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Abstract
The inverse scattering problem for inhomogeneous media is considered within 
the topology optimization framework. Varying the complex-valued refractive 
index we derive a zero-order necessary optimality condition in minimizing the 
L2 misfit cost functional of the far-field measurement. The topology asymptotic 
expansion of the optimality condition leads to an imaging operator, which 
is used to identify the center of the unknown inhomogeneity using few far-
field measurements. Numerical tests show high precision and stability in the 
reconstruction using our optimality condition based imaging both in two and 
three dimensions.

Keywords: inverse problem for inhomogeneous media, topology 
optimization, topological derivative, zero-order optimality condition, 
asymptotic analysis

(Some figures may appear in colour only in the online journal)

1. Introduction

We consider the inverse scattering problem for the inhomogeneous media modeled by the 
Helmholtz equation in two and three dimensions. Such problems arise e.g. in non-destructive 
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testing, medical imaging and many other areas of science and engineering. A popular class 
of methods for solving these problems, called qualitative methods, are able to quickly and 
accurately determine the shape and location of hidden objects and some information on the 
refractive index (at best), and require little a priori information about the objects. They are 
non-iterative in nature and do not require large scale wave simulations as oppose to iterative 
methods [15, 20, 26, 27, 35], however the latter recover everything (when possible) about the 
inhomogeneity. We refer the reader to [9–11, 30] for a comprehensive account on the linear 
sampling methods and factorization method for the inhomogeneous media. Many other non-
iterative techniques are developed, including point source methods [39], enclosure method 
[24], MUSIC [4, 38], and one wave methods [25, 36, 40] (our references are not exclusive 
since the literature on these methods is quite large).

A different point of view that has also led to non-iterative type techniques for solving inverse 
problem stems from the shape optimization. Our study falls in this category. Identification of 
small inhomogeneities in the context of shape optimization is developed in [8, 18]. Based on 
topological derivatives [14, 17, 42], the optimization approach was adapted to inverse scatter-
ing problems in [2, 5, 6, 13, 19, 41] (see also references therein). The first-order topological 
derivative specified for small inhomogeneities with real-valued refractive index can be found 
in [1, 3], and the high-order topological expansions are derived in [7, 22, 31]. The asymptotic 
analysis in combination with perturbation theory is used in the framework of topological sen-
sitivity for many inverse problems (see e.g [21, 28, 34, 37] and references therein).

More specifically, in this study we consider an inhomogeneity of the arbitrary shape 
described by a bounded region D ⊂ Rd , d  =  2, 3 centered at x0 and constant refractive index 
n. With respect to a parameter ε > 0, this domain is rescaled to fit in a ball of radius ε centered 
at x0; this epsilon is referred to as the size of this scaled inhomogeneity. We setup the inverse 
problem as a minimization of the L2-least square misfit cost functional for a given measure-
ment of the far-field pattern. The condition of feasible measurement expressed in a weak form 
(see (17)) provides us with the zero-order necessary optimality condition which is derivative-
free. Then applying asymptotic arguments as the size ε ↘ 0+ to the optimality condition we 
derive an imaging function determined only by the incident field and far-field measurements. 
This enables us to accurately and stably reconstruct the center x0 of the inhomogeneity with 
the minimum number of measurements needed being equal to the dimension d  =  2, 3. This 
work extends to the case of inhomogeneous media the method proposed in [32] where similar 
type of imaging function was introduced to identify the center of an impenetrable impedance 
obstacle from boundary measurements. Our result could be used in combination with other 
perturbation techniques to augment the recovered information about small inhomogeneity 
(e.g. known the center of the inhomogeneity we could use the formulas in [12] to recover the 
refractive index). Our zero-order optimality condition could possibly motivate the construc-
tion of other imaging functions that could work for broader class of inhomogeneous media. 
We present here a variety of numerical example showing the accuracy of our reconstruction 
method as well as indicating what could happen in cases when our theory does not apply, e.g. 
in the case of multiple inhomogeneities or inhomogeneities with absorption.

2. Formulation of the scattering problem

Consider an infinite homogeneous background acoustic medium occupying all of Rd with 
d  =  2 or 3 and characterized by the constant wave velocity c0 and the frequency ω > 0. Let 
k = ω/c0 denote the background wave number in the background medium. Let D be an open, 
connected and bounded domain with Lipschitz boundary ∂D. We start by assuming that 
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0 ∈ D ⊂ B1(0), where B1(0) is the unit ball around origin 0. This assumption is to separate the 
far-field Rd \ B1(0) from the near-field B1(0) \ D of the object D. Assuming that the minimal 
radius r  =  1 among all bounding balls Br(0) ⊃ D, we denote by GD the set of such shapes 
D. After rescaling D ∈ GD by a size parameter ε > 0 this allows us to produce uniquely the 
geometric object located at a center x0 ∈ Rd

Dε(x0) =
{

x ∈ Rd :
x − x0

ε
∈ D

}
⊂ Bε(x0)

which is inscribed in the ball Bε(x0) of radius ε and center x0. Now in our problem Dε(x0) 
denotes the support of a scattering inhomogeneity characterized by a real constant (we will 
comment later on the case when n can be a function or complex) index of refraction n  =  c/c0 
(with c denoting the wave velocity in Dε). In general, in the presence of absorption n is complex 
such that Re(n) > 0 and Im(n) � 0. We extended n to Rd by setting n  =  1 in Rd \ Dε(x0). The 
topology variables (D, ε, x0, n) ∈ GD × R+ × Rd × C+ will be used for variation of inhomo-
geneities in our inverse scattering problem later on.

In the following formulation of the forward scattering problem Dε(x0) and n are fixed. 
Considering an incident field ui that is a known solution of the unperturbed Helmholtz equa-
tion ∆ui + k2ui = 0 in Rd called metaharmonic function [44] (typically such incident field is 
set to be a plane wave ui := eıkx·̂z  with incident direction ẑ ∈ S and S denoting the unit circle 
if d  =  2 or the unit sphere if d  =  3). Then the forward acoustic scattering problem under con-
sideration is to find the total field u ∈ H1

loc(Rd)

∆u + k2nu = 0 in Rd, (1a)

u = ui + us, (1b)

∂us

∂|x|
− ıkus = O(|x|−(d+1)/2) for |x| → ∞, (1c)

where the scattered field us satisfies the Sommerfeld radiation condition (1c) uniformly in 
x̂ = x/|x| ∈ S. The latter condition implies the existence of a far-field pattern u∞ ∈ L2(S) 
[15] such that

u(x)− ui(x) =
eık|x|

|x|(d−1)/2 u∞(x̂) +O(|x|−(d+1)/2) for |x| → ∞. (2)

The radiating fundamental solution Φ of the Helmholtz equation in Rd is given by

Φ(x, y) =
ı

4
H(1)

0 (k|x − y|) ( for d = 2), Φ(x, y) =
eık|x−y|

4π|x − y|
( for d = 3),

where H(1)
0  is the Hankel function of the first kind and order zero. The far-field pattern Φ∞(x̂, y) 

of Φ(x, y), such that the asymptotic expansion

Φ(x, y) =
eık|x|

|x|(d−1)/2 Φ∞(x̂, y) +O(|x|−(d+1)/2) for |x| → ∞ (3)

holds, is given by Φ∞(x̂, y) = γde−ık̂x·y for y ∈ Rd, where the parameter γd is such that

γ2 =
1 + ı

4
√
πk

and γ3 = 1/(4π). (4)

F Cakoni and V A Kovtunenko Inverse Problems 34 (2018) 035009
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It is well-known that the solution u of (1a)–(1c) satisfies the Lippmann–Schwinger equa-
tion (see e.g. [29, theorem 6.8])

u = ui + (n − 1)k2T(D,ε,x0)u, (5)

where the volume potential

(T(D,ε,x0)u)(x) :=
∫

Dε(x0)

Φ(x, y)u(y) dy (6)

defines the bounded linear operator (see [29, section 6.2]) T(D,ε,x0) : L∞(Dε(x0)) �→ L∞(Dε(x0)) 
with the operator norm

‖T(D,ε,x0)‖ = max
x∈Dε(x0)

∣∣∣
∫

Dε(x0)

Φ(x, y) dy
∣∣∣ = O(ε2| ln ε|3−d). (7)

If |n − 1|k2‖T(D,ε,x0)‖ < 1 implying a contraction mapping, then from (5) it yields the conv-
ergent Neumann series for the solution

u(D,ε,x0,n) := u =

∞∑
�=0

(
(n − 1)k2T(D,ε,x0)

)�
ui. (8)

The far-field pattern u(D,ε,x0,n)
∞  of the scattered field corresponding to (1a)–(1c) admits the 

expression

u(D,ε,x0,n)
∞ (x̂) := γd(n − 1)k2

∫

Dε(x0)

e−ık(̂x·y)u(D,ε,x0,n)(y) dy. (9)

For the following consideration we introduce the Herglotz operator H : L2(S) �→ H1
loc(Rd) 

defined as

(Hg)(y) :=
∫

S
eık(̂x·y)g(x̂) dSx. (10)

Note that Hg is an entire solution to the Helmholtz equation. For a given geometry Dε(x0) we 
denote by H(D,ε,x0) : L2(S) �→ L2(Dε(x0)) its restriction

(H(D,ε,x0))g := Hg|Dε(x0).

The L2-adjoint Herglotz operator H∗
(D,ε,x0)

: L2(Dε(x0)) �→ L2(S) is given by

(H∗
(D,ε,x0)

ϕ)(x̂) :=
∫

Dε(x0)

e−ık(̂x·y)ϕ(y) dy. (11)

Then from (9) and (11) it follows the following expression for the far-field pattern u(D,ε,x0,n)
∞  of 

the scattered field corresponding to (1a)–(1c)

u(D,ε,x0,n)
∞ (x̂) = γd(n − 1)k2(H∗

(D,ε,x0)
u(D,ε,x0,n))(x̂) for x̂ ∈ S (12)

which will be used later on in the proof of theorem 1.
The inverse scattering problem under consideration is to find the location x0 of the inho-

mogeneity Dε(x0) from a knowledge of measured far-field pattern corresponding to a few (to 
become precise later) incident waves without knowing its refractive index n. Next we derive 
a stable criteria for solving this inverse problem based on an optimality condition associated 
with the topology sensitivity functional.

F Cakoni and V A Kovtunenko Inverse Problems 34 (2018) 035009
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3. Optimality condition for the topological sensitivity functional

Let the true (unknown) inhomogeneity be D�
ε�(x

�
0) with refractive index n� and let us denote 

the corresponding far-field measurement due to a given incident field by u�
∞ ∈ L2(S). The 

latter is what we measure. For variation of the topology, a trial inhomogeneity Dε(x0) with a 
trial refractive index n is put in the background medium. This constitutes a family of solutions 
u(D,ε,x0,n) of the forward problem (1a)–(1c) for the same incident field. We denote by u(D,ε,x0,n)

∞  
the corresponding far field pattern. To identify the unknown inhomogeneity, we set the least 
square L2 cost functional J : GD × R+ × Rd × C+ �→ R+ of the misfit far-field patterns by

J (D, ε, x0, n) :=
1
2

∫

S
|u(D,ε,x0,n)

∞ − u�∞|2 dSx, (13)

which should be minimized over the trial variables. This minimization problem reads: find 
true variables (D�, ε�, x�0 , n�) ∈ GD × R+ × Rd × C+ such that

J (D�, ε�, x�0 , n�) = min
(D,ε,x0,n)∈GD×R+×Rd×C+

J (D, ε, x0, n). (14)

We say that the measurement u�
∞ is feasible with respect to the quadruple (D�, ε�, x�0 , n�), if 

the solution u(D�,ε�,x�0 ,n�) of the corresponding forward problem obeys exactly this far-field 
pattern

u(D�,ε�,x�0 ,n�)
∞ (x̂) = u�∞(x̂) for x̂ ∈ S. (15)

In the feasible case (15), the trivial minimum in (14) is attained. Note that for uniqueness 
results on determining the support D�

ε�(x
�
0) of the inhomogeneity (of polygonal shape or a 

ball) with one incident wave we refer to [16] and references therein.
Now we formulate the zero-order necessary optimality condition for (14), which is 

derivative-free.

Theorem 1. Assume that Im(n�) = 0 and the measurement u�
∞ ∈ L2(S) is feasible. Then 

the following necessary optimality condition for (14) holds

Im
{
γd

∫

D�
ε�

(x�0 )
u(D�,ε�,x�0 ,n�)Hu�∞ dx

}
= 0, (16)

where the Herglotz operator H is defined in (10), u(D�,ε�,x�0 ,n�) ∈ H1
loc(Rd) is the solution of the 

forward scattering problem (1a)–(1c) for the true inhomogeneous medium, and the constant 
γd is given in (4).

Proof. For the feasible measurement u�
∞, after multiplication with the complex conjugate 

u  of a test function u and integrating over the unit ball boundary S, the identity (15) takes the 
following weak form

∫

S
u(D�,ε�,x�0 ,n�)
∞ (x̂) u(x̂) dSx =

∫

S
u�∞(x̂) u(x̂) dSx (17)

for all test-functions u ∈ L2(S).
Next we insert in (17) u = γdH∗

(D,ε,x0)
u(D�,ε�,x�0 ,n�) with the adjoint Herglotz opera-

tor H∗
(D,ε,x0)

 defined in (11) and use the integral representation (9) for the far-field pattern 
u(D�,ε�,x�0 ,n�)
∞  to derive from (17) that

F Cakoni and V A Kovtunenko Inverse Problems 34 (2018) 035009



6

D : =
∫

S
γd(n� − 1)k2

(∫

D�
ε�

(x�0 )
e−ık(̂x·y)u(D�,ε�,x�0 ,n�)(y) dy

γd

∫

D�
ε�

(x�0 )
eık(̂x·z)u(D�,ε�,x�0 ,n�)(z) dz

)
dSx

=

∫

S
u�∞ γdH∗

(D,ε,x0)
u(D�,ε�,x�0 ,n�) dSx.

Using the identity (see [5, lemma 1]):
∫

S
eık̂x·(z−y) dSx = βd Im{Φ(z, y)} with β2 = 8π,β3 = (4π)2/k

and interchanging the order of integration we arrive at

D =|γd|2βd(n� − 1)k2
∫

D�
ε�

(x�0 )

∫

D�
ε�

(x�0 )
Im{Φ(z, y)}u(D�,ε�,x�0 ,n�)(y)

u(D�,ε�,x�0 ,n�)(z) dz dy =

∫

D�
ε�

(x�0 )
(Hu�∞)(z) γdu(D�,ε�,x�0 ,n�)(z) dz.

 (18)

Since Im(n�) = 0, then D = D in the first equation in (18), which implies that the imaginary 
part of D is zero, and the second equation in (18) after complex conjugation follows (16), thus 
proving the assertion of the theorem. □ 

Note that the factor γ3 is real-valued in 3d, and hence it can be omitted from formula (16) 
in three dimensions.

Remark 1. The weak variational form of the optimality condition (17), compared to its 
strong form (15), could potentially be used, by playing with test-functions, in order to seek 
other zero-order necessary optimality conditions in minimizing the least square L2 cost misfit 
functional for given measurements.

Next we apply to the necessary optimality condition (16) the asymptotic argument as 
ε� ↘ 0+, i.e. the volume of the support of the inhomogeneity becomes arbitrarily small.

4. Asymptotic optimality condition

In order to arrive at an optimality condition that can be applied to solve the inverse problem 
we employ the topology asymptotic analysis using near-field expansions. To this end, in Rd 
we assign to the center of the inhomogeneity x�0  a local d-dimensional coordinate system with 
the radial coordinate |x − x�0 | and d  −  1 angular coordinates, i.e the polar coordinates in 2d, 

and the spherical coordinates in 3d. Furthermore x̂ − x�0 := x−x�0
|x−x�0 |

 denotes d-coordinate on the 

unit ball boundary ∂B1(x�0) centered at x�0 .
Since ui is an entire solution of the Helmholtz equation  in an arbitrary ball BR(x�0) of 

radius R  >  0 and center x�0 , it has the following expansion in the two-dimensional case (see  
[15, section 3.4]):

ui(x) =
∞∑

�=−∞

K�J�(k|x − x�0 |)
(
(x̂ − x�0)1 + ı(x̂ − x�0)2

)�
, (19)

F Cakoni and V A Kovtunenko Inverse Problems 34 (2018) 035009
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with the Fourier coefficients K� ∈ C and the Bessel functions J� of order � ∈ Z, whereas in the 
three-dimensional case (see [15, section 2.4]):

ui(x) =
∞∑
�=0

�∑
m=−�

Km
� j�(k|x − x�0 |)Ym

� (x̂ − x�0), (20)

where Km
� ∈ C, Ym

�  are the spherical harmonics, and j� are the spherical Bessel functions of 
order � ∈ N0.

From (19) we find that ui(x�0) = K0J0(0), whereas from (20) that ui(x�0) = K0
0 j0(0)Y0

0 , and 
in the both 2d and 3d cases, we infer the following near-field asymptotic representation of ui 
as |x − x�0 | ↘ 0+

ui(x) = ui(x�0) +O(|x − x�0 |) in BR(x�0) with R > 0. (21)

The Herglotz wave Hu�
∞ defined in (10) is an entire solution of the Helmholtz equation, thus 

it satisfies

(Hu�∞)(x) = (Hu�∞)(x�0) +O(|x − x�0 |) in BR(x�0) with R > 0. (22)

Hence, for a small size parameter ε� > 0, (21) and (22) in the ball of radius R = ε� imply that 
in D�

ε�(x
�
0) ⊂ Bε�(x�0) it holds

ui(x) = ui(x�0) +O(ε�), (Hu�∞)(x) = (Hu�∞)(x�0) +O(ε�). (23)

The Born approximation stated in (7) and (8) now takes the form

u(D�,ε�,x�0 ,n�)(x) = ui(x) +O
(
|n� − 1|k2‖T(D�,ε�,x�0 )‖

)

= ui(x) +O
(
|n� − 1|k2(ε�)2| ln ε�|3−d).

 (24)

Plugging the asymptotic relations (23) and (24) into the necessary optimality condition (16) 
proves straightforwardly the following theorem.

Theorem 2. Assume that Im(n�) = 0 and the measurement u�
∞ ∈ L2(S) is feasible. Then 

the necessary optimality condition (16) has the asymptotic form as ε� ↘ 0+:

0 = Im
{

ui(x�0)γd(Hu�
∞)(x�0)

}
+O

(
ε� + |n� − 1|k2(ε�)2| ln ε�|3−d). (25)

Remark 2. The principal asymptotic term in (25) is determined by the incident field ui 
which is an entire solution to the Helmholtz equation and by the Herglotz wave function Hu�

∞ 
which density is the far-field measurement corresponding to this incident field.

We give an interpretation of formula (25) from the point of view of a topological derivative 
following [5]. To this end, we first decompose the cost functional J  in (13) as follows

J (D, ε, x0, n) = J0 − Re
{∫

S
u(D,ε,x0,n)
∞ u�∞ dSx

}
+

1
2

∫

S
|u(D,ε,x0,n)

∞ |2 dSx,

where J0 :=
1
2

∫

S
|u�∞|2 dSx.

Interchanging the order of integration and using (9) implies that
∫

S
u(D,ε,x0,n)
∞ u�∞ dSx = γd(n − 1)k2

∫

Dε(x0)

u(D,ε,x0,n)Hu�∞ dy.

F Cakoni and V A Kovtunenko Inverse Problems 34 (2018) 035009
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Applying the asymptotic formula (23) and (24) we now get the two-parameter (ε, n)-asymp-
totic representation of the cost functional J

J (D, ε, x0, n) = J0 − k2|Dε(x0)|Re
{
(n − 1)ui(x0)γd(Hu�∞)(x0)

}

+O
(
|Dε(x0)||n − 1|k2(ε+ |n − 1|k2ε2| ln ε|3−d)

+ |Dε(x0)|2|n − 1|2k4),
 

(26)

where we have assumed that |n − 1|k2‖T(D,ε,x0)‖ < 1 according to (8), and |Dε(x0)| = εd|D| 
for the Hausdorff measure of the sets in Rd.

Hence from (26) it follows the following expression of the topological derivative of J :

Theorem 3. For fixed n ∈ C+ and ε ↘ 0+ we have that

J ′(D, x0, n) := lim
ε↘0+

J (D, ε, x0, n)− J0

εd = −k2|D|Re
{
(n − 1)ui(x0)γd(Hu�∞)(x0)

}
.

 (27)
Now let (D�, ε�, x�0 , n�) ∈ GD × R+ × Rd × C+ be the solution of the topology optim ization 

problem (14). This means that the optimal value of the cost functional J (D�, ε�, x�0 , n�) = 0 
in (26). Varying the imaginary part of the optimal refractive index Im(n�), we observe that the 
second term in the expression of the topological derivative from (27):

J ′(D�, x�0 , n�) = −k2|D�|
(

Re(n� − 1)Re
{

ui(x�0)γd(Hu�∞)(x�0)
}

−Im(n�) Im
{

ui(x�0)γd(Hu�∞)(x�0)
})

should be asymptotically zero according to theorem 2.
Based on theorem 2, we suggest to consider the real-valued imaging operator 

I : L2(S) �→ C(Rd) which, for given incident field ui is defined over the space of far-field 
patterns u�

∞ as follows

(Iu�∞)(x) := Im
{

ui(x)γd(Hu�∞)(x)
}

for x ∈ Rd. (28)

Due to (25), the continuous function Iu�
∞ possesses the property that (Iu�

∞)(x�0) = 0 asymp-
totically at the center x�0  of the unknown inhomogeneity D�

ε�(x
�
0). This implies that the zero-

level set L=0 of Iu�
∞ contains (asymptotically) the inhomogeneity center x�0 :

x�0 ∈ L=0(Iu�
∞) := {x ∈ Rd : (Iu�∞)(x) = 0}. (29)

Consequently, this suggest the test center x�0  is looked for (asymptotically) as the intersection 
point of d zero-level sets:

x�0 = L=0(Iu�
∞,1) ∩ · · · ∩ L=0(Iu�

∞,d) (30)

from (u�∞,1, . . . , u�∞,d) different far-field measurements in d dimensions.
An asymptotic model of similar type as (30) was justified numerically in [32] for the imag-

ing of impedance obstacles from boundary measurements in the near-field. It was shown to 
produce high-accuracy and stable identification results. In the next section, we show that this 
is the case for the inhomogeneous media too, namely (30) produces accurate and stable loca-
tion of the inhomogeneity center from far-field measurements.
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5. Numerical examples

5.1. Direct scattering problem

For computation of the solution of the forward scattering problem (1a)–(1c) we use its equiva-
lent formulation in the form of Lippmann–Schwinger integral equation (5) with the weakly 
singular operator T(D,ε,x0) given in (6).

Without loss of generality, let Ω = (0, 1)d  be the finite computational test domain, that is 
the unit square in 2d and the unite cube in 3d, containing a homogeneity Dε(x0) with a refrac-
tive index n. For a fixed mesh size h ∈ R+, we denote the nodal points of the uniform grid 
(quadrilateral in 2d and polyhedral in 3d) in the closure Ω  by

Nh := {x j = hz, z ∈ Zd : x j ∈ Ω}.

Based on the fast solver from [43], we apply to (5) and (6) the following formula of numerical 
integration over x j ∈ Nh:

u(D,ε,x0,n)
h (x j) = ui(x j) + (n − 1)k2hd

∑

xl ∈ Nh ∩ Dε(x0)

xl �= x j

Φ(x j, xl)u(D,ε,x0,n)
h (xl).

 (31)
The system matrix of (31) is sparse and non-symmetric. In [43, theorem 1], for fixed k  =  1 
and sufficiently small h, the unique solvability of the linear system (31) is established and in 
addition the O(h2| ln(h)|)-error estimate in the max-norm:

Error := max
x j∈Nh

∣∣u(D,ε,x0,n)(x j)− u(D,ε,x0,n)
h (x j)

∣∣ (32)

is proved. We examine numerically the error defined in (32) with respect to the product kh fol-
lowing [23]. The error is presented here for a typical numerical test in 2d. In this example, the 
inhomogeneity D is circle-shaped of size ε = 2−4 centered at x0  =  (0.25,0.75), with the com-
plex-valued refractive index n = 2 + ı, which is illuminated in the direction of θ = π

3  by the 
plane wave ui(x) = eık(x·̂z) with ẑ = (cos θ, sin θ). The wave numbers are taken in the range of 
k ∈ [2, . . . , 27], and the mesh size h ∈ [2−7, . . . , 2−3]. Since there is no any analytical solution 

available, we substitute the exact solution u(D,ε,x0,n) with the discrete solution u(D,ε,x0,n)
h̃

 calcu-

lated on the finest mesh with h̃ = 2−7. In figure 1 the values of error are depicted in depend-
ence on the parameter kh, respectively:

 • for fixed waves numbers k = {21, 22, 23} when varying h in plot (a),
 • for fixed mesh sizes h = {2−6, 2−5, 2−4, 2−3} when varying k in plot (b),
 • for fixed kh = {2−2, 2−1, 20} when increasing k in plot (c).

We observe that the discretization error in plots (a) and (b) of figure 1 is super-linear, and the 
pollution error (see the explanation in [23]) in plot (c) is moderate. From our numerical tests 
we confirm these features of the error Error(kh) for wave numbers k and mesh sizes h chosen 
such that kh � 1.

In the far-field, one needs to discretize the unit circle in 2d or the unit sphere in 3d. Here M 
denotes the finite set of nodal points on the unit ball boundary x̂ ∈ S in Rd. Then the discre-
tization of the far-field (see [43, section 3.5]) for x̂ ∈ M  is given by
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(u(D,ε,x0,n)
h )∞(x̂) = γd(n − 1)k2hd

∑

x j∈Nh∩Dε(x0)

e−ık(̂x·x j)u(D,ε,x0,n)
h (x j).

 (33)

Finally, for far-field measurement u∞ given at nodes x̂ ∈ M , the Herglotz operator (10) can 
be discretized for x j ∈ Nh as

(HMu∞)(x j) =
∑
x̂∈M

wM(x̂) eık(̂x·x j)u∞(x̂) with wM(x̂) ∈ R. (34)

Proper weights wM(x̂) in (34) should be determined depending on meshing of S. For example, on 

the unit circle in 2d we use equidistant nodes x̂l = (cos θl, sin θl) with θl =
2πl
Nθ

 for l = 1, . . . , Nθ 
and fixed Nθ � 1, then all weights wM(x̂l) = 2π

Nθ
. For the uniform  latitude-longitude grid on 

the unit sphere in 3d such that x̂(l,m) = (cos θl sinφm, sin θl sinφm, cosφm) with θl as above 

and φm = π(m−1)
Nφ−1  for m = 1, . . . , Nφ and fixed Nφ � 2, we use the cubature formula based on 

the trapezoidal rule with the positive weights

wM(x̂(l,m)) =
2π
Nθ

sin2(
π

2(Nφ − 1)
) for m = {1, Nφ},

and if Nφ � 3 : wM(x̂(l,m)) =
2π
Nθ

sin(
π

Nφ − 1
) sin(

π(m − 1)
Nφ − 1

) for m = {2, . . . , Nφ − 1}.

5.2. Optimality-based-imaging of the center

In our numerical tests, in order to compute the imaging function (28) for identifying the 
center of a given inhomogeneity with support D�

ε�(x
�
0) and refractive index n�, we use the 

numerical solution u(D�,ε�,x�0 ,n�)
h�  given by (31), in order to synthesize the discrete far-field 

measurement u�
∞ = (u(D�,ε�,x�0 ,n�)

h� )∞ according to formula (33) and the corresponding 
Herglotz wave HMu�∞ as per (34). In this setting from the discrete far-field measurement 
u�
∞(x̂) given at nodes x̂ ∈ M  and the incident field ui(x j) known at mesh points x j ∈ Nh, 

depending on these two grids we calculate the discrete imaging function according to (28) 
for x j ∈ Nh as follows

(I(h,M)u�∞)(x j) = Im
{

ui(x j)γd(HMu�
∞)(x j)

}
. (35)

Figure 1. The Error in (32) for the discrete solution of the Lippmann–Schwinger 
equation with respect to kh.
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In the following we show some examples as proof of concept showing the identification of the 
inhomogeneity center based on the imaging function from (35).

In figure 2 we present the result for the case when the inhomogeneity D� is L-shaped of 
size ε� = 2−3 centered at x�0 = (0.125, 0.375), with the real-valued refractive index n� = 0.5. 
The computation is done over the unit square Ω = (0, 1)2 with the mesh sizes h = h� = 2−6, 
and Nθ = 10 equidistant points on the unit circle (relatively few measurement points).

Two far-field patterns u�
∞,1 and u�

∞,2 correspond to the case when the inhomogeneity is illu-
minated by a plane wave ui(x) = eık(x·̂z) with ẑ = (cos θ, sin θ) in the direction of θ1 = π

6  and 
θ2 = π

4 , respectively. Plots (a) and (b) depict the corresponding imaging functions I(h,M)u�
∞,1 

and I(h,M)u�
∞,2 together with the zero-level sets L=0(I(h,M)u�

∞,1) and L=0(I(h,M)u�
∞,2), which 

form straight lines crossing the inhomogeneity. The zero-level sets are depicted also in the 
computational test domain Ω in the plot (c), their intersection point:

x(h,M)
0 = L=0(I(h,M)u�∞,1) ∩ L=0(I(h,M)u�∞,2) (36)

is unique and close (to become quantitative measure later) to the test center x�0 . Moreover, 

x(h,M)
0 = x�0  exactly, if the size is sufficiently small such that ε� � 2−6. Here zero-level sets 

L=0(I(h,M)u�
∞) are utilized numerically using the narrow strip technique, see e.g. [33]. More 

specifically, in a narrow strip of nodes where I(h,M)u�
∞ changes its sign, we interpolate the 

discrete imaging function by multivariate polynomials which are bilinear in 2d (respectively, 
trilinear in 3d). This technique determines zero-level sets on a local grid which maybe finer 
than Nh in the whole computational domain. Typically, we set it to Nh� in the narrow strip. 
It is important to stress that the wave number is chosen small: k  <  k1 below the threshold 
(k1 ≈ 2.25 in this example) when the reconstruction starts to break down. We observe that 
starting from approximately k  =  1.35, there appear multiple lines of zero sets (see the line in 
the upper right corner in figure 2) and they grow when increasing k.

In figure 3 we show the same experiment for k  =  2.25. In this case the level curves are not 
necessary lines any longer and there appear multiple intersection points. A possible remedy of 
this situation is to use an additional measurement, which confirms the true intersection point 
as illustrated in figure 3 for three measurements with θ1 = π

6 , θ2 = π
4 , and θ3 = π.

Since the asymptotic expansions in section 4 are carried out in the near-field of the inhomo-
geneity center x�0 , the imaging function cannot distinguish between multiple inhomogeneities 
put in the test domain. In figure 4 we give an illustrative example of triple inhomogeneities: the 
ball-shaped of size ε�◦ = 2−6 centered at x�0,◦ = (0.25, 0.75) with the refractive index n�

◦ = 2, 

Figure 2. Identification of the center x�0  of L-shaped inhomogeneity from two far-field 
measurements in 2d. The wave number here is k  =  1.35.
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the triangle-shaped of size ε�� = 2−5 centered at x�0,� = (2/3, 1/3) with n�
� = 10, and the 

L-shaped of size ε�L = 2−4 centered at x�0,L = (0.125, 0.375) with n�
L = 0.5. Here the wave 

number k  =  1 and three plane waves propagate along the directions of θ ∈ {π
6 , π

3 ,π}. From 
figure 4 we conclude that the zero-level sets intersection is closer to those inhomogeneity 
mostly contrasting with the background refractive index n  =  1 (here the triangle-shaped inho-
mogeneity). While the remaining inhomogeneities can be considered as a perturbation of the 
homogeneous background medium. If the refractive indexes all are equal n�

◦ = n�� = n�L = 2 
here, then the intersection is close to a mass-center of the geometric set of inhomogeneities in 
the test domain, compare figures 4 and 5.

We carried out a series of numerical tests for inhomogeneities D�
ε�(x

�
0) of various shapes, 

namely L-shape, ball, triangle, point (in the last case ε� = 0), varying the location in the test 
domain Ω = (0, 1)2, illumination directions, the wave number, and the mesh sizes in the range 

Figure 3. Example of multiple intersection points of the zero-level sets for large wave 
numbers. The wave number here is k  =  2.25.

Figure 4. Example of three far-field measurements of the contrast obstacle for triple 
inhomogeneities. The refractive indexes are different here n�

◦ = 2, n�
� = 10, and 

n�
L = 0.5.

Figure 5. Example of three far-field measurements of the mass-center for triple 
inhomogeneities. The refractive indexes are the same here n�

◦ = n�� = n�L = 2.
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of h, h� ∈ [2−6, . . . , 2−3]. Although our theory covers only real refractive index n� we test our 
imaging criteria (36) for refractive index with small imaginary part. In the following we report 

our numerical findings. Figure 6 presents how the error |x(h,M)
0 − x�0 | of center-identification 

depends on various parameters explained below. This is a 2d study.

 (i) The intersection point of zero-level sets of the imaging function, calculated for a number 
of different measurements not less than the dimension, is uniquely determined for the 
wave numbers k � 1 + δ with δ � 0 depending on the problem parameters.

 (ii) The identification error depends super-linearly on the mesh size h� of the grid used to 
synthesize the far-field measurement u�

∞. It is not sensitive to the mesh size h � 2−3 used 
for the imaging function, and to the grid M if chosen uniformly on the unit circle with 
Nθ � 5 nodes.

 (iii) If the test center x�0  coincides with a node of the grid Mh�, this leads to the better identi-
fication result than x�0 �∈ Mh�. For comparison see the two curves of the error depicted in 
the plot (a) in figure 6 in terms of the size ε�.

 (iv) The identification error |x(h,M)
0 − x�0 | drops super-linearly with respect to decreasing the 

size ε� of the unknown inhomogeneity as shown in figure 6(a). For comparison, the error-
curves for the ball of size ε� = 2−5 and for the equilateral triangle of size ε� = 2−6 are 
presented through the other plots (b)–(d).

 (v) Figures 6(b) and (c) show the error with respect to the refractive index, namely, for 
Re(n�) ∈ [0.01, 100] and Im(n�) = 0, and Im(n�) ∈ [0, 0.1] when either Re(n�) = 2 for 
ε� = 2−5 or Re(n�) = 10 for ε� = 2−6. We observe here that the choice of ε� = 2−6 
provides |x(h,M)

0 − x�0 | < h�, where the value of h� is drawn with dotted line through the 
plots.

Figure 7. Identification of the center x�0  of ball-shaped inhomogeneity from three far-
field measurements in 3d.

Figure 6. Tests of the error |x(h,M)
0 − x�0 | in the identification of the inhomogeneity 

center.
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 (vi) In figure 6(d) the stability of the identification is tested with respect to a Gaussian noise 
with the standard deviation σ = 1 − 12% computed over 200 realizations of the far-field 
measurement. The error here is less then 4% for ε� = 2−6.

Remark 3. We list some conclusions obtained from our two-dimensional numerical study:

 (1.) Numerical examples demonstrate high-precision of the identification of the center of the 
inhomogeneity as well as stability with respect to discretization and noise.

 (2.) In spite of the asymptotic arguments of theorem 2, we emphasize that the imaging tech-
nique (35) and (36) is applicable numerically also for medium with small absorption and 
even large inhomogeneities (up to 25% of the size of the test domain) depending on the 
specific parameters of the problem.

Finally, in figure 7 we show a three-dimensional example, namely the identification of the 
center of a ball-shaped inhomogeneity of size ε� = 2−5 centered at x�0 = (0.75, 0.375, 0.125) 
with the refractive index n� = 2. Computations are done for the mesh sizes h = h� = 2−4 over 
the uniform grid with Nθ = 10 longitude and Nφ = 10 latitude lines on the unit sphere. The 
inhomogeneity is illuminated by 3 plane waves ui(x) = eık((x−(1/2,1/2,1/2))·̂z) with k = 1/

√
2  

and ẑ = (cos θ sinφ, sin θ sinφ, cosφ) in three perpendicular directions of (θ1,φ1) = (0, 0), 
(θ2,φ2) = (0, π

2 ), and (θ3,φ3) = (π2 , π
2 ). In the plots (a)–(c) we show the corresponding zero-

level sets forming planes which cross the inhomogeneity, and their intersection point x(h,M)
0  

coincides with the center of the ball as shown in the plot (d).
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