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Inequalities in inverse scattering theory

F. Cakoni and D. Colton

Abstract. We consider the scattering of time harmonic electromagnetic plane waves by a bounded,
inhomogeneous dielectric medium that is partially coated by a thin metallic layer inR2. We use far
field pattern of the scattered waves at a fixed frequency as data to determine the supportD of the
inhomogeneous obstacle, the surface conductivity that characterizes the coating and the relative per-
mittivity. No a prior information on the material properties of the scatterer is needed. The supportD

is determined by the linear sampling method which is based onthe approximate solution of the far
field equation. This solution is also used to obtain lower bounds for the surface conductivity and
relative permittivity. The techniques for solving this inverse scattering problem rely on the analysis
of a non standard boundary value problem known as the interior transmission problem.

Key words. Inverse scattering problem, inhomogeneous medium, interior transmission problem,
electromagnetic waves, mixed boundary value problems, qualitative approaches in inverse scattering.

AMS classification.35P25, 35R30, 78A45.

1. Introduction

Until recently, reconstruction algorithms for solving inverse electromagnetic scattering
problems have been based on either nonlinear optimization techniques or on linearized
models based on weak scattering approximations [6]. In the past ten years a third
approach to reconstruction has been developed which comes under therubric of qual-
itative methods in inverse scattering theory, the most popular of which is thelinear
sampling method [1]. In particular, qualitative methods determine the shape of the
scattering obstacle without needing any a priori information on the materialproperties
of the scatterer but provide little or no information on the physical properties of the
scatterer. However, in the past few years it has been noted that qualitative methods in
inverse scattering theory can in certain circumstances provide lower bounds on rele-
vant physical properties of the scatterer [2, 3] and it is to this theme that this paper is
directed.

We will illustrate our ideas by considering a simple scattering problem for an infinite
dielectric cylinder that is partially coated by a thin metallic coating. For Maxwell’s
equations inR3, scattering problems for such coated objects arise when an effort is
made to make benign dielectric objects look hostile, e.g. coating wooden decoys to
make them appear as tanks to radar interrogation. In general the scatterer is only par-
tially coated and the extent and composition of the coating is unknown. Such situations
lead to mixed boundary value problems in scattering theory and particular difficulties
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arise in trying to solve the inverse problem since the boundary conditions onthe scat-
tering object are unknown.

The plan of our paper is as follows. In the next section we will formulate thedirect
and inverse scattering problems for an infinite dielectric cylinder that is partially coated
by a highly conductive layer in the case of TM-polarized incident plane waves. We then
consider the inverse scattering problem of determining the supportD of the cross sec-
tion of the infinite cylinder, the surface conductivityη(x), x ∈ ∂D, that characterizes
the coating and the relative permittivityn(x), x ∈ D, of the dielectric cylinder using
the far field pattern of the scattered wave as data. Using the linear sampling method,
it was shown in [4] thatD can be determined in a constructive manner. However, the
techniques used in [4] were unable to determine any information onη(x) orn(x) due to
the fact that the well posedness of the interior transmission problem for coated objects
and TM-polarized fields was not established. Hence in Section 3 we will prove the
existence of a unique solution to the interior transmission problem for coatedobjects
and TM-polarized fields provided the wave number is not a transmission eigenvalue
(For the role played by the interior transmission problem and transmission eigenvalues
in inverse scattering theory we refer the reader to [1, 6]). We then use this result to
provide lower bounds for the surface conductivity and relative permittivity in terms of
data obtained from the far field pattern of the scattered wave.

2. Scattering by a partially coated cylinder

We consider the scattering of a time-harmonic plane wave by a partially coated in-
finitely long cylinder with axis in the z-direction and assume that the incident field is
propagating in a direction perpendicular to the cylinder such that the electricfield is
parallel to thez-axis. Let the bounded domainD ⊂ R

2 with Lipschitz boundaryΓ be
the cross section of the cylinder and assume that the exterior domainDe := R

2 \ D̄ is
connected. We denote byν the unit outward normal toΓ defined almost everywhere
on Γ. The boundaryΓ has a Lipschitz dissection [8]Γ = Γ1 ∪ Π ∪ Γ2. HereΓ1 cor-
responds to the uncoated part andΓ2 corresponds to the coated part. Under the above
assumptions the electric fields only have a component in thez direction, i.e. the inci-
dent fieldEi, internal fieldEint and scattered fieldEs are given byEi = (0,0, ui),
Eint = (0,0, v) andEs = (0,0, us). Then the direct scattering problem for the electric
field reads: Givenf ∈ H1/2(Γ), h ∈ H−1/2(Γ1) andh2 ∈ H−1/2(Γ2) find v ∈ H1(D)
andus ∈ H1

loc(De) such that

∆us + k2us = 0 in De, (2.1)

∆v + k2n(x)v = 0 in D, (2.2)

v − us = f on Γ, (2.3)

∂v

∂ν
− ∂us

∂ν
= h1 on Γ1, (2.4)

∂v

∂ν
− ∂us

∂ν
= ikη(x)us + h2 on Γ2, (2.5)
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lim
r→∞

√
r
(∂us

∂v
− ikus

)

= 0, (2.6)

wherek > 0 is the wave number,r = |x|, n ∈ C1(D̄), n > 0, η ∈ C(Γ̄2), η ≥ 0
andf := eidx·d|Γ, h1 := (∂eikx·d/∂ν)|Γ1, h2 := (∂eikx·d/∂v + ikη(x)eidx·d)|Γ2 where
d ∈ Ω := {x ∈ R

2 : |x| = 1} denotes the direction of the incident plane wave.
HereH1(D) andH1

loc(De) are the usual Sobolev spaces,H1/2(Γ) andH−1/2(Γ) are
the corresponding trace space and its dual respectively andH1/2(Γ0) := {u|Γ0 : u ∈
H1/2(Γ)} for Γ0 ⊂ Γ. The existence of a unique solution to (2.1)–(2.6) was established
in [4].

In (2.1)–(2.6),us denotes the scattered field and has the asymptotic behavior [1,6]

us(x) =
eikr

√
r
u∞(x̂, d) +O(r−3/2)

asr → ∞ whereu∞(x̂, d) is defined for ˆx, d ∈ Ω and is called thefar field pattern
of us. The inverse problem of determining the shape of the scattering objectD from a
knowledge of the far field patternu∞(x̂, d) for x̂, d ∈ Ω was considered in [4]. Hence
we can assumeD is known and address our attention to the problem of determining
information onη andn from a knowledge ofu∞. To this end we need to consider the
interior transmission problemcorresponding to (2.1)–(2.6).

3. The interior transmission problem

In this section we will study theinterior transmission problem

∆w + k2w = 0 in D, (3.1)

∆v + k2n(x)v = 0 in D, (3.2)

v − w = ϕ on Γ, (3.3)

∂v

∂ν
− ∂w

∂ν
= ψ on Γ1, (3.4)

∂v

∂ν
− ∂w

∂ν
= ikη(x)w+ ψ + τ on Γ2 (3.5)

and begin by defining what we mean by a solution for given dataϕ, ψ andτ . To this
end, we first notice that ifϕ ∈ H3/2(Γ) andψ ∈ H1/2(Γ) then there exists a lifting
functionΘ ∈ H2(D) such thatΘ = ϕ and∂Θ/∂ν = ψ onΓ and there exists a positive
constantc such that

‖Θ‖H2(D) ≤ c
(

‖ϕ‖H3/2(Γ) + ‖ψ‖H1/2(Γ)

)

.

If we defineH0(D,Γ2) by

H0(D,Γ2) :=
{

u ∈ H2(D) : u
∣

∣

Γ2
= 0,

∂u

∂ν

∣

∣

∣

Γ2

= 0
}
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then the interior transmission problem can be formulated as follows: Givenϕ ∈
H3/2(Γ), ψ ∈ H1/2(Γ) and τ ∈ H−1/2(Γ)2), find w ∈ L2(D), v ∈ L2(D) such
thatv − w − Θ ∈ H0(D,Γ2) satisfies (3.1) and (3.2) in a distributional sense. If there
exists a nontrivial solution of the homogeneous problem associated with (3.1)-(3.5)
(i.e. ϕ = ψ = τ = 0) thenk is called atransmission eigenvalue. It can be shown that
the transmission eigenvalues form a discrete set (cf. Corollary 8.21 of[1] for the case
of TE-polarized waves).

We first need to show thatw|Γ2 is well defined. To this end we notice thatw ∈
L2(D,∆) where

L2(D,∆) := {u ∈ L2(D) : ∆u ∈ L2(D)}.
Using Green’s theorem we have that

∫

Γ

(∂w

∂ν
Θ − w

∂Θ
∂ν

)

ds =

∫

D

(Θ∆w − w∆Θ) dx (3.6)

for w ∈ C∞(D̄) andΘ ∈ H2(D). SinceC∞(D̄) is dense inL2(D,∆) and the mapping
Θ → (Θ|Γ × ∂Θ/∂ν|Γ) is injective fromH2(D) into H3/2(Γ) × H1/2(Γ), we can
conclude that (3.6) extends the mappingw → (w|Γ, ∂w/∂ν|Γ) to a continuous mapping
fromL2(D,∆) intoH−1/2(Γ) ×H−3/2(Γ). Hencew|Γ2 ∈ H−1/2(Γ2) is well defined.

We note that, combining (3.3) and (3.5), the transmission boundary condition (3.5)
can be replaced by

∂v

∂ν
− ∂w

∂ν
= ikη(x)v + ikη(x)ϕ+ ψ + τ. (3.7)

Now letu = v − w andu0 = v − w − Θ whereΘ is the lifting ofϕ andψ. Then
∫

D

v(∆ū′ + k2nū′) dx−
∫

Γ2

v
∂ū′

∂ν
ds = 0 (3.8)

for anyu′ ∈ H0(D,Γ2) and using the transmission boundary condition (3.7) we have
that (assumingη > 0 for x ∈ Γ̄2)
∫

Γ2

v
∂ū′

∂ν
ds = − i

k

∫

Γ2

1
η

∂u

∂ν

∂ū′

∂ν
ds+

i

k

∫

Γ2

1
η

(ψ + τ)
∂ū′

∂ν
ds+

∫

Γ2

ϕ
∂ū′

∂ν
ds. (3.9)

From the fact that

v =
1

k2(1− n)
(∆u+ k2u)

and combining (3.9) and (3.8) we have thatu0 ∈ H0(D,Γ2) satisfies (assumingn 6= 1
for x ∈ D̄)

∫

D

1
1− n

(∆u0 + k2u0)(∆ū′ + k2nū′) dx+ ik

∫

Γ2

1
η

∂u0

∂ν

∂ū′

∂ν
ds

=

∫

D

1
1− n

(∆Θ + k2Θ)(∆ū′ + k2nū′) dx+ ik

∫

Γ2

τ

η

∂ū′

∂ν
ds+

∫

Γ2

Θ ∂ū′

∂ν
ds (3.10)
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for everyu′ ∈ H0(D,Γ2). Using the denseness ofC∞(D̄ inH0(D,Γ2) it is straightfor-
ward to show that forη > 0 andn 6= 1 the interior transmission problem is equivalent
to (3.10).

We now want to study the solvability of (3.10). To this end we denote the negative
of the right hand side of (3.10) byℓ, which is a bounded conjugate linear functional in
H0(D,Γ2), and define

Ak(u0, u) :=
∫

D

( 1
n− 1

(∆u0 + k2u0)(∆ū′ + k2ū′) + k4u0ū
′

)

dx,

Ãk(u0, u) :=
∫

D

( n

n− 1
(∆u0 + k2u0)(∆ū′ + k2ū′) + ∆u∆ū′

)

dx,

B(u0, u) :=
∫

Γ2

1
η

∂u0

∂ν

∂ū′

∂ν
ds, C(u0, u) :=

∫

D

∇u0 · ∇ū′ dx.

Note thatAk( · , · ), Ãk( · , · ) , B( · , · ) andC( · , · ) are continuous sesquilinear forms
onH0(D,Γ2) × H0(D,Γ2). Let Ak, Ãk, B andC : H0(D,Γ2) → H0(D,Γ2) be the
bounded linear operators defined by the above sesquilinear forms using the Riesz rep-
resentation theorem. Due to the compact imbedding ofL2(D) into H ′(D), it is easy
to see thatC : H0(D,Γ2) → H0(D,Γ2) is a compact operator. With the above nota-
tion (3.10) can be written as

Ak(u0, u
′) − ikB(u0, u

′) − k2C(u0, u
′) = ℓ(u′) (3.11)

or
Ãk(u0, u

′) + ikB(u0, u
′) − k2C(u0, u

′) = −ℓ(u′). (3.12)

Lemma 3.1. Let γ be a positive constant and assume that1/(n − 1) ≥ γ > 0 (re-
spectivelyn/(1− n) ≥ γ > 0). ThenAk − ikB (respectivelyÃk + ikB) is a coercive
sesquilinear form onH0(D,Γ2) ×H0(D,Γ2).

Proof. Let u0 ∈ H0(D,Γ2) and assume that 1/(n − 1) ≥ γ > 0. Then sinceη is real
valued we have that

Re(Ak(u0, u0) − ikB(u0, u0)) = Ak(u0, u0).

But Ak(u0, u0) ≥ γ‖∆u0 + k2u0‖2
L2(D) + k4‖u0‖2

L2(D). SettingX = ‖∆u0‖L2(D),

Y = k2‖u0‖L2(D) and integrating by parts we have that

‖∆u0 + k2u0‖2 ≥ X2 + Y 2 − 2XY.

Hence

Ak(u, u0) ≥ γX2 − 2γXY + (γ + 1)Y 2

=
(

γ +
1
2

)(

Y − 2γ
2γ + 1

X
)

+
1
2
Y 2 +

γ

1+ 2γ
X2

≥ γ

1 + 2γ
(X2 + Y 2). (3.13)
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Again integrating by parts, and using the fact thatu0 = 0 onΓ, we have that

‖∆u0 + k2u0‖2
L2(D) = ‖∆u‖2

L2(D) − 2k2‖∇u0‖2
L2(D) + k4‖u0‖2

L2(D)

and hence
2k2‖∇u0‖2

L2(D) ≤ ‖∆u0‖2
L2(D) + k4‖u0‖2

L2(D). (3.14)

Combining (3.13) and (3.14) we have that there exists a constantck > 0 independent
of u0 andγ such that

Ak(u0, u0) ≥ ck
γ

1 + 2γ
‖u0‖2

H0(D,Γ2)

which shows thatAk( · , · ) − ikB( · , · ) is coercive.
If n/(1− n) ≥ γ > 0 we have that

Re(Ãk(u0, u0) + ikB(u0, u0)) = Ãk(u0, u0).

But

Ãk(u0, u0) ≥ γ‖∆u0 + k2u0‖2
L2(D) + k4‖∆u0‖2 = (γ + 1)X2 − 2γXY + γY 2.

Hence, proceeding in the same way as above, it can be shown that

Ãk(u0, u0) ≥ ck
γ

1 + 2γ
‖u0‖2

H0(D,Γ2)

for some positive constantck, i.e. Ãk( · , · ) + ikB( · , · ) is coercive. 2

Theorem 3.2. Let α and δ be positive constants and assume thatα ≥ n ≥ δ + 1 or
1− n ≥ δ andn ≥ α. Then ifk is not a transmission eigenvalue there exists a unique
solution of the interior transmission problem satisfying

‖w‖L2(D) + ‖v‖L2(D) ≤ c(‖ϕ‖H3/2(Γ) + ‖ψ‖H1/2(Γ) + ‖τ‖H−1/2(Γ2))

for some positive constantc independent ofϕ, ψ andτ .

Proof. First considerα ≥ n ≥ δ + 1. This implies that 1/(n− 1) ≥ γ > 0. Using the
fact thatC is a compact operator and from the LemmaAk − ikB is bijective, the result
follows from an application of the Fredholm alternative. On the other hand,if n ≥ α
and 1− n ≥ δ thenn/(1− n) ≥ γ̃ for some positive constant ˜γ and the result follows
from the fact thatÃk + ikB is bijective. 2

Forg ∈ L2(Ω) we define theHerglotz wave functionwith kernelg by

vg(x) :=
∫

Ω
eikx·dg(d) ds(d)

and note that by the Jacobi–Anger expansionJn(kr)einθ are Herglotz wave functions
whereJn is a Bessel function of ordern, n = 0,±1,±2, . . . .
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Theorem 3.3. The set of Herglotz wave functionsvg, g ∈ L2(Ω), is dense inL(D) :=
{u ∈ L2(D) : ∆u+ k2u = 0 in the sense of distributions}.

Proof. Let u0 ∈ L2(D) be orthogonal tovg, g ∈ L2(Ω), and define

u(x) :=
∫

D

Φ(x, y)u0(y) dy, x ∈ R
2 (3.15)

where
Φ(x, y) :=

i

4
H

(1)
0 (k|x− y|) (3.16)

andH(1)
0 as a Hankel function of the first kind of order zero. Then forx ∈ R

2 \ D̄, the
unique continuation property for solutions to the Helmholtz equation and the addition
theorem for Bessel functions implies thatu(x) = 0 and hence, by the continuity prop-
erties of volume potentials,u = ∂u/∂ν = 0 on Γ. Since∆u + k2u = −u0 in D we
have, multiplying byu0 and integrating by parts, that

−‖u0‖2
L2(D) = (∆u, u0)L2(D) + k2(u, u0)L2(D) = (u,∆u0 + k2u0)L2(D) = 0

and henceu0 = 0. The proof of the theorem now follows immediately. 2

Let Φ∞(x̂, z) be the far field pattern ofΦ(x, z), z ∈ D. By Theorems 3.2 and 3.3,
for z ∈ D there exists a Herglotz wave functionvgǫ

z
with kernelgǫ

z an approximate
solution of thefar field equation

∫

Ω
u∞(x̂, d)g(d) ds(d) = Φ∞(x̂, z) (3.17)

such thatvgǫ
z

converges towz in theL2(D) norm asǫ → 0 wherewz , vz is the unique
solution (assuming thatk is not a transmission eigenvalue) to the interior transmission
problem

∆wz + k2wz = 0 in D, (3.18)

∆vz + k2n(x)vz = 0 in D, (3.19)

vz − wz = Φ( · , z) on ∂D, (3.20)

∂vz

∂ν
− ∂wz

∂ν
=

∂

∂ν
Φ( · , z) on Γ1, (3.21)

∂vz

∂ν
− ∂wz

∂v
=

∂

∂ν
Φ( · , z) + ikη(wz + Φ( · , z)) on Γ2. (3.22)

Following the approach of [5], we have that the direct scattering problemis well defined
for the incident fieldui in L2(D). Furthermore, forz ∈ D, us := Φ( · , z) in R

2\D̄ and
us = vz − wz in D satisfy the direct scattering problem for incident fieldwz. Let us

ǫ

be the scattered field corresponding tovgǫ
z
. Thenuz

ǫ → us = vz − wz in H1(D) and
us

ǫ → Φ( · , z) in H1
loc(R

2 \ D̄). Using this fact and proceeding in the same way as in
the last section of [5], it is possible to justify the use of Green’s formula applied towz

andvz as done in the next section of this paper.
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4. Inequalities for η and n

Using the analysis of the previous section, it is now easy to obtain an inequalityfor η.

Theorem 4.1. Let z0 ∈ D and letvz0, wz0 be a solution to the interior transmission
problem(3.18)–(3.22). Then

∫

Γ2

η(x)|W |2 ds = −2πk|γ|2 + Imwz0(z0)

k

whereγ = eiπ/4/
√

8πk andW = wz0 + Φ( · , z0).

Proof. SetW = wz0 + Φ( · , z0). Then, using the fact thatn is real,

0 =

∫

Γ

(

vz0

∂v̄z0

∂ν
− v̄z0

∂vz0

∂ν

)

ds =

∫

Γ

(

W
∂W̄

∂ν
− W̄

∂W

∂ν

)

ds

− 2ik
∫

Γ2

η(x)WW̄ ds.

But

∫

Γ

(

W
∂W̄

∂ν
− W̄

∂W

∂ν

)

ds =

∫

Γ

(

Φ( · , z0)
∂Φ( · , z0)

∂ν
− Φ( · , z0)

Φ( · , z0)

∂ν

)

ds

+

∫

Γ

(

wz0

∂Φ( · , z0)

∂ν
− Φ( · , z0)

∂wz0

∂ν

)

ds+

∫

Γ

(

Φ( · , z0)
∂w̄z0

∂ν
− w̄z0

∂Φ( · , z0)

∂ν

)

ds

= −2ik
∫

Ω
Φ∞( · , z0)Φ∞( · , z)ds+ w̄z0(z0) − wz0(z0)

= −4iπk|γ|2 − 2i Imwz0(z0),

i.e.
∫

Γ2

η(x)|W |2 ds = −2kπ|γ|2 + Imwz0(z0)

k
.

2

Corollary 4.2. Letγ andwz0 be as in the above theorem. Then

sup
x∈Γ2

η(x) ≥ − 2kπ|γ|2 + Imwz0(z0)

k‖wz0 + Φ( · , z0)‖L2(Γ2)

with equality holding ifη(x) is a constant.

Note that from the analyses of the previous sectionwz0 can be approximated by
the Herglotz wave functionvgǫ

z wheregǫ
z is an approximate solution to the far field
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equation (3.17). SinceΓ2 is in general unknown, a more practical lower bound is
obtained if in the corollaryL2(Γ2) is replaced byL2(Γ).

Now assume thatη = 0, i.e. the scattering obstacle is uncoated. Then, sinceD can
be determined by the linear sampling method [1, 6], the first eigenvalueλ0(D) of −∆
in D is known. In this case we have the following theorem [3,7]:

Theorem 4.3. Assume thatn − 1 ≥ δ for some positive constantδ. Then ifk is a
transmission eigenvalue we have that

sup
D

n >
λ0(D)

k2 .

Since the transmission eigenvalues can numerically be determined from thefar field
pattern, Theorem 4.3 gives a method for determining a lower bound forn(x) from the
far field pattern.
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