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Abstract

We consider the inverse scattering problem of determining the anisotropic surface
impedance of a bounded obstacle from far field measurements of the electromagnetic
scattered field due to incident plane waves. Such an anisotropic boundary condition
can arise from surfaces covered with patterns of conducting and insulating patches.
We show that the anisotropic impedance is uniquely determined if sufficient data is
available, and characterize the non-uniqueness present if a single incoming wave is
used. We derive an integral equation for the surface impedance in terms of solutions
of a certain interior impedance boundary value problem. These solutions can be
reconstructed from far field data using the Herglotz theory underlying the Linear
Sampling Method. We complete the paper with preliminary numerical results.

Keywords: anisotropic coatings, electromagnetic inverse scattering, mixed boundary con-
ditions, determination of boundary coefficients.

1 Introduction

Anisotropic material constants can cause significant issues for inverse scattering algorithms.
For example it is impossible to identify general anisotropic permittivity and permeability
in Maxwell’s equations from far field data [11, 12]. This is because the far field pattern is
invariant to local changes of variables within the scatterer. Such changes of variables result
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in different anisotropic coefficients and so the coefficients can only be determined up to
such changes of variables. Nevertheless the support of the scatterer can still be identified
[12, 2].

However, once the anisotropy is limited to a lower dimensional manifold, the question
arises if uniqueness is still lost. In this paper we shall consider a scattering problem for
the time harmonic Maxwells equations with an anisotropic surface impedance.

Anisotropic impedances arise in practice if the surface is covered with a suitable pattern
of conducting patches [14, 20]. At a macroscopic level these patches result in an effective
surface impedance that is anisotropic. Interesting questions arise of how to predict this
impedance matrix from a description of the conducting patches [21], but we will take an
alternative view that we would like to measure the impedance matrix by using remote
scattering measurements.

We are thus led to the problem of reconstructing the shape or surface impedance of an
object having an unknown anisotropic surface impedance.

A general reference on how anisotropic impedances can be modeled is the book [14].
The utility of such surfaces, and much of the current interest in ”High Impedance Surfaces”
results from the work of Sievenpiper [23, 22, 21]. We know of very few papers concerning
inverse problems for anisotropic surface coefficients. A relevant paper [13] by Holman
discusses both non-uniqueness of the general 3D volume problem for light scattering, and
also shows that in dimensions greater than 3 a suitable 2-tensor can be reconstructed using
boundary data measurements. Our work is motivated by results for scalar impedances in
[5] and [3].

In this paper we start by describing the model problem in detail (Section 2) and then
prove uniqueness of the surface impedance if multistatic far field data is used. We also
discuss uniqueness questions using less data, and in particular show that far field data for
just one incoming wave determines the impedance up to a scalar function.

To reconstruct the surface impedance we derive an integral equation based on solutions
of an associated interior problem. Based on the linear sampling method, we are able to
approximate these solutions using suitable solutions of the far field equation that underlies
the linear sampling method [6]. For the sake of ease of presentation we assume here that
the boundary of the scattering object is known. Of course one could use the linear sampling
method to first reconstruct the boundary of the scatterer and then use our integral equation
to reconstruct the surface impedance. It is important to notice that the same indicator
function that is used to reconstruct the boundary by the linear sampling method, is also
used to approximate the interior fields in the integral equation for the impedance function.
Hence our method can be seen as an extension of the linear sampling method to allow
the reconstruction of the impedance function after obtaining the boundary. In the case
when the boundary is a priori known, there are alternative approaches to reconstruct the
impedance function by first reconstructing the total field from the far field measurements
and then using the boundary condition to reconstruct the impedance function [7, 19].

We are thus lead to an algorithm for reconstructing surface impedance functions, and
even can allow a mixed boundary value problem in which parts of the boundary are metallic
(perfectly conducting) and other parts are covered with the impedance coating, without
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using a priori information on the boundary between these parts. We emphasize, that the
reconstruction of the impedance function involves only the solution of the (linear and ill-
posed) far field equation for a set of sampling points and of the proposed linear integral
equation for the impedance function. Our algorithm requires no solution of any boundary
value problem. We finish with a preliminary numerical example and some conclusions.

2 Formulation of the problem

Let D ⊂ R3 be a bounded region with boundary Γ such that De := R3 \D is connected.
Each connected component of D is assumed to be a Lipschitz curvilinear polyhedron.
Moreover we assume that the boundary Γ = ΓD ∪ Π ∪ ΓI is split in two disjoint parts ΓD
and ΓI having Π as their possible common boundary in Γ and that each part ΓD and ΓI
can be written as union of a finite number of open C2- faces

(
ΓjD
)
j=1,...ND

and
(
ΓjI
)
j=1,...,NI

,

respectively and eij denotes the common edge of two adjacent faces Γi and Γj. Let ν denote
the unit outward normal defined almost everywhere on Γ.
The direct scattering problem for the scattering of a time harmonic electromagnetic plane
wave by a partially coated perfect conductor D is to find total electric field E and magnetic
field H satisfying

curlE − ikH = 0 (2.1)

curlH + ikE = 0 (2.2)

in R3 \D. In particular, the total fields E and H are given by

E = Ei + Es (2.3)

H = H i +Hs (2.4)

where Es, Hs are the scattered electric and magnetic field, respectively, satisfying the
Silver Müller radiation condition

lim
r→∞

(Hs × x− rEs) = 0 (2.5)

uniformly in x̂ = x/|x| where r = |x| and the incident electric and magnetic field Ei,H i

are given by

Ei(x) :=
i

k
curl curl peikx·d = ik(d× p)× deikx·d (2.6)

H i(x) := curl peikx·d = ikd× peikx·d (2.7)

where k > 0 is the wave number, d ∈ Ω is a unit vector giving the direction of propagation
and p is the polarization vector, where Ω := {x ∈ R3 : |x| = 1} denotes the unit sphere.
On the uncoated part ΓD of the boundary Γ the total electric field satisfies the perfectly
conducting boundary condition, i.e.

ν × E = 0 on ΓD. (2.8)
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We consider here the case where the coating of the portion ΓI of the boundary Γ is made of
an anisotropic material and, as a first approximation of the field inside the thin anisotropic
coating, we assume that the total electric and magnetic field satisfies the impedance bound-
ary condition on ΓI , (see [14] and [20])

ν ×H − Λ · [(ν × E)× ν] = 0 on ΓI (2.9)

where Λ is the real valued tensor impedance which is a function of the coating’s parameters
and the geometry of the coated portion of the boundary ΓI . Obviously, Λ maps a vector
tangential to ΓI at a point x ∈ ΓI to a vector tangential to ΓI at the same point x ∈ ΓI . To
be more precise, on a smooth face ΓjI let ν(x) be the smooth outward unit normal vector
function to D and let t̂1(x) and t̂2(x) be two perpendicular vectors on the tangential plane
to ΓjI at the point x such that t̂1, t̂2, ν form a right hand coordinative system with origin at
x. Hence the matrix Λ(x), the local impedance, is given by the following dyadic expression

Λ(x) =
(
λ11(x)t̂1(x) + λ12(x)t̂2(x)

)
t̂1(x) +

(
λ21(x)t̂1(x) + λ22(x)t̂2(x)

)
t̂2(x). (2.10)

Note that, if ξ(x) = αt̂1(x) + βt̂2(x) for some α, β ∈ C, then Λ(x) · ξ(x) is the tangential
vector given by

Λ(x) · ξ(x) = (αλ11(x) + βλ21(x))t̂1(x) + (αλ12(x) + βλ22(x))t̂2(x).

From physical considerations we assume that λ12(x) = λ21(x) for all x ∈ ΓjI , j = 1 · · ·NI

and, in the following, we refer to Λ as symmetric tensor. Now, if we express the magnetic
fields in terms of corresponding electric fields, the direct scattering problem for a perfect
conductor partially coated with a thin anisotropic dielectric material can be written as

curl curlEs − k2Es = 0 in R3 \D (2.11)

ν × Es = f on ΓD (2.12)

curlEs × ν − ikΛ · (ν × Es)× ν = h on ΓI (2.13)

lim
r→∞

(curlEs × x− ikrEs) = 0 (2.14)

where f := −ν × Ei|ΓD , h := −ν × curlEi + ikΛ · (ν × Ei) × ν and Ei is the incident
electric plane wave given by (2.6). In the following we assume that the symmetric tensor
Λ is in L∞(ΓI)∪C(ΓjI) for any smooth face ΓjI , j = 1 · · ·Nj. Furthermore we assume that

Λ is uniformly positive definite, i.e. ξ(x)
>

Λ(x) · ξ(x) ≥ γ|ξ(x)|2 where γ > 0 is a positive
constant (independent of x), for every point x ∈ ΓjI , j = 0 · · ·NI and every vector ξ ∈ C3

tangential to ΓI at x. We remark that it is reasonable to assume that γ is independent of
x. Indeed, if ξ(x) = αt̂1(x) + βt̂2(x) for some α, β ∈ C, then

ξ(x)
>

Λ(x) · ξ(x) = |α|2λ11(x) + 2Re (αβ) λ12(x) + |β|2λ22(x)

and the coefficients λij(x) involve the physical parameters of the coating and the choosen
coordinative system on the tangential plane at the point x. Roughly speaking, although
the impedance changes with direction, it does not become arbitrary small in any point.
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For latter use we also formulate the interior mixed boundary problem related to the
scattering problem (2.11)-(2.14)

curl curlE0 − k2E0 = 0 in D (2.15)

ν × E0 = f on ΓD (2.16)

curlE0 × ν − ikΛ · (ν × E0)× ν = h on ΓI (2.17)

In order to investigate mathematically both problems (2.11)-(2.14) and (2.15)-(2.17),
we need to define the following Sobolev spaces

H(curl , D) := {u ∈ (L2(D))3 : curl u ∈ (L2(D))3}
L2
t (Γ) := {u ∈ (L2(Γ))3 : ν · u = 0 on Γ}

L2
t (ΓI) := {u|ΓI : u ∈ L2

t (Γ)}

and introduce the space

X(D,ΓI) := {u ∈ H(curl , D) : ν × u|ΓI ∈ L2
t (ΓI)},

equipped with the natural norm

‖u‖2
X(D,ΓI) = ‖u‖2

H(curl, D) + ‖ν × u‖2
L2(ΓI). (2.18)

For the exterior domain De we define the above spaces in the same way for every De ∩BR,
with BR a ball of radius R, and denote these spaces by Hloc(curl , De) and Xloc(De,ΓI),
respectively. Furthermore we introduce the trace space of X on the complementary part
ΓD by

Y (ΓD) :=

{
f ∈ (H−1/2(ΓD))3 : ∃u ∈ H0(curl , BR),

ν × u|ΓI ∈ L2
t (ΓI)

and f = ν × u|ΓD

}
,

where the ball BR contains D and H0(curl , BR) is the space of functions u in H(curl , BR)
satisfying ν × u|∂BR = 0. It is easy to show that Y (ΓD) is a Banach space with respect to
the norm

‖f‖2
Y (ΓD) := inf {‖u‖2

H(curl,BR) + ‖u‖2
L2
t (ΓI)}, (2.19)

where the infimum is taken over all functions u ∈ H0(curl , BR) such that ν×u|ΓI ∈ L2
t (ΓI)

and f = ν × u|ΓD . In particular, Y (ΓD) is in fact a Hilbert space (for more details in this
trace space see [4]).

Exactly in the same way as in [4] (see also [17]) by using variational techniques, one
can show that both the above mixed boundary value problems are well posed and we state
the result in the following theorem.

Theorem 2.1 Suppose ΓI 6= ∅, then given f ∈ Y (ΓD) and h ∈ L2
t (ΓI) the following hold:

1. There exists a unique solution Es ∈ Xloc(R3 \D,ΓI) of (2.11)-(2.14) satisfying

‖Es‖X(De∩BR,ΓI) ≤ C1

(
‖f‖Y (ΓD) + ‖h‖L2

t (ΓI)

)
.
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2. There exists a unique solution E0 ∈ X(D,ΓI) of (2.15)-(2.17) satisfying

‖E0‖X(D,ΓI) ≤ C2

(
‖f‖Y (ΓD) + ‖h‖L2

t (ΓI)

)
.

Here C1 > 0 and C2 > 0 are constants independent of f , h, but C1 depends on the radius
R of the ball BR.

The scattered electric field Es has the asymptotic behavior [10]

Es(x) =
eik|x|

|x|

{
E∞(x̂, d, p) +O

(
1

|x|

)}
as |x| → ∞, where E∞ is a tangential vector field defined on the unit sphere Ω and
known as the electric far field pattern.

The inverse problem we consider here is to determine the surface tensor impedance Λ in
L∞(ΓI) from a knowledge of E∞(x̂, d, p) for d ∈ Ω0, x̂ ∈ Ω1 and two linearly independent
polarization perpendicular to each d, where Ω0 and Ω1 are open subsets of the unit sphere
Ω. In the following investigation we assume, for simplicity, that E∞(x̂, d, p) is known
for all d, x̂ ∈ Ω. All theoretical results obtained here hold true for the case of limited
aperture incident and observation directions due to the analyticity of the far field pattern
(see Section 3.2 in [1]). We end this sections by introducing the main tools employed in
our investigation

The electric far field pattern define the far field operator F : L2
t (Ω) → L2

t (Ω) is then
defined by

(Fg)(x̂) :=

∫
Ω

E∞(x̂, d, g(d))ds(d), x̂ ∈ Ω, (2.20)

for g ∈ L2
t (Ω), where L2

t (Ω) is the space of square integrable unit vectors tangential to
Ω. Note that by superposition Fg is the electric far field pattern of the exterior mixed
boundary value problem (2.11)-(2.14) with Ei := ikEg where Eg is the electric field of an
electromagnetic Herglotz pair with kernel g given by

Eg(x) =

∫
Ω

eikx·dg(d)ds(d), Hg(x) =
1

ik
curlEg(x). (2.21)

It is easily seen that Eg, Hg is an entire solution of the Maxwell’s equations. We also
introduce the electric dipole with polarization q defined by

Ee(x, z, q) :=
i

k
curl x curl x qΦ(x, z) He(x, z, q) := curl x qΦ(x, z) (2.22)

where Φ is the fundamental solution of Helmholtz equation in R3 defined by

Φ(x, z) :=
1

4π

eik|x−z|

|x− z|
, x 6= z and x, z ∈ R3.
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If z ∈ D then Ee(x, z, q) and He(x, z, q) satisfy Maxwell’s equations in IR3 \ D and the
corresponding electric far field pattern Ee,∞(x̂, z, q) is given by

Ee,∞(x̂, z, q) =
ik

4π
(x̂× q)× x̂ e−ikx̂·z. (2.23)

Finally, we recall the far field equation

Fg(x̂) = Ee,∞(x̂, z, q) z ∈ D (2.24)

where Fg is given by (2.20). We have the following result (see [4], Theorem 3.2):

Theorem 2.2 Let z ∈ D. Then for every ε > 0 there exists an electric Herglotz wave
function Egεz with kernel gεz ∈ L2

t (Ω) such that

‖(Fgεz)(x̂)− Ee,∞(x̂, z, q)‖L2
t (Ω) < ε. (2.25)

Furthermore, as ε → 0, Egεz converges in the X(D,ΓI)-norm to the unique solution Ez ∈
X(D,ΓI) of the interior mixed boundary value problem

curl curlEz − k2Ez = 0 in D (2.26)

ν × [Ez + Ee(·, z, q)] = 0 on ΓD (2.27)

ν × curl (Ez + Ee(·, z, q))− ikΛ · [ν × (Ez + Ee(·, z, q))]× ν = 0 on ΓI (2.28)

The above theorem is the basis of the linear sampling method for the reconstruction of
D which developed [4] for the case of a scalar valued function surface impedance. The
results of [4] hold true word by word for the case of tensor surface impedance as well. Note
that the linear sampling method provides a reconstruction of D without knowing a priori
whether the scatterer is coated or not,and if so what is the extend and the nature of coating.
Therefore, although we assume that D is known and consider only the reconstruction of
Λ, this is not a restriction, since a reconstruction of D can always be obtained before
hand by using the linear sampling method. (Note also that the data we use here uniquely
determines D [18, 6].)

3 Uniqueness of Λ

Here we show that, under the assumptions stated in the previous section, Λ in L∞(ΓI) is
uniquely determined from a knowledge of E∞(x̂, d, p) for d ∈ Ω0, x̂ ∈ Ω1 and two linearly
independent polarization perpendicular to each d, where Ω0 and Ω1 are open subsets of
the unit sphere Ω. To this end we prove the following equality.

Theorem 3.1 Let Eg be the electric Herglotz wave function with kernel g defined by (2.21)
and let Es

g ∈ Xloc(R3\D,ΓI) be the solution of (2.11)-(2.14) with incident wave Ei replaced
by Eg. Then ∫

ΓI

(Es
g + Eg)> Λ · (Es

g + Eg)> ds = −‖Fg‖2 − 4πRe (Fg, g) (3.1)
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where u> := (ν × u)× ν, F is the far field operator, (·, ·) is the inner product over L2(Ω)
and the integral is understood in the L2

t (ΓI) sense.

Proof. First it is shown in [9] that if Es
1 and Es

2 are two radiating solutions of the Maxwell
equation with far field patterns E1

∞ and E2
∞ then from the vector Green’s formula∫

∂D

(
ν × Es

1 · curlEs
2 − ν × Es

2 × curlEs
1

)
ds = −2ik

∫
Ω

E1,∞ · E2,∞ ds. (3.2)

Furthermore, if Es ∈ Xloc(R3 \ D,ΓI) is a radiating solution to the Maxwell’s equation
with far field pattern E∞ and Hs = 1

ik
curlEs then (see [10])

E∞(x̂) =
ik

4π
x̂×

∫
∂D

(ν(y)× Es(y) + (ν(y)×Hs(y))× x̂) e−ikx̂·y ds(y)

and hence if Eh is a electric Herglotz wave function with kernel h ∈ L2
t (Ω), interchanging

the order of integration shows that (see Lemma 4.2 of [9])∫
∂D

(
ν × Es · curlEh − ν × Eh × curlEs

)
ds = −4πik

∫
Ω

E∞ · h ds (3.3)

Now let Es
g ∈ Xloc(R3\D,ΓI) be the solution of (2.11)-(2.14) with incident wave Ei replaced

by the Herglotz wave function Eg with kernel g. Then, using the boundary conditions for
Es
g + Eg together with (3.2) and (3.3), and in addition making use of the fact that the

tensor surface impedance is symmetric and of real values we have that

2ik

∫
ΓI

(Es
g + Eg)> Λ · (Es

g + Eg)> ds

=

∫
∂D

(
ν × (Es

g + Eg) · curl (Es
g + Eg)− ν × (Es

g + Eg)× curl (Es
g + Eg)

)
ds

=

∫
∂D

(
ν × Es

g · curlEs
g − ν × Es

g × curlEs
g

)
ds

+

∫
∂D

(
ν × Es

g · curlEg − ν × Eg × curlEs
g

)
ds

+

∫
∂D

(
ν × Eg · curlEs

g − ν × Es
g × curlEg

)
ds

= −2ik

∫
Ω

|Es
g,∞|2 ds− 4πik

∫
Ω

g Es
g,∞ ds− 4πik

∫
Ω

g Es
g,∞ ds

= −2ik(Fg, Fg)− 4πik(Fg, g)− 4πik(g, Fg),

Finally, dividing by 2ik proves the theorem.
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Theorem 3.2 Let Eg be the electric Herglotz wave function with kernel g defined by (2.21)
and let Es

g ∈ Xloc(R3\D,ΓI) be the solution of (2.11)-(2.14) with incident wave Ei replaced
by Eg. Define

B :=
{
f ∈ L2

t (ΓI) : f = (ν × (Es
g + Eg))× ν|ΓI for all g ∈ L2

t (Ω)
}
.

Then B is dense in L2
t (ΓI).

Remark 3.1 Our approach to proving the upcoming uniqueness theorem is based on the
use of Herglotz wave functions and is influenced by our reconstruction method which also
uses Herglotz functions having a density given by the approximate solution of the far field
equation. Of course it is possible to modify Theorem 3.2 where instead of scattered fields
corresponding to Herglotz wave functions we could use scattered fields corresponding to
plane waves for all incident directions. The fundamental idea of the proof, however, re-
mains essentially the same. Furthermore, the current version of the proof of Theorem
3.2 is suitable for the upcoming proof of injectivity of the integral operator involved in the
equation for Λ, as we remark at the end of Section 4.

Proof. Let u> := (ν × u)× ν. It suffices to show that if ϕ ∈ L2
t (ΓI) satisfies∫

ΓI

(Es
g + Eg)>ϕds = 0 (3.4)

for all f := (Es
g +Eg)> ∈ B then ϕ = 0. Suppose (3.4) is true for all such (Es

g +Eg)> and

let U ∈ Xloc(R3 \D,ΓI) be the unique solution of

curl curlU − k2U = 0 in R3 \D (3.5)

ν × U = 0 on ΓD (3.6)

ν × curlU − ikΛ · (ν × U)× ν = ϕ on ΓI (3.7)

lim
r→∞

(curlU × x− ikrU) = 0 (3.8)

Then since (Es
g + Eg)> on ΓD, using the boundary conditions and the integral repre-

sentation formula, we have that

0 =

∫
∂D

(Es
g + Eg)>ϕds =

∫
∂D

(Es
g + Eg)> (ν × curlU − ikΛ · (ν × U)× ν) ds

=

∫
∂D

[
(Es

g)> (ν × curlU)− ik(Es
g)> Λ · U> + (Eg)> (ν × curlU)− ik(Eg)> Λ · U>

]
ds
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Since the matrix Λ is symmetric and the boundary condition for Es
g + Eg we can further

continue

0 =

∫
∂D

[
(Es

g)> (ν × curlU) + U>
(
−(ν × curlEs

g)− (ν × curlEg) + ikΛ · (Eg)>
)]
ds

+

∫
∂D

[(Eg)> (ν × curlU)− ik(Eg)> Λ · U>] ds

=

∫
∂D

[
(Es

g)> (ν × curlU)− U> (ν × curlEs
g)
]
ds

+

∫
∂D

[(Eg)> (ν × curlU)− U> (ν × curlEg)] ds.

Since both Es
g and U are radiating solutions of the Maxwell equation we have that the first

integral is zero and hence we conclude that

0 =

∫
∂D

[(Eg)> (ν × curlU)− U> (ν × curlEg)] ds for all g ∈ L2
t (Ω).

This implies that

4π

ik
U∞(d) = d×

∫
∂D

[−ik(n× U) + (ν × curlU)× d] e−ikx·d ds

whence U∞(d) = 0 which implies U = 0 by Rellich’s lemma. Hence ϕ = 0.

We are now ready to prove the following uniqueness theorem. We assume that ∂D is
fixed and let Ω0 and Ω1 be two open subsets (possibly the same) of the unit sphere Ω.

Theorem 3.3 Let E∞,n be the far field pattern of Es
n where Es

n is the solution of (2.11)-
(2.14) corresponding to Λ = Λn, with support ΓI = ΓIn, for n = 1, 2. If E∞,1(x̂, d, p) =
E∞,2(x̂, d, p) for d ∈ Ω0, x̂ ∈ Ω1 and two linearly independent polarization perpendicular to
each d, then ΓI1 = ΓI2 := ΓI and Λ1(x) = Λ2(x) on every smooth face ΓjI , j = 1 . . . Nj.

Remark 3.2 Uniqueness is in the sense of operators. Depending on the choice of tangent
vectors in (2.10) we will obtain different matrix representations, but the operator acts on
tangential vector fields in a unique way. The matrix representations are connected by the
usual change of basis formula for matrices.

Proof: Since E∞(x̂, d, p) is a real analytic function of x̂ and d on Ω × Ω for a fixed
polarization p and linear on p, the hypothesis of the theorem imply that E∞,1(x̂, d, p) =
E∞,2(x̂, d, p) for x̂, d ∈ Ω and p ∈ R3. For arbitrary fixed d ∈ Ω and p ∈ R3, from Rellich’s
lemma we have that the corresponding scattered fields Es

1(· , d, p) = Es
2(· , d, p) coincide in
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R3 \D. In particular, by the trace theorem the Cauchy data of Es
1(· , d, p) and Es

2(· , d, p)
coincide on ∂D. Hence by Holmgren’s theorem and the boundary condition satisfied by
Es
n(· , d, p), n = 1, 2 we first conclude that ΓI1 = ΓI2 := ΓI (note that only one incident

wave is needed to conclude that the support of the coatings coincide). Next, by linearity
we have that Es

g1 = Es
g2 coincide in R3 \D where Es

gn is the solution of (2.11)-(2.14) with
incident wave Ei replaced by the electric Herglotz wave function Eg with kernel g ∈ L2

t (Ω)
and Λ = Λn supported on the same ΓI , for n = 1, 2. From Theorem 3.1 we have that∫

ΓI

(Es
g + Eg)> [Λ1 − Λ2] · (Es

g + Eg)> ds = 0, for all g ∈ L2
t (Ω)

and from Theorem 3.2∫
ΓI

ξ(x) [Λ1(x)− Λ2(x)] · ξ(x) dsx = 0, for all ξ ∈ L2
t (ΓI).

Viewing the symmetric matrix valued function Λ1−Λ2 as a self-adjoint operator on L2
t (ΓI)

the above equality, and the smoothness of Λ1 and Λ2 on each smooth face ΓjI , implies that
Λ1(x) = Λ2(x) for x ∈ ΓjI , j = 1 . . . Nj (c.f. Theorem 9.2-2 of [16]). This proves unqueness
for both the support of the coating and the surface impedance.

In the case of a piece-wise smooth scalar impedance function, it is known [8] that
the far field pattern corresponding to one fixed d and p uniquely determines the support
of the coating as well as the impedance function. In our case of a matrix impedance,
one incident wave determines uniquely the support of the coating ΓI but not the matrix
impedance Λ. This can be seen from the following observation. Let Λ be given and satisfy
the assumptions stated in Section 2, and let ΓjI be one of the smooth coated faces. Let
Es be the solution (2.11)-(2.14) corresponding to this Λ and the incident plane wave Ei

for a given incidence direction d ∈ Ω and polarization p ∈ R3 perpendicular to d. For
an arbitrary but fixed x ∈ ΓjI , we denote by U ∈ R2 the unit vector in the direction of
[ν(x) × (Es(x) + Ei(x))] × ν(x) and by V ∈ R2 a unit vector orthogonal to U . Next we
construct a positive symmetric matrix valued function Λ̃ on ΓjI such that for the fixed
x ∈ ΓjI

Λ̃(x) = (U V )>
(

0 0
0 1

)
(U V ) . (3.9)

The smoothness of ΓjI and the regularity results for Es imply that (ν × Es) × ν and
(ν × Ei) × ν is smooth on ΓjI and consequently the entries of Λ̃ are smooth function on
ΓjI . Note also that from Holmgren’s theorem [ν × (Es + Ei)] × ν cannot become zero on
any open subset of ΓjI . Now, let a := a(x) > 0 be any positive C(ΓjI) function. Then by
construction aΛ̃ · [ν × (Es + Ei)] × ν = 0, aΛ̃ is not identically zero and Λ + aΛ̃ satisfies
the assumptions stated in Section 2. Hence the impedance condition

ν × curlEs − ikΛ · (ν × Es)× ν = −ν × curlEi + ikΛ ·
(
ν × Ei

)
× ν

11



for Es on ΓjI can also be written as

ν × curlEs − ik(Λ + aΛ̃) · (ν × Es)× ν = ν × curlEi + ik(Λ + aΛ̃) ·
(
ν × Ei

)
× ν.

Finally the uniqueness for (2.11)-(2.14) with Λ replaced by Λ + aΛ̃ implies that Λ + aΛ̃
produce the same far field pattern as Λ.

Conversely, if Λ1 and Λ2 give rise to the same far field pattern for a fixed incident plane
wave Ei then from Rellich’s lemma we have that the corresponding scattered fields Es

1 and
Es

2 coincide, i.e. Es := Es
1 = Es

2 and curlEs = curlEs
1 = curlEs

2 outside D. In particular
their tangential components also coincide on ΓI . Hence we have

(Λ1 − Λ2) ·
[
ν × (Es + Ei)

]
× ν = 0 on ΓI .

Hence Λ1 and Λ2 differs by a(x)Λ̃ where a ∈ C(ΓjI), j = 1 . . . Nj and Λ̃ is defined as in
(3.9).

The above observation shows that one incident plane wave, i.e the far field pattern of the
scattered field corresponding to one fixed incident direction d ∈ Ω and one polarization p ⊥
d uniquely determines the support of the coating ΓI and determines the matrix impedance
up to a scalar function, continuous on any smooth face ΓjI , j = 1 . . . Nj.

4 Reconstruction of Λ

Let z ∈ D and let Ez be the unique solution of (2.26)-(2.28). Define

Wz := Ez + Ee(·, z, q) (4.1)

and let u> := (ν × u)× ν be the tangential component of a function u ∈ H(curl, D). Note
that (Wz)>|ΓI ∈ L2

t (ΓI) and that Wz depends on the artificial polarization q as well.

Lemma 4.1 For every two points z1 and z2 in D and polarization q ∈ R3 we have that

2k

∫
ΓI

(Wz1)> Λ · (W z2)> ds = −‖q‖2A(z1, z2, k, q) + k
(
q · Ez1(z2) + q · Ez2(z1)

)
(4.2)

where Wz1, Wz2 are defined by (4.1),

A(z1, z2, k, q) =
k3

6π

[
2j0(k|z1 − z2|) + j2(k|z1 − z2|)(3 cos2 φ− 1)

]
,

and φ is the angle between (z1 − z2) and q.

12



Proof. By applying the second vector Green’s formula and using the boundary conditions
for Ez1 and Ez2 on Γ we obtain

2ik

∫
ΓI

(Wz1)> Λ · (W z2)> ds =

∫
Γ

(
ν ×Wz1 · curl W z2 − ν ×W z2 · curl Wz1

)
ds

=

∫
Γ

(
ν × Ee(·, z1, q) · curl Ee(·, z2, q)− ν × Ee(·, z2, q) · curl Ee(·, z1, q)

)
ds

+

∫
Γ

(
ν × Ez1 · curl Ee(·, z2, q)− ν × Ee(·, z2, q) · curl Ez1

)
ds

+

∫
Γ

(
ν × Ee(·, z1, q) · curl Ez2 − ν × Ez2 · curl Ee(·, z1, q)

)
ds. (4.3)

One can easily see that if E ∈ H(curl, D) and H = 1
ik

curlE is a solution of Maxwell’s
equations and z ∈ D, we have

ν × Ee(y, z, q) · curl y E(y) = − i
k

(−ik)curl z curl z qΦ(y, z) · (ν ×H(y))

= −q · curl z curl z Φ(y, z)(ν ×H(y))

and

ν × E(y) · curl y Ee(y, z, q) = ikν × E(y) ·He(y, z, q) = ikq · curl zΦ(y, z)(ν × E(y)),

and therefore from the Stratton–Chu formula∫
Γ

(
ν × Ee(y, z, q) · curl y E(y)− ν × E(y) · curl y Ee(y, z, q)

)
= ikq · E(z). (4.4)

Moreover (see [9]),∫
Γ

(
ν × Ee(·, z1, q) · curl Ee(·, z2, q)− ν × Ee(·, z2, q) · curl Ee(·, z1, q)

)
ds

= −2ik

∫
Ω

Ee,∞(·, z1, q) · Ee,∞(·, z2, q)ds

= − ik
3

8π2

∫
Ω

((x̂× q)× x̂) · ((x̂× q)× x̂) e−ikx̂·(z1−z2)ds (4.5)

= − ik
3

8π2

∫
Ω

(‖q‖2 − (x̂ · q)2) e−ikx̂·(z1−z2)ds := −i‖q‖2A(z1, z2, k, q),

where by straightforward calculations

A(z1, z2, k, q) =
k3

6π

[
2j0(k|z1 − z2|) + j2(k|z1 − z2|)(3 cos2 φ− 1)

]
(4.6)

with j0 and j2 being spherical Bessel functions of order 0 and 2, respectively, and φ is the
angle between (z1− z2) and q. Hence using (4.4) and (4.5) in (4.3) and dividing both sides
of (4.3) by i yield the result.
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Next we consider a subset H of L2
t (ΓI) defined by

H :=

{
f ∈ L2

t (ΓI) :
f = (Wz)>|ΓI with Wz = Ez + Ee(·, z, q),

z ∈ Br, Ez the solution of (2.26)–(2.28) and q ∈ R3

}
,

where Br is a ball of radius r contained in D.

Lemma 4.2 H is complete in L2
t (ΓI).

Proof. Let ϕ ∈ L2
t (ΓI) such that for every z ∈ Br∫

ΓI

(Wz)> ϕds = 0.

Let E ∈ X(D,ΓI) be the solution of the interior mixed boundary value problem

curl curlE − k2E = 0 in D,

ν × E = 0 on ΓD,

ν × curlE + ikΛ · E> = ϕ on ΓI .

Then for z ∈ Br and q ∈ R3, using the fact that (Wz)> = E> = 0 on ΓD, the second vector
Green’s formula, and (4.4), we have that

0 =

∫
ΓI

(Wz)> ϕds =

∫
Γ

Wz (ν × curlE − ikΛ · E>) ds

=

∫
Γ

[Ez · (ν × curlE)− ikEz Λ · E> + Ee(·, z, q) · (ν × curlE)− ikEe(·, z, q) Λ · E>] ds

Using the fact that the real matrix Λ is symetric we have that Ez Λ · E> = E> Λ · Ez
and Ee(·, z, q) Λ · E> = E> Λ · Ee(·, z, q) and using the boundary conditions fot Ez we can
rewrite the above as follows

0 =

∫
Γ

[Ez · (ν × curlE)− E · (ν × curlEz)] ds

+

∫
Γ

[−E · (ν × curlEe(·, z, q)) + ikE> Λ · Ee(·, z, q)] ds

+

∫
Γ

[Ee(·, z, q) · (ν × curlE)− ikEe(·, z, q) Λ · E>] ds

=

∫
Γ

[Ee(·, z, q) · (ν × curlE)− E · (ν × curlEe(·, z, q))] ds

= −
∫
Γ

[(ν × Ee(·, z, q)) · curlE − (ν × E) · curlEe(·, z, q)] ds = ikq · E(z).
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Thus q · E(z) = 0 holds for all polarizations q ∈ R3 and z ∈ Br and hence E(z) = 0 for
z ∈ Br. By the unique continuation principle for the solution of Maxwell’s equations in D
we now see that E ≡ 0 in D, whence by the trace theorem ϕ ≡ 0 which proves the lemma.

We recall that from Theorem 2.2, Ez can be approximated by Egεz where gεz is the
approximate (regularized) solution of the far field equation. Equation (4.2) can now be
seen as an integral equation of the first kind for Λ. Using Lemma 4.2, it is easy to see
in the same way as in the proof of Theorem 3.2 that left hand side of this equation is an
injective compact integral operator with positive kernel defined on the subset of positive
functions of L∞(ΓI) onto L2(Br).

5 Numerical Results

In this section we provide extremely preliminary numerical results. For a given scatterer D
(in this case a cube), and given surface impedance Λ, we can compute the far field pattern
using a modification of UWVF code described in [15]. Using this data we can then apply
our inversion algorithm to compute an approximation to the surface impedance.

We now summarize the main steps of our algorithm for reconstructing the matrix
surface impedance Λ provided that the boundary ∂D (or a reconstruction of ∂D by using
the linear sampling method) is known. For a fixed z ∈ D we find gz ∈ L2(Ω) by solving
the regularized far field equation

F ∗Fg + αI = F ∗Ee,∞(·, z, q)

where α is the regularization parameter and F ∗ is the L2-adjoint of the far field operator.
(Note that gz is already available if the linear sampling method is first used to reconstruct
∂D). Having found gz, we then evaluate the corresponding electric field of the Herglotz pair
Egz . This is done for M points z in D. Next for any pair of points zi, zj ∈ D, i, j = 1 . . .M
we set up the integral equation

2k

∫
∂D

(Egzi + Ee(·, zi, q))> Λ · (Egzj
+ Ee(·, zj, q))> ds

= −‖q‖2A(zi, zj, k, q) + k
(
q · Egzi (zj) + q · Egzj

(zi)
)

and then solve this collection of integral equations to obtain an approximation for Λ.
Our test scatter is the cube D = [−1/2, 1/2]3 and k = 7 with an impedance boundary

condition on each face. We have adopted the cube as our example since it is easy to
determine tangent vectors on each face, and have chosen a variable scalar surface impedance
that is a different constant on each face of the cube as given in Table 1.

We first show a reconstruction of the boundary of the cube using the standard linear
sampling method (LSM) as described for example in [6]. Approximately 0.4% random
error is added to the far field pattern, and the LSM is applied using 92 incoming waves and
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Figure 1: Reconstruction of the cube scatterer by the standard LSM. Top left: the exact
cube showing the position of the auxiliary z points used later to reconstruct Λ. Top right:
iso-surface reconstruction of the cube (the thick line shows the wavelength). The bottom
two figures show contour plots of the indicator function on cuts through the search domain.
Left: z3 = 0. Right: z2 = 0. Although the reconstruction looks symmetric, we can see
patterns in the cross-section plots that arise from using different Λ face by face.
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corresponding 92 measurements of the far field pattern. This results in the reconstruction
in Fig. 1. Clearly the varying surface anisotropy does not greatly effect the standard LSM
surface reconstruction algorithm, although the two-dimensional slice plots of 1/‖g‖L2(Ω) do
show anisotropic effects. We could use this reconstruction to compute surface tangents and
hence compute Λ but instead we assume that Γ is known and now seek only to reconstruct
Λ.

The implementation of our algorithm has two main steps:

1. We choose M points zj ∈ D, j = 1, · · · ,M . In our case M = 10 and the points are
chosen at random on the surface of the sphere of radius 0.25 centered at the origin.
For each source position zj and for each polarization q` = e`, ` = 1, 2, 3 where {e`}
are the usual unit vectors, we can solve (2.24) as usual for the LSM (see [6]). This
gives us an approximation to the Herglotz kernels gj,` for 1 ≤ j ≤M and 1 ≤ ` ≤ 3.
Evaluating Eg in (2.21) using quadrature at the measurement directions gives an
approximation for Ez in (4.1) for each of the 3M Herglotz kernels.

2. Using the results of the previous step and (4.1) we have an approximation to Wz in for
3M choices of z and polarization q. Using a piecewise constant representation for Ω
on faces of the scatterer, we can then use (4.2) to compute a 3M×3M matrix problem
for the coefficients of Λ. This requires integration over the surface of D, and we take
a surface triangulation of D that is sufficiently fine to resolve the incident waves. In
fact it is the triangulation used by the forward UWVF - but this is not an inverse
crime since the mesh is only used to compute integrals on each face. This requires
regularization for large numbers of unknowns (we use Tikhonov regularization).

For the example using a unit cube as scatter, we assume a priori that the tensor Λ
is constant on each face. Results are shown in Table 1. In the third column we show
the results of the algorithm in which we a priori assume that the coefficient Λ = aI is
piecewise constant on each face. In the fourth column we show the results, still using data
from a scalar impedance, but where we have imposed no assumptions on Λ Now a matrix
is reconstructed on each face, and in each case it is reconstructed to be approximately
diagonal. For this small number of unknown coefficients, no regularization of the inversion
of (4.2) is needed.

In Table 2 we show results of reconstructing scalar and tensor Λ.

6 Conclusion

We have provided a uniqueness result and a reconstruction algorithm for tensor boundary
impedances. Unfortunately our numerical results are far from satisfactory since we have
only been able to test the algorithm in a few cases. More numerical tests on more general
objects and with full tensor impedance would be desirable.
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Face Exact Scalar reconstruction Matrix Reconstruction

x = −.5 Λ = .1 I Λ = 0.102I Λ =

(
1.006e− 01 −1.650e− 03
−1.650e− 03 1.019e− 01

)
y = −.5 Λ = 2I Λ = 1.940I Λ =

(
1.945e+ 00 −7.296e− 02
−7.296e− 02 1.938e+ 00

)
z = −.5 Λ = 1 I Λ = 0.9820I Λ =

(
9.830e− 01 −3.040e− 02
−3.040e− 02 9.794e− 01

)
z = .5 Λ = .3 I Λ = 0.2970I Λ =

(
2.958e− 01 8.383e− 04
8.383e− 04 3.003e− 01

)
y = .5 Λ = .4I Λ = 0.3989I Λ =

(
4.030e− 01 −1.261e− 02
−1.261e− 02 3.957e− 01

)
x = .5 Λ = .7I Λ = 0.6894I Λ =

(
6.851e− 01 9.804e− 03
9.804e− 03 6.897e− 01

)
Table 1: The boundary impedance and its reconstruction. We show results assuming a
priori that all boundary impedances are scalar (column 3), and results without any priori
assumptions about the boundary impedance (column 4).

Face Exact Λ Matrix Reconstruction

x = −.5
(

.1 .05
.05 .1

) (
0.1026 0.01121
0.01121 0.1030

)
y = −.5

(
2 .03
.03 1.5

) (
1.682 −0.05898
−0.05898 1.587

)
z = −.5

(
1 0
0 1

) (
1.148 −0.05123
−0.05123 1.231

)
z = .5

(
.3 0
0 .3

) (
0.3028 0.005399

0.005399 0.2994

)
y = .5

(
.4 0
0 .4

) (
0.3986 −0.006338
−0.006338 0.3942

)
x = .5

(
.7 .4
.4 .7

) (
0.5933 0.02344
0.02344 0.5974

)

Table 2: The boundary impedance and its reconstruction using a mixture of scalar and
tensor impedances. The results are less accurate than in Table 1 but provided the off
diagonal impedance is large enough, some reconstruction is possible.
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