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Abstract. We consider the interior transmission problem corresponding to
the inverse scattering by an inhomogeneous (possibly anisotropic) media in
which an impenetrable obstacle with Dirichlet boundary conditions is embed-
ded. Our main focus is to understand the associated eigenvalue problem, more
specifically to prove that the transmission eigenvalues form a discrete set and
show that they exist. The presence of Dirichlet obstacle brings new difficul-
ties to already complicated situation dealing with a non-selfadjoint eigenvalue
problem. In this paper, we employ a variety of variational techniques under
various assumptions on the index of refraction as well as the size of the Dirichlet
obstacle.

1. Introduction. In the recent years, the interior transmission eigenvalue problem
has become an important area of research in inverse scattering theory. This interest
is motivated by the fact that transmission eigenvalues carry information about the
material properties of the scattering object and these eigenvalues can in principle
be determined from the scattering data [7]. For a connection of the interior trans-
mission problem with the scattering problem we refer the reader to [3], [13], [14]
and [19]. Following the first proof of the existence of transmission eigenvalues in
[21] and then in [10], a flux of results on the study of transmission eigenvalues and
their application in obtaining estimates on material properties of inhomogeneous
scattering media has emerged in the literature [4], [5], [8], [11], [16], [17], [18], (and
the references therein). All these studies have considered the case when the contrast
in the scattering medium does not change sign. In [6] for the scalar case and in [15]
for the case of Maxwell’s equations, the transmission eigenvalues have been studied
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for inhomogeneous media with voids, i.e. subregions where the index of refraction is
the same as of the background media. Recently some progress has been made in the
study of transmission eigenvalue problem for media with contrast that can change
sign [1], [22]. In particular, there it is proven that the transmission eigenvalues for
a discrete (possibly empty) set provided that the sign condition on the contrast is
required only at the boundary of the inhomogeneity.

In this paper we investigate the interior transmission problem and corresponding
transmission eigenvalues for inhomogeneous media that contains a perfect conduc-
tor inside, for both isotropic and anisotropic case. In the context of electromagnetic
scattering, this problem corresponds to the scattering by an inhomogeneous media
with space varying electric permittivity and magnetic permeability which contains
inside a perfect conductor. From practical point of view the importance of this
problem lies in the possibility of using transmission eigenvalues to detect anom-
alies inside inhomogeneous media in non-destructive testing. This type of problem
is considered in [20] where the authors recover the obstacle embedded in an in-
homogeneous media. In Section 2 with start our investigation with the isotropic
Helmholtz equation and prove that there exists a discrete infinite set of real trans-
mission eigenvalues, provided that the real-valued index of refraction n := n(x) in
the medium satisfies 0 < n < 1 where one is the background index of refraction. Our
approach does not work if n > 1. Then we continue in Section 3 with the anisotropic
Helmholtz equation assuming that the contrast in the scattering medium appears
in the main operator (which can be a matrix valued function) as well as in the
lower term. If A and n denote the refractive indices in the main operator and lower
terms, respectively, based on the T -coercivity developed in [1] and [2] we are able
to prove the discreteness of transmission eigenvalues for A − I > 0 and any n > 0
or I − A > 0 and 1 − n > 0. Our results on the existence of transmission eigen-
values for the anisotropic case are more restrictive. More specifically, adapting the
approach developed in [12], for the case of A − I > 0 and 0 < n < 1 or n > 1 and
small enough, we can show the existence of finitely many transmission eigenvalues
assuming that the area of the interior Dirichlet inclusion is small enough.

2. The scalar isotropic case. We start our discussion by considering the case of
the interior transmission problem for an isotropic inhomogeneous medium with a
Dirichlet obstacle inside. Let D ⊂ Rd, d = 2, 3 be a simply connected and bounded
region with piece-wise smooth boundary Γ := ∂D. Inside D, we consider a region
D0 ⊂ D possibly be multiply connected with piece-wise smooth boundary Σ := ∂D0

such that Rd\D0 is connected. We assume that D0 is an impenetrable obstacle
satisfying the Dirichlet boundary condition, whereas D\D0 is an inhomogenous
medium with index of refraction n where n ∈ L∞(D\D0) is such that n ≥ c > 0.
Let ν denote the unit outward normal to Γ and Σ.

The interior transmission problem corresponding to the scattering problem for
the scatterer D reads

(ITPH)



∆w + k2nw = 0 in D\D0

∆v + k2v = 0 in D
w − v = g on Γ
∂w

∂ν
− ∂v

∂ν
= h on Γ

w = 0 on Σ.
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Figure 1. Geometry and notations.

Due to the fact that the function w is only defined in D\D0, the first difficulty
that we meet is to correctly define a solution to this problem in appropriate function
spaces. Indeed, the difference u between w and v can only be considered in the set
D\D0 and we do not have enough information about u and in particular about its

normal derivative
∂u

∂ν
on the boundary Σ to conclude the H2-regularity for u. In

particular, u is not necessarily in H2(D\D0) and the only thing we can say is that
∆u ∈ L2(D\D0). Thus we introduce the Hilbert space

H1
∆(D\D0) :=

{
u ∈ H1(D\D0) such that ∆u ∈ L2(D\D0)

}
and we define a weak solution to (ITP4.1) as follows:

Definition 2.1. For given g ∈ H3/2(Γ) and h ∈ H1/2(Γ), a weak solution to
(ITPH) is a pair of functions w ∈ L2(D\D0) and v ∈ L2(D) satisfying the first
two equations of (ITPH) in the distributional sense such that w = 0 on Σ and

u = w− v ∈ H1
∆(D\D0) satisfies the boundary conditions on Γ, u = g and

∂u

∂ν
= h.

2.1. Variational formulation. In order to analyze (ITPH) we first write the prob-
lem as a forth order partial differential equation. To this end, let us assume that
1/|n − 1| ∈ L∞(D\D0) and let w and v be a weak solution to (ITPH). Then
u := w − v satisfies

(1) ∆u+ k2nu = −k2(n− 1)v in D\D0.

Dividing both sides of (1) by (n− 1) and applying the operator (∆ + k2) we get a
fourth order equation for u in D\D0

(2) (∆ + k2)
1

n− 1
(∆ + k2n)u = 0 in D\D0

together with the boundary conditions on Γ

(3) u = g ;
∂u

∂ν
= h on Γ

and on Σ, we have that

(4) u = −v on Σ.

Furthermore v satisfies Helmholtz equation in D0

(5) ∆v + k2v = 0 in D0
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with continuity of the Cauchy data across Σ that can be written using (1) as

(6)
(

1
k2(n− 1)

(∆ + k2n)u
)+

= v− and
∂

∂ν

(
1

k2(n− 1)
(∆ + k2n)u

)+

=
∂v−

∂ν
.

Conversely, it is easily verified that a solution u ∈ H1
∆(D\D0) and v ∈ L2(D0)

of (2)-(6) defines a weak solution w and v to (ITPH) by

v :=
−1

k2(n− 1)
(∆ + k2n)u in D\D0 and w := u+ v in D\D0.

Thus (2)-(6) and the interior transmission problem are equivalent. Now, we are
ready to write the interior the interior transmission problem in a variational for-
mulation. Indeed for a solution (v, w) of (ITPH) we define u in D by u = w − v
in D\D0 and u = −v in D0. Then clearly u is in H1(D) ∩ H1

∆(D\D0), satisfies
(2)-(3),

u+ = u− on Σ,(
−1

k2(n− 1)
(∆u+ k2nu)

)+

= −u+ and
∂

∂ν

(
−1

k2(n− 1)
(∆u+ k2nu)

)+

= −∂u
−

∂ν
on Σ

and
∆u+ k2u = 0 in D0.

Taking a test function ϕ such that ϕ = 0 and
∂ϕ

∂ν
= 0 on Γ, multiplying (2) by ϕ

and integrating by parts and using the boundary conditions, we obtain

0 =
∫
D\D0

(∆ + k2)
1

n− 1
(∆u+ k2nu)ϕdx

=
∫
D\D0

(∆ + k2)
1

n− 1
(∆u+ k2u)ϕdx+ k2

∫
D\D0

(∆u+ k2u)ϕdx

=
∫
D\D0

1
n− 1

(∆u+ k2u)(∆ϕ+ k2ϕ)dx+ k2

∫
D\D0

(∆u+ k2u)ϕdx

+
∫

Σ

(
1

n− 1
(∆u+ k2u)

)+
∂ϕ+

∂ν
ds−

∫
Σ

∂

∂ν

(
1

n− 1
(∆u+ k2u)

)+

ϕ+ds

=
∫
D\D0

1
n− 1

(∆u+ k2u)(∆ϕ+ k2ϕ)dx+ k2

∫
D\D0

(∆u+ k2u)ϕdx

+ k2

∫
Σ

∂u+

∂ν
ϕ+ds− k2

∫
Σ

∂u−

∂ν
ϕ−ds

=
∫
D\D0

1
n− 1

(∆u+ k2u)(∆ϕ+ k2ϕ)dx+ k4

∫
D\D0

uϕdx− k2

∫
D\D0

∇u · ∇ϕdx

+ k4

∫
D0

uϕdx− k2

∫
D0

∇u · ∇ϕdx

=
∫
D\D0

1
n− 1

(∆u+ k2u)(∆ϕ+ k2ϕ)dx+ k4

∫
D

uϕdx− k2

∫
D

∇u · ∇ϕdx.

Now, let θ be a lifting function in H2(D) such that θ = g and
∂θ

∂ν
= h on Γ. Then

u0 := u− θ ∈ H1
0 (D) ∩H1

∆(D\D0) and the natural variational space for the above
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variational problem is the Hilbert space given by

W :=
{
u ∈ H1

0 (D) ∩H1
∆(D\D0) such that

∂u

∂ν
= 0 on Γ

}
equipped with the norm

||u||2W = ||u||2H1(D) + ||∆u||2
L(D\D0)

.

Therefore, the variational formulation of the interior transmission problem becomes:
find u0 ∈W such that

(7)
∫
D\D0

1
n− 1

(∆u0 + k2u0)(∆ϕ+ k2ϕ)dx+ k4

∫
D

u0ϕdx− k2

∫
D

∇u0 · ∇ϕdx

= −
∫
D\D0

1
n− 1

(∆θ + k2θ)(∆ϕ+ k2ϕ)dx− k4

∫
D

θϕdx+ k2

∫
D

∇θ · ∇ϕdx

for all ϕ ∈W . By taking appropriate test functions it is easy to see that a solution
of the variational problem (7) defines a week solution to (2)-(6) and therefore to
the interior transmission problem.

Remark 2.1. One can remark that on the contrary to the previously studied cases
[10], since u is less regular, only the first order term on the left hand side of (7)
defines a compact operator whereas the last term does not. Furthermore for n
greater than one, the operator defined by the following bilinear from

Ãk(u, ϕ) :=
∫
D\D0

1
n− 1

(∆u+ k2u)(∆ϕ+ k2ϕ)dx− k2

∫
D

∇u · ∇ϕdx

has no chance to be coercive because of the negative sign in front of the last term of
the operator. For this reason, using this variational formulation, we are only able
to treat the problem for n less than one, since in this case we can show that −Ãk
is indeed coercive.

Next, we denote by n∗ = infD\D0
n(x) and n∗ = supD\D0

n(x) and from now on
we assume that n∗ < n(x) < n∗ < 1.

Let us define the following sesquilinear forms

Ak(u, ϕ) :=
∫
D\D0

1
1− n

(∆u+ k2u)(∆ϕ+ k2ϕ)dx+ k4

∫
D

uϕdx+ k2

∫
D

∇u ·∇ϕdx

and
B(u, ϕ) := 2

∫
D

uϕdx

and the bounded linear functional

`(ϕ) := −
∫
D\D0

1
n− 1

(∆θ + k2θ)(∆ϕ+ k2ϕ)dx− k4

∫
D

θϕdx+ k2

∫
D

∇θ · ∇ϕdx

Then the interior transmission problem in the variational form now consists of
finding u0 ∈W such that

Ak(u0, ϕ)− k4B(u0, ϕ) = `(ϕ) for all ϕ ∈W.
Using the Riesz representation theorem we define two bounded linear operators
Ak : W →W and B : W →W by

(Aku, ϕ)W := Ak(u, ϕ) and (Bu,ϕ)W := B(u, ϕ).

Theorem 2.1. Assume that n∗ < n(x) < n∗ < 1. Then
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(i) The operator B : W →W is compact.
(ii) The operator Ak : W →W is coercive.

Proof. (i) The compactly embedding of H1(D) into L2(D) implies that B is com-
pact operator on W .

(ii) Now we show that Ak is coercive. Setting γ =
1

1− n∗
and using the equality

(8) γX2 − 2γXY + (1 + γ)Y 2 = ε
(
Y − γ

ε
X
)2

+
(
γ − γ2

ε

)
X2 + (1 + γ − ε)Y 2,

for X = ||∆u||2
D\D0

and Y = k2||u||D\D0
, where for a generic region O ∈ Rd,

‖ · ‖O denotes the L2(O), we have

(Aku, u)W =
∫
D\D0

1
1− n

|∆u+ k2u|2dx+ k4||u||2
D\D0

+ k2||∇u||2D + k4||u||2D0

≥ γ||∆u||2
D\D0

− 2k2γ||∆u||D\D0
||u||D\D0

+ k4 (1 + γ) ||u||2
D\D0

+ k2||∇u||2D + k4||u||2D0

≥
(
γ − γ2

ε

)
||∆u||2

D\D0
+ k4(γ + 1− ε)||u||2

D\D0
+ k2||∇u||2D + k4||u||2D0

where γ < ε < γ + 1. For such an ε, we conclude that there exists a constant
C > 0 such that

(Aku, u) ≥ C||u||2W
for all u ∈W which proves that Ak : W →W is coercive.

The above theorem shows that the operator Ak − k4B is Fredholm with index
zero, whence a solution exists if the uniqueness holds. In the following with be
concerned with the injectivity Ak−k4B which leads to the study of the transmission
eigenvalues which are in fact the of main interest in this paper.

2.2. Transmission eigenvalues. The interior transmission eigenvalue problem in
the considered case is

(TEP)



∆w + k2nw = 0 in D\D0

∆v + k2v = 0 in D
w − v = 0 on Γ
∂w

∂ν
− ∂v

∂ν
= 0 on Γ

w = 0 on Σ.

As already known from the literature [4], [21], [14] this eigenvalue problem is non
self-adjoint end therefor it may have complex transmission eigenvalues. However
for this study we are limited to the case of real eigenvalues corresponding to (TEP).

Definition 2.2. The values of k > 0 for which (TEP) has a nontrivial solution are
called the transmission eigenvalues.

In term of the operators defined above k > 0 is a transmission eigenvalue if the
kernel of the operator Ak − k4B is nontrivial. In the following we are concerned
with the existence and discreteness of transmission eigenvalues.

Inverse Problems and Imaging Volume 0, No. 0 (0), 0
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Theorem 2.2. Assume that n∗ < n(x) < n∗ < 1. Then the set of transmission
eigenvalues is discrete and +∞ is the only possible accumulation point.

Proof. To prove the discreteness of transmission eigenvalues we use the analytic
Fredholm theory [13]. We have seen earlier that thanks to the coercivity of Ak(·, ·),
A−1
k exists as a bounded operator on W . Thus, the transmission eigenvalues are

the values of k > 0 for which I − k4A−1
k B has a nontrivial kernel. Furthermore,

the operator Ak is obviously analytic with respect to k ∈ C and hence the mapping
k 7→ A−1

k is analytic in a neighbourhood of the real axis. To apply the analytic
Fredholm theorem, it remains to show that I − k4A−1

k B or Ak − k4B is injective
for at least one k. To this end, we recall the Poincaré inequality which is valid for
all u ∈ H1

0 (D)

||u||2D ≤
1

λ0(D)
||∇u||2D

where λ0(D) is the first Dirichlet eigenvalue of −∆ in D. Then, for all u ∈ W we
have that

Ak(u, u)− k4B(u, u) =
∫
D\D0

1
1− n

|∆u+ k2u|2dx− k4||u||2D + k2||∇u||2D

≥ k2
(
||∇u||2D − k2||u||2D

)
≥ k2||∇u||2D

(
1− k2

λ0(D)

)
.

We deduce that Ak(u, u) − k4B(u, u) > 0 for all k > 0 such that k2 < λ0(D) and
hence Ak − k4B is injective for such k. Hence, the analytical Fredholm theory
implies that the set of transmission eigenvalues is discrete and from the analyticity
with +∞ and the only possible accumulation point.

Remark 2.2. From the previous theorem, we deduce a lower bound for the first
transmission eigenvalue. Indeed, if k > 0 is a transmission eigenvalue, then

k ≥ λ0(D).

Next we want to prove the existence of transmission eigenvalues following [10].
If we consider the generalized eigenvalue problem

Ak − λ(k)Bu = 0 u ∈W
which is known to have an infinite sequence of eigenvalues λj(k), j ∈ N, then the
transmission eigenvalues are the solutions λj(k) = k4 The proof of the existence of
transmission eigenvalues makes use of the following theorem shown in [11]

Theorem 2.3. Let k 7−→ Ak be a continuous mapping from ]0,∞[ to the set of
self-adjoint and positive definite bounded linear operators on W and let B be a self-
adjoint and non negative compact bounded linear operator on W . We assume that
there exists two positive constant k0 > 0 and k1 > 0 such that

1. Ak0 − k4
1B is positive on W ,

2. Ak1 − k4
1B is non positive on a m dimensional subspace of W .

Then each of the equations λj(k) = k4 for j = 1, . . . ,m, has at least one solution in
[k0, k1] where λj(k) is the jth eigenvalue (counting multiplicity) of Ak with respect
to B, i.e. ker (Ak − λj(k)B) 6= {0}.

Theorem 2.4. Assume that n∗ < n(x) < n∗ < 1. There exist an infinite discrete
set of transmission eigenvalues.
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Proof. We have already seen that for k0 < λ0(D), then Ak0 − k4
1B is positive in W .

Now let us find k1 such that Ak1 − k4
1B is non positive in a subspace of W . Let Bjr ,

j = 1...M(r), be M(r) balls of radius r included in D\D0.

D

r

r
D0

Figure 2. Balls of radius r included in D\D0.

We denote by k1 the first transmission eigenvalue corresponding to the interior
transmission problem for Bjr for all j = 1..M(r) with index of refraction n∗ which
is know to exist [13], and let uj ∈ H2

0 (Bjr), 1 ≤ j ≤ M(r), be the corresponding
eigenvector which satisfy∫

Bj
r

1
1− n∗

(∆uj + k2
1n
∗uj)(∆ϕ+ k2

1ϕ)dx = 0

for all ϕ ∈ H2
0 (Bjr). We denote by ũj ∈ H2

0 (D) the extension of uj by zero
to the whole of D and we define a M(r)-dimensional subspace of W by V :=
Vect {ũj , 1 ≤ j ≤M(r)}. Since for j 6= m, ũj and ũm have disjoint support, for

u =
M(r)∑
j=1

αj ũj ∈ V, we have

Ak1(u, u)− k4
1B(u, u)

=
M(r)∑
j=1

|αj |2
(∫

D\D0

1
1− n

|∆ũj + k2
1ũj |2dx− k4

1

∫
D

|ũj |2dx+ k2
1

∫
D

|∇ũj |2dx

)

=
M(r)∑
j=1

|αj |2
(∫

Bj
r

1
1− n

|(∆uj + k2
1uj)|2dx− k4

1

∫
Bj

r

|uj |2dx+ k2
1

∫
Bj

r

|∇uj |2dx
)

≤
M(r)∑
j=1

|αj |2
(

1
1− n∗

∫
Bj

r

|(∆uj + k2
1uj)|2dx− k4

1

∫
Bj

r

|u|2dx+ k2
1

∫
Bj

r

|∇uj |2dx
)

=
M(r)∑
j=1

|αj |2
(∫

Bj
r

1
1− n∗

(∆uj + k2
1n
∗uj)(∆uj + k2

1uj)dx
)

= 0.

Thus, we conclude that there exist M(r) transmission eigenvalues in ]λ0(D), k1].
Letting r → 0, we have that M(r) → ∞ and thus we can now deduce that there
exists an infinite set of transmission eigenvalues.

We close this section with a monotonicity result for the first transmission eigen-
value with respect to the size of D0, which can be useful in non-destructive testing.
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We denote by k1(D0, n) the first transmission eigenvalue corresponding to (ITPH)
with a perfect conductor D0 and index of refraction n inside D\D0.

Theorem 2.5. Let D0 ⊂ D′0 and n < 1. Then

k1(D′0, n) ≤ k1(D0, n).

Proof. Let ũ ∈W be the eigenvector corresponding to k1(D0, n). Then ũ satisfies∫
D\D0

1
1− n

|∆ũ+k1(D0, n)2ũ|2dx−k1(D0, n)4

∫
D

|ũ|2dx+k1(D0, n)2

∫
D

|∇ũ|2dx = 0.

Since D\D′0 ⊂ D\D0, we have ũ ∈W (D0) ⊂W (D′0) and

Ak1(D0,n)(ũ, ũ)− k1(D0, n)4B(ũ, ũ) =
∫
D\D′0

1
1− n

|∆ũ+ k1(D0, n)2ũ|2dx

− k1(D0, n)4

∫
D

|ũ|2dx+ k1(D0, n)2

∫
D

|∇ũ|2dx

≤
∫
D\D0

1
1− n

|∆ũ+ k1(D0, n)2ũ|2dx− k1(D0, n)4

∫
D

|ũ|2dx

+ k1(D0, n)2

∫
D

|∇ũ|2dx = 0.

Hence (Ak1(D0,n) − k1(D0, n)4B)ũ < 0, where Ak1(D0,n) and B are the operators
corresponding to D\D′0 and thus can deduce that k1(D′0, n) ≤ k1(D0, n).

Remark 2.3. The Fredholm property of the interior transmission problem and the
discreteness of transmission eigenvalues can be proven also for complex valued index
of refraction n such that 1 > <(n) ≥ c > 0 and =(n) ≥ 0. It merely suffices to take
the real part of A(·, ·) when proving the coercivity property in part (ii) Theorem
2.1. However, it is easy to show by taking the =(Ak(u, u) − k4B(u, u)) that there
are no transmission eigenvalues if =(n) > 0 almost everywhere in D\D0.

3. The anisotropic case. In this section, we consider that the medium inside
D\D0 is anisotropic. In particular, let A be a d × d, d = 2, 3 matrix-real valued
function whose entries are in L∞(D\D0) such that A is symmetric and (ξ ·A(x)ξ) ≥
c > 0, (ξ · A(x)ξ) ≥ c′ > 0, for all ξ ∈ Cd. Again, we take n ∈ L∞(D\D0) to be
a real valued function such that n ≥ c > 0. We focus here only in the study of
interior transmission eigenvalue problem which in this case reads: find v ∈ H1(D)
and w ∈ H1(D\D0) such that

(TEPA)



∇ ·A∇w + k2nw = 0 in D\D0

∆v + k2v = 0 in D
w = v on Γ
ν ·A∇w = ν · ∇v on Γ
w = 0 on Σ.

As it will become clear later on, if one is interested in the solvability of the in-
terior transmission problem with nonzero boundary data, our analysis proves the
Fredholm structure of the problem. Again we focus on real values of k and define
transmission eigenvalues as follows:

Inverse Problems and Imaging Volume 0, No. 0 (0), 0
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Definition 3.1. The values of k > 0 for which (TEPA) has a nontrivial solution
are called transmission eigenvalues.

Due to the nature of the problem we employ different techniques for proving
the discreetness and the existence of transmission eigenvalues. We star with the
discreteness question.

In the following, we denote by

γ∗ := sup
D\D0

sup
||ξ||=1

(ξ ·A(x)ξ) and γ∗ := inf
D\D0

inf
||ξ||=1

(ξ ·A(x)ξ).

3.1. The discretness of transmission eigenvalues. To find a variational for-
mulation for the system (TEPA), we multiply the first and second equations by w′
and v′ respectively, where v′ and w′ are two test functions such that w′ = 0 on Σ
and integrate by parts to obtain

(9)
∫
D\D0

A∇w · ∇w′dx− k2

∫
D\D0

nww′dx−
∫

Γ

w′
∂w

∂νA
ds = 0

and

(10) −
∫
D

∇v · ∇v′dx+ k2

∫
D

vv′dx+
∫

Γ

v′
∂v

∂ν
ds = 0.

Adding both (9) and (10) and using the boundary conditions, we have that∫
D\D0

A∇w · ∇w′dx−
∫
D

∇v · ∇v′dx+ k2

∫
D

vv′dx− k2

∫
D\D0

nww′dx = 0

Setting

H :=
{

(v, w) ∈ H1(D)×H1(D\D0)/w = 0 on Σ, such that v = w on Γ
}
,

the variational formulation of (TEPA) becomes: find (v, w) in H such that for all
(v′, w′) in H,

(11) ak((v, w), (v′, w′)) = 0

where

ak((v, w), (v′, w′)) =
∫
D\D0

A∇w · ∇w′dx−
∫
D

∇v · ∇v′dx

+ k2

∫
D

vv′dx− k2

∫
D\D0

nww′dx.

One can easily verify that finding a solution to (11) is equivalent to finding a solution
to (TEPA).

Obviously, due to the negative sign in front of the term
∫
D

∇v · ∇v′dx, it is not
possible to show directly that the variational formulationleads to a Fredholm type.
To get around this difficulty, we use the concept of T -coercivity which has been
initially used for the study of metamaterials in [2] and [1]. To this end let us recall
the T -coercivity concept.

Definition 3.2. Let T be a bijective bounded linear operator on a Hilbert space V .
A bilinear form b(·, ·) is T -coercive on V × V if

∃γ > 0, ∀v ∈ V, |b(v, Tv)| ≥ γ||v||2V .

The proof of the following theorem can be found in [2].
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Theorem 3.1. Let `(·) be a continuous linear form on V and let a(·, ·) be a contin-
uous bilinear form on V ×V . Assume that a can be splitted as a(·, ·) = b(·, ·)+c(·, ·)
where the bilinear forms b(·, ·) and c(·, ·) are both continuous and linear on V × V ,
and that the bounded linear operator C ∈ L(V ) associated with c(·, ·) is compact.
Assume moreover that there exists a bijective bounded linear T ∈ L(V ) such that
b(·, ·) is T -coercive on V × V . Then the variational problem of finding u ∈ V such
that

(12) ∀v ∈ V, a(u, v) = `(v)

has a solution if and only if the uniqueness holds (i.e. the only solution of (12) with
` = 0 is u = 0).

3.1.1. The case of (A − I) positive. In this section, we assume that 1 < γ∗ < γ∗.
Our goal is now to apply Theorem 3.1 to (11), and the key is to be able to construct
an appropriate bijection T ∈ L(H). An obvious first idea would be to consider the
linear operator of the form T (v, w) := (−v, w) in order to to change the sign of∫
D

∇v · ∇v′dx in the variational formulation (11). Unfortunately, (−v, w) is not in

H since −v 6= w on Γ. Thus, we need to modify this operator so that it satisfies all
the properties of H. To this end, we introduce the step function χ such that χ = 1
in D\D0 and χ = 0 in D0. We now define the bijective bounded linear operator
T : H→ H (T 2 = I) by

T : H → H
(v, w) 7→ (−v + 2χw,w).

Since w = 0 on Σ, the function −v+ 2χw is continuous across Σ which implies that
the function −v+ 2χw is in H1(D) and consequently the operator T is well defined
on H. Now, with the help of T we can define a new bilinear form

ãk((v, w), (v′, w′)) = ak((v, w), T (v′, w′))

=
∫
D\D0

A∇w · ∇w′dx+
∫
D

∇v · ∇v′dx− k2

∫
D

vv′dx

− k2

∫
D\D0

nww′dx− 2
∫
D

∇v · ∇(χw′)dx+ 2k2

∫
D

vχw′dx

and we show in the following that it satisfies the Fredholm property.

Lemma 3.2. The bilinear form ãk(·, ·) : H×H→ C satisfies the Fredholm property.

Proof. We can write ãk((v, w), (v′, w′)) = b((v, w), (v′, w′))+ck((v, w), (v′, w′)) where

b((v, w), (v′, w′)) =
∫
D\D0

A∇w · ∇w′dx+
∫
D

∇v · ∇v′dx

− 2
∫
D\D0

∇v · ∇w′dx+
∫
D

vv′dx+
∫
D\D0

ww′dx

and

ck((v, w), (v′, w′)) = −(k2 +1)
∫
D

vv′dx−
∫
D\D0

(k2n+1)ww′dx+2k2

∫
D\D0

vw′dx.

From Riesz’s representation theorem, we define the bounded linear operator Ck
from H into H by

ck((v, w), (v′, w′)) = (Ck(v, w), (v′, w′)).
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The compact embedding ofH1(D) into L2(D) implies that Ck is a compact operator
for all k > 0. We now show that b(·, ·) is coercive.

b((v, w), (v, w)) =
∫
D\D0

A∇w · ∇wdx+
∫
D

|∇v|2dx+ ||v||2D + ||w||2
D\D0

− 2
∫
D\D0

∇v · ∇wdx

≥ γ∗||∇w||2D\D0
+ ||∇v||2D + ||v||2D + ||w||2

D\D0
− 2

∫
D\D0

∇v · ∇wdx.

Using the following inequality

∣∣∣∣∣−2
∫
D\D0

∇v · ∇wdx

∣∣∣∣∣ ≤
∫
D\D0

|∇v · ∇w|dx

≤ 1
η
||∇v||2

D\D0
+ η||∇w||2

D\D0

with η > 0, we then obtain

b((v, w), (v, w)) ≥ (γ∗ − η)||∇w||2
D\D0

+
(

1− 1
η

)
||∇v||2D + ||v||2D + ||w||2

D\D0

≥ C
(
||v||2H1(D) + ||w||2

H1(D\D0)

)
with C > 0 if 1 < η < γ∗. We can finally conclude from (a slightly modified version
of )Theorem 3.1 that ãk(·, ·) satisfies the Fredholm property.

From the above theorem the bounded linear operator B : H → H defined by
mean of Riesz’s representation theorem as

b((v, w), (v′, w′)) = (B(v, w), (v′, w′))

is invertible

Remark 3.1. Note that the operator Ck : H→ H depends analytically on k ∈ C.
Also note that the operator B does not depend on k. Thus the eigenvalue problem
becomes (I+B−1Ck)(v, w) = 0 where B−1Ck : H→ H is compact and the mapping
k → B−1Ck is analytic in C.

Theorem 3.3. Assume that 1 < γ∗ < γ∗ <∞ and 0 < n∗ ≤ n(x) ≤ n∗ <∞ where
where γ∗ := supD\D0

sup||ξ||=1(ξ · A(x)ξ), γ∗ := infD\D0
inf ||ξ||=1(ξ · A(x)ξ), n∗ =

infD\D0
n(x) and n∗ = supD\D0

n(x). Then the set of transmission eigenvalues is
discrete.
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Proof. To apply the analytic Fredholm theory, from Remark 3.1 it remains to show
that there exists a k ∈ C for which B + Ck is injective. We set k = iκ.

ãiκ((v, w), (v, w)) =
∫
D\D0

A∇w · ∇wdx+
∫
D

|∇v|2dx+ κ2

∫
D

|v|2dx+ κ2

∫
D\D0

n|w|2dx

− 2
∫
D\D0

∇v · ∇wdx− 2κ2

∫
D\D0

vwdx

≥ γ∗||∇w||2D\D0
+ ||∇v||2D + κ2||v||2D + κ2n∗||w||2D\D0

− 1
η
||∇v||2D − η||∇w||2D\D0

− κ2

α
||v||2D − κ2α||w||2

D\D0

≥ (γ∗ − η)||∇w||2
D\D0

+
(

1− 1
η

)
||∇v||2D + κ2

(
1− 1

α

)
||v||2D

+ κ2 (n∗ − α) ||w||2
D\D0

where n∗ = inf
D\D0

n(x). Furthermore, w ∈ H1(D\D0) and it vanishes on the bound-

ary Σ which implies the Poincaré inequality

||w||2
D\D0

≤ λ||∇w||2
D\D0

,

and consequently

ãiκ((v, w), (v, w)) ≥
(
(γ∗ − η)− κ2λ|n∗ − α|

)
||∇w||2

D\D0

+ κ2

(
1− 1

α

)
||v||2D +

(
1− 1

η

)
||∇v||2D.

Then, for κ2 small enough, 1 < η < γ∗ and α > 1 , we deduce that ãiκ is coercive
and B+Ciκ is injective. The analytic Fredholm theory now ensures the discreteness
of the set of transmission eigenvalues.

Note that the discreteness of transmission eigenvalues for the case of A− I > 0
is proven without any sign requirement on the contrast n− 1.

3.1.2. The case of (I−A) positive. In this section, we assume that 0 < γ∗ < γ∗ < 1
We again use the T -coercivity to show discreteness of transmission eigenvalues. As
it will become clear later on, for this case we can prove the discretnes under the
additional assumption that n < 1 only.

We recall that (v, w) is a solution to the interior transmission problem (TEPA)
if and only if u ∈ H is the solution of the variational problem (11). Now, we use the
cutoff function χ ∈ C∞(D) satisfying 0 ≤ χ ≤ 1 in D\D0 and supp(χ) ∩D0 = ∅.
Similarly to the approach in Section 3.1.1, we define a bijective bounded linear
operator T from H to H by

T : H → H
(v, w) 7→ (−v, w − 2χv).
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Again we consider the new bilinear form ãk given by

ãk((v, w), (v′, w′)) = ak((v, w), T (v′, w′))

=
∫
D\D0

A∇w · ∇w′dx+
∫
D

∇v · ∇v′dx− k2

∫
D

vv′dx

− k2

∫
D\D0

nww′dx− 2
∫
D\D0

A∇w · ∇(χv′)dx+ 2k2

∫
D\D0

nwχv′dx.

Lemma 3.4. The bilinear form ãk(·, ·) satisfies the Fredholm property.

Proof. We can write ãk((v, w), (v′, w′)) = b((v, w), (v′, w′))+ck((v, w), (v′, w′)) where

b((v, w), (v′, w′)) =
∫
D\D0

A∇w · ∇w′dx+
∫
D

∇v · ∇v′dx

− 2
∫
D\D0

χA∇w · ∇v′dx+
∫
D

vv′dx+
∫
D\D0

ww′dx

and

ck((v, w), (v′, w′)) = −(k2 + 1)
∫
D

vv′dx−
∫
D\D0

(k2n+ 1)ww′dx

− 2
∫
D\D0

v′A∇w · ∇χdx+ 2k2

∫
D\D0

nwχv′dx.

From Riesz’s representation theorem, we define the bounded operator Ck from
H into H by

ck((v, w), (v′, w′)) = (Ck(v, w), (v′, w′))H.

The compact embedding ofH1(D) into L2(D) implies that Ck is a compact operator
for all k > 0. Next we show that b(·, ·) is coercive. To this end, let (v, w) be in H.

b((v, w), (v, w)) =
∫
D\D0

A∇w · ∇wdx+
∫
D

|∇v|2dx+ ||v||2D + ||w||2
D\D0

− 2
∫
D\D0

χA∇w · ∇vdx

≥ 1
γ∗
||A∇w||2

D\D0
+ ||∇v||2D + ||v||2D + ||w||2

D\D0

− 2
∫
D\D0

χA∇w · ∇vdx.

Using the following inequality∣∣∣∣∣−2
∫
D\D0

χA∇w · ∇vdx

∣∣∣∣∣ ≤
∫

supp(χ)

|A∇w · ∇v|dx

≤ η||∇v||2D +
1
η
||A∇w||2

D\D0

Inverse Problems and Imaging Volume 0, No. 0 (0), 0



Transmission eigenvalues for an inhomogeneous media containing obstacles 15

with η > 0 to be chosen later. Then

b((v, w), (v, w)) ≥ 1
γ∗
||A∇w||2

D\D0
+ ||∇v||2D + ||v||2D + ||w||2

D\D0

− η||∇v||2
D\D0

− 1
η
||A∇w||2

D\D0

≥
(

1
γ∗
− 1
η

)
||∇w||2

D\D0
+ (1− η)||∇v||2D + ||v||2D + ||w||2

D\D0

≥ C
(
||v||2H1(D) + ||w||2

H1(D\D0)

)
with C > 0 if γ∗ < η < 1. We can conclude that ãk satisfies the Fredholm
property.

Again we define the invertible bounded linear operator B : H → H associated
with the coersive bilinear form b(·, ·) as follows b((v, w), (v′, w′)) = (B(v, w), (v′, w′))H.
The the transmission eigenvalue problem is equivalent to

(13) (B + Ck)u = 0 or (I +B−1Ck)u = 0 in H.

Furthermore the mapping k → Ck is analytic in C.

Remark 3.2. One can remark that the Fredholm property of ãk(·, ·) holds true for
any n ≥ c > 0. The restriction on the sign of n − 1 appears in the next theorem,
and is needed to show that there exists at least one k for which B +Ck is injective.

Theorem 3.5. Assume that 0 < γ∗ < γ∗ < 1 and 0 < n∗ ≤ n(x) ≤ n∗ < 1
where γ∗ := supD\D0

sup||ξ||=1(ξ · A(x)ξ), γ∗ := infD\D0
inf ||ξ||=1(ξ · A(x)ξ), n∗ =

infD\D0
n(x) and n∗ = supD\D0

n(x). Then the set of transmission eigenvalues is
discrete.

Proof. To apply the analytic Fredholm theory to (13), it remains to show that there
exists a k for which B + Ck is injective. To this end

ãiκ((v, w), (v, w)) =
∫
D\D0

A∇w · ∇wdx+
∫
D

|∇v|2dx+ κ2

∫
D

|v|2dx

+ κ2

∫
D\D0

n|w|2dx− 2
∫
D\D0

A∇w · ∇(χv)dx− 2κ2

∫
supp(χ)

nwv

≥ 1
γ∗
||A∇w||2

D\D0
+ ||∇v||2D + κ2||v||2D +

κ2

n∗
||nw||2

D\D0
− 1
η
||A∇w||2

D\D0

− η||∇v||2D −
1
α
||A∇w||2

D\D0
− αC||v||2D −

κ2

β
||nw||2

D\D0
− κ2β||v||2D(

1
γ∗
− 1
η
− 1
α

)
||A∇w||2

D\D0
+
(
κ2 (1− β)− αC

)
||v||2D

+ (1− η)||∇v||2D + κ2

(
1
n∗
− 1
β

)
||nw||2

D\D0

where C = ||∇χ||2.
Let γ∗ < η < 1, n∗ < β < 1 and α be such that 1

γ∗ −
1
η −

1
α > 0. Then for

κ large enough we have that κ2 (1− β) − αC > 0, and thus ãiκ is coercive which
means B + Ciκ is injective. Then the analytic Fredholm theory now ensures the
discreteness of the set of transmission eigenvalues.
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3.2. The existence of transmission eigenvalues. The T -coercivity approach
does not provide any framework for proving the existence of transmission eigen-
values. For this question we adapt the approach introduced in [12], [18] to treat
the case A − I >) and n > 1 or n < 1. Unfortunately, due to the presence of the
Dirichlet obstacle D0 this approach provides only the existence of a finite set of
transmission eigenvalues provided that the area of D0 is small enough. In the case
when n > 1 we also require n to be small enough. The existence of transmission
eigenvalues for I −A > 0 is still open.

Throughout this section we assume that 1 < γ∗ < γ∗ < +∞ where γ∗ :=
supD\D0

sup||ξ||=1(ξ · A(x)ξ) and γ∗ := infD\D0
inf ||ξ||=1(ξ · A(x)ξ). Recall that

n∗ = infD\D0
n(x) and n∗ = supD\D0

n(x).
If we consider the new variable u := w − v in D\D0, then u is in H1(D\D0),

u = 0 on Γ and v satisfies the mixed boundary problem depending on u in D\D0

(14)


∇ · (I −A)∇v + k2(1− n)v = ∇ ·A∇u+ k2nu in D\D0,

ν · (A− I)∇v = ν ·A∇u on Γ,
−v = u on Σ.

We define

H1
Γ(D\D0) :=

{
u ∈ H1(D\D0) such that u = 0 on Γ

}
and

H1
Σ(D\D0) :=

{
u ∈ H1(D\D0) such that u = 0 on Σ

}
.

The next step is to solve the mixed boundary value problem (14) for v as a function
of u. To this end, for a fixed u ∈ H1

Γ(D\D0), we define the lifting function θ ∈
H1(D\D0) such that θ = −u on Σ. Setting v0 := v− θ, the variational formulation
of (14) as a problem for v0 now becomes: find v0 ∈ H1

Σ(D\D0) such that

(15)
∫
D\D0

(
(A− I)∇v0 · ∇ϕ− k2(n− 1)v0ϕ

)
dx

= −
∫
D\D0

(
A∇u · ∇ϕ− k2nuϕ

)
dx−

∫
D\D0

(
(A− I)∇θ · ∇ϕ− k2(n− 1)θϕ

)
dx

for all ϕ ∈ H1
Σ(D\D0).

First, we want to show that problem (15) is well-posed using Lax-Milgram theo-
rem. Since the right-hand side is obviously a continuous function of ϕ inH1

Σ(D\D0),
it only remains to show that the left-hand side is coercive. In the next theorem, we
see that the latter is always true for n < 1 or for n > 1 small enough. Setting

µ := inf
ϕ∈H1

Σ(D\D0)

||∇ϕ||2
D\D0

||ϕ||2
D\D0

,

we have that for all ϕ ∈ H1
Σ(D\D0),
µ

µ+ 1
||ϕ||2

H1(D\D0)
≤ ||∇ϕ||2

D\D0
.

Note that µ > 0 coincides with the first eigenvalue of −∆ in D\D0 with mixed
Neumann-Dirichlet boundary conditions.
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Let Br be a ball of radius r included in D\D0 and let k̂′ > 0 be the first
transmission eigenvalue of the interior transmission problem for Br with A =

γ∗
2
I

and n = 1:

(16)


∇ · γ∗

2
∇w + k2w = 0 in Br

∆v + k2v = 0 in Br
w = v on ∂Br
ν · γ∗

2
∇w = ν · ∇v on ∂Br

The existence of such k̂′ > 0 is proven in [12], [13]. In the case when n−1 is positive,
i.e n∗ > 1, we further assume that

(17) n∗ − 1 ≤ γ∗µ

2k̂′2
.

Lemma 3.6. For every u in H1
Γ(D\D0) and k ≥ 0 satisfying k ≤ k̂′ if n > 1,

there exists a unique solution v0 ∈ H1
Σ(D\D0) of (15) and consequently a unique

vu := v0 + θ ∈ H1(D\D0) of (14).

Proof. We denote

Bk(v, ϕ) :=
∫
D\D0

(
(A− I)∇v · ∇ϕ− k2(n− 1)vϕ

)
dx

First assume that 1− n > 0. Then

Bk(v, v) ≥ (γ∗ − 1)||∇v||2
D\D0

≥ (γ∗ − 1)
µ

µ+ 1
||v||2

H1(D\D0)
.

Thus Bk is coercive for k ≥ 0 if n − 1 < 0. From Lax-Milgram theorem, we
deduce that there exists a unique solution v0 of (15) depending continuously on u.

Now assume that n− 1 > 0 and more precisely that n satisfies (17)

Bk(v, v) ≥ (γ∗ − 1)||∇v||2
D\D0

− (k2)(n∗ − 1)||v||2
D\D0

≥

(
(γ∗ − 1)2 − k̂′2(n∗ − 1)

µ

)
||∇v||2

D\D0

≥
(γ∗

2
− 1
) µ

µ+ 1
||v||2

H1(D\D0)
.

In this case Bk is coercive for 0 ≤ k ≤ k̂′ if n − 1 > 0 and the result again follows
from the Lax-Milgram theorem.

Hence we can now define a linear bounded operator Ak by

Ak : H1
Γ(D\D0) → H1(D\D0)
u 7→ vu := v0 + θ.

for k ≥ 0 if n− 1 < 0 and 0 ≤ k ≤ k̂′ if n− 1 > 0.
Assume now that k2 is not a Dirichlet eigenvalue for −∆ is D0, and let v be the

unique solution in H1(D0) to

(18)

{
∆v + k2v = 0 in D0

v = ϕ on Σ
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for some ϕ ∈ H1/2(Σ), In this case, we define the Dirichlet to Neumann operator
Tk by

Tk : H1/2(Σ) → H−1/2(Σ)

ϕ 7→ ∂v

∂ν
where v is solution to (18).

Using the Riesz representation theorem, we can define the operator

Lk : H1
Γ(D\D0)→ H1

Γ(D\D0)

by

〈Lku, ϕ〉H1(D\D0) =
∫
D\D0

(
−∇vu · ∇ϕ+ k2vuϕ

)
dx−

∫
Σ

Tkvuϕds

for all ϕ ∈ H1
Γ(D\D0), where last integral is understood in the sense of H−1/2(Σ),

H1/2(Σ) duality.

It is obvious that the mapping k → Lk is continuous in the domain of definition,
i.e. for k ≥ 0 if n− 1 < 0 and 0 ≤ k ≤ k̂′ if n− 1 > 0 such that k2 is not a Dirichlet
eigenvalue for −∆ in D0. The next theorem introduces an equivalent formulation
to (TEPA).

Theorem 3.7. Assume that k ≥ 0 if n− 1 < 0 and 0 ≤ k ≤ k̂′ if n− 1 > 0, such
that k2 is not a Dirichlet eigenvalue for −∆ in D0.
(i) Let (w, v) be a solution of (TEPA) for some k > 0. Then u := w − v ∈

H1
Γ(D\D0) solves Lku = 0.

(ii) Let u ∈ H1
Γ(D\D0) such that Lku = 0. If v := Aku, the pair w := (u + v, v)

is solution to (TEPA).

Proof. (i) If (w, v) is a solution of (TEPA), then, v = Aku where u := w − v
and solves the Helmholtz equation in D. In particular, v solves Helmholtz

equation in D\D0 and
∂v

∂ν
= Tkv on Σ. Then, for all ϕ ∈ H1

Γ(D\D0),

0 =
∫
D\D0

(∆v + k2v)ϕdx

=
∫
D\D0

(
−∇v · ∇ϕ+ k2vϕ

)
dx−

∫
Σ

∂v

∂ν
ϕds = 〈Lku, ϕ〉H1(D\D0) .

Then Lku = 0.
(ii) Let u ∈ H1

Γ(D\D0) such that Lku = 0. We define v := Aku in D\D0 and in
D0, v is defined as the solution to{

∆v + k2v = 0 in D0

v = Aku on Σ.

Then, v is in H1(D) and since Lku = 0, v satisfies ∆v+k2v = 0 in D. Besides,
v = Aku in D\D0 implies that the pair w := (u+ v, v) is solution to (TEPA).

The following theorem states some properties of the operator Lk.

Theorem 3.8. Assume that k2 is not a Dirichlet eigenvalue for −∆ in D0, and
k ≥ 0 if n− 1 < 0 and 0 ≤ k < k̂′ if n− 1 > 0.
(i) The operator Lk : H1

Γ(D\D0)→ H1
Γ(D\D0) is self-adjoint.
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(ii) Lk − L0 : H1
Γ(D\D0)→ H1

Γ(D\D0) is compact.
(iii) The operator L0 : H1

Γ(D\D0)→ H1
Γ(D\D0) is coercive.

Proof. (i) Let u1, u2 ∈ H1
Γ(D\D0) and v1 = Aku1, v2 = Aku2. Thus

(19) 〈Lku1, u2〉H1(D\D0) = −
∫
D\D0

(
(I −A)∇v1 · ∇ū2 − k2(1− n)v1ū2

)
dx

−
∫
D\D0

(
A∇v1 · ∇ū2 − k2nv1ū2

)
dx−

∫
Σ

Tk(v1)ū2ds.

From the equality (15), we have for i = 1, 2 and all ϕ ∈ H1
Σ(D\D0)∫

D\D0

(
A∇ui · ∇ϕ̄− k2nuiϕ̄

)
dx =

∫
D\D0

(
(I −A)∇vi · ∇ϕ̄− k2(1− n)viϕ̄

)
dx.

Taking i = 2 with ϕ = v1 and i = 1 with ϕ = u2 in the above, the expression
(19) for Lk becomes

〈Lku1, u2〉H1(D\D0) =
∫
D\D0

(
(A− I)∇v2 · ∇v̄1 − k2(n− 1)v2v̄1

)
dx

−
∫
D\D0

(
A∇u1 · ∇ū2 − k2nu1ū2

)
dx+

∫
Σ

Tk(v1)v̄2ds

=
∫
D\D0

(
(A− I)∇v2 · ∇v̄1 − k2(n− 1)v2v̄1

)
dx

−
∫
D\D0

(
A∇u1 · ∇ū2 − k2nu1ū2

)
dx+

∫
D0

(
∇v1 · ∇v2 − k2v1v̄2

)
dx

which is a symmetric expression for u1 and u2.
(ii) The compactness of Lk − L0 is obtained from the compact embedding of

H1(D\D0) into L2(D\D0). Indeed, let (uj) be a sequence of H1
Γ(D\D0)

weakly converging to zero in H1
Γ(D\D0). Since H1

Γ(D\D0) is compactly
embedded in L2(D\D0), we deduce that the sequence (uj) strongly con-
verges to zero in L2(D\D0). Let us denote vjk := Akuj ∈ H1(D\D0) and
vj0 := A0uj ∈ H1(D\D0). Since the operators Ak and A0 are continuous from
H1

Γ(D\D0) into H1(D\D0), we deduce that vjk and vj0 weakly converge to
zero in H1(D\D0) and consequently, strongly converge to zero in L2(D\D0).
Furthermore, from (15), vjk and vj0 satisfy for all ϕ ∈ H1

Σ(D\D0),∫
D\D0

(
(A− I)∇vjk · ∇ϕ− k

2(n− 1)vjkϕ
)
dx = −

∫
D\D0

(
A∇uj · ∇ϕ− k2nujϕ

)
dx

and ∫
D\D0

(A− I)∇vj0 · ∇ϕdx = −
∫
D\D0

A∇uj · ∇ϕdx.

Letting ṽj := vj0 − vjk, and taking the difference between the two previous
equations yield

(20)
∫
D\D0

(
(A− I)∇ṽj · ∇ϕ+ k2(n− 1)vjkϕ

)
dx = −k2

∫
D\D0

nujϕdx.
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Now, for ϕ = ṽj in (20), applying Cauchy-Schwarz inequality, we obtain∣∣∣∣∣
∫
D\D0

(A− I)∇ṽj · ∇ṽjdx

∣∣∣∣∣ = k2

∣∣∣∣∣
∫
D\D0

(
(1− n)vjk + nuj

)
ṽjdxdx

∣∣∣∣∣
≤ k2||(1− n)vjk + nuj ||D\D0

||ṽj ||D\D0
.

Since ||(1 − n)vjk + nuj ||D\D0
is bounded and ||ṽj ||D\D0

tends to zero, from
the fact that A− I is positive definite, we deduce that ∇ṽj converges to zero
in L2(D\D0) and consequently ṽj converges to zero in H1(D\D0).

Now, since for all ϕ ∈ H1
Σ(D\D0),

〈(Lk−L0)uj , ϕ〉H1(D\D0) =
∫
D\D0

∇ṽj ·∇ϕdx+k2

∫
D\D0

vjkϕdx+
∫

Σ

(T0v
j
0−Tkv

j
k)ϕds,

we have that

||(Lk − L0)uj ||H1(D\D0) = sup
||ϕ||H1(D\D0)=1

〈(Lk − L0)uj , ϕ〉H1(D\D0)

≤ ||∇ṽj ||D\D0
+ k2||vjk||D\D0

+ ||ṽj ||H1/2(Σ).

The right-hand side tends to zero and consequently (Lk−L0)uj strongly tends
to zero in H1(D\D0). Then, Lk − L0 is compact.

(iii) Now we show that L0 is coersive. To this end for u ∈ H1
Γ(D\D0) we have that

〈L0u, u〉H1(D\D0) = −
∫
D\D0

∇vu · ∇ūdx−
∫

Σ

∂vu
∂ν

ūds

= −
∫
D\D0

∇vu · ∇ūdx+
∫

Σ

∂vu
∂ν

v̄uds

= −
∫
D\D0

∇wu · ∇ūdx+
∫
D\D0

|∇u|2dx+
∫
D0

|∇vu|2dx.

Replacing vu by wu − u in (15) for k = 0 and ϕ = wu, we obtain∫
D\D0

∇u · ∇w̄udx =
∫
D\D0

(I −A)∇wu · ∇w̄udx

Therefore

(21) 〈L0u, u〉 =
∫
D\D0

(A− I)∇wu · ∇w̄udx+
∫
D\D0

|∇u|2dx+
∫
D0

|∇vu|2dx.

Since (A − I) is positive definite, we deduce that L0 is coercive, which ends
the proof of the theorem

Note that the mapping k → Lk is continuous in its domain of definition, i.e. for
k ≥ 0 if n − 1 < 0 and 0 ≤ k ≤ k̂′ if n − 1 > 0, such that k2 is not a Dirichlet
eigenvalue for −∆ in D0. The proof of existence of transmission eigenvalues is based
on the following theorem which is a modified version of Theorem 2.3 [12].

Theorem 3.9. Let Lk : H1
Γ(D\D0)→ H1

Γ(D\D0) be as defined above. If
(a) there exists k0 such that Lk0 is positive on H1

Γ(D\D0), and
(b) there exists k1 such that Lk1 is non positive on some m-dimensional subspace

of H1
Γ(D\D0).
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Then there exists m transmission eigenvalues in [k0, k1] counting with their multi-
plicity provided that the entire interval [k0, k1] belongs to the domain of definition
of the mapping k → Lk .

Theorem 3.10. Assume that A − I > 0 and that either n∗ < n < n∗ < 1 or
1 < n∗ < n < n∗ ≤ 1 + γ∗µ

2k̂′2
. Then there exists at least one transmission eigenvalue

provided that the area of D0 is small enough.

Proof. We have shown in Theorem 3.8 that L0 is coercive, thus the assumption (a)
of Theorem 3.9 is satisfied for k0 = 0.

First assume that n < 1. Let Br be the largest ball included in D\D0 of radius r
and let us denote by k̂ the first transmission eigenvalue of the interior transmission
problem in Br with A = γ∗I and n = n∗, i.e.

(22)


∇ · γ∗∇w + k2n∗w = 0 in Br
∆v + k2v = 0 in Br
w = v on ∂Br
ν · γ∗∇w = ν · ∇v on ∂Br.

Assume now that the area of D0 is small enough such that the first Dirichlet eigen-
value for −∆ in D0 is greater than k̂ (this is possible since due to the Faber-Krahn
inequality the first Dirichlet eigenvalue for −∆ in D0 is greater than C/areaD0)
Thus the operator Lk is well defined for all k ∈ [0, k̂]. denote by ŵ and v̂ the
corresponding eigenvectors and we set û := ŵ − v̂ ∈ H1

0 (Br). We shall show that
we can find u ∈ H1

Γ(D\D0) such that
〈
Lk̂u, u

〉
≤ 0 so that the assumption (b) of

Theorem 3.9 is satisfied.
From the equation satisfied by v̂ in Br and using the fact that û = 0 on ∂Br and

v̂ = ŵ − û, we first have

0 =
∫
Br

(
∆v̂ + k2v̂

)
ûdx =

∫
Br

(
∇v̂ · ∇û− k̂2v̂û

)
dx(23)

=
∫
Br

(
∇ŵ · ∇û− k̂2ŵû− |∇û|2 + k̂2|û|2

)
dx.(24)

On the other hand, replacing v̂ by ŵ− û in the variational formulation satisfied by
v̂ and ŵ we have∫

Br

(
∇û · ∇ϕ− k̂2ûϕ

)
dx =

∫
Br

(
(1− γ∗)∇ŵ · ∇ϕ− k̂2(1− n∗)ŵϕ

)
dx

for all ϕ ∈ H1(Br). In particular for ϕ = ŵ, we obtain

(25)
∫
Br

(
∇ŵ · ∇û− k̂2ŵû

)
dx =

∫
Br

(
(1− γ∗)|∇ŵ|2 − k̂2(1− n∗)|ŵ|2

)
dx.

From (24) and (25), we finally get the equality

(26)
∫
Br

(
(1− γ∗)|∇ŵ|2 − k̂2(1− n∗)|ŵ|2 − |∇û|2 + k̂2û|2

)
dx = 0.

Now we denote by ũ the extension of û by zero to all ofD\D0. Since ũ ∈ H1
Γ(D\D0),

we can define ṽ := vũ the corresponding solution to
∇ · (I −A)∇v + k̂2(1− n)v = ∇ ·A∇ũ+ k̂nũ in D\D0

ν · (I −A)∇v = ν ·A∇ũ on Γ
v = −ũ = 0 on Σ
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and we set w̃ := ũ+ ṽ ∈ H1
Σ(D\D0). We first remark that replacing ṽ by w̃ − ũ in

(15) and for ϕ = ũ, yields∫
D\D0

(
(A− I)∇w̃ · ∇ũ− k̂2(n− 1)w̃ũ

)
dx = −

∫
D\D0

(
|∇ũ|2 − k̂2|ũ|2

)
dx.

Consequently, replacing ṽ by w̃− ũ in the expression of Lk̂ and using the definition
of ũ, we obtain

〈
Lk̂ũ, ũ

〉
H1(D\D0)

= −
∫
D\D0

(
∇ṽ · ∇ũ− k̂2ṽũ

)
dx

= −
∫
D\D0

(
∇w̃ · ∇ũ− k̂2w̃ũ− |∇ũ|2 + k̂2|ũ|2

)
dx

=
∫
D\D0

(
(A− I)∇w̃ · ∇w̃ − k̂2(n− 1)|w̃|2 + |∇ũ|2 − k̂2|ũ|2

)
dx

=
∫
D\D0

(
(A− I)∇w̃ · ∇w̃ − k̂2(n− 1)|w̃|2

)
dx+

∫
Br

(
|∇û|2 − k̂2|û|2

)
dx.

Now, considering again (15) with ṽ = w̃− ũ and using the definition of ũ, for all
ϕ ∈ H1

Σ(D\D0), we have∫
D\D0

(
(A− I)∇w̃ · ∇ϕ− k̂2(n− 1)w̃ϕ

)
dx = −

∫
D\D0

(
∇ũ · ∇ϕ− k̂2ũϕ

)
dx

= −
∫
Br

(
∇û · ∇ϕ− k̂2ûϕ

)
dx =

∫
Br

(
(γ∗ − 1)∇ŵ · ∇ϕ− k̂2(n∗ − 1)ŵϕ

)
dx.

In particular, for ϕ = w̃ ∈ H1
Σ(D\D0) we obtain

(27)
∫
D\D0

(
(A− I)∇w̃ · ∇w̃ − k̂2(n− 1)|w̃|2

)
dx

=
∫
Br

(
(γ∗ − 1)∇ŵ · ∇w̃ − k̂2(n∗ − 1)ŵw̃

)
dx

The Cauchy-Schwarz inequality applied to the right-hand side of (27) givesZ
D\D0

“
(A− I)∇w̃ · ∇w̃ − k̂2(n− 1)|w̃|2

”
dx =

Z
Br

“
(γ∗ − 1)∇ŵ · ∇w̃ + k̂2(1− n∗)ŵw̃

”
dx

≤
„Z

Br

“
(γ∗ − 1)|∇ŵ|2 + k̂2(1− n∗)|ŵ|2

”
dx

«1/2 „Z
Br

“
(γ∗ − 1)|∇w̃|2 + k̂2(1− n∗)|w̃|2

”
dx

«1/2

≤
„Z

Br

“
(γ∗ − 1)|∇ŵ|2 + k̂2(1− n∗)|ŵ|2

”
dx

«1/2
 Z

D\D0

“
(A− I)∇w̃ · ∇w̃ − k̂2(n− 1)|w̃|2

”
dx

!1/2

and finally

(28)
∫
D\D0

(
(A− I)∇w̃ · ∇w̃ − k̂2(n− 1)|w̃|2

)
dx

≤
∫
Br

(
(γ∗ − 1)|∇ŵ|2 + k̂2(1− n∗)|ŵ|2

)
dx.
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Therefore, from (28) and (26), we obtain that〈
Lk̂ũ, ũ

〉
H1(D\D0)

=
∫
D\D0

(
(A− I)∇w̃ · ∇w̃ − k̂2(n− 1)|w̃|2

)
dx

+
∫
Br

(
|∇û|2 − k̂2|û|2

)
dx

≤
∫
Br

(
(γ∗ − 1)|∇ŵ|2 + k̂2(1− n∗)|ŵ|2 + |∇û|2 − k̂2|û|2

)
dx = 0.

We can conclude that there exists a transmission eigenvalue in (0, k̂].

Now assume that 1 < n∗ < n < n∗ ≤ 1 + γ∗µ

2k̂′2
. Again, we assume that the

area of D0 is small enough such that the first Dirichlet eigenvalue for −∆ in D0 is
greater than k̂′. (We recall that k̂′ is the first transmission eigenvalue of the interior
transmission problem for Br with A = γ∗

2 and n = 1 given in (16).) We denote by
ŵ and v̂ the eigenvectors corresponding to k̂′ and set û := ŵ − v̂ ∈ H1

0 (Br). From
the equation satisfied by v̂ and using the fact that û = 0 on ∂Br and v̂ = ŵ− û we
first have

0 =
∫
Br

(
∇v̂ · ∇û− k̂′2v̂û

)
dx =

∫
Br

(
∇ŵ · ∇û− k̂′2ŵû− |∇û|2 + k̂′2|û|2

)
dx.

On the other hand, replacing v̂ by ŵ− û in the variational formulation satisfied by
v̂ and ŵ we have∫

Br

(
∇û · ∇ϕ− k̂′2ûϕ

)
dx =

∫
Br

(
1− γ∗

2

)
∇ŵ · ∇ϕdx

for all ϕ ∈ H1(Br). In particular for ϕ = ŵ, we obtain

(29)
∫
Br

(
∇ŵ · ∇û− k̂′2ŵû

)
dx =

∫
Br

(
1− γ∗

2

)
|∇ŵ|2dx.

Combining the above equations, we finally obtain

(30)
∫
Br

((
1− γ∗

2

)
|∇ŵ|2 − |∇û|2 + k̂′2û|2

)
dx = 0.

Now we denote by ũ the extension of û by zero to all of D\D0. Since ũ ∈
H1

Σ(D\D0), we can define ṽ := vũ the corresponding solution to

(31)


∇ · (I −A)∇v + k̂′2(1− n)v = ∇ ·A∇ũ+ k̂′nũ in D\D0

ν · (I −A)∇v = ν ·A∇ũ on Γ
v = −ũ = 0 on Σ

and we set w̃ := ũ+ ṽ. We first remark that replacing ṽ by w̃ − ũ in (15), we have∫
D\D0

(
(A− I)∇w̃ · ∇ϕ− k̂′2(n− 1)w̃ϕ

)
dx = −

∫
D\D0

(
∇ũ · ∇ϕ− k̂′2ũϕ

)
dx

= −
∫
Br

(
∇û · ∇ϕ− k̂′2ûϕ

)
dx

=
∫
Br

(γ∗
2
− 1
)
∇ŵ · ∇ϕdx
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In particular, for ϕ = w̃ ∈ H1
Σ(D\D0), we obtain

(32)
∫
D\D0

(
(A− I)∇w̃ · ∇w̃ − k̂′2(n− 1)|w̃|2

)
dx =

∫
Br

(γ∗
2
− 1
)
∇ŵ · ∇w̃dx.

The Cauchy-Schwarz inequality applied to the right-hand side of (32) gives∫
D\D0

(
(A− I)∇w̃ · ∇w̃ − k̂′2(n− 1)|w̃|2

)
dx =

∫
Br

(γ∗
2
− 1
)
∇ŵ · ∇w̃dx

≤
(∫

Br

(γ∗
2
− 1
)
|∇ŵ|2dx

)1/2(∫
Br

(γ∗
2
− 1
)
|∇w̃|2dx

)1/2

=
(∫

Br

(γ∗
2
− 1
)
|∇ŵ|2dx

)1/2(∫
Br

(
(γ∗ − 1)|∇w̃|2 − γ∗

2
|∇w̃|2

)
dx

)1/2

≤
(∫

Br

(γ∗
2
− 1
)
|∇ŵ|2dx

)1/2
(∫

D\D0

(
(A− I)∇w̃ · ∇w̃ − k̂′2(n− 1)|w̃|2

)
dx

)1/2

and finally

(33)
∫
D\D0

(
(A− I)∇w̃ · ∇w̃ − k̂′2(n− 1)|w̃|2

)
dx ≤

∫
Br

(γ∗
2
− 1
)
|∇ŵ|2dx.

Therefore, we obtain〈
Lk̂′ ũ, ũ

〉
H1(D\D0)

= −
∫
D\D0

(
∇ṽ · ∇ũ− k̂′2ṽũ

)
dx

= −
∫
D\D0

(
∇w̃ · ∇ũ− k̂′2w̃ũ− |∇ũ|2 + k̂′2|ũ|2

)
dx

=
∫
D\D0

(
(A− I)∇w̃ · ∇w̃ − k̂′2(n− 1)|w̃|2 + |∇ũ|2 − k̂′2|ũ|2

)
dx

=
∫
D\D0

(
(A− I)∇w̃ · ∇w̃ − k̂′2(n− 1)|w̃|2

)
dx

+
∫
Br

(
|∇û|2 − k̂′2|û|2

)
dx

≤
∫
Br

((γ∗
2
− 1
)
|∇ŵ|2 + |∇û|2 − k̂′2|û|2

)
dx = 0.

Thus we can conclude that if 1 < n∗ < n < n∗ ≤ 1+ γ∗µ

2k̂′2
there exists a transmission

eigenvalue in (0, k̂′].

Remark 3.3. As the area of D0 goes to 0, in the case when 0 < n∗ < n∗ < 1 it is
possible to prove the existence of more and more transmission eigenvalues. In this
case since the first Dirichlet eigenvalue for −∆ in D0 goes to infinity one can take
r such that M(r) disjoint balls of radius r are included in D\D0 and no Dirichlet
eigenvalues are in [0, k̂]. This way the assumption (b) of Theorem 3.9 is satisfied in a
M(r)-dimensional subspace of H1

Γ(D\D0) and thus there exists M(r) transmission
eigenvalues in [0, k̂] (counting multiplicity). The smaller the area of D0 is the
smaller r can be chosen and the larger M(r) becomes. The same remark holds
true for the case when 1 < n∗ provided that n∗ is small enough, more specifically
n∗ < 1 + γ∗µ

2k̂′2
.
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Remark 3.4. The entire argument in the proof of Theorem 3.10 holds true if k̂
or k̂′ is the first transmission eigenvalue of (22) or (16), respectively, where Br is
replaced with an arbitrary region B ⊂ D\D0 (such transmission eigenvalues are
known to exists [12]). Depending on the geometry of D\D0 one can choose B such
that the corresponding k̂ or k̂′ are smaller than the ones for the ball Br (see the
estimates on the first transmission eigenvalue in [9], [10] and [12]) which would
enable to prove the existence of at least one transmission eigenvalue for larger D0.
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