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Abstract
We consider the inverse scattering problem for a cavity that is bounded by a
penetrable anisotropic inhomogeneous medium of compact support and seek
to determine the shape of the cavity from internal measurements on a curve or
surface inside the cavity. We derive a factorization method which provides a
rigorous characterization of the support of the cavity in terms of the range of an
operator which is computable from the measured data. The support of the cavity
is determined without a priori knowledge of the constitutive parameters of the
surrounding anisotropic medium provided they satisfy appropriate physical
as well as mathematical assumptions imposed by our analysis. Numerical
examples are given showing the viability of our method.

Keywords: inverse scattering, factorization method, anisotropic medium,
interior scattering problem, exterior transmission eigenvalues

(Some figures may appear in colour only in the online journal)

1. Introduction

The use of the so-called qualitative methods has played an important role in inverse scattering
theory for the past 15 years and for a survey of these methods we refer the reader to [2]
and [10]. The most rigorous approach in this class of methods is the factorization method
which rigorously characterize the support of the scatterer in terms of the range of an operator
computable from the measured data. Consequently this method provides a simply computable
indicator function for the support and in addition provides a uniqueness result for the scatter’s
support in terms of the given data. The factorization method has been extensively studied
for a variety of scattering problems for obstacle as well as inhomogeneous media. On the
other hand, particularly in the case of scattering by an impenetrable obstacle with Dirichlet,
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Neumann or impedance boundary conditions, there has been a recent interest in the inverse
scattering problem with measured data inside a cavity [4, 6–8, 15, 17–19]. In this class of
problems the object is to determine the shape of the cavity from the use of sources and
measurements along a curve or surface inside the cavity. A possible motivation for studying
such a problem is to determine the shape of an underground reservoir by lowering receivers
and transmitters into the reservoir through a bore hole drilled from the surface of the earth.
The first paper to consider the scattering problem for a cavity surrounded by penetrable
inhomogeneous media of compact support is [1]. There the authors proved a uniqueness result
for the support of the cavity (without a priori knowledge of the constitutive parameters of
the surrounding anisotropic medium provided they satisfy appropriate physical as well as
mathematical assumptions) and established a linear sampling method for determining the
shape of the cavity. A central role in their analysis is played by an unusual non-self-adjoint
eigenvalue problem so-called the exterior transmission eigenvalue problem. In this paper we
consider again the same problem as in [1] and derive a factorization method which provides
a rigorous characterization of the support of the cavity in terms of the range of an operator
which is computable from the measured data inside. The support of the cavity is determined
without any a priori knowledge of the properties of the surrounding anisotropic medium. The
factorization method for a non-penetrable cavity with Dirichlet, or Neumann, or impedance
boundary conditions is considered in [13].

The plan of our paper is as follows. In the next section we will formulate both the direct and
inverse scattering problems for a cavity bounded by a penetrable (possibly) inhomogeneous
medium of compact support. In section 3 we derive an appropriate factorization of the data
operator which is used in section 4 to establish the factorization method following the approach
in [12]. The exterior transmission eigenvalue problem and an eigenvalue problem defined in
the anisotropic layer appear in our analysis and the results are true provided that the wave
number is not an eigenvalue of these eigenvalue problems. However we show that for practical
purposes it is possible to avoid the exterior transmissions eigenvalue problem. In our analysis
we use the non-physical incident waves which is the conjugate of point sources. However, we
explain that in practice it is possible to consider the scattering problem in a bounded region
where in the artificial boundary large enough to contain the anisotropic layer we can put zero
Neumann boundary condition. In this case the factorization method can be derived exactly
in the same way for physical point sources and incident waves. We conclude the paper by
presenting some examples of reconstructions to show the viability of the method.

2. Direct and inverse problems

Let D ⊂ R
d , d = 2, 3, be a simply connected bounded region of R

d with Lipshitz boundary
∂D and denote by ν the outward unit normal to ∂D. We assume the medium inside D is
homogeneous with refractive index scaled to one and denote by k the corresponding wave
number. The medium outside D is assumed to be inhomogeneous and anisotropic such that
outside D1 ⊂ R

d it is homogeneous with the same wave number as the medium in D, where
D ⊂ D1. More specifically, the physical properties of the medium in D1\D are described
by the d × d symmetric matrix valued function A with L∞(D1 \ D) entries and the bounded
function n ∈ L∞(D1 \ D) such that ξ · Re(A)ξ � α‖ξ‖2, ξ · Im(A)ξ � 0, for all ξ ∈ C and
some α > 0, and Re(n) � n0 > 0, Im(n) � 0 in D1 \ D. Furthermore we assume that A ≡ I
and n ≡ 1 in R

d \ D1 and D (see figure 1).
In acoustic scattering (d = 3) or electromagnetic scattering (d = 2, for an H-polarized

infinite cylinder) D represents the support of a cavity filled e.g. with air which is assumed to
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Figure 1. Example of the geometry of the problem.

be the reference media with wave number k. Let �(x, y) be a point source located at a point
y ∈ D inside the cavity given by

�(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i

4
H (1)

0 (k|x − y|) in R
2

1

4π

eik|x−y|

|x − y| in R
3

(1)

and consider the scattering of �(·, y) by the inhomogeneous media. Note that this is non-
physical incident wave and we briefly discuss this issue in section 6. The scattered field
us(·, y) inside the cavity D and outside D1 satisfies

�xus(x, y) + k2us(x, y) = 0 x ∈ D and R
d \ D1

and the total field u(·, y) := us(·, y) + �(·, y) in the inhomogeneous media D1\D satisfies

∇ · A(x)∇u(x, y) + k2n(x)u(x, y) = 0 x ∈ D1\D

and across the interface ∂D and ∂D1 both the total field and its normal derivative are continuous,
i.e.

us(·, y) + �(·, y) = u and
∂us(·, y)

∂ν
+ ∂�(·, y)

∂ν
= ∂u

∂νA

on ∂D and ∂D1, where ∂w
∂νA

:= A∇w · ν, and us satisfies the Sommerfeld radiation condition

lim
r→∞ r

d−1
2

(
∂us

∂r
− ikus

)
= 0

uniformly with respect to x̂ = x/r, r = |x|. We recall that supp(A − I) ⊂ D1 \ D and
supp(n − 1) ⊂ D1 \ D. Written in terms of the radiating scattered field us(·, y) the scattering
problem becomes

∇ · A∇us(·, y) + k2nus(·, y) = ∇(I − A)∇�(·, y) + k2(1 − n)�(·, y) in R
d . (2)

Using a variational approach (see e.g. [2]), it is well known that the forward scattering problem
(2) has a unique solution in H1

loc(R
d ) which depends continuously on �(·, y).
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Now assume that C is an open region in D such that C ⊂ D. We place the artificial point
source �(·, y) at every y ∈ ∂C and measure the corresponding scattered field us(x, y) for
x ∈ ∂C (see figure 1). The inverse problem we consider in this paper is for fixed (but not
necessarily known) A and n satisfying certain assumptions, determine the boundary of the
cavity ∂D from a knowledge of us(x, y) for all x, y ∈ ∂C. Throughout this paper we make the
following assumption.

Assumption 2.1. The open region C is such that k2 is not a Dirichlet eigenvalue for −� in C.

Note that since the wave number k is known, it is easy to chooseC to satisfy assumption 2.1.
In this paper we develop the factorization method for solving the inverse problem following
[10] and [12].

3. Factorization of the data operator

Our data set defines the data operator N: L2(∂C) → L2(∂C) by

(Ng)(x) =
∫

∂C
us(x, y)g(y) ds(y) g ∈ L2(∂C), x ∈ ∂C (3)

where us(·, y) is the radiating solution to (2). In order to factorize the data operator, we
need to define various operators. To this end, let us define the bounded linear operator H:
L2(∂C) → H1(D1\D) by

(Hg)(x) :=
∫

∂C
�(x, y)g(y) ds(y), x ∈ D1\D, (4)

and the bounded linear operator G : H1(D1\D) → L2(∂C) which map w0 to the trace of
radiating solution w∗ on ∂C, where w∗ ∈ H1

loc(R
d ) is the radiating solution

∇ · A∇w∗ + k2nw∗ = ∇(I − A)∇w0 + k2(1 − n)w0 in R
d . (5)

By definition we obviously have N = GH.
Next let BR be a sufficiently large ball that contains D1, and let Tk : H

1
2 (∂BR) →

H− 1
2 (∂BR) be the exterior Dirichlet to Neumann map defined by

Tk : g → ∂u

∂ν
|∂BR, g ∈ H

1
2 (∂BR) (6)

where u is the radiating solution to the Helmholtz equation �u + k2u = 0 outside BR with
boundary data u = g on ∂BR, and ν is the outward unit normal to ∂BR (see e.g. [2]).

Lemma 3.1. The adjoint operator H∗ : H1(D1\D) → L2(∂C) is given by

(H∗v0)(x) =
∫

∂C

∂�(x, y)

∂νy
v(y) ds(y) − 1

2
v(x) for x ∈ ∂C (7)

where v ∈ H1(BR\C) is uniquely determined by the variational formula

−
∫

BR\C
∇v · ∇ψ dx + k2

∫
BR\C

v ψ dx +
∫

∂BR

Tkv ψ dx = (v0, ψ |D1\D)H1(D1\D) (8)

∀ψ ∈ H1(BR\C).

Proof. First we remark that based on Lax–Milgram lemma and the properties of the Dirichlet to
Neumann operator Tk (see e.g. [2]), it is easy to see that (8) has a unique solution v ∈ H1(BR\C).
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Now, let u = ∫
∂C �(x, y)g(y) ds(y) in BR\C. Then u ∈ H1(BR\C) satisfies

�u + k2u = 0 in BR\C

∂u+

∂ν
= ∂(Hg)+

∂ν
on ∂C

∂u

∂ν
= Tku on ∂BR

and u = Hg in D1\D. From (8) and the above equation for u, we obtain that

(H∗v0, g)L2(∂C) = (v0, Hg)H1(D1\D) = (v0, u)H1(D1\D)

= −
∫

BR\C
∇v · ∇u dx + k2

∫
BR\C

vu dx +
∫

∂BR

Tkvu ds

= −
∫

BR\C
∇v · ∇u dx + k2

∫
BR\C

vu dx +
∫

∂BR

Tkuv ds

=
∫

∂C

∂u+

∂ν
v ds =

∫
∂C

[∫
∂C

∂�(x, y)

∂νx
g(y) ds(y) − 1

2
g(x)

]
v(x) ds(x)

=
(∫

∂C

∂�(x, ·)
∂νx

v(x) ds(x) − 1

2
v, g

)
L2(∂C)

.

Therefore, we have that

(H∗v0)(x) =
∫

∂C

∂�(x, y)

∂νy
v(y) ds(y) − 1

2
v(x) for x ∈ ∂C

which ends the proof. �
Before we factorize the data operator we need to define one more operator in H1(D1 \ D).

To this end, for a given w0 ∈ H1(D1\D), let us consider the second kind integral equation∫
∂C

∂�(x, y)

∂νy
ϕ(y) ds(y) − 1

2
ϕ(x) = w∗(x) for x ∈ ∂C (9)

where w∗ is the radiating solution to (5) with this w0. Since k2 is not Dirichlet eigenvalue
for −� in C, and C is smooth, the above second kind integral equation has a unique solution
ϕ ∈ H

1
2 (∂C) (see e.g. [11, 14]). Then we define v ∈ H1(BR\C) by the double layer potential

v(x) =
∫

∂C

∂�(x, y)

∂νy
ϕ(y) ds(y) − w∗(x) for x ∈ BR\C. (10)

(Note that the jump relation of the double layer potential implies that ϕ := v|∂C.) Having
defined v ∈ H1(BR\C) we can now define the unique v0 ∈ H1(D1\D) by means of Riesz
representation theorem as

(v0, ψ)H1(D1\D) = −
∫

D1\D
∇v · ∇ψ dx + k2

∫
D1\D

vψ dx +
∫

∂D1

∂v+

∂ν
ψ ds −

∫
∂D

∂v−

∂ν
ψ ds.

(11)

Hereon the subscripts ‘+’ and ‘−’ indicate that we approach the boundary from outside and
inside the enclosed region, respectively. Also hereon the integrals over d − 1 dimensional
manifolds are defined in the sense of duality between H1/2 and H−1/2.

Definition 3.1. The bounded linear operator S : H1(D1\D) → H1(D1\D) is defined by

S : w0 �→ v0

where v0 is given by (11) corresponding to v defined by (10) with w∗ satisfying (5) for the
given w0.

5
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For later use let us derive an explicit formula for (Sw0, u0)H1(D1\D). To this end, we recall
the double layer potential

D(ϕ)(·) =
∫

∂C

∂�(·, y)

∂νy
ϕ(y) ds(y) in BR\∂C

and for a given w0 let w∗, v and v0 in definition 3.1. Then

(v0, u0)H1(D1\D) = −
∫

D1\D
∇v · ∇u0 dx + k2

∫
D1\D

vu0 dx +
∫

∂D1

∂v+

∂ν
u0 ds −

∫
∂D

∂v−

∂ν
u0 ds

=
∫

D1\D
∇w∗ · ∇u0 dx − k2

∫
D1\D

w∗u0 dx −
∫

∂D1

∂(w∗)+

∂ν
u0 ds

+
∫
∂D

∂(w∗)−

∂ν
u0 dx −

∫
D1\D

∇D(v) · ∇u0 dx + k2
∫

D1\D
D(v)u0 dx

+
∫

∂D1

∂D(v)+

∂ν
u0 ds −

∫
∂D

∂D(v)−

∂ν
u0 ds

= −
∫

∂D1

∂(w∗)+

∂ν
u0 ds +

∫
D1\D

∇w∗∇u0 dx

− k2
∫

D1\D
w∗u0 dx +

∫
∂D

∂(w∗)−

∂ν
u0 ds

which gives that

(Sw0, u0)H1(D1\D) = −
∫

∂D1

∂(w∗)+

∂ν
u0 dx +

∫
∂D

∂(w∗)−

∂ν
u0 dx

+
∫

D1\D
∇w∗ · ∇u0 dx − k2

∫
D1\D

w∗u0 dx. (12)

Now we are ready to construct the main factorization of our data operator.

Theorem 3.1. The data operator N: L2(∂C) → L2(∂C) can be factorized as N = H∗SH
where H : L2(∂C) → H1(D1\D) is defined by (4), S : H1(D1\D) → H1(D1\D) is defined by
definition 3.1, and H∗ : H1(D1\D) → L2(∂C) is given by lemma 3.1.

Proof. Given g ∈ L2(∂C) and let w0 = Hg we have that Ng = w∗|∂C. From (10), we have that
v satisfies Helmholtz equation in BR\D1 and D\C and satisfies radiation condition, whence
from (11) for any ψ ∈ H1(BR\C),

(v0, ψ |D1\D)H1(D1\D) = −
∫

D1\D
∇v · ∇ψdx + k2

∫
D1\D

vψ dx

+
∫

∂D1

∂v+

∂ν
ψ ds −

∫
∂D

∂v−

∂ν
ψ ds

= −
∫

BR\C
∇v · ∇ψ dx + k2

∫
BR\C

vψ dx

+
∫

∂BR

Tkvψ ds −
∫

∂C

∂v+

∂ν
ψ ds.

Next we show ∂v+
∂ν

= 0 on ∂C. From (9) and jump properties of double layer potential, we
have that [∫

∂C

∂�(x, y)

∂νy
v(y) ds(y)

]−
= w∗(x) for x ∈ ∂C.

6
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Next, since both w∗ and the double layer potential satisfy Helmholtz equation in C, the fact
that they have the same Dirichlet boundary data on ∂C implies∫

∂C

∂�(x, y)

∂νy
v(y) ds(y) = w∗(x) for x ∈ C,

by making use that k2 is not Dirichlet eigenvalue for −� in C. (Note that w∗ is an H1-solution
of the Helmholtz equation in D, and therefore its normal derivative is continuous across ∂C.)
Therefore

∂

∂νx

[∫
∂C

∂�(x, y)

∂νy
v(y) ds(y)

]−
= ∂w∗(x)

∂νx
for x ∈ ∂C.

From the expression

v(x) =
∫

∂C

∂�(x, y)

∂νy
v(y) ds(y) − w∗(x) for x ∈ BR\C

and the fact that the normal derivative of the double layer potential is continuous, we obtain
that

∂v+

∂ν
= 0 on ∂C

which now implies that

(v0, ψ |D1\D)H1(D1\D) = −
∫

BR\C
∇v · ∇ψ dx + k2

∫
BR\C

vψ dx +
∫

∂BR

Tkvψ ds. (13)

Therefore from the definition of H∗, we have that

H∗v0(·) =
∫

∂C

∂�(·, y)

∂νy
v(y) ds(y) − 1

2
v(·) on ∂C.

Finally (10) and the jump properties of double layer potential yield∫
∂C

∂�(x, y)

∂νy
v(y)ds(y) − 1

2
v(x) = w∗(x) for x ∈ ∂C

which means that H∗v0 = w∗|C. Thus H∗SHg = H∗v0 = w∗|C = Ng and this holds for any
g ∈ L2(∂C), therefore we can conclude that N = H∗SH. �

4. The factorization method

The above factorization of the data operator will enable us to characterize the cavity D in
terms of the range of an operator know from the (measured) data operator. To do so we recall
theorem 2.1 in [12] which provides the theoretical basis of the factorization method that we
use for our problem. For sake of reader’s convenience we state this theorem below and for
the proof we refer the reader to [12]. For a generic bounded linear operator K between two
Banach spaces, we define its real and imaginary parts by Re(K) = K+K∗

2 and Im(A) = K−K∗
2i

where K∗ is the adjoint of K.

Theorem 4.1. Let X ⊂ U ⊂ X∗ be a Gelfand triple with Hilbert space U and reflexive Banach
space X such that the embeddings are dense. Furthermore, let V be a second Hilbert space
and F : V → V , H : V → X and T : X → X∗ be linear bounded operators with F = H∗T H.
Assume

(a) H is compact and injective,
(b) Re(T ) = T0 + T1 with some positive definite self-adjoint operator T0 and some compact

operator T1 : X → X∗,

7
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(c) (Im(Tφ), φ) � 0 for all φ ∈ X.

Furthermore, assume that one of the following two conditions is satisfied.

(d) T is injective.
(e) Im(T ) is positive on the (finite-dimensional) null space of Re(T ), i.e (Im(Tφ), φ) > 0

for all φ �= 0 such that Re(Tφ) = 0.

Then the operator F# := |Re(F )| + Im(F ) is positive definite and the range of
H∗ : X∗ → V and the range of F1/2

# : V → V coincide.

We will apply this theorem to our near field operator N = H∗SH and the rest of the paper
is to make sure that the operator H, S and H∗ fulfill the assumptions of the above theorem. To
this end we make the following assumption on the wave number k.

Assumption 4.1. The wave number k > 0 is such that there does not exist a nonzero
w0 ∈ H1(D1\D) satisfying∫

D1\D
(I − A)∇w0 · ∇ψ dx − k2

∫
D1\D

(1 − n)w0ψ dx = 0, ∀ ψ ∈ H1(D1\D).

Theorem 4.2. The operators H, S, H∗ have the following properties.

(i) H is compact and injective.
(ii) The imaginary part Im(S) of S is non-negative.

(iii) S is injective on H1(D1\D) provided that k > 0 satisfies assumption 4.1.

Proof. (i) Since the embedding of H2(D1\D) to H1(D1\D) is compact, and from the regularity
of single layer potential aways from ∂C we obviously have that H is compact. Furthermore if
Hg = 0 then since Hg solves the Helmholtz equation up to ∂C we have that Hg|∂C = 0. Now
since k2 is not a Dirichlet eigenvalue for −� and by the continuity of single layer potential
we have that Hg = 0 in C. Now the jump relation gives that g = 0 and hence H is injective.

(ii) From (12) we have that,

(Sw0, u0)H1(D1\D) = −
∫

∂D1

∂(w∗)+

∂ν
u0 ds +

∫
∂D

∂(w∗)−

∂ν
u0 dx

+
∫

D1\D
∇w∗ · ∇u0 dx − k2

∫
D1\D

w∗u0 dx. (14)

Multiplying both sides (5) by u0 and integrating by parts yield∫
∂D1

∂(w∗)−

∂νA
u0 ds −

∫
∂D

∂(w∗)+

∂νA
u0 ds −

∫
D1\D

A∇w∗ · ∇u0 dx + k2
∫

D1\D
nw∗u0 dx

=
∫

∂D1

∂w−
0

∂ν(I−A)

u0 ds −
∫

∂D

∂w+
0

∂ν(I−A)

u0 ds −
∫

D1\D
(I − A)∇w0 · ∇u0 dx

+k2
∫

D1\D
(1 − n)w0u0 dx.

Now using the boundary conditions in the above

∂(w0)
+

∂νA−I
= ∂(w∗)−

∂ν
− ∂(w∗)+

∂νA
on ∂D (15)

∂(w0)
−

∂νI−A
= −∂(w∗)+

∂ν
+ ∂(w∗)−

∂νA
on ∂D1, (16)

8
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we have that

−
∫

∂D1

∂(w∗)+

∂ν
u0 ds +

∫
∂D

∂(w∗)−

∂ν
u0 ds = −

∫
D1\D

A∇w∗ · ∇u0 dx + k2
∫

D1\D
nw∗u0 dx

+
∫

D1\D
(I − A)∇w0 · ∇u0 dx − k2

∫
D1\D

(1 − n)w0u0 dx.

Let u∗ be the solution of (5) corresponding to u0 in the right-hand side. Plugging the above
expression in (14) we can now get

(Sw0, u0)H1(D1\D) = −
∫

D1\D
A∇w∗ · ∇u0 dx + k2

∫
D1\D

nw∗u0 dx

+
∫

D1\D
(I − A)∇w0 · ∇u0 dx − k2

∫
D1\D

(1 − n)w0u0 dx

+
∫

D1\D
∇w∗ · ∇u0 dx − k2

∫
D1\D

w∗u0 dx. (17)

The latter can be re-written as

(Sw0, u0)H1(D1\D) = −
∫

D1\D
(A − I)∇(w∗ + w0) · ∇(u∗ + u0) dx

+k2
∫

D1\D
(n − 1)(w∗ + w0)(u∗ + u0) dx

+
∫

D1\D
(A − I)∇(w∗ + w0) · ∇u∗ dx

−k2
∫

D1\D
(n − 1)(w∗ + w0)u

∗ dx. (18)

Next, noting that

−∇ · (A − I)∇(w∗ + w0) − k2(n − 1)(w∗ + w0) = �w∗ + k2w∗ in D1\D,

multiplying both sides by u∗ and integrating by parts we obtain

−
∫

D1\D
∇w∗ · ∇u∗ dx + k2

∫
D1\D

w∗u∗ dx +
∫

∂D1

∂(w∗)−

∂ν
u∗ dx −

∫
∂D

∂(w∗)+

∂ν
u∗ dx

= −
∫

∂D1

∂(w∗ + w0)
−

∂ν(A−I)
u∗ds +

∫
∂D

∂(w∗ + w0)
+

∂ν(A−I)
u∗ ds

+
∫

D1\D
(A − I)∇(w∗ + w0) · ∇u∗ dx − k2

∫
D1\D

(n − 1)(w∗ + w0)u
∗ dx.

(19)

Next using the boundary conditions (15) and (16) along with (19) in (18) yield

(Sw0, u0)H1(D1\D) = −
∫

D1\D
(A − I)∇(w∗ + w0) · ∇(u∗ + u0) dx

+ k2
∫

D1\D
(n − 1)(w∗ + w0)(u∗ + u0)dx −

∫
D1\D

∇w∗ · ∇u∗ dx

+ k2
∫

D1\D
w∗u∗ dx +

∫
∂D1

∂(w∗)+

∂ν
u∗ ds −

∫
∂D

∂(w∗)−

∂ν
u∗ ds.

9
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Since w∗ satisfies Helmholtz equation in D and outside D1, we can rewrite the above
expression as

(Sw0, u0)H1(D1\D) = −
∫

D1\D
(A − I)∇(w∗ + w0) · ∇(u∗ + u0) dx

+ k2
∫

D1\D
(n − 1)(w∗ + w0)(u∗ + u0) dx −

∫
BR\D1

∇w∗ · ∇u∗ dx

−
∫

D1\D
∇w∗ · ∇u∗ dx + k2

∫
D1\D

w∗u∗ dx +
∫

∂BR

Tkw
∗u∗ dx

+ k2
∫

BR\D1

w∗u∗ dx −
∫

D
∇w∗ · ∇u∗ dx + k2

∫
D

w∗u∗ dx

which can be finally transformed to

(Sw0, u0)H1(D1\D) = −
∫

D1\D
(A − I)∇(w∗ + w0) · ∇(u∗ + u0) dx

+ k2
∫

D1\D
(n − 1)(w∗ + w0)(u∗ + u0) dx

−
∫

BR

∇w∗ · ∇u∗ dx + k2
∫

BR

w∗u∗ dx +
∫

∂BR

Tkw
∗u∗ ds. (20)

Now taking the imaginary part of S, we can see that

(Im(S)w0, w0)H1(D1\D) = Im

( ∫
∂BR

Tkw
∗w∗ ds −

∫
D1\D

(A − I)∇(w∗ + w0) · ∇(w∗ + w0) dx

+ k2
∫

D1\D
(n − 1)(w∗ + w0)(w∗ + w0) dx

)

� k
∫

S2
|w∗

∞|2 ds −
∫

D1\D
Im(A)∇(w∗ + w0) · ∇(w∗ + w0) dx

+ k2
∫

D1\D
Im(n)|w∗ + w0|2 dx � 0

since Im(A) � 0 and Im(n) � 0, where the far field pattern w∗
∞ of the radiating solution w∗

is defined from the asymptotic expansion

w∗(x) = eikr

r
d−1

2

w∗
∞(x̂) + O

(
r− d+1

2
)
, r = |x|, x̂ = x/|x|.

(iii) To prove the third part we assume that Sw0 = 0. Then for any ψ ∈ H1(D1\D) from (12)
we have that∫

∂D

∂(w∗)−

∂ν
ψ ds −

∫
∂D1

∂(w∗)+

∂ν
ψ ds +

∫
D1\D

∇w∗ · ∇ψdx − k2
∫

D1\D
w∗ψ dx = 0

which means that w∗ satisfies

�w∗ + k2w∗ = 0 in D1\D

and the transmission conditions
∂(w∗)+

∂ν
= ∂(w∗)−

∂ν
on ∂D1 and

∂(w∗)+

∂ν
= ∂(w∗)−

∂ν
on ∂D.

Therefore from (5), we can conclude that w∗ ∈ H1
loc(R

d ) is a radiating solution to the Helmholtz
equation in R

d , and hence w∗ = 0. Now multiplying both sides of (5) by ψ and integrating by
parts, we obtain that w0 satisfies∫

D1\D
(I − A)∇w0 · ∇ψ − k2

∫
D1\D

(1 − n)w0ψ = 0, ∀ ψ ∈ H1(D1\D)

10
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whence w0 = 0 providing that k > 0 satisfies assumption 4.1, which implies that under this
assumption S is injective. �

Theorem 4.3. The operator S satisfies in addition the following property.

(i) If Re(A) > I then −Re(S) is the sum of a compact operator and a self-adjoint positive
definite operator.

(ii) If I − Re(A) − α|Im(A)| > 0 and Re(A) − 1
α
|Im(A)| � 0 for some α > 0, then Re(S) is

the sum of a compact operator and a self-adjoint positive definite operator.

Proof. (i) From (20) the real part of the operator S is given by

(Re(S)w0, u0)H1(D1\D) = −
∫

D1\D
(Re(A) − I)∇(w∗ + w0) · ∇(u∗ + u0)

+ k2
∫

D1\D
(Re(n) − 1)(w∗ + w0)(u∗ + u0) dx

−
∫

BR

∇w∗ · ∇u∗ dx + k2
∫

BR

w∗u∗ dx +
∫

∂BR

Re(Tk)w
∗u∗ dx.

In the case when Re(A) > I we define the operator K : H1(D1\D) → H1(D1\D) by

(Kw0, u0)H1(D1\D) = −
∫

D1\D
(Re(A) − I)∇(w∗ + w0) · ∇(u∗ + u0) dx

−
∫

D1\D
w0u0 dx −

∫
BR

∇w∗ · ∇u∗ dx +
∫

∂BR

Re(Tk)w
∗u∗ dx (21)

which is obviously self-adjoint. Using the known fact that the real part of the Dirichlet to
Neumann operator Re(Tk) is non-positive (see e.g. [16] in R

3) and applying Young’s inequality
yield

(−Kw0, w0)H1(D1\D) � (1 − α) ((Re(A) − I)∇w0,∇w0)L2(D1\D) + (w0, w0)L2(D1\D)

+
(

1 − 1

α

)
((Re(A) − I)∇w∗,∇w∗)L2(D1\D) + (∇w∗,∇w∗)L2(BR )

� c||w0||2H1(D1\D)

where 0 < α < 1 is such that (1 − 1
α
)supD1\D(Re(A) − I) + 1 > 0, and c is some positive

constant depending on A. Now, the fact that Re(S) − K is compact thanks to the compactly
imbedding of H1(D1\D) into L2(D1\D), proves the first claim.

(ii) Next, we consider the case when Re(A) < I. To prove the claim we need to derive a
new expression for (Sw0, u0)H1(D1\D). To this end from the expression (17) we have

(Sw0, u0)H1(D1\D) = −
∫

D1\D
A∇w∗ · ∇u0 dx + k2

∫
D1\D

nw∗u0 dx

+
∫

D1\D
(I − A)∇w0 · ∇u0 dx − k2

∫
D1\D

(1 − n)w0u0 dx +
∫

D1\D
∇w∗ · ∇u0

− k2
∫

D1\D
w∗u0 dx =

∫
D1\D

(I − A)∇w∗ · ∇u0 dx − k2
∫

D1\D
(1 − n)w∗u0 dx

+
∫

D1\D
(I − A)∇w0 · ∇u0 dx − k2

∫
D1\D

(1 − n)w0u0 dx. (22)

For given u0 ∈ H1(D1\D) let u∗ be the radiating solution of (5). Multiplying both sides of

∇ · A∇u∗ + k2nu∗ = ∇(I − A) · ∇u0 + k2(1 − n)u0 in R
d

11
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by w∗ and integrating by parts, we obtain∫
∂D1

∂(u∗)−

∂νA
w∗ dx −

∫
∂D

∂(u∗)+

∂νA
w∗ dx −

∫
D1\D

A∇u∗ · ∇w∗ dx + k2
∫

D1\D
nu∗w∗ dx

=
∫

∂D1

∂(u0)
−

∂νI−A
w∗dx −

∫
∂D

∂(u0)
+

∂νI−A
w∗ dx

−
∫

D1\D
(I − A)∇u0 · ∇w∗ dx + k2

∫
D1\D

(1 − n)u0w∗ dx.

Therefore, from the transmission conditions (15) and (16) for u∗ and u0 the above expression
can be re-written as∫

D1\D
(I − A)∇u0 · ∇w∗ dx − k2

∫
D1\D

(1 − n)u0w∗ dx

= −
∫

∂D1

∂(u∗)+

∂ν
w∗ ds +

∫
∂D

∂(u∗)−

∂ν
w∗ ds +

∫
D1\D

A∇u∗ · ∇w∗ dx − k2
∫

D1\D
nu∗w∗ dx

= −
∫

∂BR

Tku∗w∗ ds +
∫

BR

∇u∗ · ∇w∗ ds − k2
∫

BR

u∗w∗ dx +
∫

D1\D
(A − I)∇u∗ · ∇w∗ dx

−k2
∫

D1\D
(n − 1)u∗w∗ dx

where Tk : H1/2(∂BR) → H−1/2(∂BR) is the exterior Dirichlet to Neumann operator defined
by (6). Conjugating the above expression we obtain∫

D1\D
(I − A)∇w∗ · ∇u0 dx − k2

∫
D1\D

(1 − n)w∗u0 dx

= −
∫

∂BR

Tku∗w∗ ds +
∫

BR

∇w∗ · ∇u∗ dx − k2
∫

BR

w∗u∗ dx

+
∫

D1\D
(A − I)∇w∗ · ∇u∗ dx − k2

∫
D1\D

(n − 1)w∗u∗ dx (23)

and substituting (23) in (22) yields

(Sw0, u0)H1(D1\D) =
∫

D1\D
(I − A)∇w0 · ∇u0 dx − k2

∫
D1\D

(1 − n)w0u0 dx

−
∫

∂BR

Tku∗w∗ ds +
∫

BR

∇w∗ · ∇u∗dx − k2
∫

BR

w∗u∗ dx

+
∫

D1\D
(A − I)∇w∗ · ∇u∗ dx − k2

∫
D1\D

(n − 1)w∗u∗ dx

+
∫

D1\D
(A − A)∇w∗ · ∇u0 dx − k2

∫
D1\D

(n − n)w∗u0 dx.

Hence, taking the real part of S, i.e. computing (S + S∗)/2

(Re(S)w0, u0)H1(D1\D) =
∫

D1\D
(I − Re(A))∇w0 · ∇u0 dx − k2

∫
D1\D

(1 − Re(n))w0u0 dx

+ i
∫

D1\D
(−Im(A)∇w∗ · ∇u0 + Im(A)∇u∗ · ∇w0) dx

− ik2
∫

D1\D
(−Im(n)w∗u0 + Im(n)u∗w0) dx

+
∫

BR

Re(A)∇w∗ · ∇u∗ dx − k2
∫

BR

Re(n)w∗u∗ dx

−
∫

∂BR

Re(Tk)u∗w∗ ds.

12
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Now let us define K by

(Kw0, u0)H1(D1\D) =
∫

D1\D
(I − Re(A))∇w0 · ∇u0 dx

+
∫

D1\D
w0u0 dx +

∫
BR

Re(A)∇w∗ · ∇u∗ dx

+i
∫

D1\D

(−Im(A)∇w∗ · ∇u0 + Im(A)∇u∗ · ∇w0
)

dx −
∫

∂BR

Re(Tk)u∗w∗ ds

which obviously is a self-adjoint. Again, using that the real part of the Dirichlet to Neumann
operator Re(Tk) is non-positive and applying Young’s inequality yield

(Kw0, w0)H1(D1\D) � ((I − Re(A) − α|Im(A)|)∇w0,∇w0)L2(D1\D)

+
(

(Re(A) − 1

α
|Im(A)|)∇w∗,∇w∗

)
L2(D1\D)

+(w0, w0)L2(D1\D) � c||w0||2H1(D1\D)

where α is such that I − Re(A) − α|Im(A)| > 0, Re(A) − 1
α
|Im(A)| � 0, and c is some

constant depending on A, n only.
Finally the difference Re(S)−K is compact due to the compactly imbedding of H1(D1\D)

into L2(D1\D). �

Remark 4.1. Injectivity of the operator S : H1(D1\D) → H1(D1\D) holds true if
assumption 4.1 is satisfied. Based on the analytic Fredholm theory it is easy to show that
such k > 0 form at most a discrete set with +∞ as the only possible accumulation point. It is
easy to see that if Im(A) � 0 and Im(n) > 0 in D1 \D, or Im(A) < 0 and n−1 does not change
sign in D1 \ D (more generally it suffices that

∫
D1\D(n − 1) dx �= 0), then assumption 4.1 holds

for all real k > 0. In addition, the latter is also the case when A and n are real valued and the
contrasts (A − I) and n − 1 have the opposite signs.

Using the factorization in theorem 3.1 along with theorems 4.2 and 4.3, and applying
theorem 4.1 to the data operator N we can conclude the following range characterization
result.

Corollary 4.1. Under the assumptions of theorems 4.2 and 4.3, the range of the operator
N1/2

# : L2(∂C) → L2(∂C) and the range of the operator H∗ : H1(D1 \D) → L2(∂C) coincide,
where N# := |Re(N)| + Im(N).

The last step of our approach is to characterize the range of H∗ in term of the support of
the cavity D. At this point we introduce the so-called exterior transmission eigenvalue problem
which in the current settings is a slight modification of the problem considered in [1] due to
the fact that the incident field is the complex conjugate of the point source. This problem reads
as: find w ∈ H1

loc(R
d\D), v ∈ H1

loc(R
d\D) such that

∇ · A∇w + k2nw = 0 in R
d\D (24)

�v + k2v = 0 in R
d\D (25)

w − v = f on ∂D (26)

∂w

∂νA
− ∂v

∂ν
= h on ∂D (27)

13
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lim
r→+∞ r

d−1
2

(
∂(w − v)

∂r
− ik(w − v)

)
= 0 (28)

lim
r→+∞ r

d−1
2

(
∂v

∂r
+ ikv

)
= 0 (29)

for f ∈ H1/2(∂D) and h ∈ H−1/2(∂D). Values of k > 0 for which the homogeneous exterior
transmission problem (i.e (24)–(29) with f = 0 and h = 0) has non-trivial solution are called
exterior transmission eigenvalues. Using the same technique as in [1], it can be proven that the
problem (24)–(29) satisfies the Fredholm alternative and the exterior transmission eigenvalues
form at most a discrete set with +∞ as the only possible accumulation point. Hence one
can prove that provided that k > 0 is not an exterior transmission eigenvalue the problem
(24)–(29) has a unique solution w ∈ H1

loc(R
d\D), v ∈ H1

loc(R
d\D) that depends continuously

on f and h.

Assumption 4.2. The wave number k > 0 is not an exterior transmission eigenvalue
corresponding to (24)–(29).

We can now prove the following theorem that relates the range of H∗ with the support of
the cavity D.

Theorem 4.4. Suppose that assumption 4.2 holds. Then for z ∈ R
d\C we have that �(·, z) is

in the range of H∗ if and only if z ∈ R
d\D.

Proof. Let z ∈ R
d\D and since k is not an exterior transmission eigenvalue we can construct

the unique solution wz ∈ H1
loc(R

d\D), vz ∈ H1
loc(R

d\D) of (24)–(29) with f := �(·, z) and
h := ∂�(·,z)

∂ν
. Setting uz = wz − vz, we have that from (28) uz is an outgoing radiating solution

of

∇ · A∇uz + k2nuz = ∇(I − A) · ∇vz + k2(1 − n)vz in R
d\D

satisfying uz := �(·, z) and ∂uz

∂ν
= ∂�(·,z)

∂ν
on ∂D from (26) and (27). Define u := uz in R

d\D
and u := �(·, z) in D. The continuity of the Cauchy data guarantees that u ∈ H1

loc(R
d ) and in

addition u is an outgoing radiating solution of

∇ · A∇u + k2nu = ∇ · (I − A)∇vz + k2(1 − n)vz in R
d

which from the definition of operator G : H1(D1\D) → L2(∂C) means that �(·, z)|∂C = Gvz.
Note that vz ∈ H1(D1\D) satisfies the Helmholtz equation and the incoming radiation
condition and therefore it is in the closure of the range of H. Finally since G = H∗S, we
now have that �(·, z) is in the range of H∗.

Next assume that z ∈ D\C and to the contrary that �(·, z)|∂C is in the range of H∗.
Let v0 ∈ H1(D1\D) be such that H∗v0 = �(·, z). Then there is v ∈ H1(Rd\C) uniquely
determined by (8) such that

(H∗v0)(x) =
∫

∂C

∂�(·, y)

∂νy
v(y) ds(y) − 1

2
v(x) for x ∈ ∂C.

From the jump property of the double layer potential we have that[∫
∂C

∂�(·, y)

∂νy
v(y) ds(y)

]−
= �(·, z) on ∂C

14
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approaching ∂C from inside. From (8), we can also see that v satisfies the Helmholtz equation
in D\C and ∂v+

∂ν
|∂C = 0 where + indicates that ∂C is approached from outside C. Now define

w(·) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
∂C

∂�(·, y)

∂νy
v(y) ds(y) in C

∫
∂C

∂�(·, y)

∂νy
v(y) ds(y) − v(·) in D\C

then w ∈ H1(D), satisfies Helmholtz equation in D, and w− = �(·, z) on ∂C. Hence the
assumption (2.1) guarantees that w = �(·, z) in C since both satisfy the same Dirichlet
boundary value problem for the Helmholtz equation in C. Now, if z ∈ D, by analytic
continuation we have that w = �(·, z) in D\z, but since �(x, z) has singularity at x = z
whereas w is analytic, we arrive at a contradiction. Furthermore, if z ∈ ∂D, then equality of w

and �(·, z) up to the boundary ∂D requires that �(·, z) ∈ H
1
2 (∂D), in the sense of the trace,

which is not true, whence we again arrive at a contradiction. Therefore we can conclude that
for z ∈ D\C, �(·, z) is not in the range of H∗. �

Theorem 4.4 can be modified to remove assumption 4.2.

Theorem 4.5. For z ∈ D1\C we have that �(·, z) is in the range of H∗ if and only if z ∈ D1\D.

Proof. We only need to prove the statement for z ∈ D1\D since the complimentary case holds
under no restriction on the wave and is proven in the second part of theorem 4.4. To this end,
for z ∈ D1\D, we need to show that there exists v0 ∈ H1(D1\D) such that H∗v0 = �(·, z).
Fix ε > 0 small enough and consider w∗ := �(·, z)χε , where χε is a cut-off function such that
χε = 0 in B(z, ε) and χε = 1 outside B(z, 2ε) where B(z, ε) is a ball centered at z with radius
ε, and B(z, 2ε) ⊂ D1\D. Obviously, w∗ ∈ H1

loc(R
d ). Let now v ∈ H1(BR\C) be defined by

(10) and v0 ∈ H1(D1\D) be defined by (11). We need to show that v0, v satisfy (8). Indeed, by
constructions, w∗ satisfies Helmholtz equation in D\C and R

d\D1 and so does v. Therefore∫
∂D1

∂v+

∂ν
ψ ds =

∫
∂BR

Tkvψ ds −
∫

BR\D1

∇v · ∇ψdx + k2
∫

BR\D1

vψ dx

and ∫
∂D

∂v−

∂ν
ψ ds =

∫
∂C

∂v+

∂ν
ψ ds +

∫
D\C

∇v · ∇ψ dx − k2
∫

D\C
vψ dx.

Plugging both the above equations in (11), we have that for any ψ ∈ H1(BR\C)

(v0, ψ |D1\D)H1(D1\D) = −
∫

BR\C
∇v · ∇ψ dx + k2

∫
BR\C

vψdx +
∫

∂BR

Tkvψ dx −
∫

∂C

∂v+

∂ν
ψ ds.

From the definition of v and using jump properties of double layer potential we have that[∫
∂C

∂�(x, y)

∂νy
v(y) ds(y)

]−
= w∗(x) for x ∈ ∂C

where ‘−’ indicates approaching ∂C from inside C. Then

∂

∂νx

[∫
∂C

∂�(·, y)

∂νy
v(y) ds(y)

]−
= ∂w∗

∂ν
on ∂C

and another application of the jump properties of double layer potential implies

∂

∂νx

[∫
∂C

∂�(·, y)

∂νy
v(y) ds(y)

]+
= ∂w∗

∂ν
on ∂C

15
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whence by construction of v we have that ∂v+
∂ν

= 0 on ∂C, where ‘+’ indicates approaching
∂C from outside C. Therefore (8) holds for v and v0, hence by definition of H∗ (7) holds true.
From the construction of v and jump properties of the double layer potential we have that∫

∂C

∂�(·, y)

∂νy
v(y) ds(y) − 1

2
v(x) = w∗(x) for x ∈ ∂C

and therefore H∗v0 = w∗. Now since w∗ = �(·, z) in D we finally obtain H∗v0 = �(·, z) on
∂C. �

Now we are ready to state the main theorem of the paper. Let us recall the compact data
operator N : L2(∂C) → L2(∂C) given by (3) and define Re(N) = N+N∗

2 , Im(N) = N−N∗
2i and

N# := |Re(N)| + Im(N) which is also compact. In addition N# is also self-adjoint. We denote
by (φ j, λ j) j∈N an orthonormal eigen-system for N#. Then we have the following result.

Theorem 4.6. Suppose that all assumptions 2.1, 4.1 and 4.2 are valid for the wave number
k > 0, and either Re(A) > I, or I − Re(A) − α|Im(A)| > 0 and Re(A) − 1

α
|Im(A)| � 0 for

some α > 0. Then for z ∈ R
d\C

z ∈ R
d\D if and only if

∑
j

| (�z, φ j
) |2

λ j
< ∞

where �z := �(·, z)|∂C, with �(·, z) being the fundamental solution of the Helmholtz equation
given by (1).

Proof. The result follows from corollary 4.1 and theorem 4.4 along with an application of the
Picard’s theorem [2] and [3]. �

Using now theorem 4.5 instead of theorem 4.4 we can drop assumption 4.2. Note it is more
difficult to handle the existence of exterior transmission eigenvalues than checking whether
the wave number k > 0 satisfies assumption 4.1.

Theorem 4.7. Suppose that both assumptions 2.1 and 4.1 are valid for the wave number k > 0,
and either Re(A) > I, or I − Re(A) − α|Im(A)| > 0 and Re(A) − 1

α
|Im(A)| � 0 for some

α > 0. Then for z ∈ D1\C

z ∈ D1\D if and only if
∑

j

| (�z, φ j
) |2

|λ j| < ∞

where �z := �(·, z)|∂C, with �(·, z) being the fundamental solution of the Helmholtz equation
given by (1).

From practical point of view in order to determine the support of D from interior sources
and measurements it suffices to sample only within the region D1.

5. Numerical examples

In this section we provide some preliminary numerical results to show the viability of
the factorization method to determine the support of a cavity surrounded by anisotropic
inhomogeneous media. For a given anisotropic medium and artificial point sources on the given
manifold ∂C, we can compute the near field data using a finite element method combined with
PML on the artificial boundary. Having the simulated data us(x, y), x, y ∈ ∂C, we compute a
discretized version of the near field operator and of N#, and then apply the criterion described
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(a) (b) (c)

Figure 2. Panels (a), (b) and (c) show the reconstruction of a circle with radius 1.2, of
an ellipse with x-axis 3.2 and y-axis 2.4 and of a square with length 2.4, respectively,
with noise free data. The wavelength is 2π/5 and ∂C is a circle of radius 0.8. Here
A = [1.2 0; 0 1.5], n = 0.8 and the true geometry of the cavity is indicated by the
solid line.

(a) (b) (c)

Figure 3. Panels (a), (b) and (c) show the reconstruction of a circle with radius 1.2, of an
ellipse with x-axis 3.2 and y-axis 2.4 and of a square with length 2.4, respectively,
with 1% noise. The wavelength is 2π/5 and ∂C is a circle of radius 0.8. Here
A = [1.2 0; 0 1.5], n = 0.8 and the true geometry is indicated by the solid line. The
sampling points z are in [−2, 2]2.

in theorem 4.6 to reconstruct the interior of the cavity D. In particular, we compute the eigen-
system (φ j, λ j) j=1..M of the symmetric matrix that approximate N# and then use the discrete
version of the Picard’s criteria. To visualize the cavity we plot the contour lines of

W (z) :=
⎡
⎣ M∑

j=1

| < �z, φ j > |2
|λ j|

⎤
⎦

−1

for z varying in a region large enough to contain the D. The cavity is the region where W (z)
takes values close to zero. For more details in the implementation of the factorization method
see [10].

In this paper, we present the reconstruction of a circle, an ellipse and a square in the
two-dimensional case. The exact geometry and the reconstructions are shown in the figures
below. In all the examples presented here the region D1 is the disk of radius 2. In the examples
presented in figures 2 and 3, C is the disk of radius 0.8 (30 incident point sources and 30
corresponding measurements equally distributed on ∂C), the anisotropic medium has the
constitutive parameters A = [1.2 0; 0 1.5], n = 0.8, and the wave number is k = 5.
Reconstructions are given for noise free data and 1% white noise added. The sampling point
z moves in a grid covering the square [−2, 2]2.

In order to study the sensitivity of reconstructions on the size of the measurement manifold
∂C, we show reconstructions for the configuration of the examples in figure 2 where now ∂C
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(a) (b) (c)

Figure 4. Panels (a), (b) and (c) show the reconstruction of a circle with radius 1.2, of
an ellipse with x-axis 3.2 and y-axis 2.4 and of a square with length 2.4, respectively,
with noise free data. The wavelength is 2π/5 and ∂C is a circle of radius 0.4. Here
A = [1.2 0; 0 1.5], n = 0.8 and the true geometry is indicated by the solid line. The
sampling points z are in [−2, 2]2.

(a) (b)

Figure 5. Panels (a) and (b) show the reconstruction of an ellipse with x-axis 3.2 and
y-axis 2.4 and of a square with length 2.4, respectively, with noise free data. The
wavelength is 2π/5 and ∂C is a circle of radius 0.8. Here A = [0.6, 0; 0, 0.8], n = 0.8
and the true geometry of the cavity is indicated by the solid line. The sampling points z
are in [−2, 2]2.

is the circle of radius 0.4. The results presented in figure 4 confirm that the reconstructions
become worse as C gets smaller although the number of sources and receivers remains the
same. We also consider the anisotropic media with matrix A satisfying (loosely speaking)
A − I < 0, namely A = [0.6, 0; 0, 0.8] for the ellipse and square and the reconstructions are
presented in figure 5. Finally as explained in theorem 4.7 it is possible to avoid the (real)
exterior transmission eigenvalues (which in particular cases are proven to exists cf [5]) if the
sampling point z remains only inside D1, i.e. in the inhomogeneous layer and the cavity. The
examples presented in figure 6 with sampling region D1 \ C for the ellipse and the square
confirm that this confinement of sampling region does not affect the quality of reconstructions.

6. Remarks on non-physical incident sources

Our justification of the factorization method works for incident waves being complex conjugate
of point sources, which are non-physical. However, it is well known that these non-physical
sources can be approximated arbitrarily close by linear combination of physical point sources
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(a) (b)

Figure 6. Panels (a) and (b) show the reconstruction of an ellipse with x-axis 3.2
and y-axis 2.4 and of a square with length 2.4, respectively, with noise free data. The
wavelength is 2π/5 and ∂C is a circle of radius 0.8. Here A = [1.2 0; 0 1.5], n = 0.8
and the true geometry of the cavity is indicated by the solid line. The sampling points z
are in D1 \ C.

(these fact is also discussed in [9]). It is interesting that for non-penetrable cavities the
factorization method can be justified for physical incident waves. Our analysis can be carried
through for the problem when D1 is contained in a large ball BR with homogeneous medium
in BR \ D1 and zero Dirichlet or Neumann conditions on ∂BR. In this case it is possible to
take the incident wave to be the Dirichlet or Neumann Green’s function for the homogeneous
media, which is real valued, and then everything in the paper works exactly in the same way.
We should also mention that formal implementation of the factorization method with physical
point sources provides reasonable reconstructions.
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