
Journal of Computational Physics 338 (2017) 371–387
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Direct imaging of small scatterers using reduced time 

dependent data

Fioralba Cakoni a, Jacob D. Rezac b,∗
a Department of Mathematics, Rutgers University, Piscataway, NJ 08854-8019, USA
b Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 December 2016
Received in revised form 23 February 2017
Accepted 24 February 2017
Available online 2 March 2017

Keywords:
Inverse acoustic scattering
Time domain sampling method
Limited-view inverse scattering problem
MUltiple SIgnal Classification (MUSIC)

We introduce qualitative methods for locating small objects using time dependent acoustic 
near field waves. These methods have reduced data collection requirements compared to 
typical qualitative imaging techniques. In particular, we only collect scattered field data in 
a small region surrounding the location from which an incident field was transmitted. The 
new methods are partially theoretically justified and numerical simulations demonstrate 
their efficacy. We show that these reduced data techniques give comparable results to 
methods which require full multistatic data and that these time dependent methods 
require less scattered field data than their time harmonic analogs.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A primary goal of inverse scattering theory is the reconstruction of information about unknown objects based on how 
acoustic or electromagnetic waves scatter off of them. These problems have applications in nondestructive testing and 
identifying hidden objects (e.g., underground material resources or defects in structures). A popular class of methods for 
solving these problems, called qualitative methods, are able to quickly and accurately determine the shape and location of 
hidden objects, and require little a priori information about the objects. They are non-iterative in nature and do not require 
large scale wave simulations. We refer the reader to [12] for a comprehensive account of these methods for inhomogeneous 
media.

Though effective, qualitative methods typically require a large amount of scattered field data to be collected: the typical 
multistatic set-up is for scattered field data to be collected at all points on a ball surrounding the unknown object, corre-
sponding to incident field data emitted from all points on the same ball. In this paper, we propose two schemes which 
significantly reduce the amount of data required for accurate reconstructions. In both schemes, we use a small array of 
transmitters and receivers constructed so that data is collected only in a small region. Incident waves are emitted from the 
transmitters, collected by the nearby receivers, and the entire device is moved to a new location where the experiment is 
repeated. In one scheme, we allow the device to contain many transmitters and receivers, collecting multistatic data only in 
patches with a small aperture. In the other scheme, a quasi-backscattering set-up, the array contains one transmitter and a 
small number of receivers in a small neighborhood of the transmitter. We must increase the amount of a priori information 
we assume about the object in order to justify these methods theoretically. Particularly, we will assume objects are small 
and weakly scattering.
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Fig. 1. Examples of limited aperture multistatic (left) and quasi-backscattering (right) measurements. In the limited aperture multistatic figure, the blue 
line represents the location of transmitters and the red line the location of receivers. In the quasi-backscattering set-up, �i is the large dashed circle, the 
thick solid line is �(y)

m for a fixed y ∈ �i , and the circles on �i not located at y represent locations to which �(y)
m will be moved. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.)

The quasi-backscattering data collection scheme proposed here is somewhat similar to the time harmonic study initiated 
in [26] and studied further in [24], though the reconstruction method and applicability of the method here differs. Of partic-
ular importance here is that the algorithms described below directly use causal time dependent near field data and require 
no Fourier or Laplace transformation into frequency domain data. In many applications, ranging from medical imaging to 
non-destructive testing, time dependent data is readily obtained. Moreover, as our numerical examples will demonstrate, 
using time dependent data allows us to use significantly fewer transmitters and receivers than time harmonic data. Most 
previous studies of similar problems make use of time harmonic far field data with one or multiple frequencies. In some 
applications, far field data is required due to physical constraints on how near to an object sensors can be placed. Nonethe-
less, near field data is sometimes easier to obtain in practice, and typically results in higher resolution reconstructions. 
Furthermore, the type of data collection scheme suggested here is readily implementable in practice. For example, a device 
with transmitters and receivers concentrated in a small region was built in [17] to collect scattered field data for potential 
industrial applications.

To make the above comments precise, assume scattering is caused by time dependent acoustic waves propagating 
through a medium with a variable speed of sound, c ∈ L∞(Rd) (d = 2 or 3) so that c(x) ≥ γ > 0 for some γ ∈ R. We 
assume a constant background speed of sound, c0 = 1. Let ui(x, t; y) indicate the incident field emitted from a point y ∈Rd

evaluated at a point x ∈ Rd\{y} and time t ∈ R+ . Such an incident field satisfies the free space acoustic wave equation,

ui
tt − �xui = 0 for x ∈Rd\{y}, t ∈R+.

The resulting scattered field, us(x, t; y), satisfies

c−2(x)us
tt − �us = −(c−2(x) − 1)ui

tt (x, t) ∈Rd ×R+ (1a)

us(x,0) = us
t (x,0) = 0 x ∈ Rd. (1b)

Define n(x) = c−2(x) to be the index of refraction and D = supp(1 − n(x)) to be the location of the unknown scatterer. 
We will be more precise about n and D below. Let χ ∈ C2(D) be a causal temporal pulse function (that is, χ and its 
derivatives vanish for t < 0). We define the incident field originating at a point y ∈ Rd as the time convolution of χ with 
the fundamental solution � to the wave equation,

�(x, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
H(t − |x|)

2π
√

t2 − |x|2 , d = 2,

δ(t − |x|)
4π |x| , d = 3,

(2)

where H is the Heaviside function. For example, in R3

ui(x, t; y) = χ(t − |x − y|)
4π |x − y| , (x, t) ∈ (R3\y) ×R+.

The inverse problem is to find D from us(x, t; y) for x ∈ �m , y ∈ �i , t ∈ R+ where the measurement and incident locations, 
�m and �i respectively, are sets in Rd−1 which do not intersect with D . For example, the typical full aperture multistatic 
set-up is �m = �i = ∂ B R(0), where ∂ B R(0) is the boundary of a ball of radius R > 0 centered at the origin where R is large 
enough that D ⊂ B R(0). In the limited aperture case �m, �i ⊂ ∂ B R(0) (possibly �m = �i). See Fig. 1 (left) for a sample of a 
limited aperture multistatic geometry.

In this paper, we will primarily use reduced data. First, we use a series of limited aperture multistatic arrays which are 
moved around the obstacles. For example, let �i = �m be patches with a small area in R3. We collect multistatic data with 
this patch and then move the entire array to a new location and collect data again. The second type of reduced data is a 
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quasi-backscattering set-up. To describe this data set-up, let �i ⊂ Rd−1 be the curve on which we will place transmitting 
devices. We again assume we can collect data only with a small device which moves around �i . Denote by δ > 0 a small 
constant. For each fixed y ∈ �i , data is collected on �(y)

m := �i ∩ Bδ(y), where B R(x) is the ball of radius R > 0 centered 
at x ∈ Rd . See Fig. 1 (right) for a sample set-up geometry in R2. Note that this set-up requires more data than the related 
backscattering data, in which each transmitter has just one associated receiver, and both are located at the same point.

There exist many qualitative methods for solving inverse scattering problems with multistatic data. In [20,21], a qual-
itative method known as the linear sampling method is used to approximate the shape of D using causal multistatic 
time-domain scattering data. In these papers, the theoretical justification of the method remains incomplete due to techni-
cal problems involving an associated problem called the time domain interior transmission problem. This will be discussed 
in more detail in Section 3.4. This is in contrast to the time domain linear sampling method for scattering from bounded 
objects with Dirichlet, Neumann, or Robin boundary conditions whose theory is fully described in [14,25]. The multifre-
quency linear sampling method, which can be seen as time dependent technique with non-causal waves, is studied in [22]. 
In [32,35], it was shown that, under certain conditions, a potential function related to speed of sound can be calculated 
based on backscattered time domain data collected in the far field. While these require less data than we do, they solve 
a slightly different problem than we do here and do not provide a method for constructing the potential. Time reversal 
methods, described for example in the review article [16], are also popular for solving inverse scattering problems with 
time dependent data.

The time harmonic backscattering problem for small and weak scatterers was studied in [18] using multiple frequencies. 
The reduction of data collection requirements in the time harmonic case is studied from a different perspective in [2]. The 
study of time harmonic scattering from small and weak scatterers is extensive. One popular class of techniques (see, e.g., [4,
6,8,9,15,28]) are called MUltiple SIgnal Classification (MUSIC) techniques. Such imaging methods typically require multistatic 
data and operate by testing if a particular indicator function related to a point in space is in the range of an operator related 
to the collected data. In this article, we also introduce a MUSIC-type algorithm which directly makes use of time dependent 
near field data, which has some similarities to the time domain MUSIC algorithm for small bounded objects introduced in 
[3]. For an introduction to multistatic time harmonic approaches to qualitative methods in inverse scattering problems, see 
the monographs [5,12,28].

A number of recent reconstruction algorithms have been proposed, e.g. [1,19,31], which reduce data requirements by 
using only one incident source and scattered field data with receivers surrounding the objects. Such approaches result 
in fast data collection, since there is only one experiment required, but require that the objects can be simultaneously 
surrounded by receivers. We take a different approach to data reduction here, assuming there is enough time to perform 
many experiments, but that the objects cannot be completely surrounded by receivers at the same time. This approach is 
useful in the case of imaging large regions or in cases where it is costly to place many receivers at once.

2. Forward model and the Born approximation

We begin by discussing the well-posedness of (1). This is well known, and to discuss it precisely we follow [11,20,30], 
introducing some space-time Sobolev spaces described through the Fourier–Laplace transform. This will allow us to intro-
duce and state the well-posedness of a time domain weak scattering approximation and its frequency domain counterpart. 
This approximation is related to the well-known Born approximation and so we will refer to it as such. These will be used 
in Section 3.1 to validate a multistatic MUSIC-type algorithm in the time domain.

As discussed in the introduction, we are able to reduce the amount of data required for reconstructions by making 
a priori assumptions on the contrast n and the scatterer D . In particular, we will make a weak scattering Born approximation 
in which multiple scattering effects are minor and can be ignored. Assume that n(x) = 1 + εm(x) for ε � 1, m = O (1), 
and that solutions to (1) take the form us(x, t) = us

0(x, t) + εus
B(x, t). The function us

B = ∂us

∂ε

∣∣∣
ε=0

is the well-known Born 

approximation. Indeed, if ui(x, t) is of the same order as us
0(x, t) for x ∈ D , then separating into powers of ε yields us

0 ≡ 0
and us

B satisfies

∂2us
B

∂t2
− �us

B = −m
∂2ui

∂t2
for (x, t) ∈Rd ×R+ (3a)

us
B(x,0) = ∂us

B

∂t
(x,0) = 0 for x ∈ Rd. (3b)

This time domain Born approximation should be considered as a linearization of the scattered field with respect to the 
strength of scatterers, rather than as the first term of a series solution to (1) in the way that the time harmonic Born 
approximation sometimes is; as is discussed in Remark 4.5 of [29], terms associated with higher order terms in ε are not 
necessarily well-defined in any reasonable spaces.

To solve (3), we take a Green’s function approach and take a space-time convolution of m(x)ui
tt with �(x, t). This results 

in a time domain Lippmann–Schwinger equation. For f ∈ C∞
0 (D ×R), define the retarded volume potential operator V by

(V f )(x, t) :=
∫ ∫

�(x − z, t − τ ) f (τ , z)dV (z)dτ , (x, t) ∈Rd ×R
R D
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where �(x, t) is given by (2). Then, v(x, t) = (V f )(x, t) satisfies

vtt − �v = f in Rd ×R.

Later we will also use the related single layer potential, S� , defined by

(S� f )(x, t) :=
∫
R

∫
�

�(x − y, t − τ ) f (τ , y)ds(y)dτ , (x, t) ∈ (Rd\�) ×R

where � is some closed surface.
In order to make these equations precise, we recall the appropriate space-time Sobolev spaces, following [20,30]. To this 

end, we first introduce the Fourier–Laplace transform. Let ω = η + iσ for η, σ ∈ R with σ > σ0 > 0 for some σ0 ∈ R. We 
use the notation Cσ0 = {ω ∈ C : Im(ω) ≥ σ0 > 0} to define this half-plane. Let X be a Hilbert space. The set of tempo-
ral, smooth, and compactly supported in [0, ∞) X-valued functions is denoted by D(R+; X) = C∞

0 (R; X). The associated 
X-valued distributions on the real line which vanish for time t < 0 are denoted by D′(R+; X) and the corresponding tem-
pered distributions by S ′(R+; X). Define

L′
σ (R+, X) := { f ∈ D′(R+, X) : e−σ t f ∈ S ′(R+, X), for some σ( f ) < ∞}

to be the space of functions with well-defined Fourier–Laplace transforms. Indeed, the Fourier–Laplace transform of f =
f (x, t) ∈L′

σ (R+, X), denoted by f̂ (x, ω) is given by

f̂ (x,ω) =
∞∫

0

f (x, t)exp (iωt) dt, ω ∈Cσ0

for σ0 = σ0( f ) and x ∈Rd, t ∈R.
Note that f̂ (x, ω) = F(e−σ t f )(η) where F represents the typical Fourier transform on causal functions, so many prop-

erties of the Fourier transform will transfer to the Fourier–Laplace transform with little change. We can now define the 
Hilbert space for p ∈ N0, σ ∈R,

H p
σ (R+, X) :=

⎧⎨⎩ f ∈ L′
σ (R+; X) :

∫
R+iσ

|ω|2p
∥∥∥ f̂ (·,ω)

∥∥∥2

X
ds < ∞

⎫⎬⎭ .

By Parseval’s theorem, the norm of this space is equivalent to

‖ f ‖2
H p

σ (R+;X)
=

∞∫
0

e−2σ t

∥∥∥∥∂ p f (·, t)

∂t p

∥∥∥∥2

X
dt

where we have used the fact that f and its derivatives vanish for t < 0. For more details see e.g. [23]. With this notation in 
hand, we have the following result about the solvability of (3), where σ > σ0 > 0 for a σ0 depending on the specifics of the 
problem.

Theorem 1 ([30], Theorem 3.2). For r = 0, 1, 2 and p ∈R, V : H p
σ (R+, L2(D)) → H p+1−r

σ (R+, Hr(Rd)) is a bounded linear operator. 
Moreover, if v = V ( f ) for some f ∈ H p

σ (R+, L2(D)) then v(t) = 0 for t < 0 and v ∈ H p
σ (R+, H1(Rd)) satisfies

vtt − �v = f in H p−1
σ (R+, L2(Rd)).

Theorem 1 allows us to write

us
B(x, t; y) = −(V mui

tt)(x, t) (4)

= −
∫
R

∫
D

m(z)�(x − z, t − τ )ui
tt(z, τ ; y)dV (z)dτ , (x, t) ∈Rd ×R+.

For later, we introduce the bounded linear solution operator for (3),

G : H p
σ (R+, L2(D)) → H p+1−r

σ (R+, Hr(Rd)), (5)

which takes ui to us
B with (4). Here σ , p, and r are as in Theorem 1. From the above, the solution of the Born wave equation 

satisfies
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‖us
B‖H p

σ (R+,H1(Rd)) ≤ C‖ui‖H p
σ (R+,L2(D)). (6)

See also [34] for a discussion of these properties in both R2 and R3.
Taking the Fourier–Laplace transform of V gives an equivalent formulation in the frequency-domain. In particular, for 

f ∈ C∞
0 (D) define the operator V̂ by

(V̂ f )(x;ω) =
∫
D

�̂ω(x, z) f (z)dV (z), x ∈Rd

where �̂ω(·, ·) is the fundamental solution of the Helmholtz equation with wavenumber ω ∈ Cσ0 ,

�̂ω(x, z) :=

⎧⎪⎪⎨⎪⎪⎩
i

4
H (1)

0 (ω|x − z|) d = 2,

eiω|x−z|

4π |x − z| d = 3

x �= z (7)

for some σ0 > 0. Here H (1)
0 is the Hankel function of order zero of the first kind. It can be shown [30] that V̂ : L2(D) →

H2(Rd) and that if v̂ = V̂ f then v̂ satisfies

�v̂ + ω2 v̂ = f in Rd.

Hence,

�ûs
B + ω2ûs

B = −ω2mûi (8)

has the solution

ûs
B(x,ω; y) = −ω2

∫
D

m(z)�̂ω(x, z)ûi(z; y)dV (z). (9)

If Im(ω) = 0 then the Fourier–Laplace transform becomes the standard Fourier transform, (8) becomes the usual equation 
for a Born approximation to the time harmonic scattered field with wavenumber Re(ω), and (9) is the first term of the Born 
series.

3. Inverse problem for the time domain Born approximation

We now discuss time dependent imaging algorithms, two for multistatic data and one for quasi-backscattering data. 
We first introduce a MUSIC-type method for imaging weak and small scatterers which is fully justified theoretically. As 
a specific case of this method, we describe a reconstruction algorithm using multistatic patch data. Next, we introduce a 
MUSIC-type method for quasi-backscattering data. As the numerical results in Section 4 suggest, both techniques can be 
used to find obstacles from time domain data. Finally, we discuss the linear sampling method for extended weak scatterers 
with multistatic data and why it lacks full justification.

Each algorithm we develop below takes a similar form, as indicated by the general algorithm below. In particular, we 
define an indicator function, depending on z ∈ Rd (and possibly on time τ ∈ [0, T ] for some T > 0), so that the function 
is large when z ∈ D and small otherwise. As such, the bulk of this section is dedicated to deriving indicator functions and 
demonstrating that they are large when z ∈ D .

Algorithm Frequency (time) domain sampling methods for reconstruction of obstacles.

Step 1 Collect scattered field data at x ∈ �m , y ∈ �i (and t ∈ [0, T ]).
Step 2 Select sampling grid points Z (and τ ∈ [0, T ]).
Step 3 Plot the indicator function for each z ∈ Z (and τ ∈ [0, T ]).
Step 4 Post-process or regularize the indicator function to assert the collection of z ∈ D .

The primary idea behind each of these indicator functions is that a specified function, which depends on z, is in the 
range of an operator depending on us if and only if z ∈ D . For multistatic data, we are interested in the near field equation

(Nmulti gz,τ )(y, t) = �
ξ
z,τ (y, t), (y, t) ∈ �i ×R+ (10)

for each z ∈Z , where the near field operator Nmulti : L2
σ (R+, L2(�m)) → L2

σ (R+, L2(�i)), σ > 0 is defined by

(Nmulti g)(y, t) =
∫
R

∫
�m

us
B(x, t − τ ; y)g(x, τ )ds(x)dτ , (y, t) ∈ �i ×R+. (11)

In Section 3.4 below we will give more details about the mapping properties of Nmulti .
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Furthermore,

�
ξ
z,τ (y, t) :=

∫
R

�(y − z, t − τ − t0)ξ(t0)dt0, (12)

is the convolution of a smooth compactly supported ξ ∈ C∞
c (R) with the fundamental solution of the wave equation given 

by (2). For example, in R3, �ξ
z,τ (y, t) = ξ(t − τ − |y − z|)

4π |y − z| . The idea for quasi-backscattering data is similar.

3.1. Reconstruction of point scatterers from time domain multistatic data

Assume now that D is composed of M weak point scatterers located at the points z j ∈ Rd , j = 1, . . . , M . Let the contrast 
m be of the form m(x) = ∑M

j=1 m j1D j (x) where m j are constant. In this section we collect multistatic data and introduce 
a MUSIC-type algorithm for locating small objects based on near field time domain data. Hence, let �i ⊂ Rd−1 be the 
curve from which incident fields are transmitted and let �m ⊂ Rd−1 be the curve on which the resulting scattered field 
is measured. We assume the curves do not intersect D and that they are either closed curves or open subsets of analytic 
curves. Below we will take �i = �m .

In the above configuration, the near field operator (11) takes the form

(Nmulti g)(y, t) = −
M∑

j=1

m j

(
�(z j − y, ·) ∗

(
Sχ̈

�m
g)

)
(z j, ·)

)
(t), (y, t) ∈ �i ×R+, (13)

where

(Sχ̈
�m

g)(x, t) = (
χ̈ (·) ∗ (S�m g)(x, ·)) (t) (14)

and ∗ indicates a time convolution. Hence, the point scattering near field equation (10) becomes

−
M∑

j=1

m j

(
�(z j − y, ·) ∗

(
Sχ̈

�m
g)

)
(z j, ·)

)
(t) = �

ξ
y,τ (y, t), (y, t) ∈ �i ×R+.

The Fourier–Laplace transform Nmulti in this point scattering context yields the frequency domain weakly scattering near 
field operator, N̂multi : L2(�m) → L2(�i) defined as

(N̂multig)(y,ω) = −
M∑

j=1

m j ̂̈χ(ω)�̂ω(z j, y)

∫
�m

�̂ω(x, z j)ĝ(x,ω)ds(x), ω ∈Cσ0 (15)

for some σ0 > 0.
Similarly, the Fourier–Laplace transform of �ξ

z,τ is

̂
�
ξ
z,τ (y, t)(y,ω) = ξ̂ (ω)eiωτ �̂ω(y, z),

where �̂ω is given by (7). Thus the transformed point scattering near field equation reads

M∑
j=1

α j�̂ω(y, z j) = β�̂ω(y, z), y ∈ �i, z ∈Rd (16)

where α j = −m j ̂̈χ(ω) 
∫
�m

�̂ω(x, z j)ĝ(x, ω) ds(x), β = ξ̂ (ω)eiωτ are constants depending on ĝ , z j , τ , m j , �m , and ω. Point 
scattering approximations of the type derived here can also be derived through high frequency truncation of asymptotic 
expansions, as explained in [7].

For fixed ω, τ = 0, and ξ̂ (ω) ≡ 1, (16) leads the MUSIC algorithm in the frequency domain; the following lemma allows 
us to characterize the range of N̂multi.

Lemma 1. Let �i be a closed curve or an open subset of an analytic curve and let z j ∈ Rd, j = 1, . . . , M be distinct points which 
do not lie on �i . Then the sets of functions {y �→ �̂ω(y, z j) : j = 1, . . . , M, y ∈ �i} are linearly independent for any ω ∈ Cσ0 with 
σ0 = σ0(�) > 0.
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Proof. Let a j ∈ C be constants so that

M∑
j=1

a j�̂ω(y, z j) = 0 y ∈ �i . (17)

Since �̂ω(y, z) are solutions to the Helmholtz equation, they are real analytic on y away from y = z. Without loss of 
generality, assume �i is a closed curve. Otherwise, we can analytically continue (17) to the analytic curve of which �i is a 
subset.

Note that the left hand side of (17) is a radiating solution to the Helmholtz equation outside of �i . Hence, by 
unique continuation and uniqueness of the exterior Dirichlet problem with boundary �i , (17) is in fact true for all 
y ∈ Rd\{z1, z2, . . . , zM}. Due to the singularity of �̂ω(y, z) at y = z, letting y → z j , we see that each a j must vanish 
identically. �

The above lemma enables us to characterize the range of the finite rank operator N̂multi which in turn leads to a test to 
locate the point scatterers. Note that the proof of this theorem is very similar to the proof of the equivalent theorem for far 
field data given in [28]. We include this proof for completeness.

Theorem 2. Assume ω ∈ Cσ0 for some σ0 > 0, D = {z1, z2, · · · zM} and that �i and �m (not necessarily the same) are closed curves 
or open subsets of analytic curves which do not intersect D. Then �̂ω(·, z) ∈ Range(N̂multi) if and only if z = z j for some j = 1, . . . , M.

Proof. Assume by contradiction that z = z0 /∈ {z1, . . . , zM}, and that there is some g ∈ L2(�m) so that (N̂multi g)(y) =
�̂ω(y, z0) for each y ∈ �i . By definition of N̂multi,

�̂ω(y, z0) =
M∑

j=1

α j�̂ω(y, z j), y ∈ �i .

This is a contradiction with the linear independence shown in Lemma 1. Hence, if �̂ω(·, z) ∈ Range(N̂multi) then z ∈
{z1, z2 . . . , zM}.

Now assume z ∈ {z1, z2, . . . , zM}. We will show that �̂ω(·, z) ∈ Kern(N̂∗
multi)

⊥ = Range(N̂multi) (notice that N̂multi is finite 

rank so Range(N̂multi) = Range(N̂multi)). We explicitly calculate the adjoint of N̂∗
multi : L2(�i) → L2(�m) as

(N̂∗
multih)(x) = −

M∑
j=1

m j ˆ̈χ(ω)�̂ω(x, z j)

∫
�i

�̂ω(y, z j)h(y)ds(y).

As such, if h ∈ Kern(N̂∗
multi) then

M∑
j=1

m j ˆ̈χ(ω)�̂ω(x, z j)

∫
�i

�̂ω(y, z j)h(y)ds(y) = 0, for x ∈ �m

and by the assumption on �m , the linear independence shown in Lemma 1 gives

0 =
∫
�i

�̂ω(y, z j)h(y) ds(y).

Hence each �̂ω(·, z j) ∈ Kern(N̂∗
multi)

⊥ = Range(N̂multi). �
While we have primarily proven Theorem 2 in order to prove a similar result for the time dependent case, it also gives a 

MUSIC-type inversion scheme for multistatic weakly scattering near field time harmonic data. In particular, both Lemma 1
and Theorem 2 follow in an identical way for real positive values of ω ∈ R, ω > 0. Then us is time harmonic acoustic 
scattering data from a point source incident field. Let P N̂⊥

multi
: L2(�i) → R(N̂multi)

⊥ be the orthogonal projection onto the 

orthogonal complement of the range of N̂multi . Theorem 2 gives that P N̂⊥
multi

�̂ω(·, z) = 0 if and only if z = z j .

In a typical MUSIC application, the function I(z) =
∥∥∥P N̂⊥

multi
�̂s(y, z)

∥∥∥
L2(�i)

serves as an indicator function to locate D: if 

D ⊂ Z for some set of sampling points Z ⊂ Rd , then (I(z))−1 is large for each z ∈ D and small otherwise. We change this 
slightly here and test the angle between Range(N̂multi) and �̂ω(y, z) for each z ∈Z . When the angle between these is very 
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small, we assert that �̂ω(y, z) ∈ Range(N̂multi) and hence that z = z j for j = 1, . . . , M . We find numerically that this results 
in a more stable reconstruction algorithm than the typical approach.

To calculate this angle, introduce

Ĵmulti(z) :=

(
�̂ω(y, z), P N̂multi

�̂ω(y, z)
)

L2(�i)

‖�̂ω(y, z)‖L2(�i)
‖P N̂multi

�̂ω(y, z)‖L2(�i)

,

where P N̂multi
is the projection operator onto the range of N̂multi. Note that 

∣∣∣Ĵmulti

∣∣∣ ≤ 1 with equality if and only 

if �̂ω(z) ∈ Range(N̂multi). Then the angle between the �̂ω(z) and the range of the near field operator is Îmulti(z) =
arccos

(
Re

(
Ĵmulti(z)

))
. As the numerical results demonstrate in Section 4, 

(
Îmulti(z)

)−1
is large if and only if z = z j . Note 

that Ĵmulti is similar in form to the indicator function introduced for time harmonic scattering in [27]. However, the two 
functions are derived in a very different fashion – the indicator function in [27] is not related to the range of the near field 
operator – and as far as the authors can tell, their similarity is only coincidental.

The range test in the frequency domain formulated in Theorem 2 can now be used to obtain a range test for time domain 
scattering.

Theorem 3. Assume D = {z1, z2, · · · zM} and that �i and �m (not necessarily the same) are closed curves or open subsets of analytic 
curves which do not intersect D. Define �ξ

z,τ (x, t) as in (12) with z ∈ Rd and τ > 0 and ξ ∈ C∞
0 (R+). Then �ξ

z,τ ∈ Range(Nmulti) if and 
only if z ∈ {z1, . . . , zM}, where Nmulti is given by (13).

Proof. Assume �ξ
z,τ ∈ Range(Nmulti). This is true if and only if there exists some gz,τ so that (Nmulti gz,τ )(y, t) = �

ξ
z,τ (y, t), 

which by Parseval’s equality is true if and only if

0 =
∞∫

−∞
e−2σ t

∥∥∥(Nmulti gz,τ )(y, t) − �
ξ
z,τ (y, t)

∥∥∥2

L2(�i)
dt, σ > 0

= 1

2π

∞+iσ∫
−∞+iσ

∥∥∥(
N̂multi ĝz,τ

)
(y,ω) − �̂

ξ
z,τ (y,ω)

∥∥∥2

L2(�i)
dω. (18)

This holds true if and only if∥∥∥(
N̂multi ĝz,τ

)
(y,ω) − �̂

ξ
z,τ (y,ω)

∥∥∥2

L2(�i)
= 0, ω ∈Cσ .

Note that by analyticity ˆ̈χ(ω) = 0 and ξ̂ (ω) = 0 only for a discrete set of ω ∈ Cσ0 with σ > σ0 > 0. Hence, recalling (12)

and (15) we now have that �ξ
z,τ ∈ Range(Nmulti) if and only if

M∑
j=1

α j�̂ω(y, z j) = β�̂ω(y, z), y ∈ �i, z ∈Rd, ω ∈Cσ0 ,

where α j = −m j ̂̈χ(ω) 
∫
�m

�̂ω(x, z j)ĝz,τ (x, ω) ds(x) and β = ξ̂ (ω)eiωτ . But this is exactly the range test from Theorem 2, and 
so is true if and only if z ∈ {z1, . . . , zM}. �

As in the frequency domain case, this leads to an inversion scheme for time dependent multistatic data. Indeed, to 
calculate the angle between �(y − z, t − τ ) and Range(Nmulti), introduce

Jmulti(z, τ ) :=
(
�(y − z, t − τ ), P Nmulti�(y − z, t − τ )

)
L2(�i×R)

‖�(y − z, t − τ )‖L2(�i×R)‖P Nmulti�(y − z, t − τ )‖L2(�i×R)

,

where P Nmulti is the projection operator onto the range of Nmulti . Then the angle between the �(y − z, t − τ ) and the range 
of the near field operator is Imulti(z, τ ) = arccos (Jmulti(z, τ )). Note that, unlike in the frequency domain case, we do not 
need to take a the real part of Jmulti since the time domain values are inherently real-valued. As seen in Section 4, the 
indicator function Imulti(z, τ ) := arccos(Jmulti(z, τ )) ≈ 0 if and only if z = z j .

It is not completely clear how the sampling time τ affects reconstructions. However, numerical examples in Section 4
suggest that its choice is not very important for scattering from small and weak scatterers. On the other hand, numerical 
experiments with large obstacles, for which the above theory is not justified, show that a good choice of τ results in 
reconstruction of both the shape and location of an object. Poor choice of τ for large objects only allows the reconstruction 
of the location of the objects.
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3.2. Reconstruction of point scatterers from patches of time domain multistatic data

A key point in the reduction of data collection requirements is that the above theorems make very weak assumptions 
about the geometry of �i and �m . As such, both �i and �m can be chosen as, e.g., sectors of a circle with a very small 
aperture. However, because of errors in data collection and limitations in measurement accuracy, this is not feasible in 
practice. Nonetheless, numerical simulations suggest that a patch of multistatic data, in which �i = �m are, e.g., sectors of a 
circle with a very small aperture gives some indication of the hidden objects.

These observations lead to a simple technique for limiting data collection requirements in obstacle reconstruction: collect 
multistatic data on a small patch array of transmitters and receivers, then repeatedly move the array around the obstacles 
and repeat the experiment. Once this data is collected, reconstruct the obstacles from each experiment and post-process 
these reconstructions to give one reconstruction incorporating each experiment. The simplest post-processing is to compute 
a weighted average of each reconstruction, though more complex processes may be applied.

As is shown in Section 4, this patch data and post-processing step results in acceptable reconstructions. Indeed, in an 
error-free case it is theoretically justified. However, in practice it requires a possibly time consuming reconstruction process 
for each set of patch data. Each of these reconstructions may further require regularization and choice of regularization 
parameters. Furthermore, a simple average of each reconstruction does not take into account that reconstructions should 
be similar, as they come from the same objects. More sophisticated post-processing algorithms could certainly alleviate this 
problem, but we do not explore them here. In the next section, we propose a method which requires only one reconstruction 
using even less data. Unlike the multistatic patch method, however, we are unable to fully justify its theory.

3.3. Reconstruction of point scatterers from time domain quasi-backscattering data

For simplicity we assume that the transmitters are distributed on the boundary �i := S R of a large ball B R centered at the 
origin containing the scatterer D ⊂ B R and for each transmitting point y ∈ �i the scattered field is measured at �(y)

m := S R ∩
Bδ(y), where Bδ(y) is a small ball centered at y of radius δ. We will first consider briefly the full backscattering case when 
δ → 0. As numerical results demonstrate below, the quasi-backscattering setting for δ > 0 produces better reconstructions 
than the full backscattering case.

Consider the weak scattering near field backscattering operator for (y, t) ∈ �i ×R+ ,

(Nbackscattering g)(y, t) =
∫
R

us(y, t − τ ; y)g(τ )dτ

= −
M∑

j=1

m j

(4π |y − z j|)2

∫
R

χ̈ (t − τ − 2|y − z j|)g(τ )dτ .

Taking the Fourier–Laplace transform yields

(N̂backscattering g)(y,ω) = −ω2
M∑

j=1

m j

(4π |y − z j|)2
χ̂ (ω)ĝ(ω)exp (2iω|y − z j|)

= −ω2
M∑

j=1

m jχ̂ (ω)ĝ(ω)�̂2
ω(y, z j)

=
M∑

j=1

α j(ω)�̂2
ω(y, z j),

where α j(ω) = −ω2m jχ̂ (ω)ĝ(ω) and ω ∈ Cσ0 for σ0 > 0. Notice the similarities between N̂backscattering and N̂multi and 
define the sampling function

ψ
ξ
z,τ (y, t) =

(
F−1[�̂2

ω(y, z)] ∗ ξ(· − τ )
)

(19)

where ξ ∈ C∞
0 and F−1 here denotes the inverse of the Fourier–Laplace transform defined in Section 2. Using the same 

arguments as in the proof of Theorem 3 for the multistatic case, the form of N̂backscattering suggests that

Ibackscattering(z, τ ) := arccos

⎛⎜⎝
(
ψ

ξ
z,τ (y, t), P Nbackscatteringψ

ξ
z,τ (y, t)

)
L2(�i×R)

‖ψξ
z,τ (y, t)‖L2(�i×R)‖P Nbackscatteringψ

ξ
z,τ (y, t)‖L2(�i×R)

⎞⎟⎠
acts as an indicator for the location of z j , where P N is the projection operator onto the range of Nbackscattering.
backscattering
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As shown in Fig. 7, reconstructions using Ibackscattering are quite recognizable, but less clear than their quasi-backscattering 
equivalents. Hence, we suggest collecting quasi-backscattering data with δ > 0. This differs from the results originally intro-
duced for the quasi-backscattering context in [24,26], in which a specific relationship between �i and �(y)

m is required in 
order to reconstruct z j under the assumption that |x − z j | � 1. Here we do not require any such relationship or that data 
is collected sufficiently-far from the point scatterers. However, unlike in [24,26], we are unable to prove an exact character-
ization of which components of {z j} can be reconstructed. Indeed, other than an intuitive argument that more data leads 
to better reconstructions, we are unsure why the quasi-backscattering reconstructions are superior to the backscattering 
reconstructions.

The quasi-backscattering time domain weakly scattering near field operator Nquasi : H p
σ (R+, L2(S R)) → H p

σ (R+, L2(S R)), 
σ > 0, p ∈R is defined by

(Nquasi g)(y, t) =
∫
R

∫
�

(y)
m

us
B(x, t − τ ; y)g(x, τ )ds(x)dτ , (y, t) ∈ �i ×R+.

For a collection of point sources with strength m j centered at points z j , j = 1, . . . , M , Nquasi takes the form

(Nquasi g)(y, t) = −
M∑

j=1

m j

(
�(z j − y, ·) ∗

(
Sχ̈

�
(y)
m

g)

)
(z j, ·)

)
(t), (y, t) ∈ �i ×R+ (20)

and the Fourier–Laplace transform of the quasi-backscattering near field equation reads

M∑
j=1

m j ̂̈χ(ω)�̂ω(y, z j)

∫
�

(y)
m

�̂ω(x, z j)g(x)ds(x) = −ξ̂ (ω)eiωτ �̂2
ω(y, z) y ∈ �i, z ∈ Z, (21)

for ω ∈ Cσ0 , σ > σ0 > 0. Unfortunately, as opposed to the backscattering or multistatic cases, in (21) the term

J (y) :=
∫

�
(y)
m

�̂ω(x, z j)g(x)ds(x) (22)

is not proportional to �̂ω(y, z j). As such, the arguments used to justify Theorem 2 no longer apply. We would like to show 
that J (y) = c�̂ω(y, z j) + O (δ) where c is independent of y. To this end, for a small patch �(y)

m on the sphere of radius R , 
say with diameter δ > 0, where δ is small compared to |y − z j | for j = 1, . . . , M , up to order δ2 we can replace �(y)

m by 
the tangent plane in R3 or line in R2 at y; let us denote it by T δ

y . Hence x ∈ T δ
y and we have that x = y + ηy⊥ where 

0 < η < δ and y⊥ are the components of y parallel to the tangent plane. Simple asymptotic calculations, which for sake of 
the argument, we present here only in the R3 case, give

|x − z j| = |y − z j| + η
(z j · y⊥)

|y − z j | + O
(
δ2

)
and

|x − z j|−1 = |y − z j|−1

(
1 − η

(z j · y⊥)

|y − z j|2 + O
(
δ2

))
and hence, up to order O (δ2)

J (y) ≈ �̂ω(y, z j)

∫
|ηy⊥|<δ

e
iωη(z j ·y⊥)

|y−z j |
(

1 − η
(z j · y⊥)

|y − z j |2
)

g(y + ηy⊥)d(y + ηy⊥).

Hence we obtain the desired result if (z j · y⊥) = 0 for all y ∈ �i and j = 1, . . . , M . There is a special measurement config-
uration which works only in R3 and is detailed in [24]. Here, the measurement geometry is specified so that the integral 
in the above equation is independent of y. Indeed, in this set-up, �i is set to be a line parallel to some direction v̂ and for 
each y ∈ �i , the corresponding measurements are taken on a line parallel to v̂⊥ passing through y. In this set-up,

M∑
j=1

m j ̂̈χ(ω)�̂2
ω(y, z j) = −ξ̂ (ω)eiωτ �̂2

ω(y, z) y ∈ �i, z ∈ Z

provides an exact range test for z j whose projections to v̂⊥ differ. See Theorem 1 in [24] for more details. In the far field 
this setup becomes simpler and is studied in [26]. Nevertheless, for our data configuration in both R2 and R3, (21) shows 
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that if z = z j for some j = 1, . . . , M , then we can find a g := gz j ,y ∈ L2(T δ
y) that solves exactly (21). Arguing heuristically, 

taking g as an approximating sequence of the Dirac delta function at y suggests that a range test as in the framework built 
up in the previous sections allowing us to introduce an indicator function for finding z j .

As the numerical examples below demonstrate, these assumptions on the geometry of �m and �i do not seem to be 
active. Indeed, based on the discussion above, after taking the inverse Fourier–Laplace transform of (21), we introduce an 
indicator function to measure the angle between ψz,τ and Range(Nquasi). Let

Jquasi(z, τ ) :=

(
ψ

ξ
z,τ (y, t), P Nquasiψ

ξ
z,τ (y, t)

)
L2(�i×R)

‖ψξ
z,τ (y, t)‖L2(�i×R)‖P Nquasiψ

ξ
z,τ (y, t)‖L2(�i×R)

,

where P Nquasi is the projection operator onto the range of Nquasi. We demonstrate in Section 4 that the indicator function 
Iquasi(z, τ ) := arccos(Jquasi(z, τ )) ≈ 0 if and only if z = z j .

In exactly the same way, we can derive a time harmonic indicator function for quasi-backscattering data. In particular, 
time harmonic reconstructions are computed with

Îquasi(z) = arccos

⎛⎜⎝Re

⎛⎜⎝
(
�̂2

ω(y, z), P N̂quasi
�̂2

ω(y, z)
)

L2(�i)

‖�̂2
ω(y, z)‖L2(�i)

‖P N̂quasi
�̂2

ω(y, z)‖L2(�i)

⎞⎟⎠
⎞⎟⎠.

We will show below that time dependent reconstructions out perform time harmonic reconstructions when an incident 
field is transmitted from only few points.

3.4. Linear sampling method for extended objects under the time domain Born model

Before showing numerical reconstructions of point objects, we discuss one technique, the linear sampling method, for 
extending the above multistatic results to extended obstacles which are weakly scattering. Full justification the linear sam-
pling for the weak scattering case – as well as full justification under a strongly scattering model – requires new results 
about an associated interior transmission problem which we are unable to prove.

To introduce the linear sampling method for small objects, we follow [20], in which the linear sampling method for 
strongly scattering time domain data for inhomogeneous media is first investigated. The primary idea in linear sampling is to 
find a regularized solution to the near field equation (10). Then ILSM(z, τ ) = ∥∥gz,τ

∥∥−1
L2(D,R+)

is used as an indicator function. 
The values ILSM are then used to suggest where D is located; the z ∈ Rd so that ILSM(z) is large are our reconstruction of D .

By making use of the volume integral equation representation of us
B , we can factor Nmulti into the product of two 

well-studied operators. In particular,

(Nmulti g)(y, t) =
∫
R

∫
�m

us
B(x, t − τ ; y)g(x, τ )ds(x)dτ

= −
∫
R

∫
�m

⎛⎝∫
R

∫
D

m(z)�(x − z, t − τ − s)ui
tt(z, s, y)dV (z)ds

⎞⎠ g(x, τ )ds(x)dτ

= −
∫
R

∫
D

m(z)ui
tt(z, s; y)

∫
R

∫
�m

�(x − z, t − τ − s)g(x, τ )ds(x)dτ dV (z)ds

= −
∫
D

m(z)
(
�(z − y, ·) ∗ χ̈ (·) ∗ (

S�m g
)
(z, ·)) (t)dV (z)

= −
∫
R

∫
D

m(z)�(z − y, t − τ )
(

Sχ̈
�m

g
)

(z, τ )dV (z)dτ .

Sχ̈
�m

is defined by (14).
This yields the following factorization

Nmulti g = γ�i G Sχ̈
�m

g,

where G is the wave equation solution operator defined by (5), and γ�i is the trace operator restricting the solution to 
�i . Using (6), and combining results for the multiple scattering linear sampling theory [20] with the Born transmission 
eigenvalue results in [13], it can be shown that the weakly scattering near field operator
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Fig. 2. Plots of (ILSM(z))−1 (top) and (Imulti(z))−1 (bottom) for two different geometries.

Nmulti : H p
σ (R+, L2(�m)) → H p

σ (R+, H1/2(�i)), p ∈R and σ > 0

is bounded, injective, and has dense range. Note that when p = 0 we have the mapping properties used above. By a 
contradiction argument it is also easy to show as in [20] that for z /∈ D any approximate solution of (10) is such that 
‖gz,τ ‖H p

σ (R+,L2(�m)) blows up as the regularization parameter in the equation goes to zero. However a complete justification 
of the linear sampling method, namely to describe the behavior of the approximate solution of (10) for z ∈ D , one need to 
find causal solution to the so-called interior transmission problem for the Born problem. This problem is to find w(x, t) and 
v(x, t) satisfying

wtt(x, t) − �w(x, t) = −m(x)v (x, t) ∈ D ×R+

vtt(x, t) − �v(x, t) = 0 (x, t) ∈ D ×R+

w(x, t) = �
ξ
z,τ (x, t) (x, t) ∈ ∂ D ×R+

∂ w(x, t)

∂ν
= ∂�

ξ
z,τ (x, t)

∂ν
(x, t) ∈ ∂ D ×R+

w(x,0) = wt(x,0) = v(x,0) = vt(x,0) = 0 x ∈ D.

The solution of this problem remains open both for the Born approximation model and the full multiple scattering model. 
Fourier or Fourier–Laplace analysis fail to work for this problem since the transformed homogeneous problem (known as 
the transmission eigenvalue problem) is non-selfadjoint and its complex eigenvalues may have unbounded imaginary part. 
Moreover, there are either infinitely many real eigenvalues or a sequence of complex eigenvalues may approach the real 
axis [13,33]. Despite a significant amount of research on the transmission eigenvalue problem (see [12] and references 
therein), optimal bounds on transmission eigenvalues have not yet been established. However, numerical implementation 

of the linear sampling method, i.e. finding a regularized solution of (10) shows that 
(
‖gz,τ ‖H p

σ (R+,L2(�m))

)−1
remains finite 

inside D and is very small outside D . As such, the linear sampling method can be applied to image weak scatterers, as 
demonstrated in Fig. 2.

4. Numerical reconstructions

To simulate forward scattering, we use the convolution quadrature-volume integral equation approach introduced in [30]. 
We use a Galerkin semi-discretization in space, rather than the collocation method suggested in [30]. With this, we simulate 
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Fig. 3. Multistatic patch reconstructions of the same geometry of small circles, indicated by black lines. (Top) Four patches are used with 5 transmitters 
and receivers each. From left-to-right, the aperture of each patch decreases from π/2 to π/4 to π/8. (Bottom) The same experiment as top but with 10 
patches. Each set of circles indicates the location of transmitters and receivers in each patch. Transmitters and receivers in the same patch each have the 
same color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

values of us(x j, tk; yi) at some discrete values x j ∈ �m , yi ∈ �i , and at tk ∈ [0, T ], where T > 0 is some final time. We choose 
T so that at least 99% of the energy of us has left the computational domain. For simplicity, we always take n = 1 outside 
of D and n = 1.1 inside of D .

Using these simulations we can calculate discrete approximations to Nmulti and Nquasi, which we denote as Nmulti and 
Nquasi, respectively. As we explain below, we are more interested in a partial singular value decomposition (SVD) of these 
near field operators than in the matrices themselves. Since the near field operator is a convolution, this decomposition can 
be calculated quickly and without explicitly forming Nmulti or Nquasi by using a fast Fourier transform, as described in [25].

In order to avoid inverse crimes, we calculate the full multiple scattering data, not the Born approximation to this data. 
We further avoid inverse crimes by adding noise to reconstructions, replacing us with (1 + ερ)us where ε is what we refer 
to below as the noise level and ρ is a uniform random variable in [−1, 1]. Our reconstructions use 10–25 transmitters. 
This less than one-half of the amount of transmitter locations as are typically used in sampling-type schemes, though our 
reconstructions are of similar accuracy. This is likely both due to the increased amount of a priori data we assume about 
our obstacles and the fact that time domain data contains more information than the single frequency time harmonic data 
which is usually used.

Unless otherwise noted in figure captions, obstacles are indicated by black lines. Red dots indicate location of trans-
mitters and black dots the location of the receivers for each transmitter. Time domain data was simulated for 18 seconds 
with 600 time steps and with the impulse function χ(t) = sin(4t) exp(−1.6(t − 3)2). All figures have 5% added noise. All 
reconstructions are rescaled to [0, 1] for comparison purposes.

4.1. MUSIC and LSM reconstruction with multistatic data

We first use Imulti and ILSM to find reconstructions using multistatic data. To this end, we compute Nmulti = USV∗ , the 
SVD of Nmulti. Then, it is well-known that the projection operator can be written as PNmulti = Nmulti(N

∗
multiNmulti)

−1N∗
multi =

US (S∗S)−1 S∗U, so long as each of the inverse matrices exists. By using the singular value decomposition, we avoid the 
need to construct the possibly-large matrix Nmulti and can easily regularize using a spectral cut-off method, by looking for 
a gap in the singular values on the diagonal of S and using only the large singular values in reconstruction. We calculate 
Imulti(z, τ ) in this way in order to reconstruct D . We calculate ILSM by solving (10) with a truncated SVD as in [20].

We calculate these multistatic indicator functions for two geometries in R2. This is shown in Fig. 2, where forward data 
is calculated for 10 incident points and 10 measurement points. For the point obstacles on the right, we use a sampling time 
of τ = 1, though the reconstructions seem acceptable for any 0 < τ < T . For the larger obstacle on the left, we set τ = 5.4. 
By choosing τ in this way, we reconstruct both the location and shape of D , while some values of τ only reconstruct the 
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Fig. 4. Multistatic patch reconstructions of the same geometry of medium-sized ellipses, indicated by black lines. (Top) Four patches are used with 5 
transmitters and receivers each. From left-to-right, the aperture of each patch decreases from π/2 to π/4 to π/8. (Bottom) The same experiment as top 
but with 10 patches. Each set of circles indicates the location of transmitters and receivers in each patch. Transmitters and receivers in the same patch 
each have the same color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Plots of (Iquasi(z, τ ))−1 for four different geometries.
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Fig. 6. Plots of ( Îquasi(z, τ ))−1 (top) and (Iquasi(z, τ ))−1 (bottom), with a different number of transmitters in each row. On the left there are 5 transmitters, 
in the middle there are 10 transmitters, and the right there are 15 transmitters. Time harmonic data was computed with wavenumber k = 3.

Fig. 7. Backscattering reconstructions using I−1
backscattering(z, τ ) for two different geometries. In both figures, 30 transmitters are used and data is measured 

only at the location of the transmitter. Time domain data was simulated for 14 seconds with 480 time steps.

location. It is also an open problem to automatically chose τ for linear sampling methods under the full multiple scattering 
model. In these figures, large values indicate the reconstructed location of objects.

We now restrict our figures to the averages of small multistatic patches. We demonstrate in Fig. 3 that small objects and 
be reconstructed well if either the aperture of each patch is sufficiently large or if there are a large number of patches used. 
In Fig. 4, we show the same experimental set-up used for larger objects, showing that reconstructions are worse, but still 
acceptable.

4.2. Quasi-backscattering reconstructions

In Figs. 5–8 we use quasi-backscattering data to reconstruct the location of a number of objects. To construct Iquasi , we 
again use the SVD of the discrete near field operator to calculate the angle between the test functions and their projection 
onto the range of Nquasi. We again regularize with a spectral cut-off.

In Fig. 5 we demonstrate the feasibility of the proposed technique with different geometries. In this figure, we plot 
only the values of (Iquasi(z))−1 larger than a cut-off threshold chosen visually. In some ways, this figure then represents an 
idealized set of reconstructions. However, there are a number of algorithms which make this choice automatically, described 
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Fig. 8. Limited aperture reconstructions using multistatic data with I−1
multi(z, τ ) (top), multistatic patch data with two patches (middle), and quasi-

backscattering data with I−1
quasi(z, τ ) (bottom). In both figures, 19 transmitters are used and in the case of quasi-backscattering data, 4 receivers were 

used.

for example in [10,26]. For each figure, we use 20 transmitters, each with 4 receivers, and set δ = π/100. For each image, 
we use the temporal sampling point τ = 1, though as before this choice does not seem to seriously affect reconstructions.

In Fig. 6 we demonstrate the dependence of reconstructions on the number of transmitter locations. We show both time 
harmonic and time dependent reconstructions. As expected, reconstructions become more accurate when more transmitter 
locations are used. Furthermore, time dependent reconstructions are more accurate than time harmonic reconstructions, 
until a sufficient number of transmitters are used.

In the limiting case as δ → 0, the quasi-backscattering set-up becomes a pure backscattering set-up. In Fig. 7 we show 
numerical examples of pure backscattering. There are a total of 30 transmitter locations, each with 1 receiver located at 
the same point. While reconstructions are not as sharp as, e.g., the full aperture multistatic reconstructions, there is a clear 
indication of object location.

Finally, we compare limited aperture reconstructions from multistatic data to limited aperture reconstructions from patch 
and quasi-backscattering data. As expected, Fig. 8 demonstrates that the multistatic reconstructions are superior to the patch 
and quasi-backscattering reconstructions, which are somewhat similar. Indeed, the quasi-backscattering algorithm results in 
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reconstructions which are noisier and, the case of three point obstacles, only clearly reconstruct the two obstacles nearest 
the transmitter and receiver arrays, incorrectly indicating an extra obstacle in the bottom right. Patch data reconstructions 
are also noisier than multistatic reconstructions, but do not have the same issues as quasi-backscattering reconstructions 
do with three point obstacles. The patch reconstructions do not separate the larger ellipses as effectively as the quasi-
backscattering reconstructions. Note that both the multistatic and patch reconstructions required a careful selection of τ = 5
in order to produce optimal results, while the quasi-backscattering data did not need any such choice.
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