +s(Γ0) are continuous for every −1 ≤ s ≤ 1 (here H̃r(Γ0) denotes the space of

functions that can be extended by zero to the whole Γ as functions inHr(Γ)). Since, by
the transmission conditions (4.23), we know that [ 1

µ
∂φ0

∂ν ] ∈ L2(Γ0) and [φ0] ∈ H̃1(Γ0),

together with the fact that 〈φ0〉 = −SΓ0
[ 1
µ
∂φ0

∂ν ]+KΓ0
[φ0], we have that 〈φ0〉 ∈ H1(Γ0),

and hence the potential φ0 belongs to H. Therefore, φ0 satisfies (3.18)–(3.21) with
h1 and h2 defined by (3.22) for v = −φ0 ∈ H, implying that G(h1, h2) = φ∞L . To
prove the converse, let’s suppose that L 6⊂ Γ0, but that there exists a pair (αL, βL) ∈
L2(L)× H̃1(L), not simultaneously zero, such that φ∞L ∈ Range(G). By definition of
G, there exists (h1, h2) in H−1/2(Γ0)×H(Γ0) such that φ∞L = w∞, where w satisfies
(3.18)–(3.21). Therefore, φ∞L is the far field pattern of the two potentials:

φL(x) = γ−1
m

∫
L

{
αL(y)Gb(x, y) + βL(y)

1

µ

∂Gb(x, y)

∂ν(y)

}
ds(y)

and

w(x) =

∫
Γ0

{[
1

µ

∂w

∂ν(y)

]
(y)Gb(x, y) + [w](y)

1

µ

∂Gb(x, y)

∂ν(y)

}
ds(y).

By Rellich’s lemma, unique continuation, and Holmgren’s theorem, w = φL identically
in Rm\Γ0 ∪ L. However, this is a contradiction, because given, for example, any point
x0 ∈ L\Γ0, both w and the conormal derivative 1

µ
∂w
∂νL

are continuous at x0, whereas

either φL or the conormal derivative 1
µ
∂φL
∂νL

has a jump across L at x0 (since either αL
or βL doesn’t vanish at that point).

Lemma 4.4. Assume in addition to the assumptions of Theorem 3.3 that <(n −
n0) > 0 (or, more generally, that there is no nontrivial ub,g such that Kub,g = 0).
Then FD : L2(Sm−1)→ L2(Sm−1) is injective and has dense range.

Proof. Since FD = GH, the injectivity follows from Lemma 4.2 and the fact that
the operator G is injective due to the well-posedness of (3.18)–(3.21). Next, since the
range of H is dense in H−1/2 (Γ0)×H−1 (Γ0), it suffices to show that the range of G
is dense. From Lemma 4.3, in particular we have that functions Pψ of the form

(Pψ)(x̂) :=

∫
Γ0

ψ(y)ub(y,−x̂) dy = γ−1
m

∫
Γ0

ψ(y)G∞b (x̂, y) dy

are in the range of G for all ψ ∈ L2(Γ0). The set
{
Pψ for allψ ∈ L2(Γ0)

}
is dense

in L2(Sm−1). Indeed, let us consider P : L2(Γ0) → L2(Sm−1). Its adjoint P ∗ :
L2(Sm−1)→ L2(Γ0) is given by

(P ∗g)(y) =

∫
Sm−1

g(x̂)ub(y,−x̂)dx̂ = ub,h(y),
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where h(x̂) := g(−x̂) and ub,h is given by (4.16). Now the total field due to the
background medium ub,h corresponding to the Herglotz wave function vh as incident
wave cannot be zero unless h = 0, since it is the sum of an outgoing wave (the scattered
field) and incoming wave (the incident wave). This implies that P ∗ is injective, which
finishes the proof.

Now we are ready to characterize Γ0 in terms of the behavior of the approximate
solution to the far field equation

FDg = φ∞L .

The following main theorem is a summary of all of the above results.

Theorem 4.5 (linear sampling method). Let FD : L2(Sm−1) → L2(Sm−1) be
the far field operator given by (4.17). Then the following hold:

1. For an arbitrary arc L ⊂ Γ0 and ε > 0, there exists a function gεL ∈ L2(Sm−1)
such that

‖FDgεL − φL∞‖L2(Sm−1) < ε,

and, as ε → 0, the corresponding solution ub,gεL to the background problem
(4.2) converges in H to the unique solution uL of (3.18)–(3.21) with h1 =

α
〈

1
µ
∂φ∞L
∂ν

〉
and h2 = K 〈φ∞L 〉 on Γ0.

2. For L 6⊂ Γ0 and ε > 0, every function gεL ∈ L2(Sm−1) such that

‖FDgεL − φL∞‖L2(Sm−1) < ε

is such that the corresponding solution ub,gεL to the background problem (4.2)
satisfies

lim
ε→0
‖ub,gεL‖H =∞ and lim

ε→0
‖gεL‖L2(Sm−1) =∞.

This theorem constitutes the foundation of the LSM, which we will implement in
the next section.

5. Numerical examples for the inverse problem. In this section we show
how the LSM that we have just developed can be applied numerically, and we show
its viability by some numerical examples. From the statement of Theorem 4.5, we
know that the approximate solution of the far field equation FDg̃L = φ∞L can be used
to detect the delaminated part Γ0. Unfortunately, the far field equation is ill-posed
since the far field operator FD is compact, and of course the discrete counterpart,
AgL = fL, will inherit the ill-posedness as ill-conditioning. Therefore, it has to be
solved by means of a regularization method.

Let us first discuss the construction of the discrete far field operator A and the
right-hand side fL. In all of the numerical examples that we present in this section,
the discrete counterpart of the far field operator is the matrix A ∈ C40×40 such
that Aij = u∞(x̂i, d̂j) − u∞b (x̂i, d̂j), where u∞(·, d̂j) and u∞b (·, d̂j) are the far field
pattern of the scattering problem with and without delamination, respectively, when

the incident one is uinc(x, d̂j) = eikx·d̂j . Here we take d̂j = (cos(2πj/40), sin(2πj/40))
and x̂i = (cos(2πi/40), sin(2πi/40)) for i, j = 0, 1, . . . , 39. In order to see the stability
of the reconstruction method with respect to noise, we added some random noise to
the computed far field for the approximate crack problem, so we actually consider
Ãij = Aij(1 + εξij), where {ξij} is a collection of independent random variables with
uniform distribution over the interval [−0.5, 0.5] and ε > 0 is a constant chosen so
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that the relative noise ρ := ||A−Ã||2/||A||2 attains the desired value. In each example
ρ is computed and specified.

Since fL is the discrete version of the right-hand side of (4.24) and we have
some freedom to choose the densities αL and βL, we decided to consider αL as an
approximation of δz (where δz is the Dirac delta located on z ∈ Γ) and choose βL = 0.
Then, for a given finite set of points {zj} ⊂ Γ, our discrete right-hand side simplifies
to

(fzj )k = ub(zj ,−d̂k).

Since Γ is already known, there are many other possibilities for choosing the sampling
arc L and test functions αL, βL, but we have not tried them here. Nevertheless, as
the numerical examples show, our choice gives reasonable reconstructions. In all of
the numerical examples that we present, we chose a collection of equally distributed
points along the interface Γ, {zk}64

k=1. In order to “solve” each of the 64 ill-conditioned
linear equations

Ãρgk = fzk ,

we use the well-known Tikhonov regularization method, which consists in solving the
following minimization problems instead:

gλk = argmin
g∈C40

{||Ãρg − fzk ||2 + λ||g||2},

where the regularization parameter was arbitrarily chosen as λ = 10−10. The solution
of these problems was made using the free MATLAB package regtools (see [25]).

As stated in Theorem (4.5), the value of ||gλk ||−1 is large if zk is in the crack
support Γ0, and small otherwise. Therefore, it can be used to identify the location
of Γ0. In the reconstructions that we present, we show results for four different noise
levels ρ, in three different settings (a circle with one single crack, a kite with one single
crack, and a kite with two cracks). For visualization purposes, in our reconstructions
the separation of the dotted lines Γ̃± is chosen to be proportional to Θ(zk) = ||gλk ||−1,
with the parametrization

χΓ̃±
(t) = χΓ(t)± η∗Θ(χΓ(t))ν(t),

where χΓ is the parametrization of Γ and we arbitrarily set η∗ = 0.04 as a constant that
modulates the size of Θ for pure visualization purposes. The openings of the dotted
lines Γ̃± correspond, therefore, to the predicted location of the cracks by the LSM just
developed in section 4. All the numerical experiments presented here were made for
layered obstacles with parameters n− = 4, n+ = 2, µ− = µ+ = 1, µ0 = 0.9, n0 = 0.2,
and wave number k = 3.

Numerical examples presented in Figures 7–9 indicate that our reconstruction
method provides reasonable reconstructions of Γ0 even in the presence of noise.

Conclusion. We have derived an asymptotic model for the delamination of two
materials that successfully approximates scattering from thin delaminated regions.
This model was shown to be well-posed and was then used to derive a new inverse
scattering technique based on a modified LSM that we showed can detect delamination
in model problems. We note that the asymptotic model is of independent interest and
could be the basis for applying other inversion techniques such as back-propagation
techniques or Kirchhoff migration.

A stability and resolution analysis of the inverse method has yet to be under-
taken.
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Fig. 7. Reconstruction of a single crack Γ0 in a circular interface for four levels of noise ρ.
The solid line at the circular interface is the exact location of the crack, and the opening between
the dotted lines χΓ̃±

is the predicted location of Γ0. The outer lighter colored curve is Γ1.
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Fig. 8. Reconstruction of a single crack Γ0 in a kite-shaped interface of a two-layered medium
for four levels of noise ρ. The solid line at the kite-shaped interface is the exact location of the
crack, and the opening between the dotted lines χΓ̃±

is the predicted location of Γ0. The outer

lighter colored curve is Γ1.

Our study raises the interesting theoretical question of proving convergence of the
asymptotic model as the thickness of the delamination goes to zero. It would also be
desirable to test the problem in three dimensions. Extensions to Maxwell’s equations
and elasticity are challenging, but are currently underway.
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Fig. 9. Reconstruction of two cracks Γ1
0∪Γ2

0 in a kite-shaped interface of a two-layered medium
for four levels of noise ρ. The solid line at the kite-shaped interface is the exact location of the
crack, and the opening between the dotted lines χΓ̃±

is the predicted location of Γ0. The outer

lighter colored curve is Γ1.
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