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Abstract.
This paper investigates the possibility of multi-frequency reconstruction of sound-soft and
penetrable obstacles via the linear sampling method involving either far-field or near-field
observations of the scattered field. On establishing a suitable approximate solution to the
linear sampling equation and making an assumption of continuous frequency sweep, two
possible choices for a cumulative multi-frequency indicator function of the scatterer’s support
are proposed. The first alternative, termed the “serial” indicator, is taken as a natural extension
of its monochromatic companion in the sense that its computation entails space-frequency
(as opposed to space) L2-norm of a solution to the linear sampling equation. Under a set
of assumptions that include experimental observations down to zero frequency and compact
frequency support of the wavelet used to illuminate the obstacle, this indicator function
is further related to its time-domain counterpart. As a second possibility, the so-called
“parallel” indicator is alternatively proposed as an L2-norm, in the frequency domain, of the
monochromatic indicator function. On the basis of a perturbation analysis which demonstrates
that the monochromatic solution of the linear sampling equation behaves as O(|k2− k2∗|−m),
m> 1 in the neighborhood of an isolated eigenvalue, k2∗, of the associated interior (Dirichlet
or transmission) problem, it is found that the “serial” indicator is unable to distinguish the
interior from the exterior of a scatterer in situations when the prescribed frequency band
traverses at least one such eigenvalue. In contrast the “parallel” indicator is, due to its
particular structure, shown to be insensitive to the presence of pertinent interior eigenvalues
(unknown beforehand and typically belonging to a countable set), and thus to be robust in
a generic scattering configuration. A set of numerical results, including both “fine” and
“coarse” frequency sampling, is included to illustrate the performance of the competing (multi-
frequency) indicator functions, demonstrating behavior that is consistent with the theoretical
results.

Keywords: linear sampling method, multi-frequency reconstruction, interior Dirichlet
eigenvalues, transmission eigenvalues.
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1. Introduction

In the context of inverse scattering, the past two decades have witnessed the inception
and growth of a range of non-iterative techniques for obstacle reconstruction such as the
linear sampling method [17, 16, 9, 7], the factorization method [24, 25, 27], the point
source method [39], and the topological sensitivity approach [21, 4, 32]. Apart from the
latter technique, these point-probing algorithms commonly operate within the framework of
monochromatic i.e. single-frequency obstacle illumination which postulates that the squared
wave number, computed with reference to the background medium, is not an eigenvalue
of the associated interior (e.g. Dirichlet or transmission) problem. For common scattering
configurations such eigenvalues form an at most countable set, with no accumulation points
other than infinity [35, 40, 9, 33, 26, 13, 12], which makes the featured restriction manageable
if not desirable in the context of practical applications.

Besides (and before) the choice of an appropriate reconstruction technique, the critical
issue for most inverse scattering problems is the richness of the observed data set. In
general the latter can be extended either spatially, in terms of the aperture of experimental
observations, or temporally, by considering multi-frequency or time-domain scattered
waveforms. Notwithstanding the fact that the latter alternative is often far more tractable
in terms of experimental implementation, the literature dealing with point-probing algorithms
that transcend the customary monochromatic framework is relatively scarce. In particular,
one may mention the multi-frequency and time-domain treatments of the point source method
in [30, 29, 31] as well as the time-domain formulation of the linear sampling method [14]
which, by making reference to the space-time Sobolev spaces of order four, voids the need to
use the Fourier transform and thus to deal with associated causality issues. What largely
remains unclear, however, is the role of the eigenvalues of the germane interior problem
(defined over the support of a hidden scatterer) toward the performance of point-probing
methods in situations where the former are traversed by a given frequency sweep or the
Fourier spectrum of a prescribed transient signal. So far, the only light in this direction was
shed in [31] who demonstrated that the regularized solution density, affiliated with the point
source method, is uniformly bounded with respect to the wavenumber over compact subsets
of the real axis.

To help bridge the gap, this study focuses on the multi-frequency reconstruction of
Dirichlet and penetrable obstacles via the linear sampling method entailing either far-field or
near-field observations of the scattered field. On assuming that the (monochromatic) sampling
equation is solved over a compact connected set of real-valued excitation frequencies ω, two
possible choices for a cumulative, multi-frequency indicator function of the scatterer’s support
are considered. In the first proposition, the indicator function is taken as a reciprocal space-
frequency L2-norm of the featured solution density. Upon subtle modification this “serial”
construct is shown, via the use of Plancherel identity and hypothesis that the observations
of the scattered field extend toward zero frequency, to be identifiable with the corresponding
time-domain indicator function. To furnish an alternative, a “parallel” indicator function is
also proposed as an L2-norm, in the frequency domain, of its monochromatic counterpart.
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For a close examination of the utility of the proposed indicators in a generic multi-frequency
environment, the developments are complemented by a perturbation analysis of the relevant
interior problem, which demonstrates that the featured (linear sampling) solution density
behaves as O(|ω−ω∗|−m), m>1 in the neighborhood of a characteristic frequency ω∗ which
corresponds to an isolated eigenvalue of the interior problem. This result in turn exposes the
robustness of the “parallel” indicator, and futility of its “serial” companion in situations when
the prescribed frequency sweep traverses at least one such ω∗ – a finding that is highlighted
by the fact that the support of an obstacle, and thus its (Dirichlet or transmission) eigenvalues,
are unknown beforehand. A set of numerical results, assuming far-field scattering by Dirichlet
and penetrable obstacles, is included to illustrate the analytical findings.

2. Preliminaries

Scattering by Dirichlet obstacle. Consider the time-harmonic scattering of scalar waves by
a sound-soft obstacle D in an otherwise homogeneous unbounded medium R3, endowed with
sound speed co (not necessarily real-valued), due to either set of incident fields

ui =

{
eikx·d, d ∈ Ω (plane waves),
Ψ(x, y, k), y ∈ Ss (point sources).

(1)

Here k = ω/co is the wavenumber; ω denotes the frequency of excitation;

Ψ(x, y, k) =
1

4π

eik|x−y|

|x− y|
, x 6= y

is the radiating fundamental solution of the Helmholtz equation; Ω is the unit sphere centered
at the origin; Ss is a suitable surface containing the point sources used to illuminate the
obstacle, and co is such that its real and imaginary parts are respectively R(co) > 0 and
I(co) 6 0. The support of D is assumed to be such that R3 \ D is connected, and that
∂D is of Lipschitz type. With such premises the direct scattering problem can be written as

∆u+ k2u = 0 in R3 \D,
u = −ui on ∂D,

lim
|x|→∞

|x|
(
∂u

∂|x|
− iku

)
= 0,

(2)

where the Sommerfeld radiation condition holds uniformly with respect to x̂ = x/|x|. It is
well known [18] that (2) permits a unique solution u ∈ H1

loc(R3 \D), see [?] for Lipschitz
domains, where the field equation and the boundary condition are interpreted respectively in
the sense of distributions and the sense of the trace.

Scattering by penetrable obstacle. As a canonical example of the scattering by a penetrable
obstacle, consider next the case where D is characterized by a spatially-varying sound speed
c(x) and associated index of refraction, n(x) = (co/c)

2, such that i) R(c) > cD > 0 and
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I(c) 6 0 where cD is a constant; ii) n ∈ L∞(D), and iii) ∇n is sufficiently small so that it
can be omitted from the field equation. For simplicity of exposition, an additional hypothesis
is made that the mass density of the system, ρ, is constant throughout (this restriction can
however be relaxed, see Remark 3). On retaining the hypotheses on the geometry of D as in
the sound-soft case, the relevant scattering problem can be written as

∆u+ k2u = 0 in R3 \D,
∆$ + k2n$ = 0 in D,

$ − u = ui, $,ν − u,ν = ui,ν on ∂D,

lim
|x|→∞

|x|
(
∂u

∂|x|
− iku

)
= 0,

(3)

where u,ν =∇u · ν, and ν is the normal on ∂D (defined almost everywhere) oriented toward
the exterior of D. Similar to the case of scattering by a Dirichlet obstacle, it is known [18, ?]
that (3) permits a unique solution (u,$)∈ H1

loc(R3\D)×H1(D).
By way of Green’s theorem, it can be shown [18] that the scattered field u solving

either (2) or (3) permits integral representation

u(x, ?) =

∫
∂D

(
u(ξ, ?)Ψ,ν(x, ξ, k)−u,ν(ξ, ?)Ψ(x, ξ, k)

)
dsξ,

{
? = d ∈ Ω (plane waves),
? = y ∈ Ss (point sources)

(4)
which, assuming illumination by plane waves, exposes its asymptotic behavior

u(x, d) =
eik|x|

|x|
u∞(x̂, d) + O

(
|x|−2

)
as |x| → ∞, (5)

where
u∞(x̂, d) =

∫
∂D

(
u(ξ, d)(e−ikx̂·ξ),ν − u,ν(ξ, d)e−ikx̂·ξ

)
dsξ (6)

is the so-called far-field pattern of the scattered field [18].

3. Inverse scattering via the linear sampling method

With reference to the direct scattering framework established earlier, the goal is to reconstruct
the support D of a hidden obstacle on the basis of available information on the scattered
field, synthesized via u∞ or u, for multiple incident fields. Depending on the character and
nature of such data, however, it is useful to distinguish between the “far-field” and “near-
field” inverse scattering problems as described in the sequel. For the remainder of this section
it is assumed, following the usual treatment [18, 16], that the data are available at a single
excitation frequency, ω, such that k2 is not a Dirichlet eigenvalue [18] for the bounded
domain D when dealing with sound-soft obstacles, nor a transmission eigenvalue [40, 19]
for D when dealing with penetrable scatterers.
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Far-field observations. For this configuration, it is for simplicity assumed that the far-field
pattern u∞ is known for every direction of observation and every direction of plane-wave
incidence, i.e. that the data are given by u∞(x̂, d) for x̂, d ∈ Ω (the reader is referred to [5] for
an account of the limited-aperture case). In this setting, the linear sampling method revolves
around solving the equation of the first kind

(Fgz)(x̂) = Ψ∞(x̂, z, k), x̂ ∈ Ω, (7)

where F : L2(Ω)→ L2(Ω) is the so-called far-field operator given by

(Fg)(x̂) :=

∫
Ω

u∞(x̂, d) g(d) dsd; (8)

gz is the solution density used to construct an indicator function; z denotes the sampling point,
and Ψ∞ is the far-field pattern of Ψ, namely

Ψ∞(x̂, z, k) = 1
4π
e−ikx̂·z, Ψ(x, z, k) =

eik|x|

|x|
Ψ∞(x̂, z, k) +O

(
|x|−2

)
as |x| → ∞.

(9)
With such premises, it can be shown [6], [27] that

• If z∈D then for every ε>0, there exists a solution gεz∈L2(Ω) of (7) such that

‖Fgεz(·)−Ψ∞(·, z, k)‖L2(Ω) < ε; (10)

• When z∈D, one further has

lim
z→∂D

‖gεz ‖L2(Ω)→∞, lim
z→∂D

‖vgεz ‖X→∞,

where
vg(x) :=

∫
Ω

eikx·d g(d) dsd (11)

is the Herglotz wave function with kernel g, and

• When z∈ R3\D, then for every ε>0 there exists a solution gεz∈L2(Ω) such that

‖Fgεz(·)−Ψ∞(·, z, k)‖L2(Ω) < ε

and
lim
ε→0
‖gεz ‖L2(Ω)→∞, lim

ε→0
‖vgεz ‖X→∞

where X := H1(D) when considering (2), and X := L2(D) when considering (3).
With the above result in place, D can be reconstructed by employing a suitable regularization
technique to solve the far-field equation Fgz = Ψ∞(·, z, k) over an appropriate grid of
sampling points, and using Π(z) := 1/ ‖ gz ‖L2(Ω) as a characteristic function of the support
of the scatterer.
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Figure 1: Near-field scattering configuration.

Near-field observations. In this case it is assumed that the obstacle is illuminated using point
sources located on the source surface Ss, while the scattered field is monitored over a (union
of) closed C1 surface(s) Sr, see Fig. 1. Accordingly the data is given by u(x, y) for x ∈ Sr
and y ∈ Ss. Hereon it is assumed that Ss∩D=∅ and Sr∩D=∅, with no restrictions imposed
on the intersection between Ss and Sr. For further reference, let Vr denote the finite domain
bounded by Sr whereby ∂Vr = Sr. Assuming further that k2 is not a Dirichlet eigenvalue for
Vr (see Remark 1), the near-field counterpart of (7), see e.g. [16], can be written as

(Ngz)(x) = Ψ(x, z, k), x ∈ Sr, (12)

where N : L2(Ss)→ L2(Sr) is the so-called near-field operator given by

(Ng)(x) :=

∫
Ss

u(x, y) g(y) dsy. (13)

With the aforementioned restriction on k, the existence of a unique solution to the interior
Dirichlet problem over Vr guarantees that, when (12) is met, sound fieldsNgz(·) and Ψ(·, z, k)

share the Cauchy data on Sr. By way of Holmgren’s uniqueness theorem [34], this result in
turn helps ensure that the solution of the near-field equation (12) possesses approximation
and unboundedness properties that mirror those of its far-field counterpart (see e.g. [22] in the
context of elastodynamics), namely

• If z∈D then for every ε>0, there exists a solution gεz∈L2(Ss) of (12) such that

‖Ngεz(·)−Ψ(·, z, k)‖L2(Sr) < ε; (14)

• When z∈D, one additionally has

lim
z→∂D

‖gεz ‖L2(Ss)→∞, lim
z→∂D

‖ϑgεz ‖X→∞,

where
ϑg(x) :=

∫
Ss

Ψ(x, y, k) g(y) dsy (15)

is a single-layer potential with density g, and
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• When z∈R3 \ (D∪Ss∪Sr), then for every ε>0 there exists a solution gεz∈L2(Ss) such
that

‖Ngεz(·)−Ψ(·, z, k)‖L2(Sr) < ε

and
lim
ε→0
‖gεz ‖L2(Ss)→∞, lim

ε→0
‖ϑgεz ‖X→∞,

where X := H1(D) when considering (2), and X := L2(D) when considering (3).
Similar to the case of far-field observations, the support of D can in this case be exposed

by computing a regularized solution of the near-field equation Ngz = Ψ(·, z, k) over an
appropriate grid of sampling points, and deploying Π(z) := 1/‖ gz ‖L2(Ss) as a characteristic
function of the support of the scatterer.

3.1. Relationship with the solution to the interior problem

To shed light on the denseness claims (10) and (14), let H = {v∈H1(D) : ∆v + k2v = 0}
and L = {v ∈ L2(D) : ∆v + k2v = 0} denote respectively the closures of the space of
C2(D) solutions to the Helmholtz equation in D with respect to the H1(D)-norm and the
L2(D)-norm. In what follows, the sought relationship between an approximate solution to
the linear sampling equation and that of the companion interior problem will be exposed
for situations featuring either Dirichlet or penetrable scatterers, and testing configurations
involving either far-field or near-field observations. Owing to the fact that this relationship has
so far been investigated solely on a case-specific basis (see e.g. [7] and references therein),
the study proceeds with a unifying treatment of the problem, starting with inverse scattering
by a Dirichlet obstacle in a near-field setting. Here it is particularly important to note that
the ensuing estimates, while established in a time-harmonic setting, hold uniformly with
respect to k over any closed region in the complex plane (hereon denoted by C) – a result
that provides a linchpin for the extension of the linear sampling to multi-frequency scattering
configurations.

Dirichlet obstacle. First, consider the scattering by a sound-soft obstacle (2) and associated
(interior) Dirichlet problem

∆vz + k2vz = 0 in D,

vz + Ψ(·, z, k) = 0 on ∂D
(16)

at vibration frequency ω such that k2 is not a Dirichlet eigenvalue for D. Under the latter
assumption, it is known that (16) admits a unique solution vz ∈ H1(D).

As shown in [20], the set FF = {vg|D : g∈L2(Ω)} of Herglotz wave functions (11) with
square-integrable kernel g is dense in H with respect to the H1(D) norm. In the context of
near-field observations, the same approximation property in H can be established for the set of
single-layer potentials (15) with square-integrable kernel FN = {ϑg|D : g∈L2(Ss)}. Indeed,
the proof of this claim follows along the lines of Section 2.3 in [5] where, for the purpose of
this study, quantity “Vg” should be superseded by single-layer potential (15).



8

Lemma 1. Assume that z ∈ D, and let k be such that |k − k0| 6 r for some r > 0 and
k0∈ C. Under such hypotheses there is a constant c0 independent of k (but dependent on k0

and r), such that any density gεz ∈L2(Ss) for which the associated single-layer potential (15)
approximates the unique solution of (16) as ‖ϑgεz− vz ‖H1(D)< c0ε, also satisfies the near-field
inequality (14). In addition, for any ε>0 there exists density gεz∈L2(Ss) such that ϑgεz satisfies
the prescribed H1(D) inequality.

Proof. Let B : H1/2(∂D) → L2(Sr) denote the linear operator that maps functions f ∈
H1/2(∂D) to u|Sr , where u ∈ H1

loc(R3 \D) is the unique radiating solution to the exterior
Dirichlet problem with boundary data f , i.e. u satisfies (2) with −ui replaced by f . By virtue
of the embedding ofH1/2(Sr) in L2(Sr), the well-posedness of the exterior Dirichlet problem,
Green’s representation formula (4) for u, and the boundedness of the Dirichlet-to-Neumann
mapping whereby ‖u,ν‖H−1/2(∂D) 6 C‖u‖H1/2(∂D) for some C>0, one finds that

‖Bf‖L2(Sr) = ‖u‖L2(Sr) 6 ‖u‖H1/2(Sr) 6 c1‖f‖H1/2(∂D) (17)

for some c1>0. Owing to the fact that the solution to the exterior Dirichlet problem depends
continuously on k, constant c1 can be further chosen independent of k such that (17) holds
everywhere within the ball |k − k0| 6 r, whereby B is uniformly bounded from H1/2(∂D)

to L2(Sr) with respect to k in |k − k0| 6 r. Since (∆ + k2)Ψ(·, z, k) = 0 in R3 \D for
z ∈ D, one obviously has BΨ(·, z, k) = Ψ(·, z, k)|Sr . With reference to (13), on the other
hand, it follows by the linearity of the problem that the near-field operator can be decomposed
as N =BP , where Pg :=−ϑg|∂D. Next, let gεz ∈L2(Ss) be such that ‖ϑgεz− vz ‖H1(D)< c0ε.
By virtue of the trace theorem and the fact that vz solves (16), one has

‖Pgεz −Ψ(·, z, k)‖H1/2(∂D) 6 c2‖ϑgεz − vz‖H1(D),

where c2 is independent of k. Thus

‖Ngεz(·)−Ψ(·, z, k)‖L2(Sr) = ‖BPgεz − BΨ(·, z, k)‖L2(Sr)

= ‖B(Pgεz −Ψ(·, z, k))‖L2(Sr) 6 c1‖Pgεz −Ψ(·, z, k)‖H1/2(∂D) 6 c1c2c0 ε (18)

and, by taking 0<c0<(c1c2)−1,

‖Ngεz(·)−Ψ(·, z, k)‖L2(Sr) < ε.

By the denseness property of FN in H stipulated earlier, for any c0ε > 0 and vz ∈ H there is a
single-layer potential (15) with density gεz ∈ L2(Ss) such that

‖ϑgεz− vz ‖H1(D)< c0ε,

which establishes the claim of the lemma.

Lemma 2. Let z ∈D, and let k be such that |k − k0| 6 r for some r > 0 and k0 ∈ C. With
such premises there exists constant c0 independent of k (but dependent on k0 and r), such that
any density gεz ∈L2(Ω) for which the affiliated Herglotz wave function (11) approximates the
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unique solution of (16) as ‖vgεz− vz ‖H1(D)< c0ε, also satisfies the far-field inequality (10).
Further, for any c0ε > 0 there is density gεz ∈ L2(Ω) such that vgεz satisfies the postulated
H1(D) inequality.

Proof. Here the proof mirrors that of Lemma 1, provided that i) B : H1/2(∂D) → L2(Ω)

maps any f ∈H1/2(∂D) to the far-field pattern (u∞) of the radiating solution u to the exterior
Dirichlet problem with boundary data f , ii) the near-field operator N is superseded by its
far-field counterpart F : L2(Ω) → L2(Ω), and iii) linear operator Pg :=−ϑg|∂D is replaced
by Hg :=−vg|∂D where vg is given by (11).

Penetrable obstacle. In the case of scattering by a penetrable obstacle, the relevant interior
problem is the so-called interior transmission problem [19]

∆vz + k2vz = 0 in D,

∆wz + k2nwz = 0 in D,

wz − vz = Ψ(·, z, k) on ∂D,

(wz),ν − (vz),ν = Ψ,ν(·, z, k) on ∂D

(19)

which is, following earlier hypothesis, considered under the restriction that k2 is not a
transmission eigenvalue for D [12] – defined as the value of k2 for which the homogeneous
counterpart of (19) permits non-trivial solution. Under such limitation, (19) permits a unique
solution (vz, wz) understood in the sense of distributions, such that vz∈ L2(D), wz∈ L2(D),
and wz−vz ∈ H2(D), see [40].

Owing to the L2(D)-regularity of the solution to (19), it is next useful to make an appeal
to the denseness of the set of Herglotz wave functions (11) with square-integrable kernel,
namely FF = {vg|D : g ∈ L2(Ω)}, in L with respect to the L2(D) norm [18]. In the
context of near-field observations, the same approximation property in L holds true for the
set FN = {ϑg|D : g∈L2(Ss)} of single-layer potentials (15) with square-integrable kernel.

To facilitate the ensuing discussion, one may recall that (∆+k2)Ψ(·, z, k) = 0 in R3\D
for z ∈ D which, assuming that (vz, wz) solves (19), demonstrates that the “difference” field
defined as uz := wz − vz in D and uz := Ψ(·, z, k) in R3\D solves the source problem

∆uz + k2nuz = k2(1− n)vz in R3,

lim
|x|→∞

|x|
(
∂uz
∂|x|

− ikuz

)
= 0

(20)

assuming the continuity of uz and (uz),ν across ∂D (note that n = 1 outside D). By
writing (20) in the form of a Lippmann-Schwinger equation and slightly modifying the
argument in [18], p. 215, to accommodate for the L∞(D) index of refraction n(x), one easily
sees that the unique solution uz of (20) satisfies the a priori estimate ‖uz‖H2(BR) 6 c‖vz‖L2(D),
where BR is a ball of radius R containing D.
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Lemma 3. Assume that z ∈ D, and let k be such that |k − k0| 6 r for some r > 0 and
k0∈ C. Under such restrictions there is a constant c0 independent of k (but dependent on k0

and r), such that any density gεz ∈L2(Ω) for which the affiliated Herglotz wave function (11)
approximates component vz of the unique solution (vz, wz) to (19) as ‖vgεz− vz ‖L2(D)< c0ε,
also satisfies the far-field inequality (10). Further, for any c0ε > 0 there exists density
gεz∈L2(Ω) such that vgεz meets the postulated L2(D) inequality.

Proof. Consider the space of solutions to the Helmholtz equation L = {v ∈ L2(D) :

∆v + k2v=0} equipped with the L2(D) norm, and define the linear operator B : L→ L2(Ω)

which maps vz ∈ L to the far-field pattern of the radiating field uz solving (20). From the
well-posedness of the source problem (20), one concludes that B is uniformly bounded with
respect to k in |k − k0| 6 r, i.e. that there exists constant c1 independent of k such that
‖Bvz‖L2(Ω) 6 c1‖vz‖L2(D). By the linearity of the problem it further follows that Bvg = Fg,
where F is the far-field operator given by (8) and vg is the Herglotz wave function with kernel
g. On the basis of this result, (7) and (20), it can be shown that Bvz = Ψ∞(·, z, k) whenever vz
is such that the pair (vz, wz) uniquely solves (19). Now let gεz∈L2(Ω) for which the affiliated
Herglotz wave function (11) satisfies ‖ vgεz− vz ‖L2(D)< c0ε. As a result, one finds by taking
0<c0<1/c1 (independent of k in |k − k0| 6 r) that

‖Fgεz−Ψ∞(·, z, k)‖L2(Ω) = ‖B(vgεz−vz)‖L2(Ω) 6 c1‖vgεz−vz‖L2(D) 6 c1c0 ε < ε. (21)

With this result in place, the claim of the lemma is established by recalling the denseness in
L of the set of Herglotz wave functions (11) with density gεz ∈ L2(Ω).

Lemma 4. Let z ∈D, and let k be such that |k − k0| 6 r for some r > 0 and k0 ∈ C. With
such hypotheses there exists constant c0 independent of k (but dependent on k0 and r), such
that any density gεz ∈L2(Ss) for which the affiliated single-layer potential (15) approximates
component vz of the unique solution (vz, wz) to (19) as ‖ϑgεz− vz ‖L2(D)< c0ε, also satisfies
the near-field inequality (14). Further, for any c0ε > 0 there exists density gεz ∈ L2(Ss) such
that ϑgεz meets the featured L2(D) inequality.

Proof. Let B : L→ L2(Sr) denote the linear operator which maps vz∈L to uz|Sr , where uz
solves (20). By virtue of the trace theorem and the well-posedness of (20), it is easy to see
that

‖Bvz‖L2(Sr) 6 c1‖uz‖H3/2(Sr) 6 c1c2‖uz‖H2(BR) 6 c1c2c3‖vz‖L2(D)

where c1, c2 and c3 can be chosen to be independent of k in |k−k0| 6 r due to the fact that the
solution of (20) depends continuously on k. The rest of the proof follows that accompanying
Lemma 3, and is omitted for brevity.

3.2. Regularized solution

It is well known that both the far-field equation (7) and its near-field companion (12) are
ill-posed, a feature that is attributed to the compactness of the respective linear operators
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F : L2(Ω) → L2(Ω) and N : L2(Ss) → L2(Sr). Moreover, these linear sampling equations
generally do not have a solution for any sampling point z. As a result, the characteristic
function of the support of a scatterer is constructed on the basis of the behavior of the Herglotz
wave function (11) or single-layer potential (15), affiliated with a suitable approximate
solution to these equations. In realistic situations, the kernel of F or N is further polluted
by noise in the measurements which necessitates the use of regularization techniques. In
the context of the linear sampling method, the key question associated with the use of any
regularization scheme (e.g. Tikhonov regularization), is whether such computed solution
exhibits the desired properties that make the affiliated Herglotz wave function (11) or single-
layer potential (15) useful toward constructing a characteristic function of the support of a
scatterer. This question was affirmatively answered in [1, 2] for the situations involving far-
field scattering by both Dirichlet and penetrable obstacles. To date, however, the question
remains open in the context of near-field scattering.

To affix specificity to the discussion, consider next the far-field equation (7)
corresponding to either direct scattering problem (2) or (3). Denoting by F δ the far-field
operator corresponding to noise-polluted measurements of the scattered field where δ>0 is a
measure of the noise level, one seeks a Tikhonov-regularized solution gεz,δ of (7), defined as a
unique minimizer of the Tikhonov functional

‖F δgεz,δ −Ψ∞(·, z, k)‖2
L2(S2) + ε ‖gεz,δ‖2

L2(S2), (22)

where ε > 0 is known as the Tikhonov regularization parameter [18]. In the context of (22),
it is important to know whether such regularized solution adheres to the claim of Lemma 2
or Lemma 3, depending on the nature of the scatterer. To this end, let ε(δ) be a sequence
of regularization parameters such that ε(δ) → 0 as δ → 0, and let gεz,δ be the minimizer
of (22) with ε= ε(δ). In [1], it was shown assuming scattering by sound-soft obstacle (2) at
wavenumber k such that k2 is not a Dirichlet eigenvalue for D, that vgεz,δ , z∈D converges in
the H1(D)-norm to the unique solution vz of (16) as δ → 0. This argument can be carried
over, verbatim, to obstacle reconstruction involving scattering by penetrable obstacles (3)
provided that n(x) and k are both real-valued. If the latter condition is met and k2 is not a
transmission eigenvalue forD, then vgεz,δ , z ∈ D converges in the L2(D)-norm to vz as δ → 0,
where vz is such that pair (vz, wz) uniquely solves (19).

In concluding this section it is noted that, even though no commensurate analysis is
available for a Tikhonov-regularized solution to the near-field equation (12), all numerical
experiments indicate that such computed solution, gεz,δ, exhibits the same properties as the
“mother” approximate solution gεz examined in Lemma 1 and Lemma 4.

4. Multi-frequency reconstruction

As examined earlier, the linear sampling method considers inverse scattering at a single
excitation frequency, ω, such that k2 = ω2/c2

o is not an eigenvalue of the germane interior
(Dirichlet or transmission) problem forD. In the case of near-field observations, an additional
restriction is made that k2 is not a Dirichlet eigenvalue of region Vr bounded by the closed
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observation surface(s) Sr; however, this restriction can be removed through a suitable
adjustment of the experimental setup, see Remark 1. Assuming that ∂D is of Lipschitz type,
it can be shown [35, 40, 9, 33, 26, 13, 12] that the eigenspectrum of either Dirichlet or interior
transmission problem over D is at most countable with no finite accumulation points. In
particular, the results show that

• The Dirichlet eigenvalues form a countable set located on the positive real axis, Λ⊂R+

with +∞ as the only accumulation point. From this fact and relationship k2 =ω2/c2
o, it

further follows that if the background medium is sound-absorbing, i.e. I(co) < 0, there
are no (real-valued) excitation frequencies ω that give rise to the Dirichlet eigenvalues.

• The investigation of transmission eigenvalues is at present incomplete. To date, it is
known that the transmission eigenvalues k2 > 0 form a real-valued, countable set with
+∞ as the only accumulation point, provided that both I(co) = 0 and I(c)=0 and either
co<c(x) or co>c(x) almost everywhere in D [12]. The set of transmission eigenvalues
degenerates to an empty set, Λ=∅, when either the background medium or the obstacle
are dissipative, i.e. when either I(co)<0 and I(c)=0, or I(co)=0 and I(c)<0. If both
I(co) < 0 and I(c) < 0, however, particular examples indicate the existence of (real-
valued) excitation frequencies ω that give rise to (complex) transmission eigenvalues k2

[3, 8].

Remark 1. The Dirichlet eigenvalues corresponding to region Vr, bounded by the closed
observation surface(s) Sr in the case of near-field observations, can be considered as being
artificially injected into the problem. At a given testing frequency, these eigenvalues are not
necessarily detrimental to the linear sampling method since it is possible to adjust Sr, and thus
Vr, such that the prescribed frequency of excitation does not correspond to an eigenvalue for
Vr. In the context of multi-frequency obstacle reconstruction that is of interest in this study,
there are two possible ways to avoid these extraneous eigenvalues. In the first approach which
assumes band-limited illumination in the frequency domain, one finds by virtue of the Faber-
Krahn inequality for the first Dirichlet eigenvalue of Vr (the latter is greater than πk2

01/|Vr|,
where k01 is the first zero of the spherical Bessel function j0), that it is possible to reduce Vr
so that none of its (Dirichlet) eigenvalues are triggered by the frequencies from the prescribed
bandwitdh. Alternatively, one may modify the near-field testing configuration by considering
an array of receivers located on an open surface Sr, taken as a part of an analytic surface
Σ enclosing both D and Sc. On invoking the regularity of a solution to the homogeneous
Helmholtz equation and the principle of analytic continuation, one finds that if the radiating
fields Ng given by (13) and Ψ(·, z, k) coincide on Sr, they will also coincide on a closed
surface Σ ⊃ Sr. By making an appeal to the uniqueness of the exterior Dirichlet problem
outside Σ and the analytic continuation principle, one finally concludes that Ng = Ψ(·, z, k)

wherever both are defined, which in turn implies all the results established in Section 3.

In light of Remark 1, the eigenvalues of Vr will hereon be ignored, whereby Λ should be
understood as a countable set containing the relevant eigenvalues of D.

To examine the possibility and effectiveness of multi-frequency obstacle reconstruction,
the ensuing study focuses on a generic situation where the scattered field due to multiple
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incident wavefields, synthesized via u∞ or u, is monitored over a frequency band, ω ∈ zω :=

[ω1, ω2]⊂R+, ω2<∞. For clarity of exposition, all frequency-dependent quantities referred
to in the sequel will have ω added to their list of arguments whereby u(x, y) is superseded
by u(x, y, ω), gz(y) by gz(y, ω), and so on. In this setting, the multi-frequency counterparts
of (7) and (12) can be postulated as

(Fgz)(x̂, ω) = Ψ∞(x̂, z, ω/co), x̂ ∈ Ω, ω ∈ zω
(Ngz)(x, ω) = Ψ(x, z, ω/co), x ∈ Sr, ω ∈ zω

(23)

where F :L2(Ω)×L2(zω) → L2(Ω)×L2(zω) and N :L2(Ss)×L2(zω) → L2(Sr)×L2(zω)

are bounded linear operators such that

(Fg)(x̂, ω) :=

∫
Ω

u∞(x̂, d, ω) g(d, ω) dsd,

(Ng)(x, ω) :=

∫
Ss

u(x, y, ω) g(y, ω) dsy.
(24)

For a systematic treatment of such extended inverse scattering problem, the key issues
to be addressed pertain to: i) the choice of a “cumulative” indicator function that reflects the
extended data set, and ii) the situation where the chosen frequency band traverses at least one
interior eigenvalue, i.e. when

Λ ∩zk2 6= ∅, zk2 :=
{
k2 : k = c−1

o

(
ω1 + η(ω2 − ω1)

)
, η∈ [0, 1]

}
.

4.1. “Serial” indicator function

Perhaps the most obvious extension of the monochromatic indicator function, Π(z) = 1/ ‖
gz ‖L2(•), can be written as

Π(1)
z (z) :=

1

‖gz ‖L2(•)×L2(zω)

=

(∫ ω2

ω1

||gz(·, ω)||2L2(•) dω
)−1/2

,

{
• = Ω (plane waves),
• = Ss (point sources).

(25)
Assuming that Λ ∩ zk2 = ∅, one finds on the basis of the results highlighted in Section 3
that distribution (25), similar to its monochromatic companion, becomes vanishingly small
for z ∈ R3\D which justifies its candidacy for a characteristic function of the support of the
scatterer.

Relevance to inverse scattering in the time domain. An intriguing feature of (25) resides in
its appeal, upon subtle modification, to the time-domain treatment of inverse scattering via
linear sampling – a proposition that is currently in its early stages [14]. To investigate this
possibility, it is instructive to consider an auxiliary frequency functionW∈C1(R), compactly
supported over interval [−ω2, ω2], and to modify (25) by setting ω1 = 0 and weighting the
integrand on the right-hand side by 2|W|. Such modified indicator function can be written as

Π(1)
z,W(z) =

(∫ ω2

0

2|W(ω)| ||gz(·, ω)||2L2(•) dω
)−1/2

. (26)



14

To maintain physical relevance, it is further assumed that W(−ω) = W(ω), where overbar
signifies complex conjugation. As a result, the restriction of 2|W| to zω = [0, ω2] can be
interpreted as the one-sided, compactly-supported Fourier amplitude spectrum of a given
wavelet, e.g. the raised cosine function [36].

Here it is useful to note that the scattered field u(x, y, ω) and fundamental solution
Ψ(x, z, ω/co), together with their far-field patterns u∞(x̂, d, ω) and Ψ∞(x̂, z, ω/co) in (23)
and (24) permit physical interpretation as the Fourier transforms of their respective time-
domain companions, ũ(x, y, t), Ψ̃(x, z, t), ũ∞(x̂, d, t) and Ψ̃∞(x̂, z, t). Owing to the fact
that the latter four quantities, which all signify relevant solutions to the wave equation, are
necessarily real-valued, it follows that

h(·, ·,−ω) = h(·, ·, ω), h ∈ {u∞, u},
Φ(·, ·,−ω/co) = Φ(·, ·, ω/co), Φ ∈ {Ψ∞,Ψ}.

(27)

On the basis of (27), the consideration and solution of (23) can, for a given data set (u∞ or u)
specified over zω= [0, ω2], be formally extended to the frequency range [−ω2, ω2] such that
gz(·,−ω)=gz(·, ω).

In this setting, either of (23) can be conveniently modified by extending its frequency
support to [−ω2, ω2], and weighting its right-hand side byW , namely

(FgWz )(x̂, ω) = W(ω) Ψ∞(x̂, z, ω/co), x̂ ∈ Ω, ω ∈ [−ω2, ω2],

(NgWz )(x, ω) = W(ω) Ψ(x, z, ω/co), x ∈ Sr, ω ∈ [−ω2, ω2].
(28)

In situations where Λ∩R= ∅ i.e. when there are no interior eigenvalues on the real axis, the
modified indicator function (26) accordingly carries the physical meaning of

Π(1)
z,W(z) =

1

2 ‖gWz ‖L2(•)×L2(zω)

=
1

‖gWz ‖L2(•)×L2([−ω2,ω2])

=
1

‖gWz ‖L2(•)×L2(R)

, (29)

owing to the compact support ofW and injectivity of F and N [16, 9].
With the above results in place, one may take the inverse Fourier transform of (28) with

respect to ω to formally arrive at a time-domain variant of the linear sampling method, namely

(F̃ g̃Wz )(x̂, t) = Ψ̃W∞(x̂, z, t), x̂ ∈ Ω, t ∈ R,
(Ñ g̃Wz )(x, t) = Ψ̃W(x, z, t), x ∈ Sr, t ∈ R.

(30)

Here g̃Wz denotes the inverse Fourier transform of gWz ; Ψ̃W(·, z, t) and Ψ̃W∞(·, z, t) are
respectively the radiating Green’s function for the wave equation in R3 due to “wavelet” point
source δ(x− z)W̃(t) and its far-field pattern, while F̃ :L2(Ω)×L2(R)→ L2(Ω)×L2(R) and
Ñ :L2(Ss)×L2(R)→ L2(Sr)×L2(R) are the linear operators given by

(F̃ g̃)(x̂, t) :=

∫
Ω

∫ t

−∞
ũ∞(x̂, d, t− τ) g̃(d, τ) dτ dsd,

(Ñ g̃)(x, t) :=

∫
Ss

∫ t

−∞
ũ(x, y, t− τ) g̃(y, τ) dτ dsy,

(31)
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where e.g. ũ(x, y, t) is the scattered field due to ui generated by an impulsive point source
δ(x− y)δ(t). To justify the claim of the domain and the range of F̃ and Ñ , it is noted by way
of the Plancherel identity and the compact frequency support of gWz , see (29), that

‖Q̃g̃Wz ‖L2(•)×L2(R) = 2 ‖QgWz ‖L2(•)×L2(zω), • ∈ {Ω, Sr}, Q ∈ {F,N}
‖ g̃Wz ‖L2(•)×L2(R) = 2 ‖gWz ‖L2(•)×L2(zω), • ∈ {Ω, Ss}

(32)

where the norms on the right-hand sides are implicit to postulated frequency-domain mapping,
see (31). By virtue of (29) and the second of (32), it is clear that the (weighted) multi-
frequency indicator function (26) can be interpreted as that stemming from either of the time-
domain linear sampling equations (30), i.e. that

Π(1)
z,W(z) =

1

‖ g̃Wz ‖L2(•)×L2(R)

.

It is recalled, however, that the above analogy is established under a severe limitation that
ω1 = 0, i.e. that the observations of the time-harmonic scattered field are available down to
zero frequency which is in practice never the case. Nonetheless, the featured example may
help shed light on the relationship between the time- and frequency-domain treatments and, in
situations where the featured quantities do not vary significantly over the “bottom” frequency
range [−ω1, ω1], augmented by suitable interpolation to establish the actual link.

4.2. “Parallel” indicator function

Another possible choice of a cumulative indicator function can be written as an L2-norm of
the “monochromatic” indicator over the featured frequency band, i.e.

Π(2)
z (z) :=

∥∥∥∥ 1

‖gz ‖L2(•)

∥∥∥∥
L2(zω)

=

(∫ ω2

ω1

‖ gz(·, ω) ‖−2
L2(•) dω

)1/2

,

{
• = Ω (plane waves),
• = Ss (point sources).

(33)
The reasoning behind proposition (33) is that of “constructive interference” where, again
assuming that Λ ∩ zk2 = ∅, distributions 1/‖ gz(·, ω) ‖L2(Ss), ω∈zω reinforce each other in
exposing the support of the scatterer by jointly vanishing when z ∈ R3\D.

To ensure the robustness of the multi-frequency reconstruction scheme, however, the
critical issue with both (25) and (33) is their behavior and performance in situations when
Λ ∩ zk2 6= ∅ – a possibility that cannot be discarded beforehand for the logical value of the
latter inequality is, for given zk2 , dependent on the geometry and nature of a hidden scatterer.
Given the fact that both Π(1)

z and Π(2)
z vanish when z /∈ D and Λ∩zk2 =∅, of particular concern

here is the situation when z ∈ D and zk2 contains at least one eigenvalue of the relevant
interior problem. Indeed, if either candidate for a cumulative indicator function necessarily
vanishes in this case, such behavior would preclude its utility as a characteristic function of
the support of the obstacle in a generic scattering environment.
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4.3. Behavior of the solution in a neighborhood of an eigenvalue

To expose the utility of (band-limited) cumulative indicator functions proposed in Sections 4.1
and 4.2, it is critical to understand the behavior an approximate solution, gεz, to the far-field
equation (7) or its near-field counterpart (12) in the neighborhood of a “resonant” frequency
ω∗, such that ω2

∗/c
2
o = k2

∗ ∈ Λ. In the context of far-field scattering, the first result in this
direction was provided in [10] where it was shown that for k2 = k2

∗ ∈ Λ and almost every
z ∈ D, Herglotz wave function vεgz,δ (where ε = ε(δ) and gεz,δ is the Tikhonov-regularized
solution of (22)) becomes unbounded, when δ→ 0, in the H1(D)-norm considering (2), and
in the L2(D)-norm considering (3). A similar result can be established for the unboundedness
of the near-field potential ϑgεz as ε → 0, where gεz satisfies (14). In the context of multi-
frequency indicator functions (25) and (33), however, it is necessary to examine the blow-up
rate of the relevant solution gz,ε in the neighborhood of an eigenvalue k2

∗ ∈ Λ. Specifically,
one needs to know whether ‖gz(·, ω)‖L2(•) is square-integrable with respect to ω over a given
interval [ω1, ω2], containing “resonant” frequency ω∗ that corresponds to an eigenvalue of the
germane interior problem.

Dirichlet obstacle. Starting with the case of a sound-soft obstacle, consider the interior
Dirichlet problem of finding vz ∈ H1(D) that satisfies (16), and let θ := Ψ(·, z, k)χ where χ
is a C∞ cutoff function equaling unity in a neighborhood of ∂D and zero in a neighborhood
of z. In a weak form, (16) can be written for ϕ := vz − θ ∈ H1

0 (D) as

Aϕ − k2Bϕ = − `z,k, (34)

see e.g. [7], Section 5.3, where H1
0 (D) denotes the Hilbert space of all u ∈ H1(D) such

that u = 0 on ∂D; invertible bounded operator A :H1
0 (D) → H1

0 (D) and compact bounded
operator B :H1

0 (D)→ H1
0 (D) are defined, with help of the Riesz representation theorem, as

(Aϕ,ψ)H1(D) =

∫
D

∇ϕ · ∇ψ dx, (Bϕ,ψ)H1(D) =

∫
D

ϕψ dx, ∀ψ ∈ H1
0 (D),

and
(`z,k, ψ)H1(D) =

∫
D

(
∇θ · ∇ψ − k2θ ψ

)
dx ∀ψ ∈ H1

0 (D). (35)

For further reference, it is noted by virtue of (35) and the analyticity of Ψ(·, z, k) with respect
to k that `z,k is continuous in k over any compact region in the complex plane.

Theorem 5. Let k2
∗ be an isolated Dirichlet eigenvalue for −∆ in D, and consider α > 0

such that the ball Bk2∗,α := {k2 : |k2− k2
∗| < α, k2 6= k2

∗} does not contain any eigenvalues
other than k2

∗ . Next, let gεz be an approximate solution of either the far-field or the near-field
equation, specified respectively in Lemma 2 and Lemma 1. Then for sufficiently small ε > 0

and α > 0, and almost every z ∈ D one has

‖vgεz‖H1(D) >
C1

|k2 − k2
∗|

and ‖gεz‖L2(Ω) >
C2

|k2 − k2
∗|

(far-field observations), (36)
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and

‖ϑgεz‖H1(D) >
C1

|k2 − k2
∗|

and ‖gεz‖L2(Ss) >
C2

|k2 − k2
∗|

(near-field observations) (37)

for all k2∈ Bk2∗,α, where vg and ϑg are given respectively by (11) and (15), while C1 and C2

are positive constants dependent on z, k∗ and α, but not on k and ε.

Proof. Consider the compact self-adjoint operator T := A−1/2BA−1/2 : H1
0 (D) → H1

0 (D),
and set ξ := 1/k2 (note that A1/2 is defined via spectral decomposition since A is self-adjoint
and positive definite). Obviously, λ∗ := 1/k2

∗ is an isolated eigenvalue for T . To facilitate the
ensuing discussion, letEλ∗ denote the eigenspace of T corresponding to λ∗, and letMλ∗⊇Eλ∗
denote the generalized eigenspace of T associated with λ∗ that is spanned by the functions
w∗ ∈H1

0 (D) for which (T−λ∗I)pw∗ = 0, p > 1. In this setting it can be shown (see [23],
p. 180), that the resolvent R(ξ) := (T − ξI)−1 of compact operator T admits the Laurent
series expansion

R(ξ) = − P

(ξ − λ∗)
−

∞∑
p=1

Qp

(ξ − λ∗)p+1
+

∞∑
p=0

(ξ − λ∗)pSp+1 (38)

in a neighborhood of λ∗, where P : H1
0 (D) → Mλ∗ is the orthogonal projection onto the

generalized eigenspace of T corresponding to λ∗, bounded operator Q = (T−λ∗I)P is the
so-called eigen-nilpotent projection satisfying Q = PQ = QP , and S is a bounded operator
satisfying (T − λ∗I)S = I − P such that SP = PS = 0. By virtue of the compactness
of T , Qp = 0 for p > m∗ > 1 where (finite integer) m∗ = dimMλ∗ , which reduces the
principal part of the Laurent series to a finite sum. Thus, without loss of generality one can
choose an orthonormal basis in Mλ∗ . One may also note that the range of Qm∗−1 is contained
in the eigenspace Eλ∗ of T since (T −λ∗I)Qm∗−1 = Qm∗ = 0. If k2 is not a Dirichlet
eigenvalue for D, (34) requires that ϕ := vz− θ satisfies k2(T − ξI)A1/2ϕ = A−1/2`z,k
whereby k2A1/2ϕ = R(ξ)A−1/2`z,k i.e.

k2A1/2ϕ = − PA−1/2`z,k
(ξ − λ∗)

−
m∗−1∑
p=1

QpA−1/2`z,k
(ξ − λ∗)p+1

+
∞∑
p=0

(ξ − λ∗)pSp+1A−1/2`z,k.

Thus

‖k2A1/2ϕ‖ =
1

(ξ − λ∗)m∗

∥∥∥∥∥Qm∗−1A−1/2`z,k +
m∗−2∑
p=1

(ξ − λ∗)m∗−p−1QpA−1/2`z,k

+ (ξ − λ∗)m∗−1PA−1/2`z,k −
∞∑
p=0

(ξ − λ∗)p+m∗Sp+1A−1/2`z,k

∥∥∥∥∥ (39)

Substituting ξ := 1/k2 (k2 ∈ Bk2∗,α) and λ∗ := 1/k2
∗ in (39), it further follows from i) the

reverse triangle inequality, ii) the facts that A, Q and S are bounded operators and iii) the fact
that `z,k is uniformly bounded, that for α sufficiently small

‖k2A1/2ϕ‖H1(D) >
|k2k2

∗|m∗
|k2 − k2

∗|m∗
‖Qm∗−1A−1/2`z,k‖H1(D) − Cp, (40)
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where Cp > 0 depends on z and k∗, but not on k. With this result in place, it suffices to
show that Qm∗−1A−1/2`z,k∗ 6= 0 for almost all z ∈D. Indeed, if this is the case then by the
continuity argument one finds that ‖Qm∗−1A−1/2`z,k‖ > 1

2
‖Qm∗−1A−1/2`z,k∗‖ for k2∈ Bk2∗,α

and sufficiently small α > 0, whereby

‖k2A1/2ϕ‖H1(D) >
|k2k2

∗|m∗
2|k2 − k2

∗|m∗
‖Qm∗−1A−1/2`z,k∗‖H1(D) − Cp, m∗ > 1. (41)

Now assuming the contrary i.e. that Qm∗−1A−1/2`z,k∗ = 0, one finds that A−1/2`z,k∗ is
orthogonal to at least one eigenvector, hereon denoted by u∗, in Eλ∗ . Owing to the fact that
operator A−1/2 is self-adjoint, this implies

(`z,k∗ , A
−1/2u∗) = 0, where (I − k2

∗ A
−1/2BA−1/2)u∗ = 0,

i.e. A−1/2(A− k2
∗B)A−1/2u∗ = 0.

By the bijectivity of A−1/2, this result in turn requires that `z,k∗ be orthogonal to an element
in the kernel of A − k2

∗B, i.e. that `z,k∗ is orthogonal to an eigenfunction corresponding to
Dirichlet eigenvalue k2

∗ . Letting φ∗ denote this Dirichlet eigenfunction, the use of (35) and
the first Green’s identity demonstrates that

0 = (`z,k∗ , φ∗)H1(D) =

∫
D

(
∇θ · ∇φ∗ − k2

∗ θ φ∗
)

dx =

∫
∂D

(φ∗),ν Ψ(x, z, k∗) dsx,

for z ∈ D. By virtue of the the symmetry of Ψ with respect to its first two arguments, one
consequently finds that

w(z) :=

∫
∂D

(φ∗),ν Ψ(z, x, k∗) dsx = 0,

Since w(z) = 0 for z ∈ Z ⊂ D such that Z has nonzero measure it follows, by virtue of
unique continuation applied to w(z) which solves the Helmholtz equation, that w(z) = 0 in
D and thus w(z) = 0 on ∂D by the continuity of single-layer potentials. The latter result
implies that w = 0 in R3 \ D as a radiating solution to the exterior Dirichlet problem with
zero boundary data, which in turn requires that ∂φ∗/∂ν = 0 on ∂D since w = 0 everywhere.
In light of the Holmgren’s uniqueness theorem and the fact that φ∗ = 0 on ∂D, one concludes
that φ∗ = 0 in D which contradicts the premise that φ∗ is an eigenfunction.

Since Cp in (40) behaves as O(1) with diminishing α, (41) implies that

‖A1/2ϕ‖H1(D) >
C

|k2 − k2
∗|
‖Qm∗−1A−1/2`z,k∗‖H1(D)

for k2∈ Bk2∗,α and sufficiently small α, where C is a positive constant independent of k such
that 0 < C < 1

2
|k2k2

∗|m∗ ∀k2 ∈ Bk2∗,α. Since i) A−1/2 and Q are both bounded operators; ii)
`z,k∗ is finite; iii) χ vanishes in a neighborhood of z; and iv) Qm∗−1A−1/2`z,k∗ 6= 0, q>0 for
almost all z∈D, the above inequality implies that

‖vz‖H1(D) >
∣∣‖ϕ‖H1(D) − ‖Ψ(·, z, k)χ(·)‖H1(D)

∣∣ > C ′

|k2 − k2
∗|
− C ′′ > C ′′′

|k2 − k2
∗|
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for suitably chosen constant C ′′′>0 dependent on z, k∗ and α, but not on k. Next, let gεz be the
approximate solution to either the far-field or the near-field equation provided, respectively,
by Lemma 2 and Lemma 1. These lemmas stipulate that the Herglotz wave function vgεz given
by (11) and the single-layer potential ϑgεz given by (15) converge to vz in the H1(D) norm as
ε → 0 uniformly for k2 ∈ Bk2∗,α. Thus, for sufficiently small ε > 0, vgεz and ϑgεz inherit the
behavior of vz i.e

‖vgεz‖H1(D) >
C ′1

|k2 − k2
∗|

and ‖ϑgεz‖H1(D) >
C ′2

|k2 − k2
∗|

where C ′1 and C ′2 are positive constants independent of k and ε. With this result in place, the
claim of the theorem is established by way of estimates

‖gεz‖L2(Ω) > C ′′1 ‖vgεz‖H1(D) >
C1

|k2 − k2
∗|

and ‖gεz‖L2(Sc) > C ′′2 ‖ϕgεz‖H1(D) >
C2

|k2 − k2
∗|
,

where C1 =C ′1C
′′
1 and C2 =C ′2C

′′
2 are positive constants dependent on z, k∗ and α, but not on

k and ε.

Penetrable obstacle. Next, consider the interior transmission problem of finding vz∈L2(D)

and wz ∈ L2(D) solving (19) so that uz = wz−vz ∈ H2(D). Analogous to the treatment
of the Dirichlet problem, let θ := Ψ(·, z, k)χ where χ is a C∞ cut-off function equaling
unity in a neighborhood of ∂D, and vanishing in a neighborhood of z ∈D. To facilitate the
analysis, it is hereon assumed that n(x) is real-valued such that n > 1 + δn in D for some
constant δn> 0 (the case of when n < 1 − δn can be handled in exactly the same way). The
reason for this restriction resides in the fact that the analytical framework for dealing with the
transmission eigenvalue problem corresponding to complex-valued n, which entails complex
eigenvalues k2, is not yet completely developed, see e.g.[3, 8].

Following [40, 11], one can show that (19) can be written as a fourth-order equation in
terms of uz ∈ H2(D), namely(

∆ + k2
) 1

n− 1

(
∆ + k2n

)
uz = 0 in D, (42)

that is accompanied by the boundary conditions uz = Ψ(·, z, k) and (uz),ν = Ψ,ν(·, z, k) on
∂D. In what follows, let H2

0 (D) denote the Hilbert space of all u∈H2(D) such that u = 0

and u,ν = 0 on ∂D. In this setting, the variational form of (42) can be written in terms of
υ := uz− θ ∈ H2

0 (D) as∫
D

1

n− 1
(∆υ+k2n υ)(∆ψ+k2ψ) dx = −

∫
D

1

n− 1
(∆θ+k2n θ)(∆ψ+k2ψ) dx ∀ψ ∈H2

0 (D),

i.e.
Aυ − k2B1υ + k4B2υ = −`z,k. (43)

Here A :H2
0 (D)→ H2

0 (D) is a bounded, positive definite self-adjoint operator given by

(Aϕ,ψ)H2(D) =

∫
D

1

n− 1
∆ϕ∆ψ dx,
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(note that the H2(D) norm of a field with zero Cauchy data on ∂D is equivalent to the L2(D)

norm of its Laplacian); B1 : H2
0 (D) → H2

0 (D) and B2 : H2
0 (D) → H2

0 (D) are compact
bounded operators such that

(B1ϕ, ψ)H2(D) = −
∫
D

1

n− 1

(
∆ϕψ + ϕ ∆ψ

)
dx −

∫
D

ϕ ∆ψ dx,

(B2ϕ, ψ)H2(D) =

∫
D

n

n− 1
ϕψ dx,

and
(`z,k, ψ)H2(D) =

∫
D

1

n− 1
(∆θ + k2n θ)(∆ψ + k2ψ) dx, ∀ψ ∈ H2

0 (D).

Theorem 6. Let k2
∗ be an isolated transmission eigenvalue, and consider α > 0 such that the

ball Bk2∗,α := {k2 : |k2− k2
∗|<α, k2 6= k2

∗} does not contain any eigenvalues other than k2
∗ .

Further, let gεz be the approximate solution of either the far-field or the near-field equation,
specified respectively in Lemma 3 and Lemma 4. Then for sufficiently small ε > 0 and α > 0,
and almost every z ∈ D one has

‖vgεz‖L2(D) >
C1

|k2 − k2
∗|

and ‖gεz‖L2(Ω) >
C2

|k2 − k2
∗|

(far-field observations), (44)

and

‖ϑgεz‖L2(D) >
C1

|k2 − k2
∗|

and ‖gεz‖L2(Ss) >
C2

|k2 − k2
∗|

(near-field observations) (45)

for all k2∈ Bk2∗,α, where vg and ϑg are given respectively by (11) and (15), while C1 and C2

are positive constants dependent on z, k∗ and α, but not on k and ε.

Proof. Let υB := k2B
1/2
2 υ (note that B1/2

2 is defined via spectral decomposition for B2 is
positive semi-definite), and let T : H2

0 (D) × H2
0 (D) → H2

0 (D) × H2
0 (D) be a compact

operator given by

T :=

(
A−1/2B1A

−1/2 −A−1/2B
1/2
2 A−1/2

A1/2B
1/2
2 A−1/2 0

)
. (46)

In light of the relationship

A1/2
(
I − k2A−1/2B1A

−1/2 + k4A−1/2B2A
−1/2

)
A1/2υ = −`z,k,

(46) permits (43) to be rewritten as

k2
(
T − ξI

)
A1/2ϕ = A−1/2lz,k, ϕ =

( υ

υB

)
, lz,k =

( `z,k
0

)
,

where ξ :=1/k2. This transformation allows the resolvent of (46), namelyR(ξ) = (T−ξI)−1,
to be treated in the way analogous to that in Theorem 5. As a result, one finds that

‖A1/2ϕ‖H2(D) >
C

|k2 − k2
∗|
‖Qm∗−1A−1/2lz,k∗‖H2(D)
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for k2 ∈ Bk2∗,α, where 0<C < 1 is independent of k, and Qm∗−1 : H2
0 (D)×H2

0 (D) → Eλ∗
is the projection to the eigenspace of (46) corresponding to λ∗ := 1/k2

∗ . Now it remains
to show that Qm∗−1A−1/2lz,k∗ 6= 0 for almost all z ∈ D. Again, assuming the contrary
i.e. that Qm∗−1A−1/2lz,k∗ = 0 over Z ⊂ D with non-zero measure for k2 ∈ Bk2∗,α, it
follows as in Theorem 5 that lz,k∗ ∈ H2

0 (D) is orthogonal to an element in the kernel of
A − k2

∗B1 + k4
∗B2 which is a transmission eigenfunction corresponding to λ∗. On letting φ∗

denote this eigenfunction, one has

0 = (lz,k∗ , φ∗)H2(D) =

∫
D

1

n− 1
(∆θ + k2

∗n θ)(∆φ∗ + k2
∗φ∗) dx. (47)

Integration of (47) by parts yields∫
∂D

1

n− 1
(∆ + k2

∗n)φ∗ Ψ,ν(x, z, k∗) dsx −
∫
∂D

( 1

n− 1
(∆ + k2

∗n)φ∗

)
,ν

Ψ(x, z, k∗) dsx = 0,

(48)
by virtue of the definition of φ∗ and the boundary conditions imposed on θ := Ψχ, where the
two integrals are understood in the sense of H∓1/2 resp. H∓3/2 duality pairing. On setting

w :=
1

n− 1
(∆ + k2

∗n)φ∗ (49)

which satisfies the Helmholtz equation in D (recall that n is real-valued), one finds via the
Green’s representation theorem that

w(z) =

∫
∂D

(
w(x) Ψ,ν(z, x, k∗) − w,ν(x) Ψ(z, x, k∗)

)
dsx for z ∈ D. (50)

On the basis of (48) which applies overZ⊂D, (50), the symmetry of Ψ with respect to its first
two arguments, and the unique continuation principle, it follows that w= 0 in D. By virtue
of (49), φ∗ solves the Helmholtz equation in D with zero Cauchy data since φ∗ ∈ H2

0 (D). As
a result one finds, again exercising unique continuation, that φ∗ = 0 in D which contradicts
the premise that φ∗ is an eigenfunction. Proceeding with the proof as in the case of a Dirichlet
obstacle and employing the fact that B2 is bounded, one finds that for almost all z ∈ D and
|k2
∗ − k2| < α

‖wz − vz‖H2(D) = ‖uz‖H2(D) >
C ′

|k2 − k2
∗|
,

for sufficiently small α>0 and someC ′>0 dependent on z, k∗ and α, but not on k. By making
an appeal to the well-posedness of (20) as in Lemma 1, one finally obtains the estimate

‖vz‖L2(D) > C ′′‖uz‖H2(D) >
C ′′′

|k2 − k2
∗|

for suitably chosen C ′′ > 0 and C ′′′ > 0 dependent on z, k∗ and α, but not on k. With this
result in place, the convergence of vgεz (in the case of far-field observations) and ϑgεz (in the
case of near-field observations) to vz in the L2(D)-norm as ε → 0, stipulated respectively in
Lemma 3 and Lemma 4, completes the proof of (44) and (45) as in Theorem 5.
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Remark 2. As a follow-up to the discussion in Section 3.2 it is noted that, in the case of
far-field measurements, it is possible to extend the results of Theorem 5 and Theorem 6 to
Tikhonov-regularized solution (22) of the far-field equation.

Remark 3. For penetrable obstacles, it is further feasible to remove the assumption that the
mass density ρ is constant throughout the system and to consider a generalization of (3), where
ρ=ρ(x) inside the obstacle while maintaining ρ=ρo =const. in R3\D. For this configuration,
the relevant scattering problem can be written as

∆u+ k2u = 0 in R3 \D,
∆$ + k2n$ = 0 in D,

$ − u = ui, β$,ν − u,ν = ui,ν on ∂D,

lim
|x|→∞

|x|
(
∂u

∂|x|
− iku

)
= 0,

(51)

where β = ρo/ρ and ρ(x) is, similar to the hypothesis on n(x), assumed to be “slowly”
varying so that the term containing ∇ρ can be omitted from the field equation. By making
reference to the existing studies of the affiliated interior transmission problem [9, 13], the
claims of Section 3.1 can be extended verbatim to this more general configuration. A
commensurate extension of the results obtained in Section 4.3 is, however, fairly involved and
entails additional assumptions on β and n employed by the analysis of the featured interior
transmission problem.

Remark 4. From Theorem 5 and Theorem 6, it is clear that ‖gεz‖L2(•), • = Ω, Ss behaves
as O(|ω − ω∗|−m), m > 1 when ω → ω∗ = co k∗. As a result, the multi-frequency solution
density gεz featured in (25) and (33) does not belong to L2(•)×L2(zω) when the relevant
interior problem over D is characterized by eigenvalues k2

∗ such that ω∗ = co k∗ ∈ zω. In
light of this result it is noted that “serial” indicator function (25), in contrast to its “parallel”
companion (33), is not applicable to such configurations – a finding that is illustrated in the
sequel.

5. Results

In what follows, an attempt at multi-frequency obstacle reconstruction via the linear sampling
method is made for two sample configurations, namely that entailing far-field scattering by
a unit ball in R3 – a problem investigated analytically, and an affiliated far-field problem
for a square scatterer in R2 [?] which exposes the performance of the method in a generic
computational setting. With regard to the latter example, it is noted that both the claim and
the structure of the proof of Theorem 5 and Theorem 6 is independent of the dimensionality
of the problem, and could be extended to scattering in R2 by invoking the two-dimensional
counterparts of Lemmas 1-4 (see, e.g. [7]). For the brevity of exposition, however, the
treatment of the two-dimensional case is in this study limited to a numerical example.
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5.1. Analytical study: spherical scatterer in R3

To shed light on the foregoing developments, consider the scattering of plane waves by a unit
ball D, centered at the origin so that ∂D = {x ∈R3 : |x|= 1}. Assuming both the obstacle
and the background to be non-dissipative, the remainder of this study focuses on the existence
of real-valued eigenvalues characterizing the associated interior (Dirichlet or transmission)
problem, and their effect on indicator functions (25) and (33), in the context of the far-field
formulation (7) of the linear sampling method. For a unified analytical and computational
treatment, the reference is hereon made to the generalized scattering problem (51) which
permits the Dirichlet case (2) and penetrable case (3) to be recovered by setting respectively
β →∞ and β = 1.

Far-field pattern. Assuming the incident field ui to be in the form of a plane wave
as in (1a), u and $ solving (51) can be expanded over the set of spherical harmonics,
(Y m

p )p∈N0,m∈{−p,...,p}, as

u(x, d) =
∞∑
p=0

p∑
m=−p

λmp (d)h(1)

p (k|x|)Y m
p (x̂), x ∈ R3\D, d ∈ Ω,

$(x, d) =
∞∑
p=0

p∑
m=−p

µmp (d) jp(γk|x|)Y m
p (x̂), x ∈ D, d ∈ Ω,

(52)

where N0 is the set of all non-negative integers; γ =
√
n= co/c; λmp and µmp are, for fixed k

and d, constants dependent only on their indexes, and jp and h(1)
p denote respectively the pTh-

order spherical Bessel and Hankel functions of the first kind. On employing the boundary
conditions over the unit sphere ∂D and the orthonormality of spherical harmonics, the solution
for the scattered field in R3\D can be found as

u(x, d) =
∞∑
p=0

ip(2p+ 1) Θp(k) h(1)

p (k|x|)Pp(x̂·d), Θp(k) =
j′p(k)− αpjp(k)

αph
(1)
p (k)− h(1)′

p (k)
, (53)

where Pp denotes the pth-order Legendre polynomial; f ′ is the derivative of f with respect to
its argument, and

αp(k) = β γ
j′p(γk)

jp(γk)
(54)

signifies an effective admittance of surface ∂D at wavenumber k and pth spherical harmonic.
Here it is noted that (53) is well behaved since the denominator αph(1)

p −h(1)′
p does not vanish

when k ∈R+ and p∈N0, see also [15] for a similar argument in electromagnetism. Indeed,
by assuming the contrary one finds via Nicholson’s formula that

αp(k)|h(1)

p (k)|2 − h(1)′

p (k)h(1)
p (k) = 0, (55)

which guarantees that h(1)
p (k) 6= 0 for k ∈ R+. The imaginary part of (55) requires that the

Wronskian W (jp(k), yp(k))= jp(k)y′p(k)− j′p(k)yp(k), involving spherical Bessel functions
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of the first and second kind, vanishes when k∈R+. But this cannot hold owing to the identity

W (jp(k), yp(k)) =
1

k2
, (56)

see e.g. [18].
By way of (53) and Theorem 2.15 in [18], the scattered far-field pattern generated by the

plane waves impinging on a unit ball centered at the origin can be computed as

u∞(x̂, d) =
∞∑
p=0

(2p+ 1)

ik
Θp(k)Pp(x̂·d), (57)

which can be used to compute the far-field variation of a solution to both (2), by setting
β →∞, and (3) by taking β = 1. In the former case, one in particular finds that

Θp(k) = − jp(k)

h(1)
p (k)

. (58)

Interior problem. As examined in Section 3.1, the solvability of integral equation (7) in the
far-field formulation of the method hinges on the uniqueness of a solution to the corresponding
interior problem. With reference to the “unifying” scattering problem (51), one can in
particular show following the approach exercised earlier that the associated far-field operator
F : L2(Ω) → L2(Ω), given by (8), is injective with dense range if and only if there does not
exist a Herglotz wave function vg of form (11) with non-zero density g ∈ L2(Ω) such that pair
(vg, w) solves the homogeneous interior transmission problem

∆vg + k2vg = 0 in D,

∆w + k2nw = 0 in D,

vg = w, (vg),ν = β w,ν on ∂D.

(59)

On seeking the solution to (59) in terms of spherical harmonics

vg(x) =
∞∑
p=0

p∑
m=−p

vmp jp(k|x|)Y m
p (x̂), x ∈ D,

w(x) =
∞∑
p=0

p∑
m=−p

wmp jp(γk|x|)Y m
p (x̂), x ∈ D,

(60)

and employing the Funk-Hecke formula∫
Ω

e−ikx·d Y m
p (d) dsd =

4π

ip
jp(k|x|)Y m

p (x̂), ∀x ∈ R3, p ∈ N0, m ∈ {−p, . . . , p},

one finds that vg, as given by (60a), is indeed a Herglotz wave function in the sense of (11).
With such result in place, it can next be shown by exercising the homogeneous boundary
conditions over ∂D in terms of (60) that a non-trivial solution to (59) exists if and only if
there are values k ∈ R such that

j′p?(k)− αp?(k) jp?(k) = 0, p?∈ N0, (61)
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where αp? is defined via (54). From (61), it is in particular useful to note that Θp?(k) = 0 in
the context of the scattered-field solution (53). As a result, the set of transmission eigenvalues
characterizing (59) can be written as

Λ =
{
k2: Θp?(k)=0, p?∈ N0

}
. (62)

In the case of a Dirichlet obstacle (β →∞), (62) reduces to

Λ =
{
k2 : jp?(k)=0, p?∈ N0

}
. (63)

Indicator functions. With reference to (7) and spherical-harmonics expansion (57) of u∞,
the far-field pattern of the fundamental solution Ψ can be computed as

Ψ∞(x̂, z, k) =
1

4π
e−ikx̂·z =

∞∑
p=0

p∑
m=−p

i−p jp(k|z|)Y m
p (ẑ)Y m

p (x̂). (64)

As a result the source density gz, solving (7) at a given sampling point z ∈ R3, is sought in
the form

gz(d) =
∞∑
p=0

p∑
m=−p

gmp Y
m
p (d), d ∈ Ω (65)

which, on substitution, yields

gz(d) =
k

(4π)2

∞∑
p=0

(2p+ 1)

ip−1Θp(k)
jp(k|z|)Pp(ẑ ·d), d ∈ Ω, (66)

provided that the condition
Θp(k) 6= 0, p∈ N0

is met, i.e. that k2 is not an eigenvalue of the interior problem (59). Unfortunately, series (66)
does not belong to L2(Ω) for any k∈ R+ owing to the fact that its norm is given by

‖gz‖2
L2(Ω) =

k2

(4π)3

∞∑
p=0

(2p+ 1)

|Θp(k)|2
jp(k|z|)2, (67)

where the featured spherical (Bessel and Hankel) functions behave asymptotically such that

(2p+ 1)

|Θp(k)|2
jp(k|z|)2 =

4

k2

(
1+β

1−β

)2(
2|z|
e k

)2p

p2p+1
(
1+O(p−1)

)
as p→∞, (68)

see e.g. [18]. Indeed from (67) and (68), it is clear that

‖gz‖L2(Ω) =∞, z ∈ R3\{0}.

This result is not surprising since the far-field operator F is known to be compact with
eigenvalues

σp =
4π

ik
Θp(k), p ∈ N0, (69)
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that have the asymptotic behavior

σp = π

(
1−β
1+β

)(
e k

2

)2p
1

p2p+1

(
1 +O(p−1)

)
as p→∞, (70)

and thus accumulate at zero. The blow-off feature of ‖gz‖L2(Ω) in R3\{0} can therefore be
attributed to the smallest eigenvalues of the far-field operator. For practical purposes, however,
this behavior can be regularized by truncating the spectrum of F “from below” at sufficiently
small eigenvalues [15], i.e. by seeking a solution to the far-field equation (7) within a manifold

span
(
Y m
p , p ∈ {0, . . . , Nt}, m ∈ {−p, . . . , p}

)
, Nt <∞.

With the above results in place, indicator functions (25) and (33), cumulative over
zω = [ω1, ω2], can now be approximated by evaluating (67) up to truncation level Nt and
employing piecewise-constant approximation of gz(·, ω) over a discrete set of sampling
frequencies

zh
ω =

{
ωs1, ω

s
2, . . . ω

s
Nh

}
⊂ zω, ωs1 =ω1, ωsNh= ω2, ωsm+1−ωsm = O(h)>0, m ∈ {1, . . . Nh}

where h is the chosen level of discretization. Accordingly, one finds that

Π̌(1)
z (z) = (4π)3/2

∑
k∈zhk

Nt∑
p=0

(2p+ 1)k2

|Θp(k)|2
jp(k|z|)2

−1/2

(71)

and

Π̌(2)
z (z) = (4π)3/2

∑
k∈zhk

(
Nt∑
p=0

(2p+ 1)k2

|Θp(k)|2
jp(k|z|)2

)−1
1/2

, (72)

where Π̌ is a regularized approximation of Π, and zh
k = c−1

o zh
ω . To facilitate the ensuing

discussion, one may also introduce an auxiliary indicator function

λNt(k) =
Nt∑
p=0

1

j′p(k)− αp(k)jp(k)
(73)

which, in light of (61), has the property that λNt(k)→∞ as k approaches a transmission
eigenvalue associated with p∗ 6 Nt.

Examples. In what follows the featured obstacle configuration, D = {x ∈ R3 : |x| < 1},
is exercised numerically to highlight the existence of interior (Dirichlet or transmission)
eigenvalues, and to assess their effect on the behavior of (71) and (72). As an illustration,
the results are computed assuming frequency band zω = [10co, 15co] i.e. zk = [10, 15]

and truncation level Nt = 10, chosen such that |σp| < 10−3, p > Nt for all configurations
examined, see (69). For completeness, obstacle reconstruction is effected assuming both
“fine” discretization of zk, namely

zh1
k :=

{
k : k=10 +mh1, h1 =10−3, m∈{0, 1, . . . , 5 · 103}

}
, (74)
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and four “coarse” discretizations

zh2
k =

{
10, 11, 12, 13, 14, 15

}
,

zh3
k =

{
10, 11, 12, 13, 14.0662, 15

}
,

zh4
k =

{
10, 11.25, 12.5, 13.75, 15

}
,

zh5
k =

{
10, 11.25, 12.5664, 13.75, 15

}
.

Fig. 2(a) shows the variation of auxiliary indicator function (73) for a Dirichlet obstacle
(β → ∞), which clearly indicates the existence of Dirichlet eigenvalues within first Nt

spherical harmonic modes of the truncated solution. The spatial distribution of Π̌(1)
z and

Π̌(2)
z in the z3 = 0 plane, as computed from (71) and (72) assuming zh1

k as a discrete set
of wavenumbers over which the far-field observations u∞(x̂, d), x̂, d ∈ Ω are available,

(a) λNt

(b) Normalized Π̌(1)
z (c) Normalized Π̌(2)

z

Figure 2: Reconstruction of a Dirichlet obstacle (β→∞) from the far-field data taken over a
“fine” wavenumber set zh1

k .

is plotted on a normalized scale [0, 1] in Fig. 2(b) and 2(c). The featured indicator
distributions, spherically symmetric due to assumed geometry of the problem, show that
the “serial” indicator (71) is strongly affected by traversing the Dirichlet eigenvalues owing
to its particular structure which requires that Π̌(1)

z → 0 uniformly in R3 as Θp(k) → 0,
p ∈ {0, . . . , Nt}. From (72) and Fig. 2(c), on the other hand, it is also apparent that the far-
field observations u∞ taken at “resonant” frequencies make only a trivial contribution to Π̌(2)

z ,



28

and thus do not degrade the quality of multi-frequency obstacle reconstruction when executed
in terms of the latter indicator function. The above conclusions are further substantiated by
the results in Fig. 3 which plots λNt(k), Π̌(1)

z (z) and Π̌(2)
z (z) for a sample penetrable-obstacle

configuration, characterized by β = 1 and γ = 2. In particular, it is noted that the spatial
distribution of Π̌(1)

z plotted in Fig. 3(b) provides no visible clues as to the support of a hidden
ball.

(a) λNt

(b) Normalized Π̌(1)
z (c) Normalized Π̌(2)

z

Figure 3: Reconstruction of a penetrable obstacle (β= 1, γ= 2) from the far-field data taken
over a “fine” wavenumber set zh1

k .

For completeness, the above Dirichlet and penetrable obstacle are each reconstructed
anew using the far-field data from two “coarse” wavenumber sets. In particular, the Dirichlet
obstacle is reconstructed in Figs. 4 and 5 from the data taken respectively over zh2

k and zh3
k ,

designed such that zh2
k2 ∩ Λ = ∅ and zh3

k2 ∩ Λ 6= ∅, where Λ signifies the set of Dirichlet
eigenvalues for a unit ball with sound speed co. As can be seen from the display, both Π̌(1)

z and
Π̌(2)

z (this time plotted versus |z|) appear to effectively reconstruct the obstacle on the basis of
zh2
k while, commensurate with the earlier result, only Π̌(1)

z succeeds when using zh3
k as the

sampled set of wavenumbers. The same conclusion can be drawn from Figs. 6 and 7 which
illustrate the reconstruction of a penetrable defect (β=1, γ=2) on the basis of zh4

k and zh5
k ,

chosen such that zh4
k2 ∩Λ = ∅ and zh5

k2 ∩Λ 6= ∅, where Λ denotes the germane (countable) set
of transmission eigenvalues.
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Figure 4: Reconstruction of a Dirichlet obstacle (β→∞) from the far-field data taken over a
“coarse” wavenumber set zh2

k (indicated by markers), taken such that Λ ∩zh2
k2 =∅.

Figure 5: Reconstruction of a Dirichlet obstacle (β→∞) from the far-field data taken over a
“coarse” wavenumber set zh3

k (indicated by markers), chosen such that Λ ∩zh3
k2 6=∅.

Figure 6: Reconstruction of a penetrable obstacle (β= 1, γ= 2) from the far-field data taken
over a “coarse” wavenumber set zh4

k (indicated by markers), taken such that Λ ∩zh4
k2 =∅.

Figure 7: Reconstruction of a penetrable obstacle (β= 1, γ= 2) from the far-field data taken
over a “coarse” wavenumber set zh5

k (indicated by markers), selected such that Λ ∩zh5
k2 6=∅.
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5.2. Numerical study: square obstacle in R2

In this section the “multitonal” indicator functions (25) and (33) are applied to the inverse
scattering of planes waves by a unit square, D = {x ∈ R2 : x ∈ [−0.5, 0.5]× [−0.5, 0.5]},
assuming penetrable obstacle as in (51) with n = 4 and β = 1/4. To this end, a discrete set
of directions of plane-wave incidence and observation is assumed as

Ωh :=
{
x̂=
(
cos(2πmh), sin(2πmh)

)
, h =

1

M
, m∈{0, 1, . . . ,M−1}

}
, M=61.

By analogy to (74), a “fine” discretization of the example wavenumber band [3, 8] is taken as

zh6
k :=

{
k : k=3 +mh6, h6 =5 · 10−2, m∈{0, 1, . . . , 102}

}
.

Here it is noted that the featured interval k2∈ [9, 64]⊂ R contains, at least numerically, several
transmission eigenvalues associated with the assumed scattering configuration in terms of D
(see [?] for details).

For any fixed frequency k ∈ zh6
k and sampling point z ∈ R2, a discretized version of

the far-field formulation (7) of the linear sampling method corresponding to (x̂, d) ∈ Ωh is
written in the form

Fh gz,h = fz,h, (75)

where Fh is a discretized far-field operator, and fz,h = (Ψ∞(x̂, z, k))x̂∈Ωh
. To solve (75), the

singular value decomposition of Fh is computed as Fh = U S V ∗, where U, V ∈ CM×M are
unitary matrices, V ∗ is the Hermitian transpose of V , and S ∈ RM×M a diagonal matrix such
that Sjj = σj is the jth singular value of Fh. With reference to (22), the norm of a Tikhonov-
regularized solution gεz,h to (75), with regularization parameter ε, is accordingly computed as

‖gεz,h‖2
L2(Ωh) =

M∑
j=1

σ2
j

(σ2
j + ε)2

|(U∗fz,h)j|2. (76)

Fig. 8 plots the normalized distribution of indicator functions (25) and (33), on a scale [0, 1],
computed by way of (76) with ε = 10−4. Consistent with the earlier results, the two-
dimensional reconstruction of a square scatterer via the “serial” indicator Π̌(1)

z is inferior to that
obtained using its “parallel” companion Π̌(2)

z , not only in terms of the contrast of an image, but
also in terms of the reconstructed shape.
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(a) Normalized Π̌(1)
z (b) Normalized Π̌(2)

z

Figure 8: Reconstruction of a Dirichlet obstacle from the far-field data taken over a “fine”
wavenumber set zh6

k .

6. Conclusions

In this study, multi-frequency reconstruction of sound-soft and penetrable obstacles is
examined in the context of the linear sampling method entailing either far-field or near-
field measurements. On establishing a suitable approximate solution to the linear sampling
equation under the premise of continuous frequency sweep, two possible choices for a
cumulative multi-frequency indicator function of the scatterer’s support are proposed. The
first alternative, termed the “serial” indicator, is taken as a natural extension of its customary
monochromatic counterpart in the sense that its computation entails space-frequency (as
opposed to space) L2-norm of a solution to the linear sampling equation. Under certain
assumptions which include experimental observations down to zero frequency and compact
frequency support of the wavelet used to illuminate the obstacle, this indicator function is
further related to its time-domain companion. As a second possibility, the so-called “parallel”
indicator is proposed as an L2-norm, in the frequency domain, of the monochromatic
indicator function. On the basis of the perturbation analysis which demonstrates that the
monochromatic solution of the linear sampling equation behaves as O(|k2− k2

∗|−m), m> 1

in the neighborhood of an isolated eigenvalue, k2
∗ , of the associated interior (Dirichlet or

transmission) problem, it is found that the “serial” indicator is unable to distinguish the
interior from the exterior of a scatterer in situations when the prescribed frequency band
traverses at least one such eigenvalue. In contrast the “parallel” indicator is, due to its
particular structure, shown to be insensitive to the presence of pertinent interior eigenvalues
(which typically form a countable set – unknown beforehand), and thus to be robust in
a generic scattering environment. A set of numerical results, including both “fine” and
“coarse” frequency sampling, is included to illustrate the performance of the competing
(multi-frequency) indicator functions, demonstrating behavior that is consistent with the
theoretical results.
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