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Abstract
We consider the problem of detecting whether two materials that should be 
in contact have separated or delaminated using electromagnetic radiation. 
The interface damage is modeled as a thin opening between two materials 
of different electromagnetic properties. To derive a reconstruction algorithm 
that focuses on testing for the delamination at the interface between the two 
materials, we use the approximate asymptotic model for the forward problem 
derived in de Teresa (2017 PhD Thesis University of Delaware). In this model, 
the differential equations in the small opening are replaced by approximate 
transmission conditions for the electromagnetic fields across the interface. 
We also assume that the undamaged or background state is known and it 
is desired to find where the delamination has opened. We adapt the linear 
sampling method to this configuration in order to locate the damaged part 
of the interface from a knowledge of the scattered field and the undamaged 
configuration, but without needing to know the electromagnetic properties 
of the opening. Numerical examples are presented to validate our algorithm.

Keywords: nondestructive testing, inverse scattering, screens,  
Maxwell equations, linear sampling method, asymptotic methods
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1. Introduction

We consider two materials that should have a coincident boundary (in the undamaged or back-
ground state), and we wish to detect whether there is a part of the common boundary where 
the two materials have separated using electromagnetic radiation in the microwave regime. In 
particular, we want to determine the size and position of the delamination. The applications 
of this problem include detection of debonding in integrated electric circuits, nondestruc-
tive testing of interfaces between two different materials, and potentially the identification 
of thin biological tissues connected to early stages of cancer development. For a survey on 
problems in non-destructive testing based on electromagnetic imaging we refer the reader to  
[14, 19], whereas for some applications to related problems in medical imaging we refer 
to [17, 29]. This work extends the linear sampling method for detecting delamination using 
acoustic waves [7] to the electromagnetic case. However, the inherent technical difficulties 
associated with the analysis of Maxwell’s equations have forced us to restrict ourselves to the 
specific case of the detection of planar delaminations of constant thickness. Related models 
and other inversion techniques can be found e.g. in [1, 2]. We start by formulating our problem 
and making the necessary simplifications in order to carry through the analysis of the forward 
problem derived in [11] to the inverse scattering problem.

1.1. Formulation of the problem

We study the scattering of a time harmonic electromagnetic wave with fixed frequency ω 
by a layered isotropic penetrable inhomogeneity Ω ⊂ R3, that is schematically depicted in  
figure  1. We denote by Γ1 = ∂Ω the boundary of Ω, and by Ωext := R3 \ Ω the exterior 
domain. In what follows we assume for simplicity of presentation that Γ is a smooth surface 
(however as it will become clear later Γ can be piece-wise smooth such that the delaminated 
part is smooth). In the undamaged or background state, we consider Ω to be composed by two 
layers of different materials, Ωb

−
 and Ωb

+, where Ωb
−

 is simply connected and Ωb
+ is connected. 

The boundary of Ωb
−

, denoted by Γ, is the common interface of the two layers Ωb
−

 and Ωb
+, and 

it is an orientable C2 regular surface (see figure 1, panel (a)).
In the damaged or defective state, the two layers have separated and the thin delamina-

tion Ωδ has appeared (the parameter δ will measure the thickness of the delamination and 
is assumed to be small compared to the wavelength of the radiation in Ωext). The sec-
tion Γ0 := Γ ∩ Ωδ is precisely where the original layers have separated. In this defective con-
figuration Ω = int(Ω+ ∪ Ω− ∪ Ωδ). We will assume throughout this paper that Γ0 is an open 
surface with Lipschitz continuous relative boundary ∂Γ0. It will also be assumed that Γ0 lies 
on a planar section of Γ, and that Ωδ is a cylinder having constant thickness formed by translat-
ing Γ0 normal to the planar surface (see figures 1 and 2).

The four different domains, Ωext, Ω+, Ω− and Ωδ, indicate the supports of different linear 
isotropic materials characterized by their electric permittivity ε̂ > 0, conductivity σ̂ � 0 and 
magnetic permeability µ̂ > 0. The homogeneous exterior domain Ωext has constant material 
properties denoted by ε̂0, σ̂0 = 0, and µ̂0, respectively. For the purposes of this work, it will be 
useful to define the relative electric permittivity and relative magnetic permeability μ by (see [21])

ε =
1
ε̂0

(
ε̂+

iσ̂
ω

)
and µ =

µ̂

µ̂0
,

so that ε = µ = 1 in Ωext, and both parameters in the other three sub-domains, Ω+, Ω− and 
Ωδ, are denoted by:

F Cakoni et alInverse Problems 34 (2018) 065005
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µ =



µ+ in Ω+

µ− in Ω−
µδ in Ωδ

and ε =



ε+ in Ω+

ε− in Ω−
εδ in Ωδ

respectively. Throughout this paper we assume that material properties satisfy:

Assumption 1.1 (On the material properties). 

 • The functions µ : Ω → R  and ε : Ω → C are piece-wise smooth. Moreover, �(ε) > 0, 
�(ε) � 0, and 0 < µ−1 < C for some constant C  >  0.

 • The material properties in the thin delamination, µδ and εδ, are constant.
 • There is an open neighborhood N  of Ωδ where the functions µ± and ε±, are constant.

The assumptions on the cylindrical geometry of the thin delamination Ωδ, imply that its 
boundary ∂Ωδ may be split into three different regular surfaces (see figure 2): the two flat parallel 
faces denoted by Γ+ and Γ−, and the tubular side denoted by S . Thus ∂Ωδ = Γ+ ∪ Γ− ∪ S . 
We denote by ν  the unit normal vector on Γ1 pointing towards Ωext, and on Γ \ Γ0 towards Ω+, 
and by n the normal on S  pointing out of Ωδ (see figure 2).

Recalling the definition of the relative material properties 1, we can define as it is cus-
tomarily done in mathematical literature (see [10, 21]), the total electric and magnetic 
fields by E =

√
ε̂0 Ê  and H =

√
µ̂0 Ĥ, respectively, where Ê(x, t) = 1/

√
ε̂0E(x)eikω and 

Ĥ(x, t) = 1/
√
µ̂0H(x)eikω and ω is the frequency. Letting k = ω

√
ε̂0µ̂0  denote the positive 

wave number, we may write the equations that model the scattering of the time harmonic total 
electromagnetic fields as

(a) (b)

Figure 1. Panel (a): cross section of the undamaged state. Panel (b): cross section of 
the damaged or defective obstacle. The thin domain Ωδ represents the delamination.

Figure 2. Details of the delamination and corresponding notation. Left: a zoom on the 
planar thin domain Ωδ showing Γ and Γ0. Right: normal vectors on the boundary of the 
thin domain Ωδ.

F Cakoni et alInverse Problems 34 (2018) 065005
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∇× H + ikεE = 0 and ∇× E − ikµH = 0 in Ω+ ∪ Ωδ ∪ Ω− ∪ Ωext,
 

(1)

where we have assumed that there is no applied current. Across the interfaces Γ1, Γ±, S , and 
Γ\Γ0 both ν × H and ν × E are assumed to be continuous.In the unbounded domain Ωext the 
total fields can be decomposed as E = Es + Ei and H = Hs + Hi, where (Ei, Hi) denote the 
incident fields which are entire solutions to (1) with ε = µ = 1, and (Es, Hs) are the radiating 
fields that satisfy the Silver–Müller radiation condition:

lim
r→∞

r (Hs × x̂ − Es) = 0, (2)

where x̂ = x
|x|, r = |x|, and the convergence is uniform in all directions x̂ ∈ S2 .

Following the ideas in [7, 13, 18, 25] we will substitute the full model (1) and (2) by an 
asymptotic model, where instead of solving the differential equations in Ωδ, we replace it by 
appropriate approximate transmission conditions (ATCs) of the fields in Ω+ and Ω−, across 
the two boundaries Γ+ and Γ− with expressions defined on the delaminated portion Γ0. From 
the inverse problem perspective this allows for accurate testing of the interface in order to 
detect the damage.

The paper is organized as follows. In the next section we sketch the derivation of the ATCs 
model, setup the analytical framework and recall the necessary well-posedeness results from 
[11] for the ATCs model of the direct scattering problem. Section 3 is dedicated to the study 
of the inverse problem which is the main goal of this paper. In particular, we prove a mixed 
reciprocity result which helps us dealing with the inhomogeneous background and develop a 
modified version of the linear sampling method which enable us to efficiently test along the 
interface Γ to detect the delaminated part Γ0. Finally, in section 4, we present two numerical 
examples showing the viability of our imaging method.

2. Asymptotic model for the forward problem

The approximate model proposed here that arises from substituting the differential equations in 
Ωδ with the ATCs, belongs to the family Chun’s-type models (see [9, 16]). In Chun’s-type mod-
els, the ATCs are expressed in terms of jumps of traces of functions across two different surfaces, 
as opposed to the crack-type models used for example in [7], where the ATCs are expressed in 
terms of jumps of traces on the same surface referred to as the crack. It is important to mention 
here that the crack-type ATCs model for electromagnetic scattering (similar to the one proposed 
in [7]), leads to a variational formulation where well-posedness results are difficult to prove 
due to incompatibility of signs between the terms involved. In fact, the associated time-domain 
model has already been discussed in [9], and it has been proven there that in general there are 
no energy bounds for the corresponding solutions. For the reasons mentioned above, the ATCs 
model that we use in the current work considers the jumps and average values among traces of 
the fields on the two different surfaces Γ− and Γ+. We recall here the model discussed in [11] for 
flat delaminations. A more complete derivation of our asymptotic model can be found in [11].

Let us start with setting up some important definition of the surface differential operators. 
To this end, it is known that at each x′

Γ on smooth open subset of Γ there exists an open neigh-
borhood U ⊂ Γ of x′

Γ where a local parametrization (i.e. homeomorphism) ξ = (ξ1, ξ2) �→ xΓ 
is well defined [15], and which without loss of generality induces a positive orientation of Γ, 
consistent with the pointing direction of ν . For flat parts this is the obvious rigid transforma-
tion. Let 0 < η∗ be a real number such that in the open neighborhood of Γ given by

N := {x ∈ R3 | min
y∈Γ

|x − y| < η∗}, (3)

F Cakoni et alInverse Problems 34 (2018) 065005
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the mapping

(xΓ, η) �→ x = xΓ + ην(xΓ),

is an isomorphism. Moreover, define the vector field ν̆  in N  by

ν̆(xΓ + sν) := ν(xΓ), for all xΓ ∈ Γ and |η| < η∗,

then the curvature tensor defined by CxΓ := ∇Γν̆(xΓ) is identically zero for all xΓ on Γ0. The 
tangential vectors {τα := ∂ξαxΓ}α=1,2 are called the covariant basis of the tangent plane TxΓ 
to Γ at xΓ.

Let v be a C∞(Γ0)
3 vector field, then we define the tangential and normal projection of v, 

respectively, by:

Π||v = ν × (v × ν) and ΠNv = ν · v. (4)

Using compact notation, the tangential and normal projections on Γ0 will be denoted by 
vT := (ν × v)× ν  and vN := ν · v , respectively. Analogously, for the parallel surfaces Γ± 
to Γ0, if v± are in C∞(Γ±)

3, then we write for short their respective tangential and normal 
projections on Γ± as: v±

T := (ν × v±)× ν  and v±
N := ν · v±.

Remark 2.1. It is well known that the projections Π|| and ΠN  defined by (4) have continuous  
extensions γ±

T : H(curl,N ∩ Ω±) → H−1/2(curlΓ,Γ0) and γ±
N : H(div,N ∩ Ω±) → H−1/2(Γ0), 

respectively (see [21]).
Given a sufficiently smooth scalar field u defined on Γ0, its surface gradient is given by

∇Γu(xΓ) := ∇ŭ(xΓ),

where the scalar field ŭ : N → C is defined by ŭ(xΓ + ην(xΓ)) := u(xΓ). In terms of the 
covariant basis {τα}, it can be written as ∇Γ = (∂ξ1 ·)τ 1 + (∂ξ2 ·)τ 2. By definition, the 
adjoint operator of ∇Γ is −divΓ, which for all smooth vector fields v defined on Γ0 satisfies 
divΓv = ∂ξ1(v · τ 1) + ∂ξ2(v · τ 2).

Important surface differential operators for the upcoming analysis, will be the scalar and 

vectorial surface curl operators, respectively denoted by curlΓ and 
−→
curlΓ, defined as follows: 

given a smooth tangential vector η = η1τ 1 + η2τ 2 ∈ (C∞(Γ0))
3 and a smooth scalar field 

ρ ∈ C∞(Γ0),

curlΓη := ∂1η2 − ∂2η1 and
−→
curlΓρ := ∂2ρτ 1 − ∂1ρτ 2.

Now we are ready to formulate the approximate transmission conditions (ATCs). To this 
end we assume that the thin delamination is such that Ωδ ⊂ N  (where N  is defined by (3)), 
then, as shown in figure 2, the two boundaries Γ± of Ωδ can be written in our new curvilinear 
coordinates as follows:

Γ± :=
{

xΓ± = xΓ ± δf±ν : xΓ ∈ Γ0

}
,

where 0 < δ � 1 is the thickness of the thin delamination and f+, f− � 0 are constants such 
that f+ + f− = 1. For a given function u (either scalar or vectorial) whose traces are well-
defined on Γ+ and Γ−, and letting u+ :  =  u in Ω+ and u−  =  u in Ω−, we denote the jump and 
average value of u by:

[[u]] = u+|Γ+ − u−|Γ− and 〈〈u〉〉 = 1
2
(u+|Γ+ + u−|Γ−).

F Cakoni et alInverse Problems 34 (2018) 065005
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It can be shown after some calculations (see proposition C.3.1 in [11]), that under the hypoth-
esis of a planar thin domain of constant thickness, ATCs of the second order in δ are

[[ν × E]] = ikδα1〈〈HT〉〉 − ikδβ1
−→
curlΓ curlΓ〈〈HT〉〉 on Γ0, (5)

[[ν × H]] =
1
ik
δα2〈〈ET〉〉 −

1
ik
δβ2

−→
curlΓ curlΓ〈〈ET〉〉 on Γ0, (6)

and α1 = 2µδ, α2 = 2k2εδ, β1 = 2
k2εδ

, and β2 = 2
µδ

. Note that for our model in general the 
second order terms become very complicated hence stopped our calculations at the first order. 
However in the special case when Γ0 is the mid-surface between Γ+ and Γ− higher order 
terms are derived in [9]. Also notice that our ATC’s for flat surface depends only on the mat-
erial properties and the thickness of the opening. For general curved opening, the ATC’s also 
involve geometrical features of the surface (see [11]). Because the delamination does not 
cover the whole boundary Γ we also need a boundary condition on S . We assume that

n × H = 0 on S . (7)

This condition is ad hoc and not derived by asymptotic analysis (it is based on the intui-
tive vanishing flux condition that would correspond to the acoustic model), nevertheless it is 
essential to our analysis. It is sufficient, however, to obtain a well posed problem. Therefore 
the second order ATCs model that we base our inversion algorithm consists of equations (1) 
in the domains Ω− ∪ Ω+ ∪ Ωext, and the transmission conditions (5) and (6). For numerical 
validation of this model see [11].

In terms of only the electric field E the ATCs model gives rise to the problem: Find 
E ∈ H(curl,R3 \ Ωδ) satisfying

∇×
(
µ−1∇× E

)
− k2εE = 0 in Ω+ ∪ Ω− ∪ Ωext, (8)

[[ν × E]] = δα1〈〈
(
µ−1∇× E

)
T〉〉 − δβ1

−→
curlΓ curlΓ〈〈

(
µ−1∇× E

)
T〉〉 on Γ0,

 (9)

[[ν ×
(
µ−1∇× E

)
]] = δα2〈〈ET〉〉 − δβ2

−→
curlΓ curlΓ〈〈ET〉〉 on Γ0, (10)

n ×
(
µ−1∇× E

)
= 0 on S , (11)

where, in Ωext, E = Es + Ei is the total field, Ei is the incident field, and the scattered field Es 
satisfies the Silver–Müller radiation condition

lim
r→∞

r ((∇× Es)× x̂ − ikEs) = 0, as r = |x| → +∞. (12)

2.1. The well-posedness of the ATC’s model

The complete analysis of the ATC’s model of the direct scattering problem is done in [11]. 
We state the main well-posedness results since it plays an essential role in the analysis of the 
inverse problem. To this end, we recall the following surface Sobolev spaces (see [20, 21]). If 
DΓ denotes either the surface divergence divΓ or the surface scalar curlΓ defined in the previ-
ous section, then

Hs(DΓ,Γ0) := {u ∈ Hs(Γ0) |ν · u = 0, and DΓu ∈ Hs(Γ0)},

F Cakoni et alInverse Problems 34 (2018) 065005
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with the graph norm ‖u‖2
Hs(DΓ,Γ0)

= ‖u‖2
Hs(Γ0)

+ ‖DΓu‖2
Hs(Γ0)

. Let s ∈ R, then we define

H̃s(DΓ,Γ0) := {u ∈ H̃s(Γ0)
3 |ν · u = 0 and DΓu ∈ H̃s(Γ0)},

endowed with the Hs(DΓ,Γ0) norm, where H̃s(Γ0) are defined by

H̃s(Γ0) = {u ∈ Hs(Γ0) | the extension by zero of u in Γ, ũ, is in Hs(Γ)},

endowed with the restricted Hs(Γ0) inner product. It has been proven (see e.g. [20]) that for 
s = 2�+ 1/2, � ∈ Z, the space H̃s(Γ0) is precisely the dual space of H−s(Γ0), with respect 
to the duality pairing

〈v, u〉H−s(Γ0),H̃s(Γ0)
:= 〈v, ũ〉H−s(Γ),Hs(Γ), (13)

where on the right-hand-side of (13) ũ  is the extension by zero of u to Γ.
Let BR be an arbitrary ball of radius R  >  0 that contains the obstacle Ω , and denote by SR 

its boundary. Multiplying equation (8) by a test function v ∈ C∞
0 (R3) and integrating by parts 

in BR we obtain
∫

Bδ
R

µ−1∇× E · ∇ × v − k2εE · v d y

+

∫

Γ0

〈〈
(
µ−1∇× E

)
T〉〉 · [[ν × v]] ds(y)−

∫

Γ0

[[ν ×
(
µ−1∇× E

)
]] · 〈〈v〉〉T ds(y)

+ ik〈Ge(x̂ × E), vT〉SR = −
∫

SR

(x̂ × Ei) · v ds(y) + ik〈Ge(x̂ × Ei), vT〉SR ,

 

(14)

where Bδ
R := BR \ Ωδ , 〈·, ·〉SR is understood as the duality pairing between H−1/2(divSR , SR) 

and H−1/2(curlSR , SR), and Ge : H−1/2(divSR , SR) → H−1/2(divSR , SR) is the well-known exte-
rior electric-to-magnetic Calderón operator (see [10, 21]) defined by Ge(λ) = x̂ × Hs, where 
(Es, Hs) satisfy

ikEs +∇× Hs = 0 in R3 \ BR,

ikHs −∇× Es = 0 in R3 \ BR,
x̂ × Es = λ on SR,

lim
r→∞

r(Hs × x̂ − Es) = 0,

where again x̂ = x
|x| and r = |x|. For our analysis, we need to define the trace space

H0(Γ0) := H̃−1/2(curlΓ,Γ0) ∩ H(curlΓ,Γ0)

equipped with H(curlΓ,Γ0), which is obviously a Hilbert space. Let H0(Γ0)
∗ be the 

dual space of H0(Γ0) with respect to the pivot space L2(Γ0)
3. Since the embedding 

H0(Γ0) ⊂ H̃−1/2(curlΓ,Γ0) is bounded, H−1/2(divΓ,Γ0) ⊂ H0(Γ0)
∗ is bounded as well. 

Now, let us define Ai on H(curlΓ,Γ0) by

Aiu = αiu − βi
−→
curlΓcurlΓu, i = 1, 2.

The following proposition is proven in [11] (see proposition 4.3.1).

Proposition 2.1. The operator A1 : H0(Γ0) → H0(Γ0)
∗ is invertible, except for a discrete 

number of values ω = k2εδµδ.

F Cakoni et alInverse Problems 34 (2018) 065005
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We assume for the rest of this paper that εδ and µδ are such that A1 : H0(Γ0) → H0(Γ0)
∗ is 

invertible. Having established conditions for the invertibility of A1 in proposition 2.1, we can 
formally replace in the transmission conditions

〈〈(µ−1∇× E)T〉〉 = A−1
1 [[ν × E]].

Note that A−1
1  gives us a function extendable by zero to the whole boundary in which is in 

H−1/2(curlΓ,Γ). Then from (14), we deduce that (8)–(12) can be written in the following 
variational formulation: Find E ∈ H0 such that

a(E, v) = L(v) for all v ∈ H0,

where,

a(E, v) = a+(E, v) + b(E, v) + ik〈Ge(x̂ × E), vT〉SR ,

with

a+(E, v) :=
∫

Bδ
R

(
µ−1∇× E · ∇ × v

)
d y +

∫

Γ0

δβ2curlΓ〈〈ET〉〉 curlΓ〈〈vT〉〉 ds(y)

 

(15)

b(E, v) := −
∫

Bδ
R

k2εE · v d y −
∫

Γ0

δα2〈〈ET〉〉 · 〈〈vT〉〉 ds(y)

+
1
δ

∫

Γ0

A−1
1 [[ν × E]] · [[ν × v]] ds(y),

 

(16)

L(v) =
∫

SR

(x̂ × (∇× Ei)) · v − ik〈Ge(x̂ × Ei), vT〉SR ,

where Bδ
R := BR \ Ωδ  and the solutions space is

H0 :=
{

u ∈ H(curl, Bδ
R)

∣∣∣ 〈〈uT〉〉 ∈ H(curlΓ,Γ0) and n ×
(
µ−1∇× u

) ∣∣∣
S

= 0
}

endowed with the norm

||u||2H0
:= ||u||2H(curl,Bδ

R)
+ ||〈〈uT〉〉||2H(curlΓ,Γ0)

.

The following theorem is proven in [11].

Theorem 2.1. Assume in addition to assumption 1.1 that there is a constant εmin > 0 
such that �(ε±) � εmin > 0, and that the constant material properties in Ωδ are such that 
�(εδ) > 0, �(εδ) > 0 and µδ > 0. Then the variational problem

a(u, v) = L(v) for all v ∈ H0, (17)

for all L ∈ H∗
0  has a unique solution that continuously depends on L.

Remark 2.2. It is standard to show that theorem 2.1 together with the fact that (17) is 
equivalent to (8)–(12) (see [21]) implies that the approximate model (8)–(12) for the forward 
scattering problem has a unique solution depending continuously on the incident field with 
respect to the norms determined from theorem 2.1.

Remark 2.3. In [11], it has been shown that the asymptotic model (8)–(11) and (12),  
converges to the full original model (1) as δ → 0, although the rate of convergence strictly 
depends on the geometrical parameters.

F Cakoni et alInverse Problems 34 (2018) 065005
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3. Inverse problem

We now turn our attention to the main goal of this paper, namely to determine the delaminated 
part Γ0 of the boundary Γ. To this end we adapt the linear sampling method to our problem to 
design a fast algorithm which tests the known interface Γ and detects its delaminated parts.

It is well known (see for example [10] or [6]) that the radiating scattered fields (Es, Hs) of 
(8)–(12) satisfy the following asymptotic expressions

Es(x) =
eikr

r
E∞(x̂) + O

(
1
r2

)
, Hs(x) =

eikr

r
H∞(x̂) + O

(
1
r2

)
as r → ∞,

where r = |x|, x̂ = x
|x|, and the convergence is uniform in x̂ . The analytic functions (E∞, H∞) 

defined on the sphere S2 are referred to as the electric and magnetic far field patterns, respec-
tively, which are shown (see theorem 2.4 in [6]) to have the following expressions

E∞(x̂) =
ik
4π

x̂ ×
∫

Γ1

{(ν(y)× Es(y)) + (ν(y)× Hs(y)× x̂)e−ikx̂·y} ds(y),

H∞(x̂) =
ik
4π

x̂ ×
∫

Γ1

{(ν(y)× Hs(y))− (ν(y)× Es(y)× x̂)e−ikx̂·y} ds(y).

For our problem, without loss of generality we use electromagnetic plane waves as incident 
fields. (Note that our linear sampling method can easily be modified to the case of point sources 
and near field measurements.) In particular, given a direction vector d̂ ∈ S2 and a polariza-

tion vector p ∈ R3 the corresponding electromagnetic plane wave (Ei
pl(·, d̂, p), Hi

pl(·, d̂, p)) is 
defined by:

Ei
pl(y, d̂, p) = ik((d̂ × p)× d̂)eikd̂·y and Hi

pl(y, d̂, p) = ik(d̂ × p)eikd̂·y.
 

(18)

The pair (E, H) := (Ei
pl(·, d̂, p), Hi

pl(·, d̂, p)) is an entire solution of the homogeneous Maxwell 
equations

∇× H + ikE = 0 and ∇× E − ikH = 0 in R3. (19)

For such incident fields the far field pattern of the scattered wave of (8)–(12) will 
depend on the incident direction d̂ and polarization p. We indicate this dependence by 

(E∞(·, d̂, p), H∞(·, d̂, p)). Note that (E∞ and H∞) are related and one determines the other.
The inverse problem considered here is to determine the portion Γ0 of the known interface 

Γ for a knowledge of the electric far field pattern E∞(x̂, d̂, p) for x̂, d̂ ∈ S2
0 ⊆ S2, where S2

0 
is an open subset of the unit sphere, three linearly independent polarization p ∈ R3, and the 
background configuration depicted in figure 1(a), i.e. known Ω±, ε±, µ± and Γ, but without 
knowing εδ ,µδ , f+, f−.

3.1. Reciprocity and mixed reciprocity principles

This subsection is dedicated to present the statements of two basic auxiliary tools needed to 
develop our inversion scheme, namely a mixed reciprocity result for the solution of the back-
ground problem and a reciprocity result for the solution of the ATCs model for the forward 
problem. The proofs of these results are technical and long, thus for sake of clarity of exposi-
tion we defer them to appendices A and B.
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3.1.1. Mixed reciprocity for the background problem. We will define the solution of the so 
called background problem to be the unique solution Eb in Hloc(curl,R3) such that:

∇× Eb − ikµHb = 0 in R3 and ∇× Hb + ikεEb = 0 in R3,
 (20)

where, again, Eb = Es
b + Ei and Hb = Hs

b + Hi in Ωext, Ei is the incident field, and Es
b is the 

scattered field that satisfies the Silver–Müller radiation condition (12). Here

µ =




µ+ in Ω+

µ− in Ω−
1 in Ωext

and ε =




ε+ in Ω+

ε− in Ω−
1 in Ωext.

The background solutions are the electric and magnetic fields associated with the undamaged 
material when the delamination is not present. Note that in the definition of the background 
problem it is implicit that the tangential components of the electric and magnetic fields are 
continuous across Γ and Γ1.

In the particular case of electromagnetic plane wave (Ei
pl(·, d̂, p), Hi

pl(·, d̂, p)), the solu-

tion to the background problem (20) is be denoted by Eb,pl(·, d̂, p) and Hb, pl(·, d̂, p), and the 

corre sponding scattered electric field by Es
b,pl(·, d̂, p) ∈ H(curl,R3 \ Ω). Of course the corre-

sponding scattered magnetic field is

Hs
b,pl(·, d̂, p) :=

1
ik
∇× Es

b,pl(·, d̂, p).

In addition to the plane waves (18), we need another family of radiating solutions to the 
homogeneous Maxwell equations (19). To this end, for a given vector p ∈ R3, we define the 
electromagnetic field (Ei

edp(·, ·, p), Hi
edp(·, ·, p)) generated by an electric dipole with polariza-

tion p by

Ei
edp(y, z, p) = − 1

ik
∇y ×∇y × (pΦ(y, z)) and Hi

edp(y, z, p) = ∇y × (pΦ(y, z))

where Φ(y, z) = eik|y−z|

4π|y−z| is the radiating fundamental solution of the Helmholtz equation. It is 

well known that the electromagnetic pair (E, H) = (Ei
edp(·, z, p), Hi

edp(·, z, p)) is the radiating 
fundamental solution of the homogeneous Maxwell equations (see [6]) i.e. it satisfies

∇× E − ikH = 0 in and ∇× H + ikE = pδ(· − z) in R3.

Analogously to the incident plane waves, when the incident field is an electric dipole 
(Ei, Hi) := (Ei

b,edp(·, ·, p), Hi
b,edp(·, ·, p)), the solution to the background problem (20) is be 

denoted by Eb,edp(·, ·, p) and Hb,edp(·, ·, p), and the corresponding scattered electric field by 

Es
b,edp(·, ·, p) ∈ H(curl,R3 \ Ω) with the corresponding scattered magnetic field

Hs
b,edp(·, ·, p) :=

1
ik
∇× Es

b,edp(·, ·, p).

Finally, the radiating electromagnetic Green’s tensor associated with the background 
medium is the generalized electric dipole, defined as the pair of second order tensors 
(GE,GH) such that for any constant vector p ∈ R3 and z ∈ R3, the corresponding fields 
(GE(·, z)p,GH(·, z)p) ∈ Hloc(curl,R3 \ {z})× Hloc(curl,R3 \ {z}) solve
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∇y × (GE(·, z)p)− ikµGH(·, z)p = 0 in R3,
∇y × (GH(·, z)p) + ikεGE(·, z)p = pδ(· − z) in R3,
limr→∞ r((GH(x, z)p)× x̂ − ikGE(x, z)p) = 0.

 (21)

We are now ready to proof a mixed reciprocity principle, similar to those presented in [26] 
in the electromagnetic case for homogeneous background, and in [5, 7, 8] in the acoustic case 
for inhomogeneous background.

Theorem 3.1 (Mixed reciprocity principle). For all x̂ ∈ S2  and z ∈ R3 \ (Γ ∪ Γ1),

4πp ·GE,∞(x̂, z)q = q · Eb,pl(z,−x̂, p), (22)

for all q, p ∈ R3. Moreover, for z ∈ Γ ∪ Γ1 the identity (22) is true if q · ν(z) = 0 and 
p · ν(z) = 0.

3.1.2. Reciprocity for the ATCs model. We now turn our attention to the approximate problem 
(8)–(12) for the delaminated configuration. We next prove that the reciprocity relation satis-
fied by far field patterns of solutions to the full model (1) and (2) (see theorem 6.30 in [10]) is 
still satisfied by far field patterns of radiating solutions to the approximate model. To this end, 

for the sake of simplicity in the following theorem we denote by E∞
pl (·, d̂, p) and H∞

pl (·, d̂, p) 
the far field patterns of the radiating solutions Es

pl(·, d̂, p) and Hs
pl(·, d̂, p) to the problem (8)–

(12), where of course we have Hs
pl := −ik∇× Es

pl in Ωext.

Theorem 3.2. (The reciprocity principle for the ATCs model) For all x̂, d ∈ S2 and 
p, q ∈ R3,

q · E∞
pl (x̂, d̂, p) = p · E∞

pl (−d̂,−x̂, q).

We end this section by stating a boundary integral representation formula for the electric 
field in the case of an inhomogeneous media which is a basic auxiliary tool in the develop-
ment of the linear sampling method. The proof, which we omit here, is standard and is based 
on the singularity of the Green’s function for the inhomogeneous media and integration by 
parts formulas.

Remark 3.1 (On the integral representation formula). Let D ⊂ R3 be a bounded, 
simply connected domain with Lipschitz boundary ∂D and denote by ν the unit normal vector 
on ∂D pointing outwards from D. Let μ and ε be piecewise smooth such that the support of 
(µ− 1) and (ε− 1) is D. Then the radiating scattered field Es ∈ Hloc(curl,R3) corresponding 
to the incident field Ei and satisfying

∇× (µ−1∇× Es)− k2εEs = ∇× (µ−1 − 1)∇× Ei − k2(ε− 1)Ei in R3,

has the following representation formula:

Es(x) =
1
ik

∫

∂D

{
− µ−1(y)∇×GE(x, y) [ν × Es] (y) +GE(x, y)

[
ν × (µ−1(y)∇× Es)

]
(y),

}
ds(y)

x ∈ R3 \ ∂D, where GE  is the electric part of the Green’s tensor defined by (21) and 
[v] = v+|∂D − v−|∂D denotes the usual jump (see e.g. [22].)
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3.2. The linear sampling method

We are now ready to develop a modified linear sampling method to solve the inverse problem 
formulated at the beginning of this section. For sake of presentation we assume here that 

E∞(x̂, d̂, p) is measured for all x̂, d̂ ∈ S2. The modification of the linear sampling method 
for limited aperture is a standard procedure (see e.g. [6]). We start by recalling the electric 
Hergoltz wave function [10]

Eg(x) =
∫

S2
g(d̂)eikx·d̂ ds(d̂) for g ∈ L2

t (S2).

The far field operator F : L2
t (S2) → L2

t (S2) associated with the approximate model of the 
scattering by the medium with the defect is defined by

(Fg)(x̂) =
∫

S2
E∞(x̂, d̂, g(d̂)) ds(d̂),

where E∞(·, d̂, g(d̂)) is the far field pattern of the radiating field Es(·, d̂, g(d̂)) associated with 
the solution of (8)–(12) when the incident field is the plane wave Ei(·, d̂, g(d̂)). By linearity, 
Fg is the far field pattern of the radiating solution of (8)–(12) when Ei = Eg (see [6]).

In an analogous manner, we can define the far field operator FB : L2
t (S2) → L2

t (S2) associ-
ated with the background problem (20) by

(FBg)(x̂) =
∫

S2
E∞

pl (x̂, d̂, g(d̂)) ds(d̂),

where E∞
b,pl(·, d̂, g(d̂)) is the far field pattern of the radiating field Es

b,pl(·, d̂, g(d̂)) solving (20). 
We denote by Eb,g and Es

b,g the total and radiating field solutions to the background problem 
(20), respectively, when the incident field is Ei = Eg. Then, again by linearity, FBg is the far 
field pattern of Es

b,g. The far-field operator associated with the defect is now given by

FD := F − FB,

which will provide the information from the scattering by the delamination alone. From our 
assumption that thebackground state is known FB can be computed, whereas F  is what we 
can measure, then we may develop a method to detect Γ0 part of Γ based on FD .

To study the range of FD  we define the space (of generalized incident fields)

H :=
{

u ∈ H(curl, Bδ
R)

∣∣∣µ−1∇× u ∈ H(curl, Bδ
R) and 〈〈uT〉〉 ∈ H(curlΓ,Γ0)

}
,

endowed with its graph norm,

‖u‖2
H = ||u||2H(curl,Bδ

R)
+ ||µ−1∇× u||2L2(Bδ

R)
+ ||〈〈uT〉〉||2H(curlΓ,Γ0)

.

More generally the defective scattering problem for the scattered field E ∈ Hloc(curl,R3 \ Ωδ) 
such that E|Bδ

R
∈ H can be written



∇×
(
µ−1∇× E

)
− k2εE = 0 in R3 \ Ωδ ,

A−1
1 [[ν × E]] = δ〈〈(

(
µ−1∇× E

)
)T〉〉+ h1 on Γ0,

[[ν ×
(
µ−1∇× E

)
]] = δA2〈〈ET〉〉+ h2 on Γ0,

n ×
(
µ−1∇× E

)
= h3 on S ,

 (23)

and E satisfies the Silver–Müller radiation condition (12), where
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h1 := δ 〈〈(µ−1∇× v)T〉〉 − A−1
1 [[ν × v]],

h2 := δA2〈〈vT〉〉 − [[ν × (µ−1∇× v)]],

h3 := −n ×
(
µ−1∇× v

) ∣∣∣
S

,
 (24)

for some generalized incident field v ∈ H. Now, define the Hergoltz operator 
H : L2

t (S2) → H(curlΓ,Γ0)×H0(Γ0)
∗ × H−1/2(divS , S ) by

H g =

(
δ〈〈(µ−1∇× Eb,g)T〉〉 − A−1

1 [[ν × Eb,g]],

δA2〈〈(Eb,g)T〉〉 − [[ν × (µ−1∇× Eb,g)]],−n ×
(
µ−1∇× Eb,g

) ∣∣∣
S

)
,

where Ai, i = 1, 2, are the boundary operators defined by (2) and again for a generic vector 
field v, vT := (ν × v)× ν  denotes the tangent component on the indicated surface.

Remark 3.2. Notice that FDg is, by linearity, the far-field pattern associated with the solu-
tion to the defective problem (23) with Ei = Eb,g, i.e. when the boundary source terms are 
H g.

Next we need to define boundary sources to far field solution operator 
G : H(curlΓ,Γ0)×H0(Γ0)

∗ × H−1/2(divS , S ) → L2
t (S2) by

G (h1, h2, h3) = E∞,

where E∞ is the far field pattern of the scattered field E that solves the defective problem (23). 
From theorem 2.1, we know that the operator G  is well defined and bounded.

Then it is clear that the following factorization of the far field operator FD  holds

FD = G H .

Hence in the following we study the properties of G  and H .

Proposition 3.1. In addition to the assumptions of theorem 2.1, assume that the function 

|∇µ| is piecewise bounded in a neighbourhood of Γ and n ×
(
µ−1∇× Eb,g

) ∣∣∣
S

= 0 if and 

only if g = 0. Then the operator H  is injective with dense range.

The proof of proposition 3.1 can be found in appendix C below.

Remark 3.3. We remark that assumptions of similar type as in proposition 3.1 appear in 
the study of the injectivity of the Herglotz type operators in the cracks or screen problems and 
typically do not hold for special symmetric configuration of the scattering problem (see e.g. 
[6, 7, 30]).

Given a regular surface L ⊂ Γ, we define

C∞
0,t (L) :=

{
u ∈ (C∞

0 (L))3 |ν · u = 0 on L
}

.

For any density aL ∈ C∞
0,t (L), we define φ∞

L  by

φ∞
L (x̂) :=

∫

L
GE,∞(x̂, yΓ + δf+ν)aL(yΓ) d yΓ. (25)

These φ∞
L  are referred to as test functions, and are used to characterize the range of G .

F Cakoni et alInverse Problems 34 (2018) 065005



14

Lemma 3.1 (Characterization of the range of G )  Let L ⊂ Γ, and aL ∈ C∞
0,t (L) such 

that aL does not vanish in any open subset of L. Then L ⊂ Γ0 if and only if φ∞
L ∈ Range(G ).

Proof. Let L ⊂ Γ0 and aL ∈ C∞
0,t (L). Then its extension by zero ãL in Γ0 belongs to C∞

t (Γ0), 
and the corresponding test function

φ∞
L (x̂) :=

∫

L
GE,∞(x̂, y)aL(y) ds(y) =

∫

Γ0

GE,∞(x̂, y)ãL(y) ds(y)

is the far field pattern of PãL, defined by

(PãL)(x) :=

{∫
Γ0

GE(x, yΓ + δf+ν)ãL(y) d yΓ in R3 \ Ωδ ∪ Ω−,∫
Γ0

GE(x, yΓ − δf−ν)ãL(yΓ) d yΓ in Ω−.

Due to well-known properties of the single- and double-layer potentials (see remark 3.1),

∇× µ−1∇× PãL − k2εPãL = 0 in R3 \ Ωδ ,
[[ν × PãL]] = 0,

[[ν ×
(
µ−1∇× PãL

)
]] = ikãL,

and PãL is a radiating field. Therefore, PãL is the solution to (23), for (h1, h2, h3) defined by 
(24), for v = −PãL, and G (h1, h2, h3) = φ∞

L .
To prove the converse, let aL ∈ C∞

0,t (L) such that φ∞
L ∈ Range(G ). Then there is 

(h1, h2, h3) ∈ H(curlΓ,Γ0)×H0(Γ0)
∗ × H−1/2(divS , S ) such that E is a solution to (23) 

and its far field pattern satisfies E∞ = φ∞
L . On the other hand, φ∞

L  is also the far field pattern 
of the radiating field

φL(x) := 4π
∫

L
GE(x, yγ + δf+ν)aL(yΓ) d yΓ.

By Rellich’s lemma, E and φL  are identical in R3 \ Γ0 ∪ L. Suppose L \ Γ0 �= ∅, then 
since aL does not vanish in open sets of L there is x ∈ L \ Γ0 such that aL(x) �= 0. Then 
ν × (µ−1∇× E) would be continuous at x while ν × (µ−1∇× φL) would have a jump at 
that same point, which is a contradiction. □ 

Proposition 3.2. Under the same hypothesis of proposition 3.1, FD : L2
t (S2) → L2

t (S2) is 
injective with dense range.

Proof. The fact that FD = G H  is injective is an immediate consequence of proposition 3.1 
and from the injectivity of G , which follows from the well-posedness of (23). To see that FD  
has dense range, we consider P : L2

t (Γ0) → L2
t (S2) defined by

(Pa)(d̂) =
1

4π

∫

Γ0

GE,∞(d̂, y)a(y) ds(y).

Then

(Pa, g)L2
t (S2) = 4π

∫

S2
g(d̂) ·

{∫

Γ0

GE,∞(d̂, y)a(y) ds(y)
}

ds(d̂)

=

∫

Γ0

a(y) ·
{∫

S2
Epl(y,−d̂, g(d̂)) ds(d̂)

}
ds(y),
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thus

(P∗g)(y) =
∫

S2
Epl(y,−d̂, g(d̂)) ds(d̂) = Eb,̃g(y),

where g̃ = g(−x̂). Therefore, P∗g = 0 if and only if g = 0 and hence P has dense range. 
Since Range(P) ⊂ Range(FD), the proof is complete. □ 

Now we are ready to prove the standard theorem that justifies the linear sampling method.

Theorem 3.3 (Linear sampling method). Let FD : L2
t (S2) → L2

t (S2) be the far field 
operator given by (3.2). Then the following hold:

 1. For any arbitrary open surface L ⊂ Γ0 and ε > 0, there exists a gε ∈ L2
t (S2) such that

‖FDgε − φ∞
L ‖L2

t (S2) < ε,

  and, as ε → 0, the corresponding solution Eb,gε to the background problem (20) conv-
erges in H0 to the unique solution EL of (23) where h1, h2 and h3 are given by (24), with 
v = φ∞

L .
 2. For L �⊂ Γ0 and ε > 0, every gε ∈ L2

t (S2) satisfying

‖FDgε − φ∞
L ‖L2

t (S2) � ε

  is such that the corresponding solution Eb,gε to the background problem(20) satisfies

lim
ε→0

‖Eb,gε‖Hloc(curl,R3) = ∞, and lim
ε→0

‖gε‖L2
t (S2) = ∞.

Remark 3.4. Theorem 3.3 is the basis of the nondestructive testing for the detection of the 
delaminated region Γ0 ⊂ Γ. However, it is worth noticing that from the definition (25), the test 
functions correspond to far field patterns of potentials given by

φL(x) :=
∫

L
GE(x, yΓ + δf+ν)aL(yΓ) d yΓ,

which are discontinuous on the shifted boundary

L+ := {y = yΓ + δf+ν(yγ)d | yγ ∈ L},

that in principle we do not know, since δf+ is an unknown quantity. But if τ is a tangential 
vector to L ⊂ Γ at yΓ, by the mixed reciprocity principle theorem 3.1,

4πτ ·GE,∞(·, yΓ + δf+ν(yΓ))aL(yΓ) = aL(yΓ) · Epl(yΓ + δf+ν(yΓ),−·, τ),

and since the tangential traces of Epl(·,−x̂, τ) are continuous, then if δ is small enough,

4πτ ·GE,∞(·, yΓ + δf+ν(yΓ))aL(yΓ) ∼ aL(yΓ) · Epl(yΓ,−·, τ),

which can be computed because it is defined on the known surface Γ.

Remark 3.5. It is well-known that the linear sampling method is not fully justified since the 
criteria in theorem 3.3 is in terms of a norm depending on the unknown Γ0 and furthermore 
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nothing can be said about the regularized solution to the far field equation. Other mathemati-
cally more rigorous methods, such as factorization method or the generalize linear sampling 
method, are adapted to inverse problems for surfaces (see e.g. [12, 27] and references therein). 
However, we cannot show that our complicated ATC’s model for the delamination satisfies the 
assumptions needed for these methods to work.

4. Numerical experiments

In this section we develop a numerical algorithm for reconstructing the unknown delaminated 
part Γ0 of the known interface Γ based on the linear sampling method stated in theorem 3.3, 
and present some preliminary numerical examples showing the viability of our reconstruction 

algorithm. Recall that our data is the electric far field pattern E∞(x̂, d̂, p) for x̂, d̂ ∈ S2
0 ⊆ S2, 

where S2
0 is an open subset of the unit sphere, and three linearly independent polarization 

p ∈ R3, and Ω±, ε±, µ± and Γ are known but not εδ ,µδ , f+, f−.
We use synthetic far field data computed using a finite element method for approximating 

the forward problem (8)–(12). This is implemented using the Netgen/NGSolve package [28], 
as described briefly in what follows (for more details see [11]).

For our numerical approximation of the Calderón map Ge, we use a spherical perfectly 
matched layer (PML) with outer radius R surrounding the obstacle (with an air layer between 
the PML and Ω). Therefore, instead of solving for the total field E everywhere, we solve for 
the scattered field Es in BR \ Ω and for the total field E only in Ω.

The finite element solver is based on a variational formulation which is directly derived 
by multiplying the differential equations satisfied by E in Ω and Es in Ωext, by a test function 
v that is allowed to be discontinuous across Γ1 and integrating by parts in BR \ Ω and Ω. To 
handle the transmission conditions on Γ1 between the exterior scattered field and interior total 
field, we use a standard Nitsche’s formulation (an extension of the method in [23], see also 
[3]). Our numerical solver makes use of quadratic edge elements to discretize fields on volume 
domains and linear surface edge elements to discretize the ATCs when solving for A−1

1 .
It is important to mention here that we do not use the ATC model to generate the forward 

data for the defective domain. Netgen/NGSolve allows meshing of a thin domain (using ele-
ments satisfying the maximum angle condition), so we can approximate the solution of the 
full Maxwell problem in both cases.

Two examples are used to illustrate the inversion scheme:

 1. The cube: this example is for the configuration shown in the left panel of figure 3, were 
Ω− is the interior of a cube, and the delamination is located on one side of the cube. The 
material geometrical parameters in this particular example are: k  =  3, δ = 0.01 and the 
outer boundary of the scatterer, Γ1, is a sphere of radius R+   =  1.3, and Γ is the surface of 
the cube centered at the origin and with side-length l  =  1.2., whereas the physical mat-
erial properties were chosen as µ− = µ+ = µδ = 1, ε+ = 2 + 0.001i, ε− = 4 + 0.001i, 
and εδ = 3.5 + 0.001i. In the numerical computations of the forward problem, we choose 
a spherical perfectly matched layer (PML) in the annular region {x : 2 < |x| < 2.7}, 
with absorption parameter α = 0.6.

  Typical results for the forward solver are shown in the left column of figure 4. In this 
case the the direction of propagation of the incident plane wave is d = (1, 0, 0) and the 
polarization p = (0, 1, 0) (where the incident field is Ei(x) = p exp(ikd · x)). Because  
the fields with and without the crack are quite close, we show only the scattered field with 

F Cakoni et alInverse Problems 34 (2018) 065005



17

the crack (middle row) and the difference between the field with and without the crack 
(lower row) of figure 4.

 2. The half-sphere: for this second experiment, we consider a thin opening that does not 
cover completely the planar part of the interface Γ on the flat face of the half sphere 
(see figure 3 right panel). More specifically, we consider again a spherical obstacle Ω as 
shown in the right panel of figure 3, where the internal domain Ω− is a half-sphere. The 
delamination Ωδ has constant thickness and Γ0 is a disk included on the flat part of Γ. As 
with the previous example, the radius of the exterior boundary Γ1 is R+   =  1.3, whereas 
the radius of the half-sphere that constitute the inner layer is R−  =  0.6. Moreover, the 
radius of the support of the delamination Γ0 is 0.3 and it is centered at the origin. Again 
δ = 0.01. We chose once again Γ− = Γ, so that f−  =  0 and f+   =  1.

  We consider two choices of material properties. Both are chosen to show that the method 
works for a dielectric scatterer.

  Change in shape: in the first example, the material properties are µ+ = 1, µ− = 1.5, 
µδ = 1.5, while ε+ = 2, ε− = 3 and εδ = 3. Notice that the properties of the ‘delamina-
tion’ are the same as for the inner material. In this case the delamination is actually a 
small change in the shape of the inner region Ω−, and this problem is allowed by our 
theory. We make this choice to show that the method can detect small shape changes. 
Typical results for the forward solver are shown in the right hand column of figure 4.

  Delamination in a dielectric: for our final example we consider a model delamination 
problem for a dielectric. This material is assumed to be non-magnetic and the delami-
nation is assumed to be filled with air. The material properties in this experiments are 
µ+ = µ− = µδ = 1, and ε+ = 2, ε− = 3, εδ = 1, and are chosen to show that the algo-
rithm can work for a delamination in a dielectric. To save space we do not show forward 
data for this problem.

We next explain how the discretized far field operator and test functions are con-

structed. The procedure is based on [6], p 47. To this end let {x̂j}N
j=1 ⊂ S2 be the nodes and 

ω = (ω1, ...,ωN)
T ∈ RN

+ be the weights vector associated with a given quadrature rule on the 

Figure 3. Schematics showing the setup of the numerical examples. In the left hand 
panel, showing the cube example, the delamination appears along the entire upper face 
of the cube. In the right hand panel, the delamination appears on a part of the planar 
face of the half-sphere.
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unit sphere S2. We will set both the incidence and the observation directions to coincide with 

{x̂j}N
j=1. Therefore, the far-field operator acting on g ∈ L2

t (S2)3, satisfies

(Fg)(x̂i) =

∫

S2
E∞(x̂i, d̂, g(d̂)) ds(d̂) ∼

N∑
j=1

ωjE∞
comp(x̂i, x̂j, g(x̂j)).

Given x̂j × pj �= 0, if we define for every j = 1, ..., N , ,

Figure 4. Forward data: the left hand column of the figure concerns the cube example 
(see left panel of figure 3), while the right hand is for the half sphere (see right panel 
of figure 3). All results are shown in the x  −  z plane at y  =  0. The top row shows the 
surface meshes used including the PML. In these figures the crack is not easily visible 
on the upper face of the interior domain without magnification. The middle row shows 
the magnitude of the total field for the background configuration in the physical domain 
(i.e. not the PML). The bottom row shows the magnitude of the difference between the 
total field in the background and the flawed medium.
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p̂θ
j :=

pj × x̂j

|pj × x̂j|
and p̂φ

j :=
pj × (x̂j × pj)

|pj × (x̂j × pj)|
,

and for � ∈ {θ,φ} and j ∈ {1, ..., N}

g�j := g(x̂j) · p̂�
j ,

then by linearity,

E∞
comp(x̂i, x̂j, g(x̂j)) = E∞

comp(x̂i, x̂j, p̂θ
j )g

θ
j + E∞

comp(x̂i, x̂j, p̂φ
j )g

φ
j .

Thus denoting

A�
i,j = E∞

comp(x̂i, x̂j, p̂�
j ) for � ∈ {θ,φ},

at the discrete level the associated far field equation becomes

N∑
j=1

ωjAθ
i,jg

θ
j + ωjAφ

i,jg
φ
j = φ∞

z (x̂i). (26)

However, the discrete far-field equation (26) is in tensor form. To get a standard matrix equa-

tion we take the dot product of both sides of equation (26) with p̂β
j , for β ∈ {θ,φ} and thus

N∑
j=1

ωjAβ,θ
i,j gθ

j + ωjAβ,φ
i,j gφ

j = f βz (x̂i),

where

Aβ,�
i,j := p̂β

i · A�
i,j = p̂β

i · E∞
comp(x̂i, x̂j, p̂�

j ) and f βz (x̂i) := p̂β
i · φ∞

z (x̂i).

In matrix form, if M�,β ∈ CN×N  is defined by

M�,β = A�,βD,

where D = diag{ω} is the diagonal matrix whose principal diagonal is the weights vector ω, 
then the far-field equation becomes

Figure 5. Reconstruction of the delamination on the upper side of the cube, with 
ε = 2 × 10−5, and noise level ρ ∼ 0.059.
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Mθ,θ Mθ,φ

Mφ,θ Mφ,φ




2N×2N




gθ

gφ




2N×1

=




f θz

f φz




2N×1

.

As the discrete version of the ill-posed the far-field equation, this linear equation  is also 
severely ill-posed and hence it is necessary to use regularization techniques, for example, the 
standard Tikhonov regularization method. Given the solution gz,η to the regularized problem 
associated to the regularization parameter 0 < η , the indicator function that we compute is 
given by

Figure 6. These results are for the shape change problem. We show a side view of the 
function χΓ+(z), for the detection of a thin defect on a circular part of the flat boundary 
of the half sphere under different levels of noise ρ, and the corresponding values of 
ε. The separation of the blue dotted surface from the flat surface of the half sphere is 
proportional to the predicted location of the defect.
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Gη(z) = 1/||gz,η||.

In our case, for the practical examples, the test function will be considered when the surface 
L ⊂ Γ shrinks to the point z and the density aL tends to a delta function δ(· − z)τ �, where τ � 
for � = 1, 2 are the basis of the tangential plane to Γ at z. In such a case,

φ∞
z,�(x̂i) = GE,∞(x̂i, z + δf+ν)τ � for � = 1, 2.

Then the terms in the right-hand-side for the discrete far field equation are

f βz,�(x̂i) = p̂β
i · φ∞

z,�(x̂i) = p̂β
i ·GE,∞(x̂i, z + δf+ν)τ �

=
1

4π
τ � · Eb(z + δf+ν,−x̂i, p̂β

i ) ∼
1

4π
τ � · Eb(z,−x̂i, p̂β

i ).
 

(27)

Figure 7. These results are for the shape change problem. We show reconstructions 
of shape change due to a thin defect on a circular part of the flat boundary of the half 
sphere Ω− under different levels of noise ρ, and the corresponding values of ε. The blue 
circle is the exact location of the defect and the black dots correspond to the predicted 
location of the defect, i.e. the support of the truncated function Gη, when the threshold 
values is τ = 0.5 ∗max{Gη(z) | z ∈ Γ0}.

F Cakoni et alInverse Problems 34 (2018) 065005



22

4.1. Example 1: the cube

We first consider the cube in which the top face is entirely delaminated. Data is generated as 
described earlier in this section. In total, the number of incident directions d̂ ∈ S2 is 93, and 
they are generated as the nodes of an approximately uniform surface mesh on the unit sphere 
S2 constructed by Netgen/Ngsolve [28]. The sampling points {z�}Ns

�=1, Ns  =  152, are con-
structed in a similar way, by defining a surface mesh on the cube.

The regularization parameter for the Tikhonov regularization method in this example is 
chosen η = 10−10.

Both the far field data and the right-hand-side (27) are computed by solving the full prob-
lem (1) - (2) using a finite element method as in [11]. The mesh refinement level is set to be 
hmax  =  0.2. Some noise in the data is added in order to avoid inverse crimes.

We consider Ãij = Aij(1 + εζij), where {ζij} is a collection of independent random vari-
ables with uniform distribution over the interval [−1, 1], and ε > 0 is a constant. The level of 
noise is defined by ρ := ||A − Ã||2/||A||2.

For visualization purposes, in our reconstruction in figure 5, the separation of the dotted 
surfaces Γ̃± is chosen to be proportional to Gη(z), with the parametrization

Figure 8. These results are for the dielectric delaimination problem. We show a side 
view of the function χΓ+(z), for the detection of a delamination on a circular part of the 
flat boundary of the half sphere under different levels of noise ρ, and the corresponding 
values of ε. The separation of the blue dotted surface from the flat surface of the half 
sphere is proportional to the predicted location of the delamination.
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χΓ̃+
(t) = χΓ(t) + η0Gη(χΓ(t))ν(t),

where χΓ is the parametrization of Γ, and we arbitrarily set η0 = 70 as a constant that modu-
lates the size of Gη for pure visualization purposes. The separation of the dotted surfaces Γ̃+ 
from the reference surface Γ corresponds, therefore, to the areas where our algorithm predicts 
the location of the delamination, but not the thickness

4.2. Example 2: half-sphere

The same number and directions of the incident fields as for the previous example are used in 
this case. We now consider the two experiments outlined earlier in this section:

4.3. Change in shape

Results for the reconstruction of the change in shape due to a a thin defect on the bound-
ary are shown in figures  6 and 7. In figure  6, we use the same visualization procedure 

Figure 9. These examples are for the dielectric delamination problem. We show 
reconstructions of the delamination on a circular part of the flat boundary of the half 
sphere under different levels of noise ρ, and the corresponding values of ε. The blue 
circle is the exact location of the delamination and the black dots correspond to the 
predicted location of the delamination, i.e. the support of the truncated function Gη, 
when the threshold values is τ = 0.5 ∗max{Gη(z) | z ∈ Γ0}.
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as in the previous example, although in this case we analyze the quality of the recon-
struction with respect to four different noise levels ρ, and the corresponding amplitude 
parameter of the uniform random noise ε. In figure 9, the reconstruction of the delami-
nated part of Γ is shown for the same levels of noise when the truncation value of Gη  is 
τ = 0.5 ∗max{Gη(z) | z ∈ Γ0}.

4.4. Delamiation in a dielectric

For this example in which the delamination is an air-filled region between two dissimilar 
dielectric regions, the the reconstructions are shown in figures 8 and 9. The visualization is 
carried out in the same way as for the previous example. The crack is clearly detected.

5. Conclusion

A linear sampling method algorithm based on a Chun’s-type ATCs model is developed that 
efficiently tests for delamination on flat interfaces between two materials. Numerical examples 
indicate that our reconstruction method provides qualitatively good results also with noisy 
data and is stable with respect to a reasonable noise level. However it is well-known that all 
linear sampling methods suffer from instability with respect to errors in the modeling of the 
background. Efforts have been made to address this issue [4], but we will not address it any 
further since it is beyond the scope of our study.

Our analysis requires that the delamination is a volume with constant thickness. Of course this 
situation is far from many realistic cases of non-destructive testing of interfaces. Unfortunately, 
the analysis of the ATCs model that includes a curved opening with variable thickness is still an 
open problem (see [11] for the explicit reasons) and therefore there is no analytical framework to 
develop the inversion scheme. Nevertheless, we expect that a formal application of the linear sam-
pling method, i.e. an implementation of the equation (26), could yield reasonable reconstructions 
in more realistic general cases. Unfortunately, the lack of a well-posed variational formulation for 
the general case, prevents us from computing the data in order to test the latter claim.
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Appendix A. Proof of theorem 3.1

Proof. First for simplicity of presentation here we drop the subindex ‘b′ in the notation of 
the background electric and magnetic field. We need to consider several cases.

 Case 1 . We first assume that z ∈ R3 \ Ω. Let p, q ∈ R3. Since in this case the pair

(E, H) =
(
GE(·, z)q − Ei

edp(·, z, q), GH(·, z)q − Hi
edp(·, z, q)

)

is a radiating and non-singular solution of the homogeneous Maxwell equations  (19) in 
R3 \ Ω, we can use the Stratton–Chu formula for radiating fields (see [21], theorem 9.4):
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GE(x, z)q − Ei
edp(x, z, q) = ∇x ×

∫

Γ1

ν(y)× (GE(y, z)q − Ei
edp(y, z, q))φ(x, y) ds(y)

− 1
ik
∇x ×∇x ×

∫

Γ1

ν(y)× (GH(y, z)q − Hi
edp(y, z, q))φ(x, y) ds(y),

 (A.1)
for all x ∈ R3 \ Ω. On the other hand, for any constant p ∈ R3, taking the dot product of p 
with the terms in the right-hand-side of the Stratton–Chu formula (A.1) involving the electric 
dipole fields Ei

edp and Hi
edp, we obtain

p · ∇x ×
∫

Γ1

(ν(y)× Ei
edp(y, z, q))φ(x, y) ds(y)

− 1
ik

p · ∇x ×∇x ×
∫

Γ1

(ν(y)× Hi
edp(y, z, q))φ(x, y) ds(y)

=−
∫

Γ1

(ν(y)× Ei
edp(y, z, q)) · ∇y × (pφ(x, y)) ds(y)

− 1
ik

∫

Γ1

(ν(y)× Hi
edp(y, z, q)) · ∇y ×∇y × (pφ(x, y)) ds(y)

=

∫

Γ1

(ν(y)× Ei
edp(y, z, q)) · Hi

edp(x, y, p) ds(y)

+

∫

Γ1

(ν(y)× Hi
edp(y, z, q)) · Ei

edp(x, y, p) ds(y),

thus,

p · ∇x ×
∫

Γ1

(ν(y)× Ei
edp(y, z, q))φ(x, y) ds(y)

− 1
ik

p · ∇x ×∇x ×
∫

Γ1

(ν(y)× Hi
edp(y, z, q))φ(x, y) ds(y)

=−
∫

Γ1

(ν(y)× Ei
edp(y, z, q)) · ∇y × (pφ(x, y)) ds(y)

− 1
ik

∫

Γ1

(ν(y)× Hi
edp(y, z, q)) · ∇y ×∇y × (pφ(x, y)) ds(y)

=

∫

Ω

{∇ × Ei
edp(y, z, q)) · Hi

edp(x, y, p)} d y −
∫

Ω

{(∇× Hi
edp(x, y, p)) · Ei

edp(y, z, q)} d y

+

∫

Ω

{∇ × Hi
edp(y, z, q)) · Ei

edp(x, y, p)} d y −
∫

Ω

{(∇× Ei
edp(x, y, p)) · Hi

edp(y, z, q)} d y,

and therefore,

p · ∇x ×
∫

Γ1

(ν(y)× Ei
edp(y, z, q))φ(x, y) ds(y)

− 1
ik

p · ∇x ×∇x ×
∫

Γ1

(ν(y)× Hi
edp(y, z, q))φ(x, y) ds(y)

= −
∫

Γ1

(ν(y)× Ei
edp(y, z, q)) · ∇y × (pφ(x, y)) ds(y)

− 1
ik

∫

Γ1

(ν(y)× Hi
edp(y, z, q)) · ∇y ×∇y × (pφ(x, y)) ds(y).

F Cakoni et alInverse Problems 34 (2018) 065005



26

Hence we further obtain

p · ∇x ×
∫

Γ1

(ν(y)× Ei
edp(y, z, q))φ(x, y) ds(y)

=

∫

Ω

{ikHi
edp(y, z, q) · Hi

edp(x, y, p)} d y +

∫

Ω

{ikEi
edp(x, y, p) · Ei

edp(y, z, q)} d y

+

∫

Ω

{−ikEi
edp(y, z, q) · Ei

edp(x, y, p)} d y −
∫

Ω

{ikHi
edp(x, y, p) · Hi

edp(y, z, q)} d y = 0,

which implies that (A.1) simplifies to

GE(x, z)q − Ei
edp(x, z, q) = ∇x ×

∫

Γ1

(ν(y)×GE(y, z)q)φ(x, y) ds(y)

− 1
ik
∇x ×∇x ×

∫

Γ1

(ν(y)×GH(y, z)q)φ(x, y) ds(y),

 

(A.2)

for all x ∈ R3 \ Ω. Therefore, by taking the dot product of a constant vector p ∈ R3 with 
(A.2), we know that the far field patterns satisfy

p · (GE,∞(x̂, z)q)− p · Ei,∞
edp (x̂, z, q)

=
ik
2π

p · {x̂ ×
∫

Γ1

{(ν(y)×GE(y, z)q) + (ν(y)×GH(y, z)q)× x̂}e−ikx̂·y ds(y)}

=
ik
2π

∫

Γ1

(ν(y)×GE(y, z)q) · (−x̂ × p)e−ikx̂·y

+ (ν(y)×GH(y, z)q) · ((−x̂)× (p × (−x̂))e−ikx̂·y ds(y)

=
1

2π

∫

Γ1

(ν(y)×GE(y, z)q) · Hi
pl(y,−x̂, p) + (ν(y)×GH(y, z)q) · Ei

pl(y,−x̂, p) ds(y),

 (A.3)
for all x̂ ∈ S2 . On the other hand,

p · Ei,∞
edp (x̂, z, q) = − 1

i4πk
p · ∇z ×∇z × (qe−ikx̂·z) =

ik
4π

p · (−x̂ × (−x̂ × q))e−ikx̂·z

=
ik
4π

q · ((−x̂ × p)× (−x̂))e−ikx̂·z =
1

4π
q · Ei

pl(z,−x̂, p),

and

p · Hi,∞
edp (x̂, z, q) = − 1

4π
p · ∇z × (qe−ikx̂·z) = − ik

4π
p · (−x̂ × q)e−ikx̂·z

=
ik
4π

q · (−x̂ × p)e−ikx̂·z =
1

4π
q · Hi

pl(z,−x̂, p).

Hence, (A.3) can be written as

p · (GE,∞(x̂, z)q)− ik
4π

q · Ei
pl(z,−x̂, p)

=
1

4π

∫

Γ1

(ν(y)×GE(y, z)q) · Hi
pl(y,−x̂, p) ds(y)

+
1

4π

∫

Γ1

(ν(y)×GH(y, z)q) · Ei
pl(y,−x̂, p) ds(y),

 

(A.4)
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for all x̂ ∈ S2 . We will now show that the right hand side of (A.4) is exactly 1
4πq · Es

pl(z,−x̂, p).
To this end, observe that on one hand, by Green’s formula, for any two given solutions 

(E1, H1) and (E2, H2) to the homogeneous Maxwell’s equations (19) in Ω we have
∫

Γ1

(ν(y)× E1(y)) · H2(y) ds(y) +
∫

Γ1

(ν(y)× H1(y)) · E2(y) ds(y)

=

∫

Ω

{∇y × E1(y) · H2(y)−∇y × H2(y) · E1(y)} d y

+

∫

Ω

{∇y × H1(y) · E2(y)−∇y × E2(y) · H1(y)} d y = 0,

 

(A.5)

while on the other hand, if both (E1, H1) and (E2, H2) satisfy the background problem (20) 
in Ω,

∫

Γ1

ν(y)× E1(y) · H2(y) ds(y) +
∫

Γ1

ν(y)× H1(y) · E2(y) ds(y)

=

∫

Ω

{∇y × E1(y) · H2(y)−∇y × H2(y) · E1(y)} d y

+

∫

Ω

{∇y × H1(y) · E2(y)−∇y × E2(y) · H1(y)} d y = 0.
 

(A.6)

Therefore, for any q ∈ R3 constant, by the second Stratton–Chu formula,

q · Es
pl(z,−x̂, p) = q · ∇z ×

∫

Γ1

(ν(y)× Es
pl(y,−x̂, p))φ(z, y) ds(y)

− 1
ik

q · ∇z ×∇z ×
∫

Γ1

(ν(y)× Hs
pl(y,−x̂, p))φ(z, y) ds(y)

=

∫

Γ1

(ν(y)× Es
pl(y,−x̂, p)) · Hi

edp(z, y, q) ds(y)

+

∫

Γ1

(ν(y)× Hs
pl(y,−x̂, p)) · Ei

edp(z, y, q) ds(y),

and if we use (A.5) with (E1, H1) = (Ei
pl, Hi

pl) and (E2, H2) = (Ei
edp, Hi

edp), and (A.6) with 
E1 = GE(·, z)p − Ei

edp(z, ·, p), H1 = GH(·, z)p − Hi
edp(z, ·, p) and (E2, H2) = (Epl, Hpl) we 

now obtain

q · Es
pl(z,−x̂, p) =

∫

Γ1

(ν(y)× Epl(y,−x̂, p)) · Hi
edp(z, y, q) ds(y)

+

∫

Γ1

(ν(y)× Hpl(y,−x̂, p)) · Ei
edp(z, y, q) ds(y)

−
∫

Γ1

(ν(y)× Ei
pl(y,−x̂, p)) · Hi

edp(z, y, q) ds(y)

+

∫

Γ1

(ν(y)× Hi
pl(y,−x̂, p)) · Ei

edp(z, y, q) ds(y),

=

∫

Γ1

(ν(y)× Epl(y,−x̂, p)) · (GH(y, z)q) ds(y)

+

∫

Γ1

(ν(y)× Hpl(y,−x̂, p)) · (GE(y, z)q) ds(y)
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which finally simplifies to

q · Es
pl(z,−x̂, p) =

∫

Γ1

(ν(y)×GH(y, z)q) · Ei
pl(y,−x̂, p) ds(y)

+

∫

Γ1

(ν(y)×GE(y, z)q) · Hi
pl(y,−x̂, p) ds(y).

 
(A.7)

Therefore, combining (A.4) and (A.7) yiels

4πp · (GE,∞(x̂, z)q) = q · Ei
pl(z,−x̂, p) + q · Es

pl(z,−x̂, p) = q · Epl(z,−x̂, p),

for all z ∈ R3 \ Ω, which completes the proof for this case.
 Case 2 . Next let z ∈ Ω. Then the field (GE(·, z)q,GH(·, z)q) is a non-singular radiating 
solution of the homogeneous Maxwell equations  (19) in R3 \ Ω, and then taking the dot 
product of p ∈ R3 with GE(x, z)q and using the Stratton–Chu formula, we have that for any 
x ∈ R3 \ Ω,

p ·GE(x, z)q = p · ∇x ×
∫

Γ1

(ν(y)×GE(y, z)q)φ(x, y) ds(y)

− 1
ik

p · ∇x ×∇x ×
∫

Γ1

(ν(y)×GH(y, z)q)φ(x, y) ds(y)

=−
∫

Γ1

(ν(y)×GE(y, z)q) · ∇y × (φ(x, y)p) ds(y)

− 1
ik

∫

Γ1

(ν(y)×GH(y, z)q) · ∇y ×∇y × (φ(x, y)p) ds(y),

and hence the far field pattern satisfies

p ·GE,∞(x̂, z)q =
1

4π

∫

Γ1

(ν(y)×GE(y, z)q) · Hi
pl(y,−x̂, p) ds(y)

+
1

4π

∫

Γ1

(ν(y)×GH(y, z)q) · Ei
pl(y,−x̂, p) ds(y)

=
1

4π

∫

Γ1

(ν(y)×GE(y, z)q) · Hpl(y,−x̂, p) ds(y)

+
1

4π

∫

Γ1

(ν(y)×GH(y, z)q) · Epl(y,−x̂, p) ds(y)

=
1

4π

∫

Ω

(∇y ×GE(y, z)q) · Hpl(y,−x̂, p) d y

− 1
4π

∫

Ω

(∇y × Hpl(y,−x̂, p)) ·GE(y, z)q d y

+
1

4π

∫

Ω

(∇y ×GH(y, z)q) · Epl(y,−x̂, p) d y

− 1
4π

∫

Ω

(∇y × Epl(y,−x̂, p)) ·GH(y, z)q d y,

where in the second equality we have used the fact that for every two radiating solutions of 
(19) in R3 \ Ω, (Es

1, Hs
1) and (Es

2, Hs
2) the following holds
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0 =

∫

Γ1

{(ν(y)× Es
1) · Hs

2 + (ν(y)× Hs
1) · Es

2} ds(y). (A.8)

Therefore, from (A.8) we obtain the desired result

p ·GE,∞(x̂, z)q =
1

4π

∫

Ω

ikµ(GH(y, z)q) · Hpl(y,−x̂, p) d y

+
1

4π

∫

Ω

ikεEpl(y,−x̂, p) ·GE(y, z)q d y

+
1

4π

∫

Ω

(−ikεGE(y, z)q + qδ(y − z)) · Epl(y,−x̂, p) d y

− 1
4π

∫

Ω

ikµHpl(y,−x̂, p) ·GH(y, z)q d y =
1

4π
q · Epl(z,−x̂, p).

Case 3. Lastly we consider z ∈ Γ1 ∪ Γ. Notice that by continuity of the tangential traces of 
Epl(·,−x̂, p) and GE,∞(x̂, ·)p accross Γ1 ∪ Γ, the identity (22) is true at z ∈ Γ1 ∪ Γ as long as 
p, q ∈ R3 satisfy ν(z) · p = ν(z) · q = 0, and the proof is complete.

Appendix B. Proof of theorem 3.2

Proof. Following the arguments of the proof of theorem 6.30 in [10], if x̂, d̂ ∈ S2 and 
p, q ∈ R3, then from the divergence theorem in Ω,

0 =

∫

(Γ\Γ0)∪Γ+

ν(y)× Ei
pl(y, d̂, p) · Hi

pl(y,−x̂, q) ds(y)

=

∫

(Γ\Γ0)∪Γ+

ν(y)× Hi
pl(y, d̂, p) · Ei

pl(y,−x̂, q) ds(y),
 

(B.1)

and from the radiation condition we have that (Es
pl(·, d̂, p), Hs

pl(·, d̂, p)) and 

(Es
pl(·,−x̂, q), Hs

pl(·,−x̂, q)) satisfy

0 =

∫

(Γ\Γ0)∪Γ+

ν(y)× Es
pl(y, d̂, p) · Hs

pl(y,−x̂, q)

+ ν(y)× Hs
pl(y, d̂, p) · Es

pl(y,−x̂, q) ds(y).
 

(B.2)

Moreover,

4πq · E∞
pl (x̂, d̂, p) =

∫

(Γ\Γ0)∪Γ+

ν(y)× Es
pl(y, d̂, p) · Hi

pl(y,−x̂, q)

+ ν(y)× Hs
pl(y, d̂, p) · Ei

pl(y,−x̂, q) ds(y)
 

(B.3)

and

4πp · E∞
pl (−d̂,−x̂, q) =

∫

(Γ\Γ0)∪Γ+

ν(y)× Es
pl(y,−x̂, q) · Hi

pl(y, d̂, p)

+ ν(y)× Hs
pl(y,−x̂, q) · Ei

pl(y, d̂, p) ds(y),
 

(B.4)
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and therefore considering the sum (B.1)–(B.4) we get,

4π(q · E∞
pl (x̂, d̂, p)− p · E∞

pl (−d̂,−x̂, q))

=

∫

(Γ\Γ0)∪Γ+

ν(y)× Epl(y,−x̂, q) · Hpl(y, d̂, p) ds(y)

+

∫

(Γ\Γ0)∪Γ+

ν(y)× Hpl(y,−x̂, q) · Epl(y, d̂, p) ds(y).

Splitting the above as sum of integrals over Γ+ and G− and using the continuity of the tangen-
tial component of the electric and magnetic fields across Γ = Γ \ Γ0 we obtain

4π(q · E∞
pl (x̂, d̂, p)− p · E∞

pl (−d̂,−x̂, q))

=

∫

Γ0

[[ν(y)× Epl(y,−x̂, q)]] · 〈〈Hpl(y, d̂, p)〉〉 ds(y)

+

∫

Γ0

[[ν(y)× Hpl(y,−x̂, q)]] · 〈〈Epl(y, d̂, p)〉〉 ds(y)

−
∫

Γ0

〈〈Epl(y,−x̂, q)〉〉 · [[ν(y)× Hpl(y, d̂, p)]] ds(y)

+

∫

Γ0

〈〈Hpl(y,−x̂, q)〉〉 · [[ν(y)× Epl(y, d̂, p)]] ds(y)

which by substituting the expression (5) and (6) for the ATCs of our approximate model, 
implies that

4π(q · E∞
pl (x̂, d̂, p)− p · E∞

pl (−d̂,−x̂, q))

=

∫

Γ0

ikδA1〈〈(Hpl(y,−x̂, q))T〉〉 · 〈〈(Hpl(y, d̂, p))T〉〉 ds(y)

+

∫

Γ0

δ

ik
A2〈〈(Epl(y,−x̂, q))T〉〉 · 〈〈(Epl(y, d̂, p))T〉〉 ds(y)

−
∫

Γ0

〈〈(Epl(y,−x̂, q))T〉〉 ·
δ

ik
A2〈〈(Epl(y, d̂, p))T〉〉 ds(y)

+

∫

Γ0

〈〈(Hpl(y,−x̂, q))T〉〉 · ikδA1〈〈(Hpl(y, d̂, p))T〉〉 ds(y) = 0,

where Ai, i = 1, 2 are defined by (2) (here we have used the fact that Ai are symmetric in the 
duality pairing with L2-pivot space, i.e. without conjugation). □ 

Appendix C. Proof of proposition 3.1

Proof. Observe first that by linearity,

Eb,g(x) =
∫

S2
Epl(x, d̂, g(d̂)) ds(d̂),

and thanks to theorem 3.1, for all p ∈ R3,
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p · Eb,g(x) =
∫

S2
4πg(d̂) ·GE,∞(−d̂, x)p ds(d̂).

Observe that

H(curlΓ,Γ0) =
{
∇Γp +∇Γ × q

∣∣∣∇Γ × q ∈ H1
t (Γ0), ∇Γp ∈ L2

t (Γ0)
}

and thus

H(curlΓ,Γ0)
∗
=

{
∇Γp +∇Γ × q

∣∣∣∇Γ × q ∈ H−1
0 (Γ0), ∇Γp ∈ L2

t (Γ0)
}

,

= H−1
0 (divΓ,Γ0).

Given (ξ,η,σ) ∈ H−1
0 (divΓ,Γ0)×H0(Γ0)× H̃−1/2(curlS , S ), where 〈·, ·〉 denotes duality 

pairing with pivoting space L2
t  (on either Γ0 or S ), we can write

〈H g, (ξ,η,σ)〉 =
∫

Γ0

{
δ〈〈(µ−1∇× Eb,g)T〉〉 · ξ −A−1

1 [[ν × Eb,g]] · ξ
}

ds(y)

+

∫

Γ0

{
δA2〈〈(Eb,g)T〉〉 · η − [[ν × (µ−1∇× Eb,g)]] · η

}
ds(y)

−
∫

S

n ×
(
µ−1∇× Eb,g

)
· σ ds(y).

Substituting the expression for Eb

〈H g, (ξ,η,σ)〉 =
∫

Γ0

∫

S2

{
δ〈〈(µ−1∇× Eb(y, d̂, g(d̂))T〉〉 · ξ

−A−1
1 [[ν × Eb(y, d̂, g(d̂))]] · ξ

}
ds(d̂) ds(y)

+

∫

Γ0

∫

S2

{
δA2〈〈(Eb(y, d̂, g(d̂)))T〉〉 · η

− [[ν × (µ−1∇× Eb(y, d̂, g(d̂)))]] · η
}

ds(d̂) ds(y)

−
∫

S

∫

S2

(
n × (µ−1∇× Eb(y, d̂, g(d̂)))

)
· σ ds(d̂) ds(y).

Then by the mixed reciprocity principle (theorem 3.1),

1
4π

〈H g, (ξ,η,σ)〉 =
∫

S2
g(d̂) ·

{∫

Γ0

{
δ〈〈(µ−1∇×GE,∞(−d̂, y)))T〉〉 ξ(y)

+ [[GE,∞(−d̂, y)]](ν ×A−1
1 ξ(y))

}
ds(y) +

∫

Γ0

{
δ〈〈(GE,∞(−d̂, y))T〉〉A2η(y)

+ [[(µ−1∇×GE,∞(−d̂, y))T ]](ν × η(y))
}

ds(y)

+

∫

S

µ−1∇×GE,∞(−d̂, y)(n × σ(y)) ds(y)

}
ds(d̂),
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where (GE,∞(·, ·))Tv := (GE,∞)(·, ·)v)T  for any v ∈ R3.
Notice that in general A−1

1  and A2 are not self-adjoint operators because �(εδ) > 0. Let-
ting

A1η := α1η − β1
−→
curlΓ curlΓ η, and A2η := α2η − β2

−→
curlΓ curlΓ η,

we can conclude that the conjugate transpose operator H ∗ : H−1/2(curlΓ,Γ0)×  
H−1/2(curlΓ,Γ0) → L2

t (S2) of H , is given by:

1
4π

H ∗(ξ,η,σ) =
∫

Γ0

{
δ〈〈(µ−1∇×GE,∞(−·, y))T〉〉 ξ(y)

+ [[GE,∞(−·, y)]](ν ×A1
−1

ξ(y))
}

ds(y)

+

∫

Γ0

{
δ〈〈(GE,∞(−·, y))T〉〉 A2η(y)

+ [[(µ−1∇×GE,∞(−·, y))T ]](ν × η(y))
}

ds(y)

+

∫

S

µ−1∇×GE,∞(−·, y)(n × σ(y)) ds(y).

Thus E∞(x̂) = 1
4πH ∗(ξ,η,σ)(−x̂) is the far field pattern of the following potential:

E(x) =
∫

Γ0

{
δ〈〈(µ−1∇×GE(x, y))T〉〉 ξ(y)

+ [[GE(x, y)]]
(
ν × (A1

−1
ξ(y))

)}
ds(y)

+

∫

Γ0

{
δ〈〈(GE(x, y))T〉〉A2 η(y)

+ [[(µ−1∇×GE(x, y))T ]](ν × η(y))
}

ds(y)

+

∫

S

µ−1∇×GE(x, y)(n × σ(y)) ds(y).

Observe that E = (EΓ+)T + (EΓ−)T + ES , where we define

EΓ+
(x) :=

∫

Γ0

{
δ

2
µ−1
+ ∇×GE(x, yΓ + δf+ν) ξ(yΓ)

+GE(x, yΓ + δf+ν)(ν ×A1
−1

ξ(yΓ))
}

d yΓ

+

∫

Γ0

{
δ

2
GE(x, yΓ + δf+ν)A2η(yΓ)

+ µ−1
+ ∇×GE(x, yΓ + δf+ν)(ν × η(yΓ))

}
d yΓ,
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EΓ−(x) :=
∫

Γ0

{
δ

2
µ−1
− ∇×GE(x, yΓ − δf−ν) ξ(yΓ)

−GE(x, yΓ − δf−ν)(ν ×A1
−1

ξ(yΓ))
}

d yΓ

+

∫

Γ0

{
δ

2
GE(x, yΓ − δf−ν)A2η(yΓ)

− µ−1
− ∇×GE(x, yΓ − δf−ν)(ν × η(yΓ))

}
d yΓ,

ES (x) :=
∫

S

µ−1∇×GE(x, y)(n × σ(y)) ds(y).

Moreover, using the notation and the representation formula in remark 3.1, along with jump 
relations of the electric and magnetic potentials across Γ−, Γ+, and S  we obtain

[ν × E]Γ+
=

[
ν × EΓ+

]
Γ+

= −ik
δ

2
ξ − ik(ν × η),

[ν × E]Γ−
=

[
ν × EΓ−

]
Γ−

= −ik
δ

2
ξ + ik(ν × η),

[ν × E]S = [ν × ES ]S = −ik(n × σ),

 

(C.1)

and

[
ν ×

(
µ−1∇× E

)]
Γ+

=
[
ν ×

(
µ−1∇× EΓ+

)]
Γ+

= ik(ν ×A1
−1

ξ) + ik
δ

2
A2η,

[
ν ×

(
µ−1∇× E

)]
Γ−

=
[
ν ×

(
µ−1∇× EΓ−

)]
Γ−

= −ik(ν ×A1
−1

ξ) + ik
δ

2
A2η,

[
n ×

(
µ−1∇× E

)]
S

=
[
n ×

(
µ−1∇× ES

)]
S

= 0.
 

(C.2)

Now, suppose then that E∞ = 0, then by the Rellich lemma (lemma 9.28 in [21]), we know 
that E = 0 in R3 \ Ω. Moreover, from the assumptions of |∇µ| and the unique continuation 
principle for isotropic time harmonic Maxwell equations (theorem 2.3 in [24]) combined with 
Holmgren’s uniqueness type theorem, we ensure that E = 0 in R3 \ Ωδ. Then

[ν × E]Γ+
= ν × Eout

∣∣∣
Γ+

− ν × Eδ
∣∣∣
Γ+

= −ν × Eδ
∣∣∣
Γ+

, (C.3)

[ν × E]Γ−
= ν × Eδ

∣∣∣
Γ−

− ν × Eout
∣∣∣
Γ−

= ν × Eδ
∣∣∣
Γ−

, (C.4)

[ν × E]S = n × Eout
∣∣∣
S

− n × Eδ
∣∣∣
S

= −n × Eδ
∣∣∣
S

, (C.5)

and
[
ν ×

(
µ−1∇× E

)]
Γ+

= ν × (µ−1∇× Eout)
∣∣∣
Γ+

− ν ×
(
µ−1∇× Eδ

) ∣∣∣
Γ+

= −ν ×
(
µ−1∇× Eδ

) ∣∣∣
Γ+

,

 

(C.6)
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[
ν ×

(
µ−1∇× E

)]
Γ−

= ν ×
(
µ−1∇× Eδ

) ∣∣∣
Γ−

− ν × (µ−1∇× Eout)
∣∣∣
Γ−

= ν ×
(
µ−1∇× Eδ

) ∣∣∣
Γ−

,
 (C.7)

[
n ×

(
µ−1∇× E

)]
S

= −n ×
(
µ−1∇× Eδ

) ∣∣∣
S

 (C.8)

thus combining (C.1) and (C.2) with (C.3)–(C.8),

ν × Eδ
∣∣∣
Γ+

= ik
δ

2
ξ + ik(ν × η),

ν × Eδ
∣∣∣
Γ−

= −ik
δ

2
ξ + ik(ν × η),

n × Eδ
∣∣∣
S

= ik(n × σ),

and

ν ×
(
µ−1∇× Eδ

) ∣∣∣
Γ+

= −ik(ν ×A1
−1

ξ)− ik
δ

2
A2η,

ν ×
(
µ−1∇× Eδ

) ∣∣∣
Γ−

= −ik(ν ×A1
−1

ξ) + ik
δ

2
A2η,

n ×
(
µ−1∇× Eδ

) ∣∣∣
S

= 0.

Introducing the following notation for the internal jump and the internal mean value

[[uδ]]Ωδ
:= uδ

∣∣∣
Γ+

− uδ
∣∣∣
Γ−

, 〈〈uδ〉〉Ωδ
:=

1
2
(uδ

∣∣∣
Γ+

+ uδ
∣∣∣
Γ−

)

for every uδ (scalar or vectorial field) defined in Ωδ, we know that,

[[ν × Eδ]]Ωδ
= ikδξ, 〈〈Eδ

T〉〉Ωδ
= ikη,

and

[[ν ×
(
µ−1∇× Eδ

)
]]Ωδ

= −ikδA2η, 〈〈(µ−1∇× Eδ)T〉〉Ωδ
= −ikA1

−1
ξ.

Therefore, Eδ = E|Ωδ
∈ H(curl,Ωδ) satisfies

∇× µ−1
± ∇× Eδ − k2ε±E = 0 in Ω±

δ , (C.9)

A1
−1

[[ν × Eδ]]Ωδ
= −δ〈〈(µ−1∇× Eδ)T〉〉Ωδ

, (C.10)

[[ν ×
(
µ−1∇× Eδ

)
]]Ωδ

= −δA2〈〈Eδ
T〉〉Ωδ

, (C.11)

n ×
(
µ−1∇× Eδ

) ∣∣∣
S

= 0, and n × Eδ
∣∣∣
S

= ik(n × σ). (C.12)
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Notice that (C.9)–(C.12) is an over-determined system which in general may not have a solu-
tion. However, to investigate it further, we multiply by a test function and integrate by parts 
we have that Eδ necessarily satisfies

aΩδ
(Eδ , vδ) = 0, for all vδ ∈ Hδ

0 , (C.13)

where

aΩδ
(Eδ , vδ) =

∫

Ωδ

{
µ−1
± ∇× Eδ · ∇ × vδ − k2ε±Eδ · vδ

}
d y

+
1
δ

∫

Γ0

A1
−1

[[ν × Eδ]]Ωδ
· [[ν × vδ]]Ωδ

ds(y)

−
∫

Γ0

δA2〈〈Eδ
T〉〉Ωδ

· 〈〈vδ〉〉Ωδ
ds(y),

and

Hδ
0 =

{
uδ ∈ H(curl,Ωδ)

∣∣∣ 〈〈uδ
T〉〉Ωδ

∈ H(curlΓ,Γ0) and n ×
(
µ−1∇× uδ

) ∣∣∣
S

= 0
}

,

equipped with the graph norm
∥∥uδ

∥∥2
Hδ

0
=

∥∥uδ
∥∥2

H(curl,Ωδ)
+

∥∥〈〈uδ
T〉〉Ωδ

∥∥2
H(curlΓ,Γ0)

.

Observe now that aΩδ
(·, ·) has the same structure as the sesquilinear form a+(·, ·) + b(·, ·), 

where a+(·, ·) and b(·, ·) are respectively defined in (15) and (16). Notice that the real parts ap-
pearing in the boundary integrals remain the same, and only the imaginary parts invert signs. 
It is important to observe that since the Calderón map Ge does not play a role in this interior 
problem (C.13), then the sign of the imaginary part is not important, as long as it is non-zero, 
just as in the case we are considering. Therefore, repeating essentially the same arguments 
given in the proof of theorem 2.1, it is possible to prove that the problem (C.13) is well posed 
under the same assumptions on the material properties.

Therefore, the unique solution to (C.13) is Eδ = 0. We then deduce that (ξ,η,σ) = (0, 0, 0), 
and thus H ∗ is injective, implying that H  has dense range.

Now, to show that H  is injective, lets observe that if H (g) = 0, then in particular 

n × (µ−1∇× Eb,g)
∣∣∣
S

= 0, which by the assumption is only possible if g = 0. □ 
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