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Abstract. We consider the interior transmission eigenvalue problem corre-

sponding to the inverse scattering problem for an isotropic inhomogeneous
medium. We first prove that transmission eigenvalues exist for media with

index of refraction greater or less than one without assuming that the contrast
is sufficiently large. Then we show that for an arbitrary Lipshitz domain with

constant index of refraction there exists an infinite discrete set of transmission

eigenvalues that accumulate at infinity. Finally, for the general case of non
constant index of refraction we provide a lower and an upper bound for the

first transmission eigenvalue in terms of the first transmission eigenvalue for

appropriate balls with constant index of refraction.

1. Introduction

The interior transmission problem is a boundary value problem in a bounded do-
main which arises in inverse scattering theory for inhomogeneous media. Although
simply stated, this problem is not covered by the standard theory of elliptic partial
differential equations since as it stands it is neither elliptic nor self-adjoint. Of par-
ticular interest is the spectrum associated with this boundary value problem, more
specifically the existence of eigenvalues which are called transmission eigenvalues.
Besides the theoretical importance of transmission eigenvalues in connection with
uniqueness and reconstruction results in inverse scattering theory, recently they
have been used to obtain information about the index of refraction from measured
data [1], [6]. This is based on the important result that transmission eigenvalues
can be determined from the measured far field data which is recently proven in [3].
For information on the interior transmission problem, we refer the reader to [8] and
[9].

Up to recently, most of the known results on the interior transmission problem
are concerned with when the problem is well-posed. Roughly speaking, two main
approaches are available in this direction, namely integral equation methods [7],
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[10], and variational methods typically applied to a fourth order equivalent bound-
ary value problem [2], [5], [15]. However, except for the case of spherically stratified
medium [8], [9], until recently little was known about the existence and properties
of transmission eigenvalues. Applying the analytic Fredholm theory it was possi-
ble to show that transmission eigenvalues form at most a discrete set with infinity
as the only possible accumulation point. However, nothing was known in general
about the existence of transmission eigenvalues untill the recent important result of
Päivärinta and Sylvester [14] who were the first to show that, in the case of (scalar)
isotropic media, a finite number of transmission eigenvalues exist provided the in-
dex of refraction is bounded away from one. Kirsch [11], and Cakoni and Haddar
[5] have extended this existence result to the case of anisotropic media for both
the scalar case and Maxwell’s equations. Most recently, the analysis of the interior
transmission problem and the existence of the corresponding eigenvalues have been
established for the case when inside the medium there are subregions with index
of refraction equal to one (i.e cavities) which provides the theoretical background
for an application of transmission eigenvalues in non-destructive testing [1]. How-
ever, the existence of transmission eigenvalues is proven under the restriction that
the contrast of the inhomogeneous medium is sufficiently large and the larger the
contrast is the more transmission eigenvalues are shown to exist.

The goal of this paper is to first show that for an inhomogeneous medium with
bounded support there exists at least one eigenvalue provided that the index of
refraction is less than or greater than one inside the medium, thus removing the
restriction on the index of refraction being sufficiently large. This is done using the
transmission eigenvalues and eigenvectors corresponding to a ball inside the support
of the inhomogeneity with constant index of refraction equal to the supremum of
the actual index of refraction. In addition, for the case of a homogneous medium,
we show that there exists infinitely many transmission eigenvalues with infinity as
the only accumulation point. Our analysis makes use of the analytical framework
discussed in [5] in particular of an auxilarly eigenvalue problem for a self adjoint
coercive operator which depends in a non-linear fashion on a parameter. Specific
values of this parameter correspond to transmission eigenvalues. The main tool of
our approach is a monotonicity relation that we establish for the eigenvalues of this
auxiliary eigenvalue problem with respect to the domain. Finally, as a byproduct
of our analysis we obtain a lower and an upper bound for the first transmission
eigenvalue for an arbitrary inhomogeneous medium in terms of the first transmis-
sion eigenvalue for the smallest ball containing the scatterer and the largest ball
contained in the scatterer for the both cases of a positive or negative contrast in
the medium. The lower bound is an improvement of the lower bound obtained in
[4] and [9] but is implicit in terms of the supremum of the index of refraction.

We conclude by noting that many questions related to the spectrum of interior
transmission problems still remain open. In particular, the next step is to show the
existence of an infinite discrete set of transmission eigenvalues for the general case
of media with non-constant index of refraction and for other scattering problems
such as for Maxwell’s equations and anisotropic media.
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2. Interior transmission eigenvalue problem

The interior transmission eigenvalue problem corresponding to the scattering by
an isotropic inhomogenous medium in R3 reads:

∆w + k2n(x)w = 0 in D(1)
∆v + k2v = 0 in D(2)

w = v on ∂D(3)
∂w

∂ν
=
∂v

∂ν
on ∂D(4)

for w ∈ L2(D) and v ∈ L2(D) such that w − v ∈ H2
0 (D) where

H2
0 (D) =

{
u ∈ H2(D) : u = 0 and

∂u

∂ν
= 0 on ∂D

}
.

Here we assume that the index of refraction is a real valued function such that
n ∈ L∞(D), 1/|n(x) − 1| ∈ L∞(D) and n(x) ≥ δ > 0 almost everywhere in D.
(It is known that for complex index of refraction n this problem has only the zero
solution). Furthermore, we assume that D ⊂ R3 is a bounded simply connected
region with Lipschitz boundary ∂D and denote by ν the outward normal vector to
∂D. We remark that everything in this paper holds true for the same equations
in R2. Transmission eigenvalues are the values of k > 0 for which the above
homogeneous interior transmission problem has non zero solutions. It is possible to
write (1)-(4) as an equivalent eigenvalue problem for u = w− v ∈ H2

0 (D) satisfying
the following fourth order equation

(5)
(
∆ + k2n

) 1
n− 1

(
∆ + k2

)
u = 0

In the variational form (5) is formulated as the problem of finding a function u ∈
H2

0 (D) such that

(6)
∫
D

1
n− 1

(∆u+ k2u)(∆v + k2nv) dx = 0 for all v ∈ H2
0 (D).

Following [5] we set k2 := τ and define the following bounded sesquilinear forms on
H2

0 (D)×H2
0 (D):

(7) Aτ (u, v) =
(

1
n− 1

(∆u+ τu), (∆v + τv)
)
D

+ τ2 (u, v)D ,

Ãτ (u, v) =
(

1
1− n

(∆u+ τnu), (∆v + τnv)
)
D

+ τ2 (nu, v)D(8)

=
(

n

1− n
(∆u+ τu), (∆v + τv)

)
D

+ (∆u, ∆v)D

and

(9) B(u, v) = (∇u, ∇v)D
where (· , ·)D denotes the L2(D) inner product. Then (6) can be written as either

(10) Aτ (u, v)− τB(u, v) = 0 for all v ∈ H2
0 (D),

or

(11) Ãτ (u, v)− τB(u, v) = 0 for all v ∈ H2
0 (D).
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(Note that Ãτ = −Aτ + 2τB. We use different notations Aτ and Ãτ to simplify
the presentation as it will become clear in the following). In [5] it is proven that
if 1

n(x)−1 > γ > 0 almost everywhere in D then Aτ is a coersive sesquilinear form

on H2
0 (D)×H2

0 (D) whereas if
n(x)

1− n(x)
> γ > 0 almost everywhere in D then Ãτ

is a coersive sesquilinear form on H2
0 (D)×H2

0 (D). Using the Riesz representation
theorem we now define the bounded linear operators Aτ : H2

0 (D) → H2
0 (D), Ãτ :

H2
0 (D)→ H2

0 (D) and B : H2
0 (D)→ H2

0 (D) by

(Aτu, v)H2(D) = Aτ (u, v),
(
Ãτu, v

)
H2(D)

= Ãτ (u, v) and (Bu, v)H2(D) = B(u, v).

As is shown in [5], since n is real the sesquilinear forms Aτ , Ãτ and B are hermitian
and therefore the operators Aτ , Ãτ and B are self-adjoint. Furthermore, by defi-
nition, B is a non negative operator and if 1

n(x)−1 > γ > 0 then Aτ is a positive

definite operator, whereas if n(x)
1−n(x) > γ > 0 then Ãτ is a positive definite operator.

Finally, noting that for u ∈ H2
0 (D) we have that ∇u ∈ H1

0 (D)2, since H1
0 (D)2 is

compactly embedded in L2(D)2 we can conclude that B : H2
0 (D) → H2

0 (D) is a
compact operator. Also Aτ and Ãτ depend continuously on τ ∈ (0, +∞).

From the above discussion, k > 0 is a transmission eigenvalue if for τ = k2 the
kernel of the operator Aτ − τB ( if 1/(n− 1) > γ > 0) or the operator Ãτ − τB (if
n/(1− n) > γ > 0) is non trivial. In order to analyze the kernel of these operators
we consider an auxiliary eigenvalue problem

(12) Aτu− λ(τ)Bu = 0 u ∈ H2
0 (D)

if 1/(n− 1) > γ > 0 and

(13) Ãτu− λ(τ)Bu = 0 u ∈ H2
0 (D)

if n/(1− n) > γ > 0.
The eigenvalue problems (12) and (13) fit into the following abstract analytical

framework which is discussed in [5]. In particular, let U be a separable Hilbert
space with scalar product (·, ·), A be a bounded, positive definite and self-adjoint
operator on U and let B be a non negative, self-adjoint and compact bounded linear
operator on U . Then there exists an increasing sequence of positive real numbers
(λj)j≥1 and a sequence (uj)j≥1 of elements of U such that Auj = λjBuj . The
sequence (uj)j≥1 form a basis of (A ker(B))⊥ and if ker(B)⊥ has infinite dimension
then λj → +∞ as j →∞ (see Theorem 2.1 in [5]). Furthermore these eigenvalues
satisfy a min-max principle (see Corollary 2.1 [5]), namely

(14) λj = min
W⊂Uj

(
max

u∈W\{0}

(Au, u)
(Bu, u)

)
where Uj denotes the set of all j dimensional subspaces W of U such that W ∩
ker(B) = {0} and λ1 ≤ λ2 ≤ . . . .

The following theorem proved in [5] is needed in our analysis for proving the
existence of transmission eigenvalues.

Theorem 2.1. Let τ 7−→ Aτ be a continuous mapping from ]0,∞[ to the set of
self-adjoint and positive definite bounded linear operators on U and let B be a self-
adjoint and non negative compact bounded linear operator on U . We assume that
there exists two positive constant τ0 > 0 and τ1 > 0 such that

1. Aτ0 − τ0B is positive on U ,
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2. Aτ1 − τ1B is non positive on a m dimensional subspace of U .
Then each of the equations λj(τ) = τ for j = 1, . . . ,m, has at least one solution in
[τ0, τ1] where λj(τ) is the jth eigenvalue (counting multiplicity) of Aτ with respect
to B, i.e. ker (Aτ − λj(τ)B) 6= {0}.

Returning to (12) and (13) and setting U := H2
0 (D), we have that (12) and (13)

have a countable set of eigenvalues {λk(τ)}∞j=1 that satisfy the min-max principle
(14). Moreover, for the above discussion, each λk(τ) is a continuous function of
τ and k > 0 is a transmission eigenvalue if τ := k2 is a zero of any of nonlinear
equations

(15) λk(τ)− τ = 0.

Remark 2.1. The multiplicity of transmission eigenvalues is finite since, if k0 is a
transmission eigenvalue, then the kernel of I−τ0A−1/2

τ0 BA−1/2
τ0 or I−τ0Ã−1/2

τ0 BÃ−1/2
τ0

where τ0 := k2
0 is finite because the operators τ0Ã−1/2

τ0 BÃ−1/2
τ0 and τ0Ã−1/2

τ0 BÃ−1/2
τ0

are compact and self-adjoint (if 1/(n − 1) > γ > 0) and (if n/(1 − n) > γ > 0),
respectively [12].

Remark 2.2. Based on the analytic Fredholm theory it is shown [8] that trans-
mission eigenvalues can have only +∞ as a possible accumulation point.

We end this section by recalling some well-known results on transmission eigen-
values for a ball. Let B be a ball centered at the origin and let us consider the
interior transmission problem for the ball B with constant index of refraction n > 0
and n 6= 1.

∆w + k2nw = 0 in B(16)
∆v + k2v = 0 in B(17)

w = v on ∂B(18)
∂w

∂ν
=
∂v

∂ν
on ∂B(19)

By a separation of variables technique, it is possible to show [9] (see also [8]) that
(16)-(19) has a countable discrete set of eigenvalues {kj}∞j=1. Let vB,nj and wB,nj be
a non zero solution of (16)-(19) corresponding to kj , j = 1, .... Denoting uB,nj :=
wB,nj − vB,nj we have that uB,nj ∈ H2

0 (B) and

(20)
∫
B

1
n− 1

(∆uB,nj + k2
ju
B,n
j )(∆uB,nj + k2

jnu
B,n
j ) dx = 0.

We call uB,nj a transmission eigenfunction corresponding to the transmission eigen-
value kj .

3. On the existence of a transmission eigenvalue.

Now we are ready to prove our fist result, namely the proof of the existence
of at least one transmission eigenvalue without the restriction that the index of
refraction is sufficiently large [5], [14]. To this end, we show that for the equation
(12) if 1/(n− 1) > γ > 0 and the equation (13) if n/(1− n) > γ > 0 there exist τ0
and τ1 satisfying the assumption 1 and 2, respectively, in Theorem 2.1.

In the following we denote by n∗ = infD(n) and n∗ = supD(n) and assume that
the origin of the coordinative system is inside D.
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Theorem 3.1. Let n ∈ L∞(D) satisfying either one of the following assumptions
1) 1 + α ≤ n∗ ≤ n(x) ≤ n∗ <∞,
2) 0 < n∗ ≤ n(x) ≤ n∗ < 1− β.

for some α > 0 and β > 0 positive constants. Then, there exists at least one
transmission eigenvalue.

Proof. First assume that assumption 1) holds. This assumption also implies that

0 <
1

n∗ − 1
≤ 1
n(x)− 1

≤ 1
n∗ − 1

<∞

and according to the above, Aτ and B, τ > 0 satisfy the assumptions of Theorem
2.1 with U = H2

0 (D). Using the Poincaré inequality

(21) ‖∇u‖2L2(D) ≤
1

λ0(D)
‖∆u‖2L2(D)

we have that (see [5] for more details)

(22) (Aτu− τBu, u)H2
0
≥
(
γ − γ2

ε
− τ

λ0(D)

)
‖∆u‖2L2 + τ(1 + γ − ε)‖u‖2L2

with γ = 1
n∗−1 and γ < ε < γ + 1. Hence Aτ − τB is positive as long as τ <(

γ − γ2

ε

)
λ0(D). In particular, taking ε arbitrary close to γ+ 1, the latter becomes

τ < γ
1+γλ0(D) = λ0(D)

supD(n) . Then any positive number τ0 smaller then λ0(D)
supD(n)

satisfies assumption 1 of Theorem 2.1. Next we have that

(Aτu− τBu, u)H2
0 (D) =

∫
D

1
n− 1

|∆u+ τu|2 dx+ τ2

∫
D

|u|2 dx− τ
∫
D

|∇u|2 dx

≤
∫
D

1
n∗ − 1

|∆u+ τu|2 dx+ τ2

∫
D

|u|2 dx− τ
∫
D

|∇u|2 dx(23)

Now let B1 ⊂ D be a ball contained in D centered at the origin and u1 := wB1,n∗
j0

−
vB1,n∗
j0

∈ H2
0 (B1) be a transmission eigenfunction corresponding to the transmission

eigenvalue kj0 for some j0 for the ball B1 with index of refraction n∗ and let τ1 = k2
j0

.
The extension by zero ũ1 in the whole D of u1 is a function in H2

0 (D). Using (20)
and (23) we have that

(Aτ1 ũ1 − τ1Bũ1, ũ1)H2
0 (D) ≤ 0.

Hence from Theorem 2.1 there exists a transmission eigenvalue k > 0 such that k2

is between τ0 and τ1. Next we assume that assumption 2) holds. The proof for this

case uses similar arguments as in the previous case after replacing Aτ with Ãτ . In
this case we have that

0 <
n∗

1− n∗
≤ n(x)

1− n(x)
≤ n∗

1− n∗
<∞,

and therefore according to the above, Ãτ and B, τ > 0 satisfy the assumptions of
Theorem 2.1 with U = H2

0 (D). Now we have (see [5] for more details)

(24)
(
Ãτu− τBu, u

)
H2

0

≥
(

1 + γ − ε− τ

λ0(D)

)
‖∆u‖2L2 + τ

(
γ − γ2

ε

)
‖u‖2L2
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with γ = n∗
1−n∗ and γ < ε < γ + 1. Hence Ãτ − τB is positive as long as τ <

(1 + γ − ε)λ0(D). In particular letting ε be arbitrarily close to γ shows in this case
that any τ0 < λ0(D) satisfies the assumption 1 in Theorem 2.1. Next we have(

Ãτu− τBu, u
)
H2

0 (D)
=

∫
D

n

1− n
|∆u+ τu|2 dx+

∫
D

|∆u|2 dx− τ
∫
D

|∇u|2 dx

≤
∫
D

n∗

1− n∗
|∆u+ τu|2 dx+

∫
D

|∆u|2 dx− τ
∫
D

|∇u|2 dx.(25)

Again we consider B1 ⊂ D be a ball contained in D centered at the origin and
u1 := wB1,n

∗

j0
− vB1,n

∗

j0
∈ H2

0 (B1) be a transmission eigenfunction corresponding
to the transmission eigenvalue kj0 for some j0 for the ball B1 now with index of
refraction n∗ and let τ1 = k2

j0
. The extension by zero ũ1 in the whole D of u1 is a

function in H2
0 (D). Using (20) and (25) we now have that(

Ãτ1 ũ1 − τ1Bũ1, ũ1

)
H2

0 (D)
≤ 0

and the existence of a transmission eigenvalue k > 0 such that k2 is between τ0 and
τ1 is guaranteed by Theorem 2.1.

3.1. The existence of an infinite discrete set of transmission eigenval-
ues for constant index of refraction. Our next goal is to show that for an
arbitrary domain D there exists indeed an infinite countable number of transmission
eigenvalues in the case when the index of refraction is a positive constant n > 0 such
that n 6= 1. (Note that for D a ball and spherically stratified medium the result
has been proven in [9].) We consider two balls B1 and B2 centered at the origin
with radius r1 and r2, respectively such that B1 ⊂ D ⊂ B2. Next we consider the
interior transmission eigenvalue problem for B1, B2 and D with index of refraction
n, i.e. (16)-(19) with B replaced by B1 and B2 , respectively and (1)-(4) with n(x)
replaced by the constant n. We denote by AB1

τ on H2
0 (B1), AB2

τ on H2
0 (B2) and

ADτ on H2
0 (D) the corresponding operators defined in Section 2 and similarly we

also have ÃB1
τ , ÃB2

τ and ÃDτ . The eigenvalues of these operators with respect to
the operator B (defined on the corresponding space), i.e. the eigenvalues of corre-
sponding problems (12) or (13), are denoted by λj(τ,B1), λj(τ,B2) and λj(τ,D),
j = 1, .... The inclusion B1 ⊂ D induces a natural embedding H2

0 (B1) ⊂ H2
0 (D)

just by extending by zero functions in H2
0 (B1) to the whole D. Similarly, because

D ⊂ B2 we also have H2
0 (D) ⊂ H2

0 (B2). In particular, min-max principle (14)
implies the following monotonocity

(26) λj(τ,B2) ≤ λj(τ,D) ≤ λj(τ,B1).

(Note that the kernel of B contains only constant functions which are not in H2
0

except for the zero function).

Theorem 3.2. Assume that the index of refraction n > 0 is a positive constant such
that n 6= 1. Then there exists an infinite discrete set of transmission eigenvalues
with +∞ as accumulation point.

Proof. Let us denote by a = r2/r1 > 1 and make the change of variable x̃ = ax.
Obviously, if x ∈ B1 then x̃ ∈ B2. Scaling properties of the Helmholz equation
give that if kj,B1 , j = 1, . . . is a transmission eigenvalue for the ball B1 and
uB1
j (x) = wB1

j (x) − vB1
j (x) is a corresponding eigenfunction then kj,B2 := kj,B1/a

Inverse Problems and Imaging Volume 0, No. 0 (0), 0
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is a transmission eigenvalue for the ball B2 and ũB2
j (x̃) := uB1

j (x̃/a) is a corre-
sponding eigenfunction and conversely. Hence there is a one to one correspondence
between transmission eigenvalues for B1 and B2 and we count them accordingly.
Obviously, from Section 2 we have that for any j ∈ N there exists a mj such that
k2
j,B1

= λmj
(k2
j,B1

, B1). The same scaling property is inherited by the eigenvalue
problem (12) or (13). Indeed, if n > 1 we have that for u ∈ H2

0 (B1) and ũ ∈ H2
0 (B2)

R(u, τ, B1) =
1

n−1‖∆u+ τu‖2B1
+ τ2‖u‖2B1

‖∇u‖2B1

=
a4

n−1‖∆ũ+ τ
a2 ũ‖2B2

+ τ2‖ũ‖2B2

a2‖∇ũ‖2B2

= a2
1

n−1‖∆ũ+ τ
a2 ũ‖2B2

+
(
τ
a2

)2 ‖ũ‖2B2

‖∇ũ‖2B2

= a2R
(
ũ,

τ

a2
, B2

)
.(27)

Similarly, for 0 < n < 1 we have that

R(u, τ, B1) =
n

1−n‖∆u+ τu‖2B1
+ ‖∆u‖2B1

‖∇u‖2B1

=
a4n
1−n‖∆ũ+ τ

a2 ũ‖2B2
+ a4‖∆ũ‖2B2

a2‖∇ũ‖2B2

= a2
n

1−n‖∆ũ+ τ
a2 ũ‖2B2

+ ‖∆ũ‖2B2

‖∇ũ‖2B2

= a2R
(
ũ,

τ

a2
, B2

)
.(28)

Hence form (27) and (28) for both cases we have

λj(τ,B1) = min
W⊂Uj

max
u∈W\{0}

R(u, τ, B1)(29)

= a2 min
W⊂Ũj

max
ũ∈W\{0}

R
(
ũ,

τ

a2
, B2

)
= a2λj

( τ
a2
, B2

)
where Uj denotes the set of all j dimensional subspaces W of H2

0 (B1) and Ũj denotes
the set of all j dimensional subspaces W of H2

0 (B2). Thus, from (29) we can write

k2
j,B2

=
1
a2
k2
j,B1

=
1
a2
λmj

(k2
j,B1

, B1) = λmj

(
k2
j,B1

a2
, B2

)
= λmj

(k2
j,B2

, B2).

Hence we have proven that for every j = 1, . . . , there exists a mj such that

(30) k2
j,B1

= λmj
(k2
j,B1

, B1) and k2
j,B2

= λmj
(k2
j,B2

, B2)

where kj,B1 > 0 and kj,B2 > 0 are the transmission eigenvalue for the ball B1 and
B2. Recall that kj,B1 = akj,B2 > kj,B2 .

Now as mentioned before transmission eigenvalues for D are the zeros of contin-
uous functions

fj(τ) := λj(τ,D)− τ j ∈ N.
For τ = k2

j,B2
we have that

fmj
(k2
j,B2

) = λmj
(k2
j,B2

, D)− k2
j,B2
≥ λmj

(k2
j,B2

, B2)− k2
j,B2

= 0

and
fmj

(k2
j,B1

) = λmj
j(k2

j,B1
, D)− k2

j,B1
≤ λmj

(k2
j,B1

, B1)− k2
j,B2

= 0.

Therefore by continuity fmj
has a zero in the interval [k2

j,B2
, k2

j,B1
], whence there

exists a transmission eigenvalue in each of the intervals [k2
j,B2

, k2
j,B1

], for j ∈ N.
Since kj,B2 → +∞ and kj,B1 → +∞ as j → +∞, we have shown the existence of
an infinite set of transmission eigenvalues.
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Note that form [9] and [13] one has the following asymptotic behavior of the
transmission eigenvalues for a ball B of radius r with constant index of refraction n

k2
j,B =

j2π2

r2(
√
n− 1)2

+O(1)

for j large enough. Now for the arbitrary domain D, let {kj} be the sequence of
transmission eigenvalues that we recovered in the above analysis. Hence for j large
enough we have

j2π2

r22(
√
n− 1)2

+ C1 ≤ k2
j ≤

j2π2

r21(
√
n− 1)2

+ C2

where C1 and C2 are two constant (independent of n and j) and r1 is the radius of
the ball B1 ⊂ D and r2 is the radius of the ball D ⊂ B2.

3.2. Bounds for the first transmission eigenvalue. We end by providing
a lower and an upper bound for the first transmission eigenvalue for an arbitrary
domainD and index of refraction n(x) in terms of the first eigenvalue for appropriate
balls with constant index of refraction.

Corollary 3.1. Let n ∈ L∞(D) and let B1 be the largest ball B1 ⊂ D and B2 the
smallest ball D ⊂ B2. Then

1) If 1 + α ≤ n∗ ≤ n(x) ≤ n∗ <∞ then

0 < k1,B2,n∗ ≤ k1,D,n(x) ≤ k1,B1,n∗

2) If 0 < n∗ ≤ n(x) ≤ n∗ < 1− β then

0 < k1,B2,n∗ ≤ k1,D,n(x) ≤ k1,B1,n∗

where k1,B2,n∗ and k1,B2,n∗ are the first transmission eigenvalue corresponding to
the ball B2 with constant index of refraction n∗ and n∗ respectively, k1,D,n(x) is
the first transmission eigenvalue of D with the given index of refraction n(x) and
k1,B1,n∗ and k1,B1,n∗ are the first transmission eigenvalue for the ball B1 with index
of refraction n∗ and n∗, respectively.

Proof. Assume first that 1 + α ≤ n∗ ≤ n(x) ≤ n∗ < ∞. Then obviously for any
u ∈ H2

0 (D) we have
1

n∗−1‖∆u+ τu‖2D + τ2‖u‖2D
‖∇u‖2D

≤

∫
D

1
n(x)−1 |∆u+ τu|2 dx+ τ2‖u‖2D

‖∇u‖2D

≤
1

n∗−1‖∆u+ τu‖2D + τ2‖u‖2D
‖∇u‖2D

.(31)

Therefore from (14) we have that for an arbitrary τ > 0

(32) λ1(τ,B2, n
∗) ≤ λ1(τ,D, n∗) ≤ λ1(τ,D, n(x)) ≤ λ1(τ,D, n∗) ≤ λ1(τ,B1, n∗)

where λ1(τ,D, n∗), λ1(τ,D, n(x)) and λ1(τ,D, n∗) are the fist eigenvalue of the
auxiliary problem for D and n∗, n(x) and n∗, respectively, and λ1(τ,B2, n

∗) and
λ1(τ,B1, n∗) are the first eigenvalue of the auxiliary problem for B2, n∗ and B1, n∗,
respectively. Now for τ1 := k1,B1,n∗ , B1 ⊂ D we have that λ1(τ,D, n(x)) − τ ≤ 0
since in the subspace spanned by the extension by zero to the whole D of the the
eigenfunction ũB1,n∗

1 the Rayleigh quotient minus τ for τ = τ1 becomes negative.
On the other hand, for τ0 := k1,B2,n∗ , B2 ⊂ D we have λ1(τ0, B2, n

∗)− τ0 = 0 and
hence λ1(τ0, D, n(x))−τ0 ≥ 0. Therefore the first eigenvalue k1,D,n(x) corresponding
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to D and n(x) is between k1,B2,n∗ and k1,B1,n∗ . Note that there is no transmission
eigenvalue for D and n(x) that is less then k1,B2,n∗ . Indeed if there is a transmission
eigenvalue strictly less then k1,B2,n∗ then by the monotonocity of the eigenvalues
of the auxiliary problem with respect to the domain and the fact that for τ small
enough there are no transmission eigenvalues we would have found an eigenvalue of
the ball B2 and n∗ that is strictly smaller then the first eigenvalue. The case for
0 < n∗ ≤ n(x) ≤ n∗ < 1 − β can be proven in the same way if n∗ is replaced by
n∗.
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