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Inequalities in inverse scattering theory

F. Cakoni and D. Colton

Abstract. We consider the scattering of time harmonic electromagmptine waves by a bounded,
inhomogeneous dielectric medium that is partially coated thin metallic layer ifR?. We use far
field pattern of the scattered waves at a fixed frequency astdatetermine the suppof? of the
inhomogeneous obstacle, the surface conductivity thabcterizes the coating and the relative per-
mittivity. No a prior information on the material propesief the scatterer is needed. The supgort
is determined by the linear sampling method which is basetth@mpproximate solution of the far
field equation. This solution is also used to obtain lowerratsufor the surface conductivity and
relative permittivity. The techniques for solving this @mge scattering problem rely on the analysis
of a non standard boundary value problem known as the imtegnsmission problem.

Key words. Inverse scattering problem, inhomogeneous medium, artérdnsmission problem,
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1. Introduction

Until recently, reconstruction algorithms for solving inverse electroraigiscattering
problems have been based on either nonlinear optimization techniquedinearized
models based on weak scattering approximations [6]. In the past tes gdhird
approach to reconstruction has been developed which comes undebitreof qual-
itative methods in inverse scattering theory, the most popular of which isntber
sampling method [1]. In particular, qualitative methods determine theesbffhe
scattering obstacle without needing any a priori information on the mafgopkrties
of the scatterer but provide little or no information on the physical progedighe
scatterer. However, in the past few years it has been noted that qualitathods in
inverse scattering theory can in certain circumstances provide lowedban rele-
vant physical properties of the scatterer [2, 3] and it is to this theme tisapdiper is
directed.

We will illustrate our ideas by considering a simple scattering problem forfanitan
dielectric cylinder that is partially coated by a thin metallic coating. For Maxwell’s
equations inRk3, scattering problems for such coated objects arise when an effort is
made to make benign dielectric objects look hostile, e.g. coating woodeysl&r
make them appear as tanks to radar interrogation. In general the scettenly par-
tially coated and the extent and composition of the coating is unknown. 8ueliegns
lead to mixed boundary value problems in scattering theory and partidtfiaulties
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arise in trying to solve the inverse problem since the boundary conditiottseecstat-
tering object are unknown.

The plan of our paper is as follows. In the next section we will formulateltrest
and inverse scattering problems for an infinite dielectric cylinder that teafigicoated
by a highly conductive layer in the case of TM-polarized incident planesaiaWe then
consider the inverse scattering problem of determining the suppoftthe cross sec-
tion of the infinite cylinder, the surface conductiviyx), € 9D, that characterizes
the coating and the relative permittivityz), = € D, of the dielectric cylinder using
the far field pattern of the scattered wave as data. Using the linear samthgadn
it was shown in [4] thaiD can be determined in a constructive manner. However, the
techniques used in [4] were unable to determine any informatiay:onor n(z) due to
the fact that the well posedness of the interior transmission probleno&bed objects
and TM-polarized fields was not established. Hence in Section 3 we wilkeptee
existence of a unique solution to the interior transmission problem for codjedts
and TM-polarized fields provided the wave number is not a transmisgi@emelue
(For the role played by the interior transmission problem and transmisgienvalues
in inverse scattering theory we refer the reader to [1, 6]). We then iseetbult to
provide lower bounds for the surface conductivity and relative pewitttin terms of
data obtained from the far field pattern of the scattered wave.

2. Scattering by a partially coated cylinder

We consider the scattering of a time-harmonic plane wave by a partiallyccoate
finitely long cylinder with axis in the z-direction and assume that the incidelot ife
propagating in a direction perpendicular to the cylinder such that the el&etdds
parallel to thez-axis. Let the bounded domaid ¢ R? with Lipschitz boundary” be
the cross section of the cylinder and assume that the exterior ddmaia R?\ D is
connected. We denote ythe unit outward normal td defined almost everywhere
onl. The boundary” has a Lipschitz dissection [8] = I'; U U ,. Herel'; cor-
responds to the uncoated part dndcorresponds to the coated part. Under the above
assumptions the electric fields only have a component in tieection, i.e. the inci-
dent field£¢, internal field £t and scattered fiel&* are given byE? = (0,0, u?),
E™ = (0,0,v) andE* = (0,0, «*). Then the direct scattering problem for the electric
field reads: Givery € HY?(I"), h € H=Y?('y) andhy, € H~Y2(T,) find v € HY(D)
andu® € Hi.(D.) such that

Au® +ku*=0  in D, (2.1)
Mo + k?n(z)v =0 in D, (2.2)
v—u®=f onTl, (2.3)
v  Ou’®
% — E hq on Fl, (24)
Qv _ Ou = ikn(z)u® + hy on Iy, (2.5)

v Ov
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. ou® N

lim \/;(W —iku ) -0, (2.6)
wherek > 0 is the wave number; = |z|, n € Ol(D_), n>0n¢€ O(F_z), n>0
andf 1= e hy == (0e*4/Ov)|r,, hy = (04 /0v + ikn(z)e'?®9)|r, where
d € Q := {z € R? : |z| = 1} denotes the direction of the incident plane wave.
Here HY(D) and H}.(D.) are the usual Sobolev spacésl/?(I") and H~/2(T") are
the corresponding trace space and its dual respectivelyzant( o) := {ulr, : u €
HY2(I")} for [ C T. The existence of a unique solution to (2.1)—(2.6) was established
in [4].

In (2.1)—(2.6)u* denotes the scattered field and has the asymptotic behavior [1, 6]

u®(z) = ﬂ Uoo(Z,d) + O(r—%/?)
- \/F o0 )

asr — oo Whereu.(z,d) is defined forz]d € Q and is called thdar field pattern

of u*. The inverse problem of determining the shape of the scattering abj&cm a
knowledge of the far field pattera.. (z, d) for z,d € Q was considered in [4]. Hence
we can assum@® is known and address our attention to the problem of determining
information onn andn from a knowledge of.... To this end we need to consider the
interior transmission problernorresponding to (2.1)—(2.6).

3. The interior transmission problem

In this section we will study th@terior transmission problem

Aw + k2w =0 in D, (3.2)
Mo + k?n(z)v =0 in D, (3.2)
v—w =@ onT, (3.3)
ov  Ow
ov OJw .
B ikn(x)w+ Y+ on Iy (3.5

and begin by defining what we mean by a solution for given gataandr. To this
end, we first notice that i € H%?(I") andy € HY?(I") then there exists a lifting
function® € H2(D) such that® = ¢ andd®/dv = + onT and there exists a positive
constant such that

1@ z2(py < c(llell garary + 191 gz -
If we defineHy(D, T ;) by

ou

Ho(D,T5) == {u € HY(D) 1ul, =0, &

)
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then the interior transmission problem can be formulated as follows: Given
H3?(M), ¢ € HY?(T) andr € H-Y2(T),), find w € L?(D), v € L?(D) such
thatv — w — © € Ho(D, T ;) satisfies (3.1) and (3.2) in a distributional sense. If there
exists a nontrivial solution of the homogeneous problem associated wit)(&@5)
(i.,e. ¢ = ¢ = 7 = 0) thenk is called aransmission eigenvaluét can be shown that
the transmission eigenvalues form a discrete set (cf. Corollary 8.p11 fdr the case
of TE-polarized waves).

We first need to show that|r, is well defined. To this end we notice that ¢
L?(D,A) where

L?(D,A) := {u € L*(D) : Au € L?(D)}.

Using Green’s theorem we have that

ow 00
/I_ (Ee—wa) dSZ/D(OAw—wAO) dx (3.6)
forw € C>(D) and® € H?(D). SinceC> (D) is dense in?(D,A) and the mapping
© — (O x 90/dv|r) is injective from H2(D) into H¥3(I') x HY?(I'), we can
conclude that (3.6) extends the mapping- (w|r, dw/dv|r) to a continuous mapping
from L2(D,A) into H=Y2(I") x H~%/?(T"). Hencew|r, € H~/?(T",) is well defined.

We note that, combining (3.3) and (3.5), the transmission boundaditaom (3.5)
can be replaced by

ov  Jw .
w3 ikn(z)v + ikn(z)e + 9 + 7. (3.7)
Now letu = v — w andug = v — w — © where® is the lifting of ¢ andv. Then
—7 2 = ou’
oA + knu)dx — [ v—ds=0 (3.8)
D r, v

for anyu’ € Ho(D,I2) and using the transmission boundary condition (3.7) we have
that (assuming > O forz € I'y)

o’ 7 1 ou o’ 7 1 o’ o’
ds = — — 22" 4 — = —d —ds. (3.9
rzvay s k/rznal/ ov S+k/r2n(¢+7) ov S+/rz<'0(91/ s (3.9)

From the fact that 1

T K2(1-n)
and combining (3.9) and (3.8) we have thate Ho(D,I,) satisfies (assuming # 1
forxz € D)

(D + k2u)

v

1 [ 1 0uo 0w
A k?ug) (A’ 4 k*nad) d k/ et
/Dl—n( uo + k“uo) (Au’ + knu’) do + 4 - v o s
i -
:/ ! (A6+k26)(A17+k2n17)d:c+ik/ T v [ 09% 45 (3.10)
pl—n r,n ov r, Ov
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for everyu’ € Ho(D,T ). Using the denseness 6 (D in Ho(D, T ) itis straightfor-
ward to show that for) > 0 andn # 1 the interior transmission problem is equivalent
to (3.10).

We now want to study the solvability of (3.10). To this end we denote thetiwega
of the right hand side of (3.10) b which is a bounded conjugate linear functional in
Ho(D,T3), and define

A (ug, u) := / ( 1 (Dug + k2uo) (A’ + E*u) +k4u017) dr,
p \n— 1
Ap(ug, u) == / ( r (Dug + Kuo) (A’ + K24) + AuAE’) dz,
p \n— 1
-
B(ug,u) = 1 9uo 9w’ ds, C(ug,u) = / Vug - Vi dx.
r,n ov ov D

Note thatAy (-, -), Ax(-, -), B(-,-) andC(-, -) are continuous sesquilinear forms
on Ho(D, rz) X Ho(D, rz). Let Ay, A, B andC : Ho(D, rz) — Ho(D, rz) be the
bounded linear operators defined by the above sesquilinear forngsthsiiRiesz rep-
resentation theorem. Due to the compact imbedding?0D) into H'(D), it is easy

to see that : Ho(D,I2) — Ho(D,T ) is a compact operator. With the above nota-
tion (3.10) can be written as

A (ug, u') — ikB(ug,u’) — k?C(uo, u') = £(u') (3.11)
or 5
A (uo,u') + ikB(ug, u') — k?C(ug,u’) = —£(u'). (3.12)

Lemma 3.1. Let y be a positive constant and assume thatn — 1) > v > 0 (re-
spectivelyn/(1 —n) > v > 0). ThenA;, — ikB (respectivelyd, + ikB) is a coercive
sesquilinear form oty (D, 2) x Ho(D,T ).

Proof. Letug € Ho(D, ) and assume that/ln — 1) > ~ > 0. Then since is real
valued we have that

Re(Ak (UO, UO) — ikB(uo, UO)) = Ay (UO, UO).

But .Ak(uo, uo) > ’7”AUO + kZUOH%z(D) + /€4HUO||%2(D). SettingX = HAUOHLZ(D)!
Y = k2||ug|| 12 py and integrating by parts we have that

|Aug + k2ugl|? > X% +Y? — 2XY.
Hence
Ap(u,u0) > yX? = 2yXY + (v +1)Y?

- (7+%)(Y_27211X)+%Y2+T727X2

7y

>
142y

(X?24+Y?). (3.13)
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Again integrating by parts, and using the fact that= 0 onI", we have that
180 + K2uo|| 22 ) = 1802 ) — 2k2[Vuol|22 ) + Kol 22 )

and hence
2k2|Vuo| 2 ) < [1Buol 2y + k*[uoll22( ) (3.14)

Combining (3.13) and (3.14) we have that there exists a cons,;aﬂto independent
of ug and~ such that

Ap (uo, up) > 1+2 [|w OHHODI'Z

which shows thatd( -, -) — ikB(-, - ) is coercive.
If n/(1—n) >~ > 0we have that

Re (A (uo, uo) + ikB(uo, uo)) = A (uo, uo)-
But
A (uo, uo) > 7| Duo + K2uol |2 py + k¥ Buol|® = (v + 1) X? — 29XY + Y2

Hence, proceeding in the same way as above, it can be shown that

A (’LLO,’LLO) 1+2 || OHHODFZ

for some positive constaant, i.e. ﬂk( -, - )+ ikB(-, -) is coercive. O

Theorem 3.2. Let « and § be positive constants and assume that n > 6 + 1 or
1—-n >4§andn > «. Then ifk is not a transmission eigenvalue there exists a unique
solution of the interior transmission problem satisfying

lwll 2oy + vl 2oy < clllellmarzay + 10N gz + 17 a-12(r,))
for some positive constantndependent of, ¢ andr.

Proof. First consider > n > ¢ + 1. This implies that 1(n — 1) > v > 0. Using the
fact thatC' is a compact operator and from the Lempba— ik is bijective, the result
follows from an application of the Fredholm alternative. On the other hiind> «
and 1- n > § thenn/(1—n) > 74 for some positive constantand the result follows
from the fact thatd,, + ikB3 is bijective. O

Forg € L?(Q) we define theHerglotz wave functiowith kernelg by
o)1= [ *=ig(d) as(a)
o

and note that by the Jacobi—Anger expansiQtkr)e™™? are Herglotz wave functions
whereJ,, is a Bessel function of order,n = 0,4+1, £2,....
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Theorem 3.3. The set of Herglotz wave functions, g € L?(Q), is dense in.(D) :=
{u € L3(D) : Au + k?u = 0in the sense of distributiohs

Proof. Letug € L?(D) be orthogonal te,, g € L?(Q), and define

u(z) = /D(D(x y)uo(y) dy, r € R? (3.15)

where _
(3

®(z,y) = 7 Hy' (klz —y)) (3.16)
andHél) as a Hankel function of the first kind of order zero. Thenifar R? \ 5, the
unique continuation property for solutions to the Helmholtz equation and tigaad
theorem for Bessel functions implies thgt:) = 0 and hence, by the continuity prop-
erties of volume potentials; = du/dv = 0 onT. SinceAu + k?u = —ug in D we
have, multiplying byug and integrating by parts, that

—Huo||%2(D) = (Du,uo) r2(py + kz(u,uo)Lz(D) = (u, Dug + kzuo)Lz(D) =0
and henceip = 0. The proof of the theorem now follows immediately. O

Let ®..(Z, z) be the far field pattern oP(z, 2),z € D. By Theorems 3.2 and 3.3,
for z € D there exists a Herglotz wave functieg. with kernelg: an approximate
solution of thefar field equation

/ s (3, d)g(d) ds(d) = Do (3, 2) (3.17)
Q
such thatv,. converges tav, in the L?(D) norm asc — 0 wherew., v, is the unique

solution (assumlng thdt is not a transmission eigenvalue) to the interior transmission
problem

Aw, + k?w, =0  in D, (3.18)
Mv, + E*n(z)v, =0 in D, (3.19)
v, —w, = P(-,2) on 9D, (3.20)
ov, Ow, 0
5 " B - 5¢<"2) on I, (3.21)
ov, Ow, 0

o o~

Following the approach of [5], we have that the direct scattering protslevall defined

for the incident field.’ in L2(D). Furthermore, for € D, u* := ®(-,2) in R?\ D and

u® = v, — w, in D satisfy the direct scattering problem for incident field. Let u?

be the scattered field correspondingte. Thenu? — u® = v, — w. in HY(D) and

uf — ®(-,z)in HL.(R?\ D). Using this fact and proceeding in the same way as in
the last section of [5], it is possible to justify the use of Green’s formupdieg tow,
andv, as done in the next section of this paper.

z) +ikn(w, + ®(-,2)) on I,. (3.22)
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4. Inequalities for n and n

Using the analysis of the previous section, it is now easy to obtain an inedjiaality

Theorem 4.1. Let 2o € D and letv,,, w,, be a solution to the interior transmission
problem(3.18)}{3.22) Then

2
[ nwpas = 2o
P

wherey = ¢™/4//8rk andW = w., + D( -, 20).
Proof. SetW = w,, + ®( -, zp). Then, using the fact thatis real,

0= / vz %)ds—/(Wa—W—ﬂ_/a—W)ds

Y20 g, T Y% gy, v v
—Zik/ n(z)WW ds.
2
But
oW oWy 9P(-,20) = P(-,20)
/F(WW_WB )ds /r((b( »70) v — (%) v )ds
OP( -, 20) Ow,, — OD(-,z)
—|—/|_(sz 5 —d(-,20) )d —l—/(q)(-,zo) 5, Yo g, )ds
:—ZZk/ D ( 2)ds + w4 (20) — W, (20)
= —dimk|y|? — 2i Imw.,(20),
ie.

2
[ oo )
2

Corollary 4.2. Lety andw,, be as in the above theorem. Then

supn(z) > — 2km|y]? + Imw.,(20)
zel, N kszo + CD( T ZO)HLZ(Fz)

with equality holding ify(z) is a constant.

Note that from the analyses of the previous sectigp can be approximated by
the Herglotz wave functiomgS where ¢¢ is an approximate solution to the far field
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equation (3.17). Sinc€; is in general unknown, a more practical lower bound is
obtained if in the corollary.?(I",) is replaced by ?(T").
Now assume thaj = 0, i.e. the scattering obstacle is uncoated. Then, sihcan
be determined by the linear sampling method [1, 6], the first eigenvaliie) of —A
in D is known. In this case we have the following theorem [3, 7]:

Theorem 4.3. Assume that — 1 > § for some positive constait Then ifk is a
transmission eigenvalue we have that

Ao(D)
K2

supn >
D

Since the transmission eigenvalues can numerically be determined frdan fietd
pattern, Theorem 4.3 gives a method for determining a lower bound fgrfrom the
far field pattern.
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