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Abstract

We consider the inverse scattering problem of determining the shape of mixed perfectly conducting-impedance
screens from a knowledge of the incident time harmonic electromagnetic planewave and the electric far field pattern
of the scattered wave. We adapt the linear sampling method invented by Colton and Kirsch (Inverse Problems 12
(1996) 383) for the case of scattering by obstacles with nonempty interior. Numerical examples are given for mixed
screens inR3.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The inverse scattering problemwe consider in this paper is to determine the shape of a scattering object
from a knowledge of the incident time harmonic electromagnetic plane wave and the electric far field
pattern of the scattered wave. In some applications the scatterer is very thin, for which the thickness is
small compared to the wavelength and other characteristic lengths. Furthermore the scatterer may be a
perfect conductor on one side and coated by a dielectric on the other side. It is then convenient to model
it by an open surface inR3, called ascreen, that satisfies a perfectly conducting boundary condition on
one side and an impedance boundary condition on the other side. The difficulty in solving the inverse
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scattering problem for mixed screens by using iterativemethods such as the Newtonmethod[18] etc., lies
in the amount of a priori information on the geometrical and physical properties of the scatterer needed in
order to implement the inversion scheme. Thelinear samplingmethod, introduced by Colton and Kirch in
1996[12] for the Helmholtz equation with Dirichlet boundary conditions and further developed for more
complicated boundary conditions and Maxwell equations (see e.g.[8,5,11]), is very suitable to arrive at
the solution of the inverse problem for screens with mixed type boundary conditions. The linear sampling
method was first adapted to obstacles with empty interior by Colton and one of the present authors in[6]
for the case of mixed cracks inR2 and then a modified version was used in[7] to reconstruct perfectly
conducting screens inR3.
Thegoal of thispaper is toestablish thevalidityof the linear samplingmethod for thesolutionof the three

dimensional electromagnetic inverse scattering problem for screens with mixed perfectly conducting-
impedance boundary condition.As in[6] in order to establish this goal it is first necessary to establish the
well posedness of the corresponding direct problem. To our knowledge in the case of Maxwell’s equation
the existing literature covers only the direct scattering problem for perfectly conducting screens[1,2].
In particular, for screens with mixed boundary conditions the integral equation approach used in[1,2,6]
becomes rather complicated. In Section 2 we use a variational method in suitable Hilbert spaces to solve
the direct problem. In this section, using the ideas of[8], we also establish an approximation property
of the traces of electromagnetic Herglotz pairs which is necessary for the inversion scheme given in
Section 3. To this end we investigate the trace on both the sides of the screen of functions in the solution
space of the forward scattering problem. The analysis of the linear sampling method is based on a proper
factorization of the far field operator, an a priori estimate for the solution of the forward problem in terms
of the boundary data and on the regularization theory of ill-posed equations. Finally, in Section 4, we
present some numerical examples that establish the viability of our approach.

2. The direct scattering problem

We consider the scattering of a time-harmonic electromagnetic plane wave by a very thin perfectly
conducting obstacle inR3 that is coated on one sidewith a dielectricmaterial. The positive valued function
� describes the material properties of this coating. In particular let� be a bounded, simply connected,
orientated, piecewise smooth open surface inR3 bounded by a piecewise smooth boundary curvel. We
consider� as part of a piecewise smooth boundary�D of some bounded domainD ⊂ R3. Let � denote
the normal vector to� that coincides with the outward normal vector defined almost everywhere on�D.
Furthermore, for a vector fieldu, we denote by�×u+|�, �+T u|� and� ·u+|�, (�×u−|�, �−T u|� and� ·u−|�)
the restriction to� of the traces� × u|�D, �T u|�D and� · u|�D respectively, from the outside (from the
inside) of�D where�T u := �× (u× �) is the tangential component ofu.
The scattering of electromagnetic waves by a partially coated open surface� (the screen) leads to the

following boundary value problem for the total electric fieldE:

curl curlE − k2E = 0 in R3\�, (1a)

�−T E = 0 on�, (1b)

�× curlE+ − i��+T E = 0 on�, (1c)

E = Es+ Ei, (1d)
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whereEi is the given incident electric field andEs is the scattered electric wave. The scattered fieldEs,
satisfies the Silver–Müller radiation condition

lim
r→∞(curlEs× x − ikrEs)= 0 (2)

uniformly in x̂ = x/|x|, wherer = |x| and we consider incident plane electromagnetic wave given by

Ei(x; d, p) : = i
k
curl curlp eikd·x = ik(d × p)× d eikd·x,

H i(x; d, p) : =curlp eikd·x = ikd × p eikd·x,

wherek >0 is the wave number,d ∈ � := {x ∈ R3 : |x| = 1} is a unit vector giving the direction of the
incident plane wave andp ∈ R3 is the polarization. We assume that� ∈ L∞(�) and�(x)��0>0.

2.1. Solution of the forward problem

Let us first recall the definition of the following Sobolev spaces

H(curl, BR\�) := {u ∈ (L2(BR\�))3 : curlu ∈ (L2(BR\�))3
}
,

L2t (�) := {u ∈ (L2(�))3 : � · u= 0 on�
}
,

whereBR is a ball that contains� and denote byHloc(curl, R3\�) the space ofu ∈ H(curl, BR\�) for
all BR with radiusR large enough. Then we define the Sobolev space

Xloc(curl, R3\�) := {u ∈ Hloc(curl, R3\�) : �× u+|� ∈ L2t (�)}, (3)

equipped with the natural norm

‖ u‖2
X(curl,BR\�)

:=‖ u‖2
H(curl,BR\�)

+ ‖ �× u+‖2
L2(�)

. (4)

Now we can precisely formulate the forward scattering problem: GivenEi ∈ Xloc(curl, R3\�) find
E ∈ Xloc(curl, R3\�) satisfying (1a)–(1d) and (2). We will refer to this problem as (MSP).

Theorem 2.1. (MSP)has at most one solution.

Proof. Let �D be a closed surface containing� and enclosing the bounded domainD. We first apply the
vector Green’s formula for the solutionE ∈ Xloc(curl, R3\�) andH = 1

ik curlE of (MSP) corresponding
to Ei = 0, in D and inDe ∩ BR whereDe is exterior domainDe := R3\D andBR is a ball of radius
R>0 containingD. SinceE ∈ H(curl, BR\�) and from the equation curlE ∈ H(curl, BR\�) we
have that� × E and� × H are continuous across�D\�. Hence using the impedance condition on�+
we obtain∫

D

(|curlE|2− k2|E|2) dv − ∫
De∩BR

(|curlE|2− k2|E|2) dv
+ ik

∫
SR

(�× E) ·H ds + i
∫

�
� |�+T E|2 ds = 0. (5)
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Taking the imaginary part of (5) we now obtain

Re
∫
SR

(�× E) ·H ds =−1
k

∫
�

� |�+T E|2 ds�0.

Hence the uniqueness follows from[13], Theorem 6.10, and the unique continuation principle.
We now prove the existence of a solution to (MSP) by using a variational method. To this end let�D

be a closed surface containing� and enclosing the bounded domainD,De := R3\D and define

X0(curl, BR\�) := {u ∈ X(curl, BR\�) : �× u−|� = 0}.
Integrating by parts inD andDe, and using the continuity of� × E and� × curlE across�D\� (see
the proof of Theorem 2.1), we obtain an equivalent variation formulation for (MSP) as follows: Find
E ∈ X0(curl, BR\�) such that∫

D

(
curlE · curl�− k2E · �) dv + ∫

De∩BR

(
curlE · curl�− k2E · �) dv

− i
∫

�
� �+T E · �+T �ds + ik

∫
SR

Ge(x̂ × E) · [x̂ × (�× x̂)
]
dx̂

=−i
∫

�
� �+T Ei · �+T �ds + ik

∫
SR

[
Ge(x̂ × Ei)− x̂ ×Hi

]
· [x̂ × (�× x̂)dx̂

]
dx̂ (6)

for every test function� ∈ X0(curl, BR\�). HereGe is the exterior Calderon operator (c.f.[17,22])
which maps a tangential vector field� onSR to x̂ ×H where(E,H) satisfies

∇ × E − ikH = 0 in R3\BR

∇ ×H + ikE = 0 in R3\BR

x̂ × E = � on SR

lim
r→∞(H × x − rE)= 0. �

In the following we denote by(·, ·) theL2 inner product and by〈·, ·〉 the duality pairing between a
space and its dual. To establish the existence of a solution of the above variational problem we need the
following technical lemmas.

Lemma 2.2. Let us define

S := {H 1(BR\�) : p−|� = 0 and p+|� = c}
and

X̃0 := {u ∈ X0(curl, BR\�) : −k2(u,∇q)BR
+ ik〈Ge(x̂ × u),∇SR

q〉 = 0 ∀q ∈ S
}
.

Then∇S is a closed subset ofX0(curl, BR\�) and

X0(curl, BR\�)= X̃0⊕∇S.
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This lemma is known as the Helmholtz decomposition and the proof is entirely classical (see e.g.
[4,9,17,22]).

Lemma 2.3. The spacẽX0 is compactly imbedded inL2(BR).

Proof. Consider a bounded sequence
{
uj

}∞
j=1 in X̃0. Each function inuj can be extended to allR3 by

solving the exterior Maxwell problem

∇ × (∇ × vj )− k2vj=0 in R3\BR,

x̂ × vj=x̂ × vj on �BR,

together with the Silver–Müller radiation condition at infinity. The extended functionue
j defined by

ue
j =

{
uj on BR,

vj on R3\BR

is inHloc(curl, BR\�) since the tangential components are continuousacrossSR. Noting that the condition
in X̃0 is a weak form of{∇ · u= 0 in BR\�

k2x̂ · u= ik∇SR
·Ge(x̂ × u) on SR,

(7)

we have that the extended function has a well-defined divergence and

∇ · (ue
j )= 0 in R3\�.

Now we choose a cutoff function� ∈ C∞0 (R3) such that� = 1 in BR and� is supported inO ⊃ BR.
From a result of Costabel[15] we have that a functionu ∈ L2(O) such that curlu ∈ L2(O\�), divu ∈
L2(O\�), and�× u±|� ∈ L2t (�) is continuously imbedded inH 1/2−�(O\�) for every�>0. This proves
the lemma. �

Nowwe can look for a solution of (6) in the formE=W+∇pwithW ∈ X̃0 andp ∈ S. Hence by using
a standard argument (see e.g.[8,17,22]), Lemmas 2.2 and 2.3 together with the Lax–Milgram lemma
imply that the Fredholm alternative can be applied to (6). Hence the uniqueness theorem 2.1 implies the
existence result. We summarize the above analysis in the following theorem.

Theorem 2.4. For any incident fieldEi ∈ Xloc(curl, R3\�) there exists a unique solutionE ∈ Xloc(curl,
R3\�) of (MSP)which depends continuously onEi .

We remark that the above variation approach shows that the mixed screen problem for� = 0 is
still well posed. In particular if� = 0, the mixed screen problem has a unique solutionE ∈ Hloc(curl,
R3\�).
For the analysis of the inverse problem we need the trace spaces of� × E±|� and �±T E for a

E ∈ H(curl, BR\�). LettingHs(�D), s ∈ R, denote the standard trace spaces[21] on a closed surface
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�D we define the following trace spaces on a portion� of �D

H 1/2(�) := {u|� : u ∈ H 1/2(�D)
}

H̃ 1/2(�) := {u ∈ H 1/2(�) : suppu ⊆ �}.
We denote byH−1/2(�) the dual space of̃H 1/2(�) andH̃−1/2(�) the dual space ofH 1/2(�) with L2(�)

as the pivot space. Note thatH̃−1/2(�) can also be identified as the space of distributions

H̃−1/2(�) := {u ∈ H−1/2(�) : suppu ⊆ �}.
Now we are in the position to define[9]

H
−1/2
div (�) := {u ∈ (H−1/2(�))3, � · u= 0,div�D u ∈ H−1/2(�)}

H
−1/2
curl (�) := {u ∈ (H−1/2(�))3, � · u= 0, curl�D u ∈ H−1/2(�)}.

Let us denote byH̃−1/2
div (�) the dual space ofH−1/2

curl (�) in the duality pairing〈� × u, �T v〉 for u ∈
H
−1/2
curl (�)andv ∈ H̃

−1/2
div (�). This spacecontains tangential fieldsusuch thatu ∈ (H̃−1/2(�))3, div�Du|�

∈ H̃−1/2(�) and∫
�
u · grad�Dv ds +

∫
�
div�Duv ds = 0

for everyv ∈ H 3/2(�). The latter means that the normal trace ofu at the edgel of � is well defined
and is zero, that is�l · u|l = 0 where�l is the exterior normal vector at the boundaryl of � (for smooth
screens see[1,9, p. 47]). Note also that a functionu ∈ H̃

−1/2
div (�) can be extended by zero to a function in

H
−1/2
div (�D). It is known that the trace operators�× u±|� and�±T |� mapH(curl, BR\�) intoH

−1/2
div (�)

andH−1/2
curl (�), respectively. We remark that for piecewise smooth open surfaces the definition of the

above trace spaces needs amore careful investigation. These spaces are fully characterized (note different
notationsH−1/2

‖div (�) andH−1/2
⊥curl�), etc. are used!), the continuity and surjectivity of the trace operators is

proved and the duality pairing is interpreted in[3,4] and[2]. However, for simplicity of our presentation,
in general we will keep the same notations for the trace spaces as for smooth open surfaces.
Since the solution space for (MSP) isXloc(curl, R3\�) we need to specify the space of�−T E for E ∈

Xloc(curl, R3\�) which is obviously a closed subspace ofH
−1/2
curl (�) sinceX(curl, BR\�) is a closed

subspace ofH(curl, BR\�). (Note that�+T E ∈ H
−1/2
curl (�) ∩ L2t (�).) To this end we introduce

Y (�) :=
{
f ∈ (H−1/2(�))3 : ∃u ∈ H(curl, BR\�),

�+T u|� ∈ L2t (�)

andf = �−T u|�

}
.

It is easy to show thatY (�) is a Banach space with respect to the norm

‖ f ‖2Y (�) := inf {‖ u‖2
H(curl,BR\�)

+ ‖ �× u‖2
L2(�I )

}, (8)

where the infimum is taken over all functionsu ∈ H(curl, BR\�) such that�+T u|� ∈ L2t (�)andf=�−T u|�.
Let again�D be a closed surface containing�,BR a large ball containingD and letu ∈ H(curl, BR\�) be
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such that�×u|�BR
=0,�+T u|� ∈ L2t (�) andf =�−T u|�. Applying integration by parts inD andBR\D and

using the fact that the tangential component of functions inH(curl, BR\�) is continuous across�D\�
we obtain

〈f,�〉 : =
∫

�
(�× u−) · (�−T �)ds

= −
∫
BR

(curlu · �− u · curl�) dv +
∫

�
(�× u+) · (�+T �)ds. (9)

Here� ∈ X(curl, BR\�) such that� × �|�BR
= 0 and the surface integral on the right-hand side is

understood in theL2 sense. In particular (9) defines a duality relation and characterizes the dual space
Y ′(�) of Y (�). Hence‖ ·‖Y (�) is equivalent to the norm

|||f ||| := sup
�

|〈f,�〉|
‖ �‖X(curl,BR\�)

for � ∈ X(curl, BR\�) such that�× �|�BR
= 0.

Using the surjectivity and the continuity of the trace operator we can reformulate Theorem 2.4. In
particular, for anyf ∈ Y (�) andh ∈ L2t (�) there exists a unique solutionEs ∈ Xloc(curl, R3\�) of the
problem

curl curlEs− k2Es= 0 in R3\�
�−T Es= f on �

�× curlEs+ − i��+T Es= h on �

lim
r→∞(curlEs× x − ikrEs)= 0 (10)

which satisfies

‖ Es‖X(curl,BR\�)�C
(
‖ f ‖Y (�)+ ‖ h‖L2t (�)

)
(11)

with a constantC >0 independent off andh. The new formulation (10) and the a priori estimate (11)
will play an important role in the analysis of the linear sampling method in Section 3.1. In particular it
will allow us to introduce a bounded solution operator that takes the boundary data to the solution of the
corresponding forward problem.

2.2. An approximation property

An electromagnetic Herglotz pairis defined to be a pair of vector fields of the form

Eg(x)=
∫

�
eikx·dg(d)ds(d), Hg(x)= 1

ik
curlEg(x), (12)

where the kernelg is a tangential vector field inL2t (�). It is easily seen thatEg, Hg is a solution of the
Maxwell equations inR3.
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We now define an operatorH : L2t (�)→ Y (�)× L2t (�) by

Hg :=
{

�−T Eg

�× curlE+g − i��+T Eg

on �, (13)

whereEg is the electric field of an electromagnetic Herglotz pair with kernelg ∈ L2t (�) defined by (12).

Theorem 2.5. The range ofH is dense inY (�)× L2t (�).

Proof. By the change of variablesd →−d it suffices to consider the operatorH with Eg written as

Eg(x)=
∫

�
e−ikx·dg(d)ds(d).

LetH := Y (�) × L2t (�) with dualH ∗ := Y ′(�) × L2t (�) in the component-wise duality pairing. Note
thatL2t (�) is considered as the dual space of itself with respect to theL2 scalar product. The dual operator
H : H ∗ → L2t (�) of the operatorH is such that for every(	, 
) ∈ H ∗ andg ∈ L2t (�) we have

〈Hg, (	, 
)〉H,H ∗ = 〈g,H [	, 
]〉L2t (�),L2t (�).

It is enough to show that the dual operatorH is injective. Then the result follows from the fact that the
range ofH can be characterized as (see[21, p. 23])

(RangeH)=aKernH ,

where
aKernH :=

{
(p1, p2) ∈ H : 〈(p1, p2), (q1, q2)〉H,H ∗ = 0 ∀ (q1, q2) ∈ KernH } .

In particular, the injectivity ofH implies that(RangeH) = H . Simple computations shows that the
dual operatorH is defined by

H [	, 
]=d ×
{∫

�
e−ikx·d	ds

− ik d ×
∫

�
e−ikx·d(�× 
)ds − i�

∫
�
e−ikx·d
ds

}
× d.

Note that	 and
 are tangential fields defined on�. One sees thatH [	, 
] coincides with the far field
pattern of the combined electric and magnetic dipole distributions

P(z)= 1

k2
curl curl

∫
�

�(x, z)	(x)dsx + curl
∫

�
�(x, z)(�× 
(x))dsx

− i� 1
k2
curl curl

∫
�

�(x, z)
(x)dsx, z /∈�

where

�(x, z) := 1

4�

eik|x−z|

|x − z| , x #= z and x, z ∈ R3. (14)
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The potentialP(z) is well defined forz ∈ R3\� and satisfies curl curlP − k2P = 0. Now, let us assume
thatH [a1, a2] = 0. This means that the far field pattern ofP is zero and from Rellich’s lemmaP = 0
in R3\�. If z→ � the following jump relations hold

�× P+ − �× P−|� = �× 
, (15)

�× curlP+ − �× curlP−|� = 	− i�
. (16)

The above jump relations are well defined in the sense ofL2 limit (see[13, p. 172]) due to the relation
(9) and the fact that
 is a square integrable tangential field. Hence from (15) and (16) we conclude that
	= 
= 0. ThusH is injective which proves the theorem.

We remark that Theorem 2.5 claims that any pair(f, g) ∈ Y (�) × L2t (�) can be approximated
arbitrarily closely by the mixed trace of the same electric Herglotz functionEg.

3. Inverse scattering problem

It is known[13] that the scattered electric fieldEs has the asymptotic behavior

Es(x)= eik|x|

|x|
{
E∞(x̂)+O

(
1

|x|
)}

as |x| → ∞, where the tangential fieldE∞ is defined on the unit sphere� and is known as theelectric
far field pattern.
We now consider the scattering of an electromagnetic plane wave by a very thin obstacle represented

by � which on one side behaves like a perfect conductor and on the other side like a dielectric material
with surface impedance�. We indicate the dependence of the electric far field on the incident directiond
and polarizationpby writingE∞(x̂, d, p). Theinverse scattering problemwe will consider in this paper
is to determine� from the knowledge of the electric far fieldE∞(x̂; d, p) for x̂, d ∈ � and three linearly
independent polarizations. (Note that we do not assume a priori knowledge of�. In particular the screen
can be a perfect conductor on both sides). By using the ideas of[5] we could easily consider the limited
aperture case wherêx,−d ∈ �0 ⊂ �.

Theorem 3.1. Let B denote either a perfectly conducting boundary condition or a mixed boundary
condition. Assume that�1 and�2 are two open surfaces with boundary conditionsB1 andB2 such that
the far field patterns coincide for all incident directions D, all observation directionŝx, and three linearly
independent polarization p. Then�1= �2.

Proof. The proof of this theorem is based on the idea of Kirsh and Kress[16]. A general and sim-
plified framework for the uniqueness proof for inverse electromagnetic obstacle scattering is given in
[20, Theorem 1]. For the sake of completeness we present here a sketch of the proof following exactly
the lines of Theorem 1 in[20].
First by Rellich’s lemma from the coincidence of the far field patterns it follows that the corresponding

scattered waves coincides inG=R3\(�1∪ �2). Next we consider the electric field of the electric dipole
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Eie(x, z, p) given by

Eie(x, z, p)= i

k
curlx curlx p �(x, z)

with�(x, z) given by (14). LetEse,1(·, z, p) andEse,2(·, z, p) be the scattered electric fields corresponding
to the scattering ofEi

e(x, z, p) by �1 and�2, respectively. We can conclude (see[13,19,20]) that

Ese,1(x, z, p)= Ese,2(x, z, p)

for all x, z ∈ G and all polarizationsp.
Now assume that�1 #= �2. Then we can find ax∗ ∈ �1 andx∗ /∈�2 such that�(x∗) is defined, and

considerzn = x∗ + 1
n
�(x∗) ∈ G. Then in view of well-posedness of the direct scattering problem for�2

with boundary conditionB2, on one hand we obtain that

lim
n→∞ ‖ B1(E

s
e,2(x, zn, p))‖X1 = lim

n→∞ ‖ B1(E
s
e,2(x, x∗, p))‖X1,

whereX1 is the boundary data space corresponding to�1 with boundary conditionB1. On the other hand
we find that

lim
n→∞ ‖ B1(E

s
e,2(x, zn, p))‖X1 = lim

n→∞ ‖ B1(E
s
e,1(x, zn, p))‖X1 =∞

because the boundary condition ofEse,1(x, zn, p) are given in terms of the electric dipole and the traces
of Ei

e(x, x
∗, p) on�1 do not belong to the boundary data space due to the singularity atz= x∗. We have

arrived at a contradiction and hence�1= �2. �

Ourmain concern in this paper is with presenting an algorithm to reconstruct the screen from the above
(measured) data. To this end we will use thelinear sampling methodas was done in[6] for the scalar
case.

3.1. The linear sampling method

The electric far field pattern defines theelectric far field operatorF : L2t (�)→ L2t (�) by

(Fg)(x̂) :=
∫

�
E∞(x̂, d, g(d))ds(d), x̂ ∈ �, (17)

for g ∈ L2t (�). Note that by superpositionFg is the electric far field pattern of (MSP) corresponding to
the electromagnetic Herglotz pair with kernelikg as incident field. We consider thefar field equation

(Fg)(x̂)= Ee∞(x̂) x̂ ∈ �, (18)

whereEe∞ is the far field pattern of a suitable (to be defined later) radiating solution to Maxwell’s
equations. The main idea is to characterize the screen� by the behavior of an approximate solutiong of
the far field equation (18). To understand the far field operator better we consider the operatorS which
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maps the data(f, h) ∈ Y (�)×L2t (�) to the far field pattern of the radiating solution to the corresponding
scattering problem (10). HenceF andS are related through the following relation:

(Fg)=−ikS(Hg), (19)

whereH is given by (13).

Lemma 3.2. The linear operatorS : Y (�) × L2t (�) → L2t (�) is injective, bounded, compact and has
dense range.

Proof. The injectivity follows from theuniquenessof thescatteringproblemandRellich’s lemmawhereas
(11) and the fact that the far field pattern depends continuously on the scattered field imply thatS

is bounded.
FurthermoreS can be seen as the composition of the bounded operator that takes the boundary data to

the scattered solution on a large sphere�BR of radius R and the compact operator (see
[13, Theorem 6.8]) that maps data on�BR to the corresponding far field. HenceS is compact.
Next we prove that the range ofS is dense. To this end we consider the dual operatorS : L2t (�)→

Y ′(�)× L2t (�)

〈S(f, h), g〉L2t (�),L2t (�) = 〈(f, h),S g〉.
From[13, Theorem 6.8], we obtain that

S(f, h) := E∞ = ik

4�
x̂ ×

∫
�

{
[�× Es] + 1

ik
[�× curlEs] × x̂

}
e−ikx̂·yds,

whereEs ∈ Xloc(De,�) is the electric scattered field corresponding to the boundary data(f, h) and[u]
denotes the jumpu+ − u− of u across�. Hence by changing the order of integration we can write

〈S(f, h), g〉= ik
4�

∫
�

∫
�
e−ikx̂·y

{[x̂ × (�× Es)] · g(x̂)

+ 1
ik

x̂ × [�× curlEs] × x̂ · g(x̂)
}
ds(x̂)ds. (20)

Let

Eg(y) :=
∫

�
g(x̂)e−ikx̂·y ds(x̂)

denote the electric Herglotz wave function with kernelg ∈ L2t (�). Simple calculations show that

curly Eg(y)= ik
∫

�
(g(x̂)× x̂)e−ikx̂·y ds(x̂)

curly curly Eg(y)= k2
∫

�
(x̂ × (g(x̂)× x̂))e−ikx̂·y ds(x̂).

By using the fact that curl curlEg = k2Eg we can rewrite (20) as

〈S(f, h), g〉 = 1

4�

∫
�
[�× Es] · curlEg + [�× curlEs] · Eg ds. (21)
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Note that the jump of[� × E] and[� × curlEs] are supported in� and can be extended by zero to
functions inH 1/2

div (�D) andH 1/2
curl(�D), respectively, where again�D is a closed surface containing� and

enclosing the domainD. Now let Ẽ ∈ Xloc(De,�) be the solution of (10) with boundary data

�−T Ẽ = �T Eg on �

�× curl Ẽ+ − i��+T E = �× curlEg − i��T Eg on �. (22)

Using the boundary relations (22), we obtain

〈S(f, h), g〉= − 1

4�

∫
�−

(�× Es) · curlEg + (�× curlEs) · Ẽ ds

+ 1

4�

∫
�+

(�× Es) · [curl Ẽ + i�(�× Ẽ)] − i�(�× Es) · (�× Eg)ds

+ 1

4�

∫
�+

(�× curlEs) · Eg ds, (23)

where for simplicity�− and�+ indicates the negative and positive boundary traces, respectively. Using
the relation∫

�+
(�× curlEs) · Ẽ ds +

∫
�−

(�× curl Ẽ) · Esds

=
∫

�−
(�× curl Ẽ) · Esds +

∫
�+

(�× curlEs) · Ẽ ds,

(which is obtained by applying Green’s formula inD andR3\D using the continuity of the tangential
components ofEs, Ẽ across�D\�), and rearranging the terms we have

〈S(f, h), g〉= 1

4�

∫
�−

(�× Es) · (curlEg − curl Ẽ)ds

+ 1

4�

∫
�+
[�× curlEs− i�(�× Es)× �] · (Eg − Ẽ)ds.

Finally the boundary condition forEs implies

〈S(f, h), g〉= 1

4�

∫
�
f · (�× curl Ẽ− − �× curlE−g )ds

+ 1

4�

∫
�
h · (�+T Eg − �̃+T E)ds.

Hence

4�S g =
{
(�× curl Ẽ− − �× curlE−g ) ∈ Y (�)′

(�+T Eg − �+T Ẽ) ∈ L2t (�).
(24)

Let nowS g ≡ 0. Then (24) and (22) imply that�× (Ẽ−Eg)
±=0 and�× (curl Ẽ− curlEg)

±=0.
But sinceẼ is a radiating solution whileEg is an entire solution, we now see thatEg must be identically
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zero which can happen only if the kernelg ≡ 0. Hence,S is injective which implies thatS has dense
range, which ends the proof of the lemma.

Note that the case of perfectly conducting screens the above proof works, if and only if, there does not
exist an electromagnetic Herglotz pair such that the tangential component of the electric field vanishes
on�. This condition is observed by Kress in[18] in the scalar case and in[7] in the vector case.
The following lemma will help us to choose the right-hand side of the far field equation (18) appropri-

ately. We denote byC∞comp(L) the space ofC∞ functions with support compact inL.

Lemma 3.3. For any open surface L and two tangential fields	L, 
L ∈
(
C∞comp(L)

)3
we defineEL∞ ∈

L2t (�) by

EL∞ := x̂ ×
(∫

L

	L(y)e
−ikx̂·y dsy + x̂ ×

∫
L


L(y)e
−ikx̂·y dsy

)
× x̂. (25)

Then, EL∞ ∈ Range(S) if and only ifL ⊂ �.

Proof. First assume thatL ⊂ � and let	L, 
L be twoC
∞ tangential fields, i.e.� · 	L = � · 
L = 0, with

support contained inL. Again we consider a closed boundary�D that contains�. We notice that (25) is
the far field pattern of the potentialV defined by

V (x) := 1

k2
curl curl

∫
L

	L(y)�(x, y)dsy + i

k
curl

∫
L


L(y)�(x, y)dsy.

Since the extensions̃	L and
̃L of 	L and
L, respectively, by zero to the whole boundary�D areC∞
functionswehave thatV ∈ Xloc(curl, R3\�)and satisfies curl curlV−k2V=0.Moreover, using the jump
relations of the vector potentials across�D, we have thatV satisfies the following boundary conditions
on�

f : =�−T V =− i

2k

̃L × �+ 1

k2
(A−	̃L)+ i

k
(B−
̃L) ∈ Y (�)

h : = (�× curlV + − i��+T V
)= 1

2
	̃L + �

2k

̃L × �+ �× (B+	̃L)

+ i

k
�× (A+
̃L)−

i�

k2
(A+	̃L)+ �

k
(B−
̃L) ∈ L2t (�),

where the boundary operatorA andB are given by

(A±�)(x)=�±T curl curl
∫

�D
�(y)�(x, y)dsy

(B±�)(x)=�±T curl
∫

�D
�(y)�(x, y)dsy, x ∈ �D.

For the mapping properties ofA andB see e.g.[21]. HenceEL∞ is in the range ofS.
Now let S /⊂ � and assume, on the contrary, thatEs∞ ∈ Range(S), i.e. there existsf ∈ Y (�) and

h ∈ L2t (�) such thatEL∞ = Es∞ whereEs∞ is the far field pattern of the radiating solutionEs to (10)
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corresponding to the boundary dataf, h. Hence by Rellich’s lemma and the unique continuation principle
we have thatEs(x) and

V (x) := 1

k2
curl curl

∫
L

	L(y)�(x, y)dsy + i

k
curl

∫
L


S(y)�(x, y)dsy

coincide forx ∈ R3\(�∪L). Now letx0 ∈ L, x0 /∈�, and letB�(x0) be a small ball with center atx0 such
thatB�(x0)∩�=∅. HenceEs is analytic inB�(x0)whileVhas a singularity atx0 which is a contradiction.
This proves the lemma.�

SinceEL∞ /∈RangeS in the case whenL /⊂ �, by applying the regularization techniques[13] to the
compact and injective operatorS with dense range, we have the following result:

Lemma 3.4. Consider the equation

S(f, h)= EL∞, (f, h) ∈ Y (�)× L2t (�)

and letL /⊂ �.Then for every
>0 there exists(f	, h	) depending on the regularization parameter	>0
such that

‖ S(f	, h	)− EL∞‖L2t (�) < 


and

lim
	→0

‖ (f	, h	)‖Y (�)×L2t (�) =∞.

Note that in the above lemma	 → 0 as
 → 0.
We have now all the ingredients to prove the main theoretical result of this paper. Let us denote byW

the set of piecewise smooth open surfacesL and consider the far field equation

(Fg)(x̂)= EL∞(x̂), L ∈W. (26)

We remark that there are other possible choices for the function on the right-hand side of (26). The criteria
for choosing is to characterize the screen� from whether or not the right-hand side of (26) is in the range
of S. Combining Lemmas 3.3 and 3.4, using the factorization (19) of the far field operatorF and the
fact that any pair(f, g) ∈ Y (�)×L2t (�) can be approximated arbitrarily closely byHg with g ∈ L2t (�)

(Theorem 2.5), and finally the continuity of the operatorS we can prove the following main theorem.

Theorem 3.5. Assume that� is a bounded, oriented, piecewise smooth open surface. Then if F is the far
field operator corresponding to(MSP) we have that

(1) if L ⊂ � then for every�>0 there exists a solutiongL
� ∈ L2t (�) of the inequality

‖ FgL
� − EL∞‖L2t (�) < �.

(2) if L /⊂ � then for every�>0 and
>0 there exists a solutiongL
�,
 ∈ L2t (�) of the inequality

‖ FgL
�,
 − EL∞‖L2t (�)��+ 
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such that

lim

→0

‖ gL
�,
‖L2t (�) =∞ and lim


→0
‖ EgL

�,

‖H(curl,BR) =∞,

whereEgL
�,

is the electric part of the electromagnetic Herglotz pair with kernelgL

�,
.

In particular, ifL ⊂ � we can find a bounded solution to the far field equation (26) with discrepancy�
whereas ifL /⊂ � then there exists solutions of the far field equation with discrepancy�+
with arbitrary
large norm in the limit as
 → 0. For numerical purposes we need to replaceEL∞ in the far field equation
(26) by an expression independent ofL. To this end, we note that asL degenerates to a pointzwith 	L,
and
L an appropriate delta sequence we have that the integral in (25) approaches

ik

4�

[
(x̂ × q)× x̂e−ikx̂·z + (x̂ × q)e−ikx̂·z

]
,

whereq is a constant vector. Note that the first term is the electric far field of an electric dipole and the
second term is the magnetic far field of an electric dipole. Roughly speaking the screen� will now be
characterized as the set of points where theL2t norm of an approximate (regularized) solution of the far
field equation

(Fg)(x̂)= ik

4�

[
(x̂ × q)× x̂e−ikx̂·z + (x̂ × q)e−ikx̂·z

]
(27)

becomes very large.
Following the remark below (26) we notice that one can replace either
L or	L by zero. More generally

in principle one can also consider two independent delta sequences for
L and	L. In this caseEL∞ is
replaced by

ik

4�

[
(x̂ × q1)× x̂e−ikx̂·z + (x̂ × q2)e

−ikx̂·z]
whereq1, q2 are two constant vectors.
We end this section by remarking that, for the sake of presentation, we have considered only the case

when one side of the screen is a perfect conductor and the other side is coated. Exactly the same analysis
holds true if the material properties change on the same side as well. Note also that the same far field
equation is solved to reconstruct perfectly conducting screens[7] or coated (possibly partially!) obstacles
with nonempty interior[8]. This enhances the strength of the linear sampling method for solving the
inverse obstacle scattering problems, i.e. it does not rely on any a priori knowledge of the geometry or
physical properties of the scatterer.

4. Numerical examples

The numerical examples in this section are computed in the same way as discussed in[10,11]. To unify
our approach for mixed screens with the approach used in[7] for perfectly conducting screens, we take

L = 0 and solve the following far field equation

(Fg)(x̂)= ik

4�
(x̂ × q)× x̂e−ikx̂·z (28)
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Fig. 1. Exact and reconstructed disk. Both sides satisfy the impedance boundary condition with�= 2.

Fig. 2. Exact and reconstructed squares. The upper square is a perfect conductor on both sides. The upper side of the lower square
satisfies the impedance boundary condition with�= 2 while the other side is a perfect conductor.

for three linearly independent vectorsq. The far field data is computed by solving the forward problem
using a finite element code with mesh refinement near the edges of the screen. The far field data is then
perturbed by random noise and is used in the discrete version of the far field equation (27). We use
a uniform triangular meshing of the unit sphere� containingN = 42 vertices that corresponds to the
directions of the incoming waves and the measurement points. All presented examples correspond to
full aperture data. We use Tikhonov regularization and the Morozov discrepancy principle to compute
the regularization parameter as introduced in[14]. We choosez on a uniform grid in the region we
are sampling for a scatterer. In all of our examples a 51× 51× 51 uniform grid is used. The noise
level added to the synthetic data is 1%. For details and other numerical considerations the reader is referred
to [10,11].
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Fig. 3. Exact perpendicular squares.

Fig. 4. Two examples of reconstructed perpendicular squares. The screen in the left figure is a perfect conductor. The screen in
the right figure satisfies a perfectly conducting boundary condition on all sides except for the inner side of the vertical square
which satisfies the impedance boundary condition with�= 2.

An important parameter is the contour level at which we draw the iso-surface of the reconstruction.
We define

G(z)= 1

3

(
1

‖ g(·, z, q1)‖L2t (�)

+ 1

‖ g(·, z, q2)‖L2t (�)

+ 1

‖ g(·, z, q3)‖L2t (�)

)
,

whereg(·, z, qi), i= 1,2,3 is an approximate solution to the far field equation (28) corresponding to the
source point locationz and polarizationqi , i = 1,2,3 of the electric and magnetic dipole source. The
iso-surface is then the set of pointszsuch that

G(z)= 0.5max
z

G(z),
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where the factor 0.5 is chosen to give the best results for a disk and then is kept fixed for all our other
numerical examples. For interesting numerical tests regarding this issue in the case of obstacles with
nonempty interior we refer the reader to[10].
We consider three scatterers: a disc, two parallel squares (as an example of disconnected objects)

and two perpendicular squares (as an example of piecewise smooth surfaces). Numerical examples for
perfectly conducting screens can be found in[7].

4.1. Reconstruction of a disk

The exact geometry is presented in the left graph ofFig. 1. On both sides of the disk we assume
impedance boundary condition with�= 2. In this reconstructionk= 2 (the wavelength is denoted by the
bold line). As expected, the reconstruction in this case is worse than the reconstruction of the same disk
with perfectly conducting boundary conditions on both sides (see Fig. 1 in[7]).

4.2. Reconstruction of two parallel squares

This example shown inFig. 2 demonstrates that the linear sampling method can easily reconstruct
disconnectedobjectswithout knowingapriori howmany components there are or the boundary conditions
on each component. In particular, we allow impedance boundary condition only on the upper side of the
lower square. One can clearly see the effect of the coating in the reconstruction. The reconstructed
perfectly conducting square is much thinner compared to the mixed square. In this examplek = 3.

4.3. Reconstruction of two perpendicular squares

In Fig. 4 are presented two examples of reconstructions of a piecewise smooth screen (the exact
geometry is given inFig. 3) with different boundary conditions (as explained in the text forFig. 4). The
edge is sharply captured in the case of a perfectly conducting boundary condition while it is rounded in
the presence of a coating. Here againk = 3.
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