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Abstract

We consider the inverse scattering problem of determining the shape of mixed perfectly conducting-impedance
screens from a knowledge of the incident time harmonic electromagnetic plane wave and the electric far field pattern
of the scattered wave. We adapt the linear sampling method invented by Colton and Kirsch (Inverse Problems 12
(1996) 383) for the case of scattering by obstacles with nonempty interior. Numerical examples are given for mixed
screens ik,
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The inverse scattering problem we consider in this paper is to determine the shape of a scattering object
from a knowledge of the incident time harmonic electromagnetic plane wave and the electric far field
pattern of the scattered wave. In some applications the scatterer is very thin, for which the thickness is
small compared to the wavelength and other characteristic lengths. Furthermore the scatterer may be a
perfect conductor on one side and coated by a dielectric on the other side. It is then convenient to model
it by an open surface i3, called ascreen that satisfies a perfectly conducting boundary condition on
one side and an impedance boundary condition on the other side. The difficulty in solving the inverse
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scattering problem for mixed screens by using iterative methods such as the Newton [h8}letd, lies

in the amount of a priori information on the geometrical and physical properties of the scatterer needed in
order to implement the inversion scheme. Tihear sampling methadntroduced by Colton and Kirch in
1996[12] for the Helmholtz equation with Dirichlet boundary conditions and further developed for more
complicated boundary conditions and Maxwell equations (se¢&511), is very suitable to arrive at

the solution of the inverse problem for screens with mixed type boundary conditions. The linear sampling
method was first adapted to obstacles with empty interior by Colton and one of the present adéjors in
for the case of mixed cracks iR and then a modified version was used7hto reconstruct perfectly
conducting screens iR®.

The goal of this paperis to establish the validity of the linear sampling method for the solution of the three
dimensional electromagnetic inverse scattering problem for screens with mixed perfectly conducting-
impedance boundary condition. As[B] in order to establish this goal it is first necessary to establish the
well posedness of the corresponding direct problem. To our knowledge in the case of Maxwell's equation
the existing literature covers only the direct scattering problem for perfectly conducting sftggns
In particular, for screens with mixed boundary conditions the integral equation approach {5&¢ah
becomes rather complicated. In Section 2 we use a variational method in suitable Hilbert spaces to solve
the direct problem. In this section, using the idea$8)f we also establish an approximation property
of the traces of electromagnetic Herglotz pairs which is necessary for the inversion scheme given in
Section 3. To this end we investigate the trace on both the sides of the screen of functions in the solution
space of the forward scattering problem. The analysis of the linear sampling method is based on a proper
factorization of the far field operator, an a priori estimate for the solution of the forward problem in terms
of the boundary data and on the regularization theory of ill-posed equations. Finally, in Section 4, we
present some numerical examples that establish the viability of our approach.

2. The direct scattering problem

We consider the scattering of a time-harmonic electromagnetic plane wave by a very thin perfectly
conducting obstacle iR® that is coated on one side with a dielectric material. The positive valued function
/ describes the material properties of this coating. In particular le¢ a bounded, simply connected,
orientated, piecewise smooth open surfac&3rbounded by a piecewise smooth boundary clirvide
considerT as part of a piecewise smooth boundafy of some bounded domaift ¢ R3. Let v denote
the normal vector td” that coincides with the outward normal vector defined almost everywhear®on
Furthermore, for a vector field we denote by x u ™|, “/—7’:1/!|1" andv-u™|p, (vxu"|p, ypulrandv-u~|r)
the restriction ta” of the traces x ul,p, yrul;p andv - u|,p respectively, from the outside (from the
inside) ofoD wherey;u := v x (u x v) is the tangential component of

The scattering of electromagnetic waves by a partially coated open suir{ttoe screen) leads to the
following boundary value problem for the total electric fidd

curlcurlE —k’E =0 in R3\T, (1a)
y7E=0 onT, (1b)
vxcurlEt —ijpTE=0 onT, (1o

E=ES+E', (1d)
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whereE' is the given incident electric field ane® is the scattered electric wave. The scattered fi#ld
satisfies the Silver—Mdiller radiation condition

lim (curlES x x —ikrES) =0 )

r—00

uniformly in x = x/|x|, wherer = |x| and we consider incident plane electromagnetic wave given by
. i . _ .
E'(x;d, p): =z curlcurl p €%* = ik(d x p) x d k4,

Hi(x:d, p) : =curl p ¥ = ikd x pekd~,

wherek > 0 is the wave numbet] € Q := {x € R®: |x| = 1} is a unit vector giving the direction of the
incident plane wave ang € R3 is the polarization. We assume thia¢ Lo, (I') andi(x) > Ag > 0.

2.1. Solution of the forward problem
Let us first recall the definition of the following Sobolev spaces
H(curl, BR\T) := {u € (L3(Bg\I))*: curlu e (L?(Bg\D)?},
L2(r) :={u e (L*1)%: v-u=0o0nT},

whereBy, is a ball that containg and denote byHjoc(curl, R3\T) the space of € H (curl, Bg\T) for
all B with radiusR large enough. Then we define the Sobolev space

Xioc(curl, R3\T) := {u € Hioc(curl, R3\T) : v x u™ | € L3I}, (3)
equipped with the natural norm
2 T +2
el cun e\ = 4l curt gy T 1Y X 8 2y (4)

Now we can precisely formulate the forward scattering problem: Giwere Xjoc(curl, R3\T) find
E € Xjoc(curl, R3\T) satisfying (1a)—(1d) and (2). We will refer to this problem as (MSP).

Theorem 2.1. (MSP)has at most one solution

Proof. LetéD be a closed surface containifigand enclosing the bounded dom&inWe first apply the
vector Green’s formula for the solutidh € X|oc(curl, R3\T') andH = % curl E of (MSP) corresponding
to E' =0, inD and inD, N Bg whereD, is exterior domainD, := R:”\B and By is a ball of radius
R > 0 containingD. SinceE € H(curl, Bx\I') and from the equation cufl e H(curl, Bg\I') we
have that x E andv x H are continuous acro$\I'. Hence using the impedance condition ioh
we obtain

/ (lcurl E|? — k2| E|?) dv—f (lcurl E|? — k2| E[?) dv
D D.NBg

+ik (vxf)-Hds—I—i/)vly}LE|2ds=O. (5)
SR r
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Taking the imaginary part of (5) we now obtain

1

Re (vxE)-Hds:——/ 21y EI?ds <O.

k
SR r

Hence the uniqueness follows frdi8], Theorem 6.10, and the unique continuation principle.
We now prove the existence of a solution to (MSP) by using a variational method. To this énd let
be a closed surface containifigand enclosing the bounded dom&nD, := R3\ D and define

XOcurl, BR\T) := {u € X (curl, BR\T) : v x u" | = O}.

Integrating by parts ifd and D,, and using the continuity of x E andv x curl E acrossdD\TI" (see
the proof of Theorem 2.1), we obtain an equivalent variation formulation for (MSP) as follows: Find
E € X%curl, Bx\T) such that

/ (curlE - curld — kE - §) dv +/ (curlE - curlg — k%E - ) dv
D

D.NBg

—i/ }VyJTFE-y;$ds+ik/ Ge(& x E)- [ x (3 x )] d&
r SR

— i /Fiy}LEi yE g ds +ik/s (Gee x EY =& x 1| [ x @ x £ di] di (6)
R
for every test functionp € XO(curl, Bx\T'). Here G, is the exterior Calderon operator (17,22)
which maps a tangential vector fieldbn Sk to x x H where(E, H) satisfies
VxE—ikH=0 inR%Bg
V x H+ikE=0 inR3Bg
xx E=/ onSg
rleoo(H xx—rE)=0. O
In the following we denote by, -) the L2 inner product and by, -) the duality pairing between a

space and its dual. To establish the existence of a solution of the above variational problem we need the
following technical lemmas.

Lemma 2.2. Let us define

S:={H'Br\T): p~|r =0and p*|r=c}
and

X0 :={u e XO(curl, BR\T) : —k*(u, Vq) p, + ik(Go(F x u), Vsoq) =0 Vq € S}.
ThenVs is a closed subset 6% (curl, Bx\I') and

XOcurl, Bx\T) = X° @ V5.
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This lemma is known as the Helmholtz decomposition and the proof is entirely classical (see e.g.
[4,9,17,22).

Lemma 2.3. The spaceX? is compactly imbedded ib?(Bp).

Proof. Consider a bounded sequer{@@}jil in X°. Each function inz; can be extended to ait® by
solving the exterior Maxwell problem

V x (V x vj) —k?v;=0 in R®\Bg,
X X vj=X xv; ONOJBg,

together with the Silver—Miller radiation condition at infinity. The extended functi;onefined by

e uj on Bp,
! v; on Rs\ER

isin Hioc(curl, Bg \TI') since the tangential components are continuous asgo$eoting that the condition
in Xg is a weak form of

V-u=0 in BR\T
{ u In BR\I' @

k?% -u = ikVs, - Go(X x u) on Sg,
we have that the extended function has a well-defined divergence and
V@) =0 inRA\T.

Now we choose a cutoff functiop e C8°([R3) such thaty = 1 in Bg andy is supported in0 > Bg.
From a result of Costab§l5] we have that a function € L2(0) such that curk € L2(0\T), divu €
L2(0\T), andv x u*|r € L?(I') is continuously imbedded i 1/2~¢(¢\T) for everye > 0. This proves
the lemma. O

Now we can look for a solution of (6) in the forli=W +V p with W € X%andp € S. Hence by using
a standard argument (see d8,17,22), Lemmas 2.2 and 2.3 together with the Lax—Milgram lemma
imply that the Fredholm alternative can be applied to (6). Hence the uniqueness theorem 2.1 implies the
existence result. We summarize the above analysis in the following theorem.

Theorem 2.4. For any incident fieldE' e Xioc(curl, R3\T) there exists a unique solutidh € Xjoc(curl,
R3\T) of (MSP)which depends continuously @H.

We remark that the above variation approach shows that the mixed screen problera- foris
still well posed. In particular if. = 0, the mixed screen problem has a unique solufioa Hjpc(curl,
R3\T).

For the analysis of the inverse problem we need the trace spaces<af*|; and y:}:E for a
E € H(curl, BR\T). Letting H*(dD), s € R, denote the standard trace spaj@id on a closed surface
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oD we define the following trace spaces on a portioof 0D
HY2(r) = {ulr : u e HY2(3D))
HY(I') := {u € HY*(I) : suppu < T}.

We denote by ~1/2(I') the dual space off ¥/2(I") and H ~Y/2(I") the dual space off ¥/2(I") with L2(I")
as the pivot space. Note thAt1/2(I") can also be identified as the space of distributions

H Y1) :={u e HY(I') : suppu C T}.
Now we are in the position to defifg]

Hyl/(r) = fu € (H™Y2(D)%, v-u =0, divopu € H-Y2())

H_ Y2(r) := (u e (HY2())%, v-u=0, curlyyu € H-Y2(N)}.
Let us denote by, Y2(r) the dual space oﬂcuﬁ/ (I) in the duality pairing(v x u, yrv) for u e
Cu%,/Z(F) andv € Hdll/z(F).ThIS space contains tangential fieldgich that € (H~Y2(I'))3, div,pulr

e HY2(r) and
/u-gl’aciiuDvd\v—i-/‘divaDuvds:O
r r

for everyv € H¥2(I'). The latter means that the normal traceuddt the edge of I is well defined
and is zero, that ig; - u|; = 0 wherey; is the exterior normal vector at the boundaf I" (for smooth
screens sed,9, p. 47). Note also that a functiom € HdI l/Z(F) can be extended by zero to a function in
Hy, 1/Z(aD) It is known that the trace operators< u™ | andyT |r mapH (curl, Bg\I') into Hy, l/Z(F)

and H uﬁ/ 2(F), respectively. We remark that for piecewise smooth open surfaces the definition of the
above trace spaces needs a more careful investigation. These spaces are fully characterized (note differer
notationsH, . |le (F) andH L(;Ll,{ﬁr)’ etc. are used!), the continuity and surjectivity of the trace operators is
proved and the duality pairing is interpreted®y] and[2]. However, for simplicity of our presentation,

in general we will keep the same notations for the trace spaces as for smooth open surfaces.

Since the solution space for (MSP)Xg(curl, R3\T) we need to specify the space)gfE for E €
Xioc(curl, R3\T) which is obviously a closed subspacelﬁﬁgj/z(l“) since X (curl, Bg\I') is a closed
subspace ofi (curl, Bg\I'). (Note thaty’TLE eH 1/2(1") N LZ(F) ) To this end we introduce

curl
+ 2

yrulr € Ly(I)
Y= feHY2Tr)3 : 3uc Hur, BR\D), ’
andf=VT“|F

It is easy to show thal (I") is a Banach space with respect to the norm
I A1y = 0 (0l gyt 10 %l ) ®)

where the infimum is taken over all functiomss H (curl, Bg\TI') such thav}'u|r € L,Z(F) andf=yrulr.
Let againo D be a closed surface containiigBy alarge ball containin® and letu € H (curl, Bg\I') be
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suchthab x u|,p, =0, y}“u|p € L?(F) and f =y, u|r. Applying integration by parts iD andBg\D and
using the fact that the tangential component of function& igurl, Bz\I') is continuous acrosdD\I"
we obtain

(f. ¢): =/;(v xu~) - (yr$)ds

— (curlu - ¢ —u - curlg) dv + / (vxuh)- (V}L¢>) ds. 9
Br r
Here ¢ e X(curl, Bg\TI') such thatv x ¢lop, = 0 and the surface integral on the right-hand side is
understood in thé.? sense. In particular (9) defines a duality relation and characterizes the dual space
Y'(I') of Y(I'). Hence| -|lyr) is equivalent to the norm

[(f, )l
[ fI]] :==su
A

for ¢ € X(curl, BR\I') such that x ¢|,5, = 0.

Using the surjectivity and the continuity of the trace operator we can reformulate Theorem 2.4. In
particular, for anyf € Y(I') andh € L?(F) there exists a unique solutidi® € Xoc(curl, R3\T) of the
problem

curlcurl ES — k?ES=0 in R3\T
y7ES=f onr
vxcurl ESY —inpfES=h  onr
lim (curl E® x x —ikrE®) =0 (10
r— 00
which satisfies
| E¥Nx unmiy <C (I Fllvenyt 1Al 2 ) (12)
with a constantC > 0 independent of andh. The new formulation (10) and the a priori estimate (11)
will play an important role in the analysis of the linear sampling method in Section 3.1. In particular it
will allow us to introduce a bounded solution operator that takes the boundary data to the solution of the
corresponding forward problem.
2.2. An approximation property
An electromagnetic Herglotz pais defined to be a pair of vector fields of the form

Eo(x) = /Q g () ds(d), Hy(x) = %curl Eo(x), (12)

where the kerneg is a tangential vector field in?(Q). It is easily seen thak,, H, is a solution of the
Maxwell equations irik3.
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We now define an operatot’ : L2(Q) — Y (I') x L(I') by
v E
Hg = re onr, (23)
vxeurl Ef — ik Eg
whereE, is the electric field of an electromagnetic Herglotz pair with kegneILtz(Q) defined by (12).

Theorem 2.5. The range of# is dense iV (I') x LtZ(F).

Proof. By the change of variables — —d it suffices to consider the operataf with E, written as
Eg(x) = / e " dg(d) ds(d).
Q

Let H := Y(I') x L2(I') with dual H* := Y'(I') x L?(I') in the component-wise duality pairing. Note
thatL,Z(F) is considered as the dual space of itself with respect ta fteealar product. The dual operator
#T . H* — L?(Q) of the operator# is such that for every, ) € H* andg € L?(Q) we have

(A g. (@ ) = (8 # ' [o B) 1200, 12(0)-

It is enough to show that the dual operatsr is injective. Then the result follows from the fact that the
range of# can be characterized as (§2&, p. 23)

(Rangex)="Kern#",
where

“Kemx'T = {(PL p2) € H : ((p1, p2), (q1,92)) u.u+ =0V (q1, q2) € KemeT}-

In particular, the injectivity of# " implies that(Range#) = H. Simple computations shows that the
dual operator#' " is defined by

# (o, Bl=d x {/ e kdy ds
r

—ikdx/e_”‘x'd(vxﬁ)ds—i/l/
r

g thxdp ds} x d.
r

Note thatx and § are tangential fields defined gnOne sees tha#’ " [«, ] coincides with the far field
pattern of the combined electric and magnetic dipole distributions

P(z):k—lzcurl curl /F @(x, 7)a(x) ds, + curl /Fd)(x, 2)(v x B(x)) dsy

1 _
— A= curIcurI/ O(x,2)p(x)dsy, z&I
k2 r

where

1 eiklx—z\
D(x,7) = — R
(x.2) A |x — z|

x#z and x,zeR (14)
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The potentialP (z) is well defined for; € R3\T and satisfies curl cu® — k%P = 0. Now, let us assume
that# " [a1, ax] = 0. This means that the far field pattern®fs zero and from Rellich’s lemm& = 0
in R3\T.. If z — I the following jump relations hold

v><P+—vxP_|r=vxﬂ, (15
vxcurlP™ —yxcurl P~ |p=a—ilp. (16)

The above jump relations are well defined in the sense?dimit (see[13, p. 172) due to the relation
(9) and the fact thag is a square integrable tangential field. Hence from (15) and (16) we conclude that
«=p=0.Thus#T is injective which proves the theorem.

We remark that Theorem 2.5 claims that any pgirg) € Y(I') x LZZ(F) can be approximated
arbitrarily closely by the mixed trace of the same electric Herglotz fundiign

3. Inverse scattering problem

It is known[13] that the scattered electric fieltF has the asymptotic behavior

ik|x|
¢ {Em(£)+0<i>}
|x] |x|

as |x| — oo, where the tangential fiel#, is defined on the unit sphefeand is known as thelectric
far field pattern

We now consider the scattering of an electromagnetic plane wave by a very thin obstacle represented
by I which on one side behaves like a perfect conductor and on the other side like a dielectric material
with surface impedance We indicate the dependence of the electric far field on the incident direttion
and polarizatiom by writing Es (X, d, p). Theinverse scattering probleme will consider in this paper
is to determind” from the knowledge of the electric far fiekth, (X; d, p) for x, d €  and three linearly
independent polarizations. (Note that we do not assume a priori knowledgégsarticular the screen
can be a perfect conductor on both sides). By using the idd&$ wie could easily consider the limited
aperture case whefie —d € Qg C Q.

ES(x) =

Theorem 3.1. Let B denote either a perfectly conducting boundary condition or a mixed boundary
condition. Assume thdt; andl'; are two open surfaces with boundary conditiadhsand B»> such that

the far field patterns coincide for all incident directionsd observation directions, and three linearly
independent polarization p. Théh = I'».

Proof. The proof of this theorem is based on the idea of Kirsh and Kfg8s A general and sim-
plified framework for the uniqueness proof for inverse electromagnetic obstacle scattering is given in
[20, Theorem 1]For the sake of completeness we present here a sketch of the proof following exactly
the lines of Theorem 1 if20].

First by Rellich’s lemma from the coincidence of the far field patterns it follows that the corresponding
scattered waves coincides@h= R3\ (T'1 UT>). Next we consider the electric field of the electric dipole
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E!(x, z, p) given by
i i
E (x,z,p)= Ecu”x curl, p @(x, 2)

with @(x, z) given by (14). Let=? (-, z, p) andE ,(-, z, p) be the scattered electric fields corresponding
to the scattering of’(x, z, p) by I'1 and I, respectively. We can conclude (448,19,20) that

ES1(x,z, p) = ES 5(x, 2, p)

for all x, z € G and all polarizationg.
Now assume thafy # I'>. Then we can find a* € I'1 andx™ ¢ I'> such that(x*) is defined, and
considerz, = x* + v(x*) € G. Then in view of well-posedness of the direct scattering problenifor

n

with boundary conditiorB,, on one hand we obtain that
n||—>mOO ” B]_(Eesvz(.x, ns p))”Xl = nll—>m00 ” Bl(ES,Z(-xa Xk, p))”Xla

whereX is the boundary data space correspondingteith boundary conditiorB;. On the other hand
we find that

i | BU(ES 5, 2, D) lx, = M| Bu(ES1(x, 20, P, = o0

because the boundary conditionf6f ; (x, z,, p) are given in terms of the electric dipole and the traces

of Ei(x, x*, p) onI'; do not belong to the boundary data space due to the singularity at. We have
arrived at a contradiction and hente=r1,. O

Our main concern in this paper is with presenting an algorithm to reconstruct the screen from the above

(measured) data. To this end we will use timear sampling methods was done if6] for the scalar
case.

3.1. The linear sampling method

The electric far field pattern defines takectric far field operatorF : L,Z(Q) — Ltz(Q) by
(Fo)) = [ Extid s@)ds@. teo (17)
Q

forg e L,Z(Q). Note that by superpositidrg is the electric far field pattern of (MSP) corresponding to
the electromagnetic Herglotz pair with kerrilal as incident field. We consider tlfi@r field equation

(Fg)(X) = E5,(X) X e, (18)

where E¢ is the far field pattern of a suitable (to be defined later) radiating solution to Maxwell’s
equations. The main idea is to characterize the scrdenthe behavior of an approximate solutigof
the far field equation (18). To understand the far field operator better we consider the ogevatah
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maps the datéf, h) € Y(I') x LtZ(F) to the far field pattern of the radiating solution to the corresponding
scattering problem (10). Henéeand.¥ are related through the following relation:

(Fg)=—iks(#g), (19)
where# is given by (13).

Lemma 3.2. The linear operators : Y (I') x L(I') — L2(Q) is injective boundedcompact and has
dense range

Proof. Theinjectivity follows from the uniqueness of the scattering problem and Rellich’s lemmawhereas
(11) and the fact that the far field pattern depends continuously on the scattered field imp#y that
is bounded.

Furthermore¥ can be seen as the composition of the bounded operator that takes the boundary data to
the scattered solution on a large sphetBr of radius R and the compact operator (see
[13, Theorem 6.8]that maps data ofBy to the corresponding far field. Henegis compact.

Next we prove that the range of is dense. To this end we consider the dual oper#tor: L,Z(Q) —
Y'(I') x LA(I)

(L), 8) 120, 12(0) = ((fs ), sTg).
From[13, Theorem 6.8]we obtain that

S(f, h) = EOO=L—];£X/

1 o
{[v x ES] + E[v x curl ES] x x} e kY g,
r

whereE® € X|oc(De, I') is the electric scattered field corresponding to the boundary(data and[«]
denotes the jump™ — u~ of u across". Hence by changing the order of integration we can write

" N
(7(f, h),g)=;—n/F/Qe_'kx'y {[F x (vx E9)] - g(X)
1

+E£ x [v x curlES] x % - g()?)} ds (%) ds. (20
Let
B = [ s0e asci)
denote the electric Herglotz wave function with kerped L,Z(Q). Simple calculations show that

curly Ey(y) =ik / (g(®) x )& Y dg (%)
Q

curl, curly Eg(y) = k2/ (R x (g(®) x £))e Y ds(#).
Q
By using the fact that curl cull, = k?E, we can rewrite (20) as

(F(f h),g) = 4i / [vx E®]-curl Eg + [v x curl E®] - E, ds. (21)
TJr
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Note that the jump ofv x E] and[v x curl ES] are supported i" and can be extended by zero to
functions inH, dN (aD) andH Jrl (D), respectively, where agailD is a closed surface containimgand
enclosing the domaiB. Now let E € Xoc(D,, I') be the solution of (10) with boundary data

y}E:yTEg onr
vxcurlEY —ijyfE=vxcurlEg —iJypE; onT. (22)

Using the boundary relations (22), we obtain

1 s s\ B
(V(f,h),g):—4— (vx E°) -curlEg + (v x curl E®) - Eds

T Jr—
1 s - ~ . s

—1—5 (vxE)-[CurlE—i-IA(vXE)]—Ii(vxE)-(vng)ds
1

+ — (v X CUrlE®) - E, ds, (23)
4n

where for simplicityl"~ andl"+ indicates the negative and positive boundary traces, respectively. Using
the relation

(vxcurlES)-Eds+ | (vxcurlE)-ESds
r+ r—

= [ (vxcurlE)- ESds +/ (v x curl ES) - E ds,
I~ +

(which is obtained by applying Green’s formulalinand R3\ D using the continuity of the tangential

components ofS, E across)D\T'), and rearranging the terms we have

(L(f, h), g)= / (v x ES) - (curlE, — curl E) ds
+4- | vxeur ES—il(vx E% x v] - (E; — E)ds.
TT
Finally the boundary condition faEs implies

(F(f, h), g)= /f (v x curlE~ —vxcurIE ) ds

+4—n/Fh-(y;Eg — 5L E) ds.

Hence

(vx curlE~ —vxcurlEy) € Y(I)
4y g = (24)
(7 Eg =7 E) € LED).
Letnows " g = 0. Then (24) and (22) imply thatx (E — E¢) =0 andv x (curl E — curl E;)* =0.
But sincek is a radiating solution whilé&, is an entire solution, we now see that must be identically
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zero which can happen only if the kernek= 0. Hence,# T is injective which implies that” has dense
range, which ends the proof of the lemma.

Note that the case of perfectly conducting screens the above proof works, if and only if, there does not
exist an electromagnetic Herglotz pair such that the tangential component of the electric field vanishes
onI'. This condition is observed by KressJit8] in the scalar case and ji] in the vector case.

The following lemma will help us to choose the right-hand side of the far field equation (18) appropri-
ately. We denote b¢'5 (L) the space o€ functions with support compact in

3
Lemma 3.3. For any open surface L and two tangential fields ; <C§8mp(L)) we defineEL e
L2(Q) by

Eéo =X X (/ or (y) g ki dsy, + & x / ﬁL(y)e_ikf'y dsy) X X. (25)
L L
Then EL € Rangé.) ifand only if L C I

Proof. Firstassume that c I' and letoy,, ; be twoC* tangential fields, i.ev- of =v - ; =0, with
support contained ih. Again we consider a closed bounda® that containg”. We notice that (25) is
the far field pattern of the potentidldefined by

1 [
Vix):= 2 curl curl /L ar,(y)P(x, y)dsy + % curl /LBL(y)(D(x, y) dsy.

Since the extensiorig, andp; of oz andp, , respectively, by zero to the whole bounda® are >
functions we have that e Xoc(curl, R3\T') and satisfies curl cuf —k?V =0. Moreover, using the jump
relations of the vector potentials acr@d3, we have thaV satisfies the following boundary conditions
onr

- 1 - i o~
frmipV = =B X v 3 (ATE) + (BT € V(D)

. 1 )~
h:= (v x curlv+t — I/IyJTFV) = E&L + ﬂﬂL xv+vx (Btar)

i I VN S 2
+ Ak (A"BL) — ﬁ(A ar) + E(B Br) € Ly (I),
where the boundary operatdrandB are given by

(A¥p)(x)=y3curl curl / d(y)®(x, y)ds,
oD

(Biqb)(x):y:lfcurl/ d(y)(x, y)dsy, x €aD.
oD

For the mapping properties 8fandB see e.g[21]. HenceEL is in the range of7.
Now let S ¢ I and assume, on the contrary, tt}, € Rang€.%), i.e. there existy € Y(I') and
h € L?(I') such thatEL = ES, whereES, is the far field pattern of the radiating solutid? to (10)
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corresponding to the boundary dgta:. Hence by Rellich’s lemma and the unique continuation principle
we have thatS(x) and

1 [
V(x) = ﬁcurlcurI/ g, (y)®(x, y)dsy + Ecurl/ Bs(y)®(x, y)ds,
L

L

coincide forx € R3\(T'UL). Now letxg € L, xg ¢ I', and letB,(xg) be a small ball with center ab such
that B, (xg) NI"=¢. HenceE*® is analytic inB, (xp) while V has a singularity aty which is a contradiction.
This proves the lemma.]

SinceEL ¢ Rangev in the case whei. ¢ I, by applying the regularization techniqués] to the
compact and injective operatof with dense range, we have the following result:

Lemma 3.4. Consider the equation
F(f.h)=EL. (f.h)eYT)x LAT)

and letL ¢ I'. Then for every > Othere exists f,, i) depending on the regularization parametes O
such that

IS (fos ha) = Ell 20y <0
and

iii)no I (foca hx)“y(r)xL,Z(F) = oo

Note that in the above lemma— 0 asé — O.
We have now all the ingredients to prove the main theoretical result of this paper. Let us demote by
the set of piecewise smooth open surfacesd consider the far field equation

(FOR)=EL®), Lew. (26)

We remark that there are other possible choices for the function on the right-hand side of (26). The criteria
for choosing is to characterize the scréeinom whether or not the right-hand side of (26) is in the range

of &. Combining Lemmas 3.3 and 3.4, using the factorization (19) of the far field opératod the

fact that any pai(f, g) € Y(I') x L,Z(F) can be approximated arbitrarily closely bg with g L;’-(Q)
(Theorem 2.5), and finally the continuity of the operatowe can prove the following main theorem.

Theorem 3.5. Assume that is a boundedoriented piecewise smooth open surface. Then if F is the far
field operator corresponding tMSP we have that

(1) if L c I then for every: > O there exists a solutiop € L?(Q) of the inequality
| Fgk — Eéo”Ltz(Q) <e.
(2) if L ¢ I then for every: > 0 ands > O there exists a solutiop’; € LZ(®) of the inequality

| Feis — Exll 2o <e+o
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such that
yﬂ‘o I'8:sll2q =00 and (Isino I'Egr Il curt. Br) = 09
whereEg.LS is the electric part of the electromagnetic Herglotz pair with kerg{eﬁl.

In particular, if L C I" we can find a bounded solution to the far field equation (26) with discrepancy
whereas if.. ¢ I' then there exists solutions of the far field equation with discrepamcywith arbitrary
large norm in the limit ag — 0. For numerical purposes we need to replagein the far field equation
(26) by an expression independent.ofTo this end, we note that dsdegenerates to a poinwith o,
andp; an appropriate delta sequence we have that the integral in (25) approaches

Ik [(); « q) x 2e kT4 (G x q)e—ik)2~z:| ,

47
whereq is a constant vector. Note that the first term is the electric far field of an electric dipole and the
second term is the magnetic far field of an electric dipole. Roughly speaking the gcréé#mow be
characterized as the set of points wheretReorm of an approximate (regularized) solution of the far
field equation

(F) () = 1o [ x @) x 255 1 (@ x greh7] (27)
47

becomes very large.

Following the remark below (26) we notice that one can replace gither«; by zero. More generally
in principle one can also consider two independent delta sequencgg ford o, . In this caseEL is
replaced by

Ik [(); « q1) x £k 4 (% x qz)e—ikfc-z]
47
wheregqs, g2 are two constant vectors.

We end this section by remarking that, for the sake of presentation, we have considered only the case
when one side of the screen is a perfect conductor and the other side is coated. Exactly the same analysi
holds true if the material properties change on the same side as well. Note also that the same far field
equation is solved to reconstruct perfectly conducting scriggms coated (possibly partially!) obstacles
with nonempty interiof8]. This enhances the strength of the linear sampling method for solving the
inverse obstacle scattering problems, i.e. it does not rely on any a priori knowledge of the geometry or
physical properties of the scatterer.

4. Numerical examples

The numerical examples in this section are computed in the same way as discu$8etlinTo unify
our approach for mixed screens with the approach uséd ifor perfectly conducting screens, we take
B = 0 and solve the following far field equation

(Fg)(%) = ﬁ(i x q) x fe ke (28)
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Fig. 1. Exact and reconstructed disk. Both sides satisfy the impedance boundary conditioe=\iith

Fig. 2. Exact and reconstructed squares. The upper square is a perfect conductor on both sides. The upper side of the lower squar
satisfies the impedance boundary condition with 2 while the other side is a perfect conductor.

for three linearly independent vectaysThe far field data is computed by solving the forward problem
using a finite element code with mesh refinement near the edges of the screen. The far field data is then
perturbed by random noise and is used in the discrete version of the far field equation (27). We use
a uniform triangular meshing of the unit spherecontainingN = 42 vertices that corresponds to the
directions of the incoming waves and the measurement points. All presented examples correspond to
full aperture data. We use Tikhonov regularization and the Morozov discrepancy principle to compute
the regularization parameter as introducedlid]. We choosez on a uniform grid in the region we

are sampling for a scatterer. In all of our examples ax531 x 51 uniform grid is used. The noise

level added to the synthetic datais 1%. For details and other numerical considerations the reader is referred
to[10,11]
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Fig. 3. Exact perpendicular squares.

Fig. 4. Two examples of reconstructed perpendicular squares. The screen in the left figure is a perfect conductor. The screen in
the right figure satisfies a perfectly conducting boundary condition on all sides except for the inner side of the vertical square
which satisfies the impedance boundary condition With2.

An important parameter is the contour level at which we draw the iso-surface of the reconstruction.
We define

G) 1 1 n 1 n 1
)= y
3\IlegC, z, Ql)”Ltz(g) l gC,z, CIZ)”LIZ(Q) lgC,z, q3)”L[2(Q)

whereg(-, z, g;),i =1, 2, 3is an approximate solution to the far field equation (28) corresponding to the
source point locatioz and polarizationy;, i = 1, 2, 3 of the electric and magnetic dipole source. The
iso-surface is then the set of poirtsuch that

%(z) = 0.5maxG(z),
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where the factor & is chosen to give the best results for a disk and then is kept fixed for all our other
numerical examples. For interesting numerical tests regarding this issue in the case of obstacles with
nonempty interior we refer the reader{id®].

We consider three scatterers: a disc, two parallel squares (as an example of disconnected objects)
and two perpendicular squares (as an example of piecewise smooth surfaces). Numerical examples for
perfectly conducting screens can be foungi/ip

4.1. Reconstruction of a disk

The exact geometry is presented in the left graplirigf 1L On both sides of the disk we assume
impedance boundary condition with= 2. In this reconstructiok = 2 (the wavelength is denoted by the
bold line). As expected, the reconstruction in this case is worse than the reconstruction of the same disk
with perfectly conducting boundary conditions on both sides (see Fig[7])in

4.2. Reconstruction of two parallel squares

This example shown ifrig. 2 demonstrates that the linear sampling method can easily reconstruct
disconnected objects without knowing a priori how many components there are or the boundary conditions
on each component. In particular, we allow impedance boundary condition only on the upper side of the
lower square. One can clearly see the effect of the coating in the reconstruction. The reconstructed
perfectly conducting square is much thinner compared to the mixed square. In this example

4.3. Reconstruction of two perpendicular squares

In Fig. 4 are presented two examples of reconstructions of a piecewise smooth screen (the exact
geometry is given ifrig. 3) with different boundary conditions (as explained in the textHigy. 4). The
edge is sharply captured in the case of a perfectly conducting boundary condition while it is rounded in
the presence of a coating. Here agaia 3.
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