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Abstract
We consider the direct and inverse scattering problems for partially coated
obstacles. To this end, we first use the method of integral equations of the
first kind together with variational methods to solve a scattering problem for
the Helmholtz equation where the scattered field satisfies mixed Dirichlet-
impedance boundary conditions on the Lipschitz boundary of the scatterer D.
We then use the linear sampling method to solve the inverse scattering problem
of determining D from a knowledge of the far-field pattern of the scattered field.
Numerical examples are given showing the performance of the linear sampling
method in this case.

1. Introduction

The inverse scattering problem for acoustic or electromagnetic waves has drawn increased
attention in recent years due its importance in various areas of imaging and non-destructive
testing [1]. Until recently the main techniques for solving such problems have been some form
of a ‘weak scattering’ approximation or an appropriately designed nonlinear optimization
algorithm. Unfortunately, for their practical implementation, both of these approaches depend
on knowing the boundary condition satisfied by the field on the surface of the scatterer and in
those areas of application involving ‘hostile’ targets this is, in general, unknown. In particular,
such targets are typically coated by some material on a portion of the boundary and, since both
the material and extent of the coating are unknown, the boundary condition is also unknown.
More recently, a method for solving the inverse scattering problem has been developed which
does not depend on a knowledge of the boundary condition satisfied by the field on the boundary
of the scatterer [2–4, 9]. This new method, called the linear sampling method, is well suited
to the problem of detecting partially coated hostile targets and it is the purpose of this paper
to show how this can be done.

To fix our ideas, we consider the scattering of an electromagnetic time harmonic plane
wave by a perfectly conducting infinite cylinder with Lipschitz boundary, that is partially
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coated by material with surface impedance λ. Assuming that the electric field is polarized
in the TM mode this leads to a mixed boundary value problem for the Helmholtz equation
in R

2. This direct scattering problem will be considered in section 2 of this paper using the
method of integral equations of the first kind as discussed in [11]. Here we prove two results
that are required in our analysis of the inverse problem. We will then examine in section 3
the inverse scattering problems of determining the cross section D of the infinite cylinder
from a knowledge of the far-field pattern of the scattered wave. This examination is based
on showing the validity of the linear sampling method for mixed boundary value problems in
scattering theory. Included in our discussion is an analysis of the linear sampling method for
sampling points z that are either in D or R

2 \ D (previous discussions of the linear sampling
method in [3] and [4] only considered the case when z ∈ D). Finally, in section 4, we will
show how the linear sampling method for mixed boundary value problems can be numerically
implemented and provide several numerical examples of reconstruction of scattering obstacles
from a knowledge of (noisy) far-field data.

2. Direct scattering problem

Let D ⊂ R
2 be a bounded region with Lipschitz boundary � such that R

2\D is connected. We
assume that the boundary � has a Lipshitz dissection � = �D ∪�∪�I , where �D and �I are
disjoint, relatively open subsets of �, having � as their common boundary in � (see e.g. [11]).
Furthermore, boundary conditions of Dirichlet and impedance type are specified on �D and
�I , respectively. Let ν denote the unit outward normal vector defined almost everywhere on
�D ∪ �I .

We consider the two-dimensional scattering problem of determining the total field
U (x) = u(x) + eikx ·d , given as the sum of the unknown scattered wave and incident plane
wave, from the exterior mixed boundary value problem

�U + k2U = 0 in R
2\D (1a)

U = 0 on �D (1b)
∂U

∂ν
+ ikλU = 0 on �I , (1c)

where k > 0 is the wavenumber, λ is a positive constant, x ∈ R
2, and d is a unit vector

describing the incident direction. Moreover, the scattered field u is required to satisfy
Sommerfeld radiation condition [1]

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0, (2)

uniformly in x̂ = x/|x | with r = |x |.
In order to formulate the scattering problem (1a)–(2) more precisely we need to recall

the definition of the following Sobolev spaces. Let �0 ⊆ � be a piece of the boundary. If
H 1(D), H 1

loc(R
2 \ D) denote the usual Sobolev spaces and H 1/2(�) their usual trace space,

then we define

H 1/2(�0) := {u|�0 : u ∈ H 1/2(�)}
H̃ 1/2(�0) := {u ∈ H 1/2(�) : supp u ⊆ �0}
H−1/2(�0) := (H̃ 1/2(�0))

′ the dual space of H̃ 1/2(�0)

H̃−1/2(�0) := (H 1/2(�0))
′ the dual space of H 1/2(�0).

We can now define the following mixed boundary value problems:
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Exterior mixed boundary value problem

Let f ∈ H 1/2(�D) and h ∈ H−1/2(�I ). Find a function u ∈ H 1
loc(R

2\D) such that

�u + k2u = 0 in R
2\D (3a)

u = f on �D (3b)
∂u

∂ν
+ iλku = h on �I (3c)

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0. (3d)

We will also need to consider the corresponding interior mixed boundary value problem.

Interior mixed boundary value problem

Let f ∈ H 1/2(�D) and h ∈ H−1/2(�I ). Find a function u ∈ H 1(D) such that

�u + k2u = 0 in D (4a)

u = f on �D (4b)
∂u

∂ν
+ ikλu = h on �I . (4c)

The solution of the above mixed boundary value problems is well defined in the
corresponding variational spaces, namely

Lext := {v ∈ H 1
loc(R

2\D) : �v + k2v = 0 in the distributional sense, satisfying (3d)}
for the exterior problem, and

Lint := {v ∈ H 1(D) : �v + k2v = 0 in the distributional sense}
for the interior problem.

Hence, the variational formulation for the exterior problem reads: find u ∈ H 1
loc(R

2\D)

with u|�D = f such that for all test functions v ∈ H 1(R2\D) with compact support in R
2 and

v|�D = 0 we have

−k2
∫

R2\D

uv̄ dx +
∫

R2\D

∇u · ∇v̄ dx = −〈h, v̄|�I 〉 + ikλ(u, v)�I , (5)

where 〈·, ·〉 denotes the duality pair H−1/2(�I ), H̃ 1/2(�I ) and (·, ·) the usual L2(�I ) scalar
product. In addition u is required to satisfy the radiation condition (3d) which can be written

lim
R→∞

∫
|x |=R

∣∣∣∣ ∂u

∂R
− iku

∣∣∣∣
2

ds = 0.

Similarly, for the interior problem we want to find u ∈ H 1(D) with u|�D = f such that
for all test functions v ∈ H 1(D) and v|�D = 0 we have

−k2
∫

D
uv̄ dx +

∫
D

∇u · ∇v̄ dx = 〈h, v̄|�I 〉 − ikλ(u, v)�I .

Theorem 2.1. The interior mixed boundary value problem (4a)–(4c) has at most one solution
in Lint.
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Proof. Let u be a solution of (4a)–(4c) with f ≡ 0 and h ≡ 0. Then an application of Green
formula in D yields

−k2
∫

D
|u|2 dx +

∫
D

|∇u|2 dx =
∫
�

∂u

∂ν
ū ds, (6)

and making use of homogeneous boundary condition we obtain

−k2
∫

D
|u|2 dx +

∫
D

|∇u|2 dx = −ikλ
∫
�I

|u|2 ds . (7)

Since k and λ are real numbers, by taking the imaginary part of (7) we conclude that
u|�I ≡ 0 as a function of H 1/2(�I ) and consequently ∂u

∂ν

∣∣
�I ≡ 0 as a function of H−1/2(�I ).

Now let Bρ be a ball of radius ρ with centre on�I such that Bρ ∩�D = 0 and define v = u
in D ∩ Bρ , v = 0 in (R2 \ D) ∩ Bρ . Then applying Green’s second identity in each of these
domains to v and a test function ϕ ∈ C∞

0 (Bρ) we see that v is a weak solution of Helmholtz
equation in Bρ . Thus v is a classical solution in Bρ (see [11]) and hence real-analytic in Bρ .
We can now conclude that u ≡ 0 in Bρ and thus u ≡ 0 in D. �

Theorem 2.2. The exterior mixed boundary value problem (3a)–(3d) has at most one solution
in Lext.

Proof. By doing the same as in the previous theorem but in the domain (R2\D)∩ BR , with BR

a ball of radius R > 0 containing D, the result follows through the use of Rellich’s lemma [1].
�

The estimate in the following theorem will play a central role in the proof of theorem 3.1
in the following section.

Theorem 2.3. The interior mixed boundary value problem (4a)–(4c) has a weak solution in
Lint. Moreover, the solution satisfies the estimate

‖u‖H 1(D) � C(‖ f ‖H 1/2(�D) + ‖h‖H−1/2(�I )) (8)

with C a positive constant.

Proof. The proof is based on the method first used by Hsiao and Wendland [7, 8], and
Nédélec [12] for the Laplace equation. However, for details and a systematic representation
we refer to the book of McLean [11].

We first reformulate the interior mixed boundary problem (4a)–(4c) as a 2 × 2 system of
boundary integral equation of the first kind. We start with the Green representation formula
of a weak solution

u = S ∂u

∂ν
− Du, (9)

where the bounded operators

S : H−1/2(�) −→ H 1(D) D : H 1/2(�) −→ H 1(D)

defined by

Sφ(x) :=
∫
�

ψ(y)�(x, y) dsy, x ∈ R
2\�,

Dφ(x) :=
∫
�

ψ(y)
∂

∂νy
�(x, y) dsy, x ∈ R

2\�,
are single- and double-layer potentials, respectively. Then making use of the known jump
relations of the single- and double-layer potentials across the boundary �, interpreted in the
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sense of the trace theorem, we obtain the following expression for the Cauchy data of the
solution on the boundary �:

u = −K u + S
∂u

∂ν
(10)

∂u

∂ν
= −T u + K ′ ∂u

∂ν
(11)

where S, K , K ′, T denote four basic boundary integral operators defined by

Sψ(x) := 2
∫
�

ψ(y)�(x, y) dsy Kψ(x) := 2
∫
�

ψ(y)
∂

∂νy
�(x, y) dsy

K ′ψ(x) := 2
∫
�

ψ(y)
∂

∂νx
�(x, y) dsy Tψ(x) := 2

∂

∂νx

∫
�

ψ(y)
∂

∂νy
�(x, y) dsy,

and � is the fundamental solution to the Helmholtz equation defined by

�(x, y) := i

4
H (1)

0 (k|x − y|) (12)

with H (1)
0 being a Hankel function of the first kind of order zero.

For |s| � 1/2, S, K , K ′ and T are bounded operators having the following mapping
properties:

S : H−1/2+s(�) −→ H 1/2+s(�) K : H 1/2+s(�) −→ H 1/2+s(�) (13)

K ′ : H−1/2+s(�) −→ H−1/2+s(�) T : H 1/2+s(�) −→ H−1/2+s(�). (14)

The mapping properties of the single- and double layer potential S, D as well as of the
above boundary operators in the case of non-smooth boundary are studied by Costabel in [6].
Note that in this case the operators K and K ′ are continuous, but not compact.

Adding (10) and (11) we arrive at the following expression:(
∂u

∂ν
+ ikλu

)
= −T u + K ′ ∂u

∂ν
− ikλK u + ikλS

∂u

∂ν
. (15)

We now denote by f̃ ∈ H 1/2(�) and h̃ ∈ H−1/2(�) bounded extensions to the whole of � of
the boundary data f, h (see theorem A4 of [11]), and write

u|� = ψI + f̃ , (16)

and
∂u

∂ν
+ ikλu

∣∣∣∣
�

= ψD + h̃, (17)

or
∂u

∂ν

∣∣∣∣
�

= ψD − ikλψI + h̃ − ikλ f̃ . (18)

Obviously ψI ∈ H̃ 1/2(�I ) and ψD ∈ H̃−1/2(�D), since ψI ≡ 0 on �D and ψD ≡ 0 on �I .
The pair of functions ψI , ψD will be referred to as the unknown Cauchy data of a solution.

By now restricting (10) to �I and (15) to �D and using (16)–(18), we obtain a system of
integral equations for the unknown Cauchy data

A

(
ψD

ψI

)
= g (19)

where the operator A is given by

A =
(

SDD, −K DI − ikλSDI

K ′
I D + ikλSI D, k2λ2SI I − ikλ(K ′

I I + K I I ) − TI I

)
, (20)
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and the right-hand side is given by

g =
(

( f̃ + K f̃ + ikλS f̃ − Sh̃)|�D

(h̃ + T f̃ + ikλK f̃ − K ′h̃ + ikλK ′ f̃ − ikλSh̃ − k2λ2S f̃ )|�I

)
. (21)

Here the operator SI D is the operator applied to a function ψ with supp ⊆ �D and
evaluated on �I , with analogous definitions for SDD , SDI , SI I , K DI , K ′

I D , K I I , K ′
I I and TI I .

The mapping properties (13), (14) imply that

SDD : H̃−1/2(�D) −→ H 1/2(�D) SI I : H̃−1/2(�I ) −→ H 1/2(�I )

SI D : H̃−1/2(�D) −→ H 1/2(�I ) K I I : H̃ 1/2(�I ) −→ H 1/2(�I )

K ′
I D : H̃−1/2(�D) −→ H−1/2(�I ) K ′

I I : H̃−1/2(�I ) −→ H−1/2(�I )

SDI : H̃−1/2(�I ) −→ H 1/2(�D) TI I : H̃ 1/2(�I ) −→ H−1/2(�I ).

K DI : H̃ 1/2(�I ) −→ H 1/2(�D).

Therefore, we have that the operator A maps continuously

H̃−1/2(�D) × H̃ 1/2(�I ) −→ H 1/2(�D) × H−1/2(�I ).

It is clear that the system of integral equation (19) is equivalent to our original interior
mixed boundary value problem (see [11]). Once the unknown Cauchy data are determined
from (16) and (18) then the representation formula (9) determines the weak solution.

In the next lemma we will prove that the operator A is Fredholm with index zero and
kern A = {0}. The latter, together with theorem 2.1, implies the solvability of the integral
equation (19) and therefore of the original interior mixed boundary value problem (4a)–(4c).
Since the operator A : H̃−1/2(�D) × H̃ 1/2(�I ) −→ H 1/2(�D) × H−1/2(�I ) is bijective,
the inverse operator is bounded and furthermore the operators S, K , K ′, T involved in the
right-hand side of (19) are bounded as well. Hence we may write

‖ψI ‖H̃ 1/2
(�I )

+ ‖ψD‖H̃−1/2
(�D )

� C1(‖ f̃ ‖H 1/2
(�)

+ ‖h̃‖H−1/2
(�)

). (22)

The representation formula (9) now yields the following estimate for the weak solution u
to (4a)–(4c):

‖u‖H 1(D) � C2

(
‖u‖H 1/2(�) +

∥∥∥∥∂u

∂ν

∥∥∥∥
H−1/2(�)

)
. (23)

Combining (23) with (16) and (18), and then making use of (22) and of the boundness of
the extension operator for the boundary data f, h we obtain the estimate (8). This ends the
proof of the theorem. �

Lemma 2.4. Let H = H̃−1/2(�D) × H̃ 1/2(�I ), and its dual H∗ = H 1/2(�D) × H−1/2(�I ).
Then the operator A : H −→ H∗ given by (20) is Fredholm with index zero. In addition A
has trivial kernel.

Proof. It is known from [6], that the operators S and −T are positive and bounded below up
to a compact perturbation. In other words, there exist compact operators

L S : H−1/2(�) −→ H 1/2(�), LT : H 1/2(�) −→ H−1/2(�)

such that

Re 〈(S + L S)ψ, ψ̄〉 � C‖ψ‖2
H−1/2(�)

for ψ ∈ H−1/2(�) (24)

Re 〈−(T + LT )ψ, ψ̄〉 � C‖ψ‖2
H 1/2(�) for ψ ∈ H 1/2(�) (25)

where the brackets 〈·, ·〉 denote the duality between H−1/2(�) and H 1/2(�).
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Let us define S0 = S + L S and T0 = −(T + LT ). Then S0 and T0 are bounded below
and are positive. Then if ψ = (ψD, ψI ) ∈ H and ψ̃D ∈ H−1/2(�), ψ̃I ∈ H 1/2(�) are the
extension by zero on � of ψD and ψI , respectively, we define

A0ψ =
(

[(S0ψ̃D) − ikλ(S0ψ̃I )]|�D − K DIψI

[ikλ(S0ψ̃D) + k2λ2(S0ψ̃I ) + (T0ψ̃I )]|�I + K ′
I DψD − ikλ(K ′

I IψI + K I IψI )

)
and

L Aψ =
(

(−L Sψ̃D + ikλL Sψ̃I )|�D

(LT ψ̃I − ikλL Sψ̃D − k2λ2 L Sψ̃I )|�I

)
(26)

such that A = (A0 + L A). In this way the operator L A : H −→ H ∗ is compact and
A0 : H −→ H∗ define the sesquilinear form

〈A0ψ, ψ̄〉H,H∗ = (S0ψ̃D, ψ̃D)� + k2λ2(S0ψ̃I , ψ̃I )�

−ikλ(S0ψ̃I , ψ̃D)� + ikλ(S0ψ̃D, ψ̃I )�

−(K DIψI , ψD)�D + (K ′
I DψD, ψI )�I

−ikλ((KI I + K ′
I I )ψI , ψI )�I + (T0ψ̃I , ψ̃I )�. (27)

Note that (u, v)�0 , for �0 ⊆ � is the scalar product on L2(�0) defined by
∫
�0

uv̄ ds. Let us

now take the real part of (27). From (24) and the fact that supp ψ̃D ⊆ �D and supp ψ̃I ⊆ �I ,
we obtain

Re [(S0ψ̃D, ψ̃D)� + k2λ2(S0ψ̃I , ψ̃I )� − ikλ(S0ψ̃I , ψ̃D)� + ikλ(S0ψ̃D, ψ̃I )�]

= Re (S0(ψ̃D − ikλψ̃I ), (ψ̃D − ikλψ̃I ))� � C‖ψ̃D − ikλψ̃I ‖2
H−1/2(�)

= C(‖ψD‖2
H̃−1/2(�D)

+ k2λ2‖ψI ‖2
H̃ 1/2(�I )

). (28)

Furthermore, since K and K ′ are adjoint we have

Re [−(K DIψI , ψD)�D + (K ′
I DψD, ψI )�I ] = Re [−(K DIψI , ψD)�D + (ψD, K DIψI )�D ]

= Re [−(K DIψI , ψD)�D + (K DIψI , ψD)�D
] = 0 (29)

and

Re [−ikλ((K I I + K ′
I I )ψI , ψI )�I ] = kλIm [(K I IψI , ψI )�I + (KI IψI , ψI )�I

] = 0.

Finally from (25) we have

Re (T0ψ̃I , ψ̃I )� � C‖ψ̃I ‖2
H 1/2(�) = C‖ψI ‖2

H 1/2(�I )
. (30)

Combining (28)–(30) we conclude that

Re 〈(A + L A)ψ, ψ̄〉H,H∗ � C‖ψ‖2
H for ψ ∈ H̃−1/2(�D) × H̃ 1/2(�I ) (31)

where the operator L A given by (26) is compact. We can now conclude that the operator A is
Fredholm with index zero [11].

Next we show that kern A = {0}. To this end letψ = (ψD, ψI ) ∈ H̃−1/2(�D)× H̃ 1/2(�I )

be a solution of the homogeneous equation Aψ = 0, and ψ̃D ∈ H−1/2(�), ψ̃I ∈ H 1/2(�)

their respective extensions by zero. Define the potential

v = Sψ̃D − ikλSψ̃I − Dψ̃I , (32)

which is a weak solution of the Helmholtz equation, i.e. v ∈ Lint, and v ∈ Lext. Therefore by
taking the normal derivative in (32) and approaching the boundary � from inside we obtain

2v|� = ψ̃I + Sψ̃D − K ψ̃I − ikλSψ̃I (33)

2

(
∂v

∂ν
+ ikλv

) ∣∣∣∣
�

= ψ̃D + K ′ψ̃D + ikλSψ̃D + k2λ2Sψ̃I − ikλ(K + K ′)ψ̃I − T ψ̃I . (34)
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The integral equation Aφ ≡ 0 implies that

Sψ̃D − K ψ̃I − ikλSψ̃I |�D = 0,

and

K ′ψ̃D + ikλSψ̃D + k2λ2Sψ̃I − ikλ(K + K ′)ψ̃I − T ψ̃I |�I = 0,

and since ψ̃I ≡ 0 on �D and ψ̃D ≡ 0 on �I , we have

v|�D ≡ 0,
∂v

∂ν
+ ikλv

∣∣∣∣
�I

≡ 0. (35)

The latter means that (32) is a weak solution of the homogeneous interior mixed boundary
problem, and hence, from theorem 2.1, v ≡ 0 in D.

Approaching the boundary from the outside one can show that (32) is also a weak solution
of the homogeneous exterior mixed boundary problem. Hence, from theorem 2.2, v ≡ 0 in
R

2\D. Thus

ψ̃I = v+ − v− = 0 on � (36)

ψ̃D − ikλψ̃I = ∂v

∂ν

+

− ∂v

∂ν

−
= 0 on �, (37)

where the ± signs correspond to the interior and the exterior domain, respectively. Both (36),
(37) imply that ψ = (ψD, ψI ) ≡ 0 as a function in H . �

The following theorem will play a central role in the justification of the linear sampling
method for solving the inverse scattering problem discussed in the following section.

Theorem 2.5. The exterior mixed boundary value problem (3a)–(3d) has a weak solution in
Lext. Moreover, the solution satisfies the estimate

‖χu‖H 1(R2\D) � C(‖ f ‖H 1/2(�D) + ‖g‖H−1/2(�I )) (38)

with C a positive constant and χ ∈ C∞
comp(R

2\D) an arbitrary cut-off function with compact
support.

Proof. The proof of the theorem proceeds in exactly the same way as for theorem 2.3 with the
only modifications coming from reversing the signs of the operators K and K ′, respectively,
in (10) and (11). �

3. Inverse scattering problem

We now consider the scattering of an electromagnetic time harmonic wave by a perfectly
conducting infinite cylinder that is partially coated by a material with surface impedance λ.
Assuming the electric field is polarized in the TM mode and the plane wave is propagating in
the direction d, the scattered field u (after factoring out a term of the form e−iωt where ω is the
frequency) satisfies the exterior mixed boundary value problem (3a)–(3d) with f := −eikx ·d
and h := − ( ∂

∂ν
+ ikλ

)
eikx ·d . It is easy to show [1] that the scattered field has the asymptotic

behaviour

u(x) = eikr

√
r

u∞(x̂, d) + O(r−3/2) (39)

where u∞ is the far-field pattern of the scattered wave.
The inverse scattering problem we will consider in this section of our paper is to determine

D from a knowledge of u∞(x̂, d) for x̂ and d on the unit circle �.
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Before proceeding to the inverse problem, we need to generalize the approximation result
of [5] to the case of Lipschitz boundary.

As in [5] for n = 0,±1,±2, . . . we define un by

un(x) := Jn(kr) einθ (40)

where Jn is a Bessel function of order n and (r, θ) are the polar coordinates of x ∈ R
2.

A Herglotz wavefunction is a solution of the Helmholtz equation of the form

vg(x) :=
∫
�

eikx ·d g(d) ds(d), (41)

where � is the unit sphere and g ∈ L2(�) is the Herglotz kernel of vg .
Then, if {an} ∈ l2

v(x) :=
∞∑

−∞
anun(x) (42)

is a Herglotz wavefunction.

Theorem 3.1. Let D ⊂ R
2 be a bounded domain with Lipschitz boundary � containing the

origin, such that R
2\D is connected. Then with respect to the H 1(D) norm the set of Herglotz

wavefunctions is dense in the space of the variational solutions Lint of the Helmholtz equation.

Proof. First we observe that the set { ∂un
∂ν

+ iun} is complete in H−1/2(�). This can be shown
exactly in the same way as in the theorem 1 in [5] for the case of a smooth boundary since
the proof is based only on the facts that the single-layer potential S : H−1/2(�) −→ H 1

loc(R
2)

and double-layer potential D : H 1/2(�) −→ H 1
loc(R

2 \ D) and D : H 1/2(�) −→ H 1(D) are
continuous and satisfy the well known jump relations interpreted in terms of the trace theorem.

Now let u ∈ Lint be a weak solution of the Helmholtz equation. Then by the trace theorem
φ = ∂u

∂ν
+ iu ∈ H−1/2(�), and so φ can be approximated in H−1/2(�) by τ = ∂v

∂ν
+ iv where v

is a Herglotz wavefunction. An application of theorem 2.3 to the particular case when λ = 1/k
and �D = ∅ yields

‖u − v‖H 1(D) � C‖φ − τ‖H−1/2(�)

where C is a positive constant which proves the theorem. �
Theorem 3.1 will play a central role in the linear sampling method [3, 4, 9] for

solving the inverse scattering problem for partially coated obstacles, i.e. the scattered field
u satisfies the exterior mixed boundary value problem (3a)–(3d) with f := −eikx ·d and
h := − ( ∂

∂ν
+ ikλ

)
eikx ·d . In particular, for z ∈ D, the linear sampling method looks for a

solution g = g(·, z) ∈ L2(�) of the far-field equation∫
�

u∞(x̂, d)g(d, z) ds(d) = γ e−ikx̂ ·z (43)

where

γ = eiπ/4

√
8πk

. (44)

Then, noting that γ e−ikx̂ ·z is the far-field pattern of the fundamental solution �(x, z), we
see by Rellich’s lemma that if a solution to (43) exists then∫

�

u(x, d)g(d, z) ds(d) = �(x, z) (45)

for x ∈ R
2\D and in particular for x ∈ �. Since u(x, d) is in L∞(�), if we now let z → � then

from (45) we see that ‖g(·, z)‖L2(�) becomes unbounded as z → � since �(x, z) becomes
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unbounded as z → �. Thus � is characterized by the fact that the solution of (43), if it exists,
becomes unbounded as z → �.

Unfortunately, in general a solution to (43) does not exist! However, from theorem 3.1
the solution of interior mixed boundary value problem (4a)–(4c) with f := −�(·, z) and
h := − ( ∂

∂ν
+ ikλ

)
�(·, z), z ∈ D, can be approximated in H 1(D) by a Herglotz wavefunction

vg . Since the trace operator is bounded from H 1(D) to H 1/2(�), then f and h are approximated
in H 1/2(�) and H−1/2(�) by vg|�D and

(
∂
∂ν

+ ikλ
)
vg|�I , respectively. It now follows from

theorem 2.5 and the Green formula that the Herglotz kernel g of vg is an approximate solution
of (43), i.e. if we write (43) in the form

Fg = �∞(·, z), (46)

then for every ε > 0 there exists a g ∈ L2(�), g = g(·, z), such that

‖Fg − �∞(·, z)‖L2(�) < ε. (47)

Furthermore, for this g it follows from the boundness of the trace operator and the fact
that, for z ∈ �, �(·, z) is not in H 1(D) that

lim
z→�

‖vg‖H 1(D) = ∞ (48)

and hence

lim
z→�

‖g(·, z)‖L2(�) = ∞. (49)

The linear sampling method is to now use the Morozov discrepancy principle to solve (46)
and determine � from the condition (49). Details of how this is done numerically will be
provided in the next section of this paper.

A drawback of the above analysis is that we require that z ∈ D, i.e. nothing is said
about what happens when z ∈ R

2\D. Indeed it was this concern that led Kirsch to develop a
second version of the linear sampling method that is only valid for the case of a non-absorbing
boundary condition, but on the other hand allows z to be either in D or z ∈ R

2\D [9]. However,
in our numerical examples it is seen that for z ∈ R

2\ D the regularized solution g of the far-
field equation is in fact much larger than it is for z ∈ D. We now give an explanation of this
behaviour for the special case when �I = ∅ and � is in class C2, i.e. the same case considered
by Kirsch in [9] for his modified linear sampling method. In particular, assume that �I = ∅,
� ∈ C2, and k2 is not a Dirichlet or Neumann eigenvalue for D. Then if z ∈ R

2 \ D we see
that �∞(x̂, z) = γ e−ikx̂ ·z is not the far-field pattern of a radiating solution of the Helmholtz
equation defined in the exterior of D.

On the other hand, let us define the far-field operator F : L2(�) −→ L2(�)

(Fϕ)(x̂) :=
∫
�

ϕ(y)
∂

∂νy
e−ikx̂ ·y ds(y). (50)

Obviously the adjoint operator F∗ : L2(�) −→ L2(�) is given by

(F∗ψ)(y) := ∂

∂νy

∫
�

ψ(x̂)eikx̂ ·y ds(x̂). (51)

By proceeding as in theorem 5.17 of [1] (the normal derivative of the single-layer potential
has to be replaced by the double-layer potential and the rest works exactly in the same way)
it can be proved that the far-field operator (50) is injective with dense range. Hence using
Tikhonov regularization we can construct a regularized solution of

(Fϕ)(x̂) := e−ikx̂ ·z (52)

such that (52) is approximately satisfied for small values of the regularization parameter. In
particular, if ϕα ∈ L2(�) is the regularized solution of (52) corresponding to the regularization
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parameter α (chosen by a regular regularization strategy, e.g. the Morozov discrepancy
principle),

lim
α→0

‖ϕα‖L2(�) = ∞. (53)

Then from theorem 5.5 of [1] and the Jacobi–Anger expansion [1, p 67] there exists
a Herglotz wavefunction vg with kernel g such that vg approximates −1/2 (ϕα + Kϕα) in
L2(�). By theorem 3.21 of [1] and the fact that (50) is the far-field pattern of γ−1Dϕ we see
that (Fg)(x̂) ≈ γ e−ikx̂ ·z for small values of α. Since k2 is not a Neumann eigenvalue, I + K
has a bounded inverse in L2(�) (see the proof of theorem 3.20 of [1]), and from (53) we can
conclude that

lim
α→0

‖vg‖L2(�) = ∞. (54)

This implies that

lim
α→0

‖g(·, z)‖L2(�) = ∞ (55)

for any z ∈ R
2\D, thus providing an explanation for the numerical examples in the next section

of this paper for the case when z ∈ R
2\D, � is smooth with �I = ∅, and k2 is not a Dirichlet

or Neumann eigenvalue.
The above results can be also obtained for the cases of Neumann and impedance boundary

value problems by using the far-field operator F : L2(�) −→ L2(�) defined by

(Fϕ)(x̂) :=
∫
�

ϕ(y)e−ikx̂ ·yds(y) (56)

instead of (50).

4. Numerical examples

Here we shall show some results of numerical experiments to reconstruct partially coated
objects. The far-field data are synthetic, but corrupted by random noise. Rather than using the
integral equation approach to the forward problem outlined earlier, we modified an existing
code for the scattering problem that uses cubic isoparametric finite elements. We shall describe
this approach next.

The method we have in mind is an extension of the finite element–spectral method
described in [10]. First we introduce an auxiliary domain, the disc BR of radius R containing
D in its interior. We shall need to refer to the boundary of BR which we denote �R . The
computational domain is the bounded domain �R = BR\D. The solution u of (5) can then be
decomposed into two components

u1 = u|�R and u2 = u|
R2\�R

.

The component u1 ∈ H 1(�R) satisfies u1|�D = f and∫
�R

∇u1 · ∇v̄ dx − k2
∫
�R

u1v̄ dx − ikλ(u1, v)�I − ik(u1, v)�R = −〈h, v̄|�I 〉 + 〈γ, v̄|�R 〉, (57)

where γ ∈ H−1/2(�R) is a function that must be determined. It turns out in fact that

γ = ∂u

∂r
− iku on �R .
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In the exterior domain, u2 ∈ H 1
loc(R

2\BR) is the weak solution of

�u2 + k2u2 = 0 in R
2\BR, (58a)

∂u2

∂r
− iku2 = γ on �R, (58b)

∂u2

∂r
− iku2 = o

(
1√
r

)
as r → ∞. (58c)

Since we want u to be continuous across �R , γ must be chosen so that

u1 = u2 on �R .

The numerical method is derived from these equations as follows. We assume that the
domain D is a smooth curvilinear polygon. First the domain�R is approximately covered by a
mesh of cubic isoparametric triangles. We assume that there are finitely many points in � (see
the beginning of section 2) and that these points are vertices of the triangulation. The function
u1,h is then taken to be a cubic isoparametric finite-element function that interpolates f on
�D using interpolation at mapped Gauss–Lobatto quadrature points (see [13]). This function
satisfies the discrete weak equations∫
�R

∇u1,h · ∇v̄h dx − k2
∫
�R

u1,h v̄h dx − ikλ
(
u1,h, vh

)
�I

− ik
(
u1,h, vh

)
�R

= −〈h, v̄h |�I 〉 + 〈γN , v̄h |�R 〉, (59)

for all cubic isoparametric elements vh that interpolate zero on �D . The unknown function γN

is taken to be a finite trigonometric sum,

γN =
N∑

n=−N

gn exp(inθ). (60)

Because of this special choice, we can then compute a discrete exterior field u2,N by
solving (58) with γN in place of γ . This can be done using a Hankel function expansion, so
u2,N is computed exactly. The unknown function γN is then found by requiring that

PN u1,h = u2,N on �R

where PN is the L2(�R) orthogonal projection onto the space of finite trigonometric series
used in (60). The implementation we use computes the capacitance matrix for this problem
by solving 2N + 1 interior finite-element problems (one for each basis function of γN ). Once
the matrix for (60) has been set up and factored, γN can be found for different f and g at the
expense of one further finite-element solve per pair of data. The far-field pattern can be easily
found from γN using u2,N .

Because of the singularity in the solution generated by transitions between Dirichlet and
impedance data on�, the analysis of [10] is not directly applicable. The singularity also implies
the need to refine the mesh close to �. We have done this manually, but have not attempted an
adaptive approach to this problem. The extension of the error analysis and analysis of optimal
grids for this problem is an interesting project motivated by this paper.

For the inverse problem we select a domain D, boundaries �D and �I and impedance λ.
Then, using the incident field exp(ikx · d) where |d| = 1 we can compute the data h and g
and by solving the finite-element problem compute the far-field pattern. This is obtained as a
trigonometric series

u∞ =
N∑

n=−N

u∞,n exp(inθ).
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Of course, these coefficients are already in error by the discretization error of the finite-
element–spectral method. However, we also add random noise to the Fourier coefficients by

u∞,a,n = u∞,n(1 + εχn)

where ε is a parameter (in the results we report here ε = 0.05) and χn is given by a random
number generator that provides uniformly distributed random numbers in the interval [−1, 1].
This avoids inverse crimes. Thus the input to the inverse solver is the approximate far-field
pattern

u∞,a =
N∑

n=−N

u∞,a,n exp(inθ).

The inverse problem is then solved using Tikhonov regularization and the Morozov
discrepancy principle as described in [3]. In particular, using the above expression for u∞,a ,
the far-field equation (43) is rewritten as an ill-conditioned matrix equation for the Fourier
coefficients of g which we write in the form

A�gz = �fz . (61)

As already noted, this equation needs to be regularized. We start by computing the singular
value decomposition of A

A = U�V ∗

where U and V are unitary and � is real diagonal with ��,� = σ�, 1 � � � n. The solution
of (61) is then equivalent to solving

�V ∗ �gz = U ∗ �fz . (62)

Let

�ρz = (ρz,1, ρz,2, . . . , ρz,n)
T = U ∗ �fz .

Then the Tikhonov regularization of (62) leads to solving

min
�gz∈ Rn

‖�V ∗ �gz − �fz‖2
�2 + α ‖�g‖2

�2

where α > 0 is the Tikhonov regularization parameter. Defining �uz = V ∗ �gz , we see that the
solution to the problem is

uz,� = σ�

σ 2
� + α

ρz,�, 1 � � � n,

and hence

‖�gz‖�2 = ‖�uz‖�2 =
(

n∑
�=1

σ 2
�

(α + σ 2
� )

2
|ρz,�|2

)1/2

.

Note we use the discrete �2 norm of �gz rather than the L2(�) norm of g. The regularization
parameter α depends on both z and the error in the data {u∞,a}. As mentioned previously, we
use the Morozov discrepancy principle to determine α. Suppose we know an estimate for the
error in the far-field operator so that

‖F − Fa
h ‖ � δ

for some δ > 0 (using the operator norm induced by L2(�)). Then the Morozov procedure
picks α = α(z) to be the zero of

mz(s) =
n∑

j=1

δ2σ 2
j − s2

(s + σ 2
j )

2
|ρz, j |2, s > 0.

For this report, we select one of two scatterers shown in figure 1 (the single bullet or the
double bullet). Different choices of boundary condition are used:
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Figure 1. The boundary of the scatterers used in this study. When mixed boundary conditions
are used the blue portion of the boundary is �I and has an impendance boundary condition, while
the red portion is �D and has a Dirichlet boundary condition.
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Figure 2. Here we show the real part of the total field when k = 15.7 for incident field exp(ikx).
Red regions correspond to positive values of Re (u) and blue to negative values. For the definition
of each problem, see the text. The strong singularity near the junction between�D and�I is clearly
visible as a rapid variation in contours near these points.

Dirichlet condition. In this case �D = �. This case is intended as a baseline for comparison
since most of our previous work has concentrated on the Dirichlet problem.

Mixed condition 1. Here an impedance boundary condition with λ = 1 is used on the cyan
portion of the appropriate boundary in figure 1.

Mixed condition 0.1. Here an impedance boundary condition with λ = 0.1 is used on the cyan
portion of the appropriate boundary in figure 1.
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Figure 3. Here we show the reconstruction of the single bullet when k = 15.7 by plotting
contours of 1/||g||L2(�). The line segment marked λ in the upper right-hand corner of the figure is
the wavelength.
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Figure 4. Here we show the real part of the total field when k = 7.85 for incident field exp(ikx).
Again the singularity is visible at the junction between Dirichlet and impedance data.

Impedance condition. Here an impedance boundary condition with λ = 0.1 is used on the
entire boundary.

Our first results, in figure 2, show the real part of the total field for the forward problem
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Figure 5. Here we show the reconstruction of a single bullet when k = 7.85 by plotting contours
of 1/||g||L2(�). The line segment marked λ in the upper right-hand corner of the figure is the
wavelength.
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Figure 6. Here we show the real part of the total field when k = 15.7 for incident field exp(ikx)
using the double bullet scatterer.

for a single bullet when k = 15.7 and the direction d = (1, 0)T. For the mixed problems, the
strong singularity near the junction between �D and �I is clearly visible as a rapid variation
in contours near these points.
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Figure 7. Here we show the reconstruction of the double bullet when k = 15.7 by plotting
contours of 1/||g||L2(�). The line segment marked λ in the upper right-hand corner of the figure is
the wavelength.
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Figure 8. Here we show the real part of the total field when k = 7.85 for incident field exp(ikx)
using the double bullet target.

Using data for k = 15.7 and 64 incoming waves (with the addition of noise) in the linear
sampling method we obtain the reconstructions shown in figure 3. The addition of noise results
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Figure 9. Here we show the reconstruction of the double bullet when k = 7.85 by plotting
contours of 1/||g||L2(�). The line marked λ in the upper right-hand corner of the figure is the
wavelength.

in a relative spectral norm error of between 4 and 5% in the discrete matrix corresponding to F .
To obtain the results in figure 3 we discretized g using a trigonometric series with 97 modes.
The sampling domain is the square [−2, 2]2 and we use a uniform grid for the sampling point
z with 61 points in x and y. From the reconstructions it is apparent that Dirichlet boundary
conditions give the best reconstruction. The mixed cases show a poorer reconstruction of
the impedance face �I , but in all cases the boundary of the single bullet is convincingly
reconstructed.

Next we consider a lower wavenumber, k = 7.85. Since the wavelength is longer
compared with the scatterer we would expect a decrease in the resolution of the reconstruction.
The data error due to adding noise to the computed far-field pattern results in a relative spectral
norm error of between 3.8 and 4.3%. Results for the forward problem are shown in figure 4
and for the inverse problem in figure 5.

Next we turn to examine the disconnected target denoted the double bullet in figure 1.
A strength of the linear sampling method is that we do not need to know how many targets
are present in order to correctly parametrize the boundary. We also do not need to know the
boundary condition. Here we show some results for the double bullet with similar boundary
data to that used for our study of the single bullet. We emphasize the fact that neither the
number of components nor the boundary condition on each component need be known a
priori. We start with k = 15.7 and show forward data for the various boundary conditions
in figure 6. Using data (again 64 incoming waves) for this figure, with noise, we produce the
reconstructions shown in figure 7. The data error for these reconstructions is between 4.6 and
4.9% in the relative spectral norm.

From figure 7 it is clear that we can distinguish two scatterers and can see the gap
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between the two bullets. Unfortunately, in no case are the facing surfaces of the two scatterers
reconstructed cleanly. Strangely, the impedance case gives the best indication of the extent of
the two scatterers.

If we decrease the wavenumber sufficiently far, it is impossible to distinguish the two
bullets (as is to be expected). When we use k = 7.85 the blurring of the two scatterers
is starting to become apparent. For completeness we show data for the forward problem in
figure 8. The results of the linear sampling method are shown in figure 9. Here the data error for
the reconstructions is between 4.0 and 4.1%. Except for the case of a full impedance boundary
condition, the outer surface is reconstructed well, but the channel between the scatterers has
all but vanished.

Acknowledgments

The research of DC and PM was supported in part by a grant from the Air Force Office of
Scientific Research. FC was supported in part by NSF grant 9631287 at the University of
Delaware.

References

[1] Colton D and Kress R 1998 Inverse Acoustic and Electromagnetic Scattering Theory 2nd edn (Berlin: Springer)
[2] Colton D, Coyle J and Monk P 2000 Recent developments in inverse acoustic scattering theory SIAM Rev. 42

369–414
[3] Colton D, Piana M and Potthast R 1997 A simple method using Morozov’s discrepancy principle for solving

inverse scattering problems Inverse Problems 13 1477–93
[4] Colton D and Kirsch A 1996 A simple method for solving inverse scattering problems in the resonance region

Inverse Problems 12 383–93
[5] Colton D and Sleeman B D 2000 An approximation property of importance in inverse scattering theory Proc.

Edinburgh Math. Soc. at press
[6] Costabel M 1988 Boundary integral operator on Lipschitz domains: elementary results SIAM J. Math. Anal. 19

613–26
[7] Hsiao G and Wendland W 1977 A finite element method for some integral equations of the first kind J. Math.

Anal. Appl. 58 449–81
[8] Hsiao G and Wendland W 1979 On integral equation method for the plane mixed boundary value problem for

the Laplacian Math. Methods Appl. Sci. 1 265–321
[9] Kirsch A 1998 Characterization of the shape of a scattering obstacle using the spectral data of the far-field

operator Inverse Problems 14 1489–512
[10] Kirsch A and Monk P 1990 Convergence analysis of a coupled finite element and spectral method in acoustic

scattering IMA J. Numer. Anal. 9 425–47
[11] McLean W 2000 Strongly Elliptic Systems and Boundary Integral Equations (Cambridge: Cambridge University

Press)
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